

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2011-IW-001

From Offline Long-Run to Online Short-Run: Exploring A New

Approach of Hybrid Systems Model Checking for MDPnP

Tao Li, Qixin Wang, Feng Tan, Lei Bu, Jian-nong Cao

Xue Liu, Yufei Wang , Rong Zheng

Postprint Version. Originally Published in: High Confidence Medical

Devices, Software, and Systems, 2011

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

From Offline Long-Run to Online Short-Run: Exploring A New Approach of

Hybrid Systems Model Checking for MDPnP

Tao Li∗, Qixin Wang∗, Feng Tan∗, Lei Bu†, Jian-nong Cao∗

Xue Liu‡, Yufei Wang∗, Rong Zheng∗∗

∗ Department of Computing, The Hong Kong Polytechnic University

Email: {cstaoli, csqwang, csftan, csjcao, csyufewang}@comp.polyu.edu.hk
† State Key Laboratory for Novel Software Technology,

Department of Computer Science and Technology, Nanjing University

Email: bulei@nju.edu.cn
‡ School of Computer Science, McGill University

Email: {xue.liu}@mcgill.ca
∗∗ Department of Computer Science, University of Houston

Email: rzheng@uh.edu

Abstract

Hybrid systems model checking is a great success in

guaranteeing the safety of computerized control cyber-

physical systems (CPS). However, when applying hybrid

systems model checking to MDPnP CPS, we encounter two

challenges due to the complexity of human body: i) there

is no good differential equation based models for many hu-

man body parameters; ii) the complexity of human body can

easily cause verification state space explosion. In attempt to

address the challenges, we propose to alter the traditional

approach of offline hybrid systems model checking of time-

unbounded (i.e., long-run) future. Instead, we propose to

carry out online (real-time) hybrid systems model check-

ing of time-bounded (i.e., short-run) future. We carry out a

case study on laser tracheotomy MDPnP, which shows the

necessity of our proposed approach. We also carry out em-

ulations based on real-world vital sign traces to show the

feasibility of our proposed approach.

1. Introduction

Thanks to the rapid development of embedded systems

technology, we now have thousands of kinds of embedded

medical devices. So far, these devices are designed for iso-

lated use. However, people have envisioned that by coor-

dinating these devices, we can significantly increase medi-

cal treatment safety, capability, and convenience/efficiency.

This vision resulted in the launch of the Medical Device

Plug-and-Play (MDPnP) [1] effort, which aims to enable

the safe composition and collaboration of disparate embed-

ded devices in medical contexts. An MDPnP system is

a typical Cyber-Physical System (CPS) [15]. On the one

hand, it involves cyber-world discrete computer logic of

various embedded medical devices. On the other hand, it

involves physical-world patient-in-the-loop, which is a con-

tinuous complex biochemical system.

The prerequisite and top concern of any MDPnP system

is safety. In the cyber-world, for safety-critical systems,

people commonly carry out model checking [5] before the

system is put online. Typically, model checking builds an

offline model (usually with automata) of the system, and

then proves that the model can never reach unsafe states.

Only after passing model checking is the system allowed to

run.

This practice is a great success. Today, model checking

is an obligatory procedure required by law for many safety-

critical computer systems, such as avionics. For verifica-

tion of the combined cyber and physical systems (i.e., CPS),

the most promising family of model checking tools are the

hybrid systems model checking tools [16], which integrate

the discrete automata models with the continuous differen-

tial equation (and other control theory) models. Today, hy-

brid systems model checking is mature enough to deal with

many computerized control systems, an important category

of CPS.

The success of hybrid systems model checking in com-

puterized control CPS naturally piqued curiosity on its ap-

plication to MDPnP CPS. However, this faces two major

For Research Only

challenges, mainly due to the complexity of human body

(the patient).

Challenge 1 : In most cases, there are no good offline mod-

els to describe the complex biochemical system of hu-

man body (the patient) [11]. Even if some vital signs

can be modeled offline, the models may not (with some

exceptions [10]) fit into existing hybrid systems model

checking tools, which are mainly designed to work

with linear differential equation based control models.

Challenge 2 : The verification state space can easily ex-

plode due to the uncountable combination possibili-

ties of subsystems and parameters. This is a long-time

problem for model checking already. But for MDPnP

CPS, the problem becomes even more prominent, as it

now involves the numerous genes, tissues, organs, and

biochemical processes of the patient’s human body.

These subsystems/parameters can all directly or indi-

rectly affect each other, creating astronomical possibil-

ities of combinations.

In attempt to address the above challenges for MDPnP

CPS, we propose to alter the traditional practice of offline

model checking of hybrid system’s behavior in the time-

unbounded (i.e., long-run) future; instead, we shall carry

out online model checking of hybrid system’s behavior in

the time-bounded (i.e., short-run) future.

This approach has following merits that respectively cor-

respond to the aforementioned challenges:

(1) Though many human body parameters are hard to

model offline, their online behavior in short-run future

is quite describable and predictable. For example, after

injecting 1ml of morphine, it is hard to accurately pre-

dict the blood oxygen level curve in the next 10 min-

utes, as it depends on too many factors, such as the

patient’s gender, age, weight, genes etc. [8][12]. How-

ever, at the granularity of a few seconds into the future,

the blood oxygen level curve is quite predictable. It

cannot plunge from 99% to 59% in just 3 seconds, or

show a saw-toothed wave form. Instead, the curve has

to be smooth, which can be perfectly predicted with

existing tools, such as linear regression.

(2) Because the modeling is conducted online, many pa-

rameters’ values become fixed numbers: sampled at

the moment of modeling. This cuts the need to tra-

verse the domains of these parameters, hence greatly

reduces verification state space. The state space is fur-

ther reduced because we only look into short-run fu-

ture. That is, we only verify time-bounded behavior

of the system, rather than all possible behavior of the

system in the (time-unbounded) future.

Details of the proposed approach is like follows. Given

an MDPnP system S , we shall periodically sample the ob-

servable state parameters every T seconds. At time instance

kT (k = 0, 1, 2, . . .), we shall build a hybrid systems model

(referred to as an “online model”) of S with the observed

numerical values of state parameters, and verify its safety

in the time interval (kT, (k + 1)T] (i.e., within only short-

run future). If the online model is proven safe, the system

can run for another T seconds. Otherwise, the system must

immediately switch to an application dependant fall-back

plan.

Such modeling and verification must be finished within

bounded and short time (i.e., in real-time), to allow decision

making (on whether run the system for another T seconds

or switch to fall-back plan) before any fault happens. A

more detailed and practical design may involve pipelining:

model and verify the safety of next period before the current

verified safe period ends. For simplicity, we are not going

to discuss the detailed design of pipelining in this paper.

In the rest of the paper, we carry out a case study

on a representative MDPnP system, laser tracheotomy,

to demonstrate our proposed approach and show the ap-

proach’s feasibility. Section 2 demonstrates how to model

the laser tracheotomy MDPnP; Section 3 evaluates the ap-

proach; Section 4 discusses related work; and Section 5

concludes the paper.

2. Modeling Laser Tracheotomy MDPnP

Laser tracheotomy MDPnP is a representative MDPnP

application [10], where interlocking of various medical de-

vices increases the safety of the surgery. Laser tracheotomy

MDPnP involves the following entities (see Fig. 1):

Patient : the patient that receives the surgery;

O2 Sensor : the patient’s windpipe oxygen level sensor;

SpO2 Sensor : the patient’s blood oxygen level sensor;

Ventilator : the medical device that administrates the pa-

tient’s respirations;

Surgeon : the doctor that conducts the surgery;

Laser Scalpel : the medical device that the surgeon uses to

cut the patient’s windpipe;

Supervisor : the central computer that connects all medi-

cal devices and make decisions to guarantee safety.

The application context is as follows. In the surgery, due

to general anesthesia, the patient is paralyzed, hence have to

depend on the ventilator to breath. The ventilator has three

modes: pumping out (the patient inhales oxygen), pumping

For Research Only

Figure 1. Layout of Laser Tracheotomy
MDPnP

in (the patient exhales), and halt (the patient exhales natu-

rally due to chest weight). However, when the laser scalpel

is to cut the patient’s windpipe, the oxygen level inside the

windpipe must be lower than a threshold. Otherwise, the

laser may trigger fire. Therefore, before the laser scalpel

is allowed to emit laser, the ventilator must have stopped

pumping out (oxygen) for a while. On the other hand, the

ventilator can neither stop pumping out for too long, or the

patient will suffocate due to too low blood oxygen level.

Formally, the behavior of laser tracheotomy MDPnP

must comply with the following safety rules:

Safety Rule 1 : when the laser scalpel emits laser, the

patient’s windpipe oxygen level must not exceed a

threshold ΘO2
;

Safety Rule 2 : the patient’s blood oxygen level never

reaches below a threshold ΘSpO2
.

Note the setting of constant thresholds ΘO2
and ΘSpO2

are

medical experts’ responsibility and are beyond the coverage

of this paper.

Also, for better human-computer-interface friendliness,

we add a third rule: an optional rule that does not have to

be strictly followed but is preferred.

(Optional) Safety Rule 3 : once the supervisor approves

the laser scalpel to emit, the approval lasts for at least

Tmin
approve seconds, unless the laser scalpel requests to

stop emission by itself.

2.1. Offline Modeling

Because the laser tracheotomy MDPnP involves both

discrete medical device logic and physical world patient, it

is a typical hybrid system. Therefore we try to model laser

tracheotomy MDPnP with hybrid automata [9], the model-

ing language of hybrid systems model checking.

The traditional way of model checking (including hybrid

systems model checking) is done offline. That is, the model

is built and its time-unbounded (long-run) behavior is ver-

ified before the system runs. We choose to start with this

approach. As a common practice, our offline modeling of

laser tracheotomy MDPnP assumes a global variable t rep-
resenting the global clock: t is initialized to 0 second, and

ṫ ≡ 1.
Intuitively, we intend to start with modeling the patient,

the core entity of the laser tracheotomy MDPnP. However,

the patient’s behavior is directly influenced by the ventila-

tor, which has to be understood first.

Figure 2. Offline hybrid automaton of Ventila-

tor

The ventilator is basically a compressible air reservoir: a

cylinder of height Hvent(t) (0 ≤ Hvent(t) ≤ 0.3(m)). The

movement of ventilator cylinder (indicated by Ḣvent(t))
pumps out/in oxygen/air to/from patient, thus helping the

patient to inhale/exhale. The ventilator behavior is de-

fined by the hybrid automaton in Fig. 2. The automaton

has three locations: PumpOut, PumpIn, and Hold. When

the supervisor (will be discussed later, see Fig. 7) allows

the ventilator to work (i.e., when global variable V entOn
is set to true), the ventilator switches between pumping

out (where Ḣvent = −0.1m/s) and pumping in (where

Ḣvent = +0.1m/s). This causes the patient to inhale oxy-

gen and exhale respectively. When the supervisor pauses

the ventilator (i.e., when V entOn is set to false), the ven-

tilator cylinder will try to restore to its maximum height

(0.3m) and holds there until the ventilator is allowed again

(V entOn set to true).

With the ventilator hybrid automaton at hand, we can

now start modeling the patient. The patient hybrid automa-

For Research Only

Figure 3. Offline hybrid automaton of Patient.
Note in location Hold (which corresponds to

ventilator Hold), the patient still exhale due to
chest weight.

ton (see Fig. 3) is tightly coupled with the ventilator hybrid

automaton (see Fig. 2). It also has three locations: Inhale,

Exhale, and Hold, which respectively correspond to the ven-

tilator hybrid automaton’s locations of PumpOut, PumpIn,

and Hold. The events between the three locations are also

triggered by corresponding events from the ventilator hy-

brid automaton.

Inside of each location are the offline continuous time

models for windpipe oxygen level O2(t) and blood oxygen

level SpO2(t). Unfortunately, though there are good offline
models for O2(t) [10], there is no accurate enough offline

model for SpO2(t). This is because blood oxygen level

are strongly affected by complex human body biochemical

reactions. To our best knowledge, its behavior is hard to be

accurately described/predicted offline by any known tools

[8][12].

Therefore, we failed to model SpO2(t) offline, and

hence failed to model the patient offline. What is worse,

as the patient model is an indispensable component of the

holistic offline model, the offline model checking of laser

tracheotomy MDPnP fails.

2.2. Online Modeling

The failure of offline approach forces us to consider the

proposed online approach (see Section 1) instead. Specifi-

cally, we sample the patient’s windpipe/blood oxygen level

periodically, with a period of T = 3 (second). Suppose at

t0 = kT (k ∈ N), we got the most up-to-date windpipe

oxygen level sensor reading Ô2(t0) and blood oxygen level

sensor reading ŜpO2(t0), we can then build the hybrid sys-
tems model for the interval of (t0, t0 + T].

Same as the offline model checking, we use global vari-

able t to represent the global clock, except that now t is
initialized to t0 and stops at (t0 + T) as we only care about
the system’s short-run safety until (t0 + T).

Figure 4. Online hybrid automaton of Patient.

The patient hybrid automaton now looks like Fig. 4. The

biggest change is the continuous time model for the blood

oxygen level SpO2(t). In offline model checking, we have

to describe the long-run behavior of SpO2(t), which is

too difficult. However, in online model checking, we only

have to describe SpO2(t)’s behavior in interval (t0, t0+T],
where T = 3 (second). If we only look into such short-run

future, blood oxygen level curve SpO2(t) is very describ-

able and predictable. It cannot plunge from 99% to 59%

within just 3 seconds, neither can it show a saw-toothed

wave form. Instead, it must be smooth; in fact smooth

enough to be safely predicted with standard tools (such as

linear regression) based on its past history.

In Fig. 4, we use a simple way to predict/describe

SpO2(t) in t ∈ (t0, t0 + T]:

˙SpO
2
(t) ≡ ˜̇SpO

2
(t0), ∀t ∈ (t0, t0 + T],

where ˙SpO
2
(t) is the derivative of SpO2(t) at time t;

and
˜̇SpO

2
(t0) is the estimation (e.g., via linear regression)

of ˙SpO
2
(t0) based on SpO2(t)’s history recorded during

(t0 − Tpast, t0). Tpast is a configuration constant picked

empirically offline; it can be+∞, which implies the estima-

tion considers all history data available. In our case study,

we pick Tpast = 30 seconds.

Also, depending on the patient’s state at time t0, the ini-
tial location can be Inhale, Exhale, or Hold. Whichever lo-

cation it is, the initial value of windpipe/blood oxygen value

should be Ô2(t0) and ŜpO
2
(t0) respectively.

We now look at other entities in the laser tracheotomy

MDPnP: O2 Sensor, SpO2 Sensor, Ventilator, Laser

Scalpel, Surgeon, and Supervisor.

First, since the online model only looks into the short-run

future of (t0, t0 + T], where T is also the sensor sampling

period, there is no interactions with sensors throughout the

interval of (t0, t0 + T]. Therefore, in online model check-

ing, the hybrid automata of O2 sensor and SpO2 sensor are

unnecessary. This helps shrink the verification state space.

For Research Only

Figure 5. Online hybrid automaton of Ventila-

tor.

Next, the ventilator hybrid automaton in online model

(see Fig. 5) is almost the same as its offline model counter-

part (see Fig. 2) A main difference is that the online model’s

initial location can be any location depending on the venti-

lator’s state at t0.

Figure 6. Online hybrid automaton of Laser-
Scalpel. This is the only automaton that sets

the value of global variable LaserReq.

The last entity that directly interacts with the patient

is the laser scalpel. We can actually model the laser

scalpel and the surgeon with one hybrid automaton: the

laser scalpel hybrid automaton (see Fig. 6). The automa-

ton has four locations, defined by the four possible com-

binations of two global boolean variables: LaserApprove
and LaserReq. The laser scalpel emits laser if and only if

both LaserApprove and LaserReq are true (i.e., in loca-

tion LaserEmitting). The meanings of LaserApprove and

LaserReq are as follows.

LaserApprove indicates whether the supervisor (see

Fig. 1) allows the laser scalpel to emit laser (true for yes

and false for no). Its value can only be set by the super-

visor hybrid automaton (see Fig. 7), which is to be further

explained later.

LaserReq, however, indicates whether the laser scalpel
wants to emit laser (true for yes and false for no). Its value

can only be set by the laser scalpel hybrid automaton. The

value setting takes place in the following events: i) when in

LaserIdle, the surgeon can request emitting laser through

eventSurgeonRequest, which sets LaserReq to true; ii)

when in LaserRequesting or LaserEmitting, the surgeon

can request stopping laser emission through eventSurgeon-

Cancel and eventSurgeonStop respectively, which both set

LaserReq to false; iii) when in LaserEmitting, the su-

pervisor can stop the laser emission at any time by set-

ting LaserApprove to false, which triggers eventSuper-

visorStop and sets LaserReq to false; iv) for additional

safety, when in LaserEmitting, timer temit prevents emit-

ting laser continuously for too long (for more than Tmax
emit

seconds, to be exact) by triggering eventTimerStop, which

sets LaserReq to false.

The laser scalpel hybrid automaton’s initial location can

be anywhere depending on the laser scalpel’s state at t0.
Special care is needed for the case when the initial loca-

tion is LaserEmitting. In this case, the initial value of temit

should be the value of temit at time t−
0
(i.e., the temit clock

reading from the end of last sampling period), denoted as

t−emit. This is to monitor the continuous duration of laser

emission across the temporal boundaries of periodical on-

line model checking.

Figure 7. Online hybrid automaton of Su-
pervisor. This is the only automaton that
sets the value of global variable V entOn and

LaserApprove.

For Research Only

Finally, all medical device entities are interlocked by

the supervisor, the central decision making computer (see

Fig. 1). The supervisor maneuvers two global variables:

V entOn and LaserApprove. The setting of the two vari-

ables to true/false determines the on/off of ventilator and

the permission/denial of emitting laser respectively.

The value setting decisions are made dependent on the

most up-to-date information on the patient’s windpipe oxy-

gen level O2(t) and blood oxygen level SpO2(t). Since we

know O2(t0) = Ô2(t0) and SpO2(t0) = ŜpO
2
(t0), based

on the models given in the patient hybrid automaton (see

Fig. 4), we can predict O2(t) and SpO2(t) for any t in our

intend-to-verify interval of (t0, t0 + T]. Therefore, we can
construct the supervisor hybrid automaton as Fig. 7, which

directly uses O2(t) and SpO2(t) predicted by the patient

hybrid automaton (see Fig. 4) for decision making.

The supervisor hybrid automaton has two locations:

LaserDisapproved and LaserApproved. When in LaserDis-

approved, the supervisor needs eventSupervisorApprove to

move to LaserApproved. This event is triggered when the

following three prerequisites hold:

Prerequisite 1 : the laser scalpel is requesting emitting

laser (i.e., LaserReq = true).

Prerequisite 2 : the windpipe oxygen level is less than

threshold ΘO2
;

Prerequisite 3 : the blood oxygen level is greater than

threshold ΘSpO2
.

Through eventSupervisorApprove, the supervisor ap-

proves the emission of laser by setting V entOn to false

and LaserApprove to true. This event also resets a clock

tapprove to monitor the continuous duration of the supervi-

sor’s stay in location LaserApproved.

When the supervisor stays in LaserApproved for too long

(i.e., when tapprove reaches T
max
approve) or when Prerequisite

1 no longer holds (i.e., when LaserReq becomes false),

the eventNormalDisapprove is triggered. This event moves

the supervisor back to location LaserDisapproved and resets

V entOn to true, LaserApprove to false, and tapprove to

0.

In contrast to eventNormalDisapprove,

eventAbnormalDisapprove is triggered when the su-

pervisor is in LaserApproved while Prerequisite 2 or 3

stops to hold. This event also moves the supervisor back

to location LaserDisapproved and resets V entOn to true,

LaserApprove to false. But unlike eventNormalDisap-

prove, eventAbnormalDisapprove does not reset tapprove.
This allows us to check whether the optional Safety Rule

3 is violated. Note there is no need to check Safety Rule

3 under eventNormalDisapprove, as the event is triggered

when tapprove = Tmax
approve > Tmin

approve or the laser scalpel

requests to stop emission by itself (i.e., when LaserReq
becomes false).

The last thing to note is the initial location. Same as the

other online hybrid automata, the initial location for the on-

line supervisor automaton can be either LaserDisapproved

or LaserApproved, depending on the state of the supervisor

at time t0. When LaserDisapproved is the initial location,

tapprove is initialized to 0. This will make pass the check-

ing against Safety Rule 3 (as the check is the responsibil-

ity of the previous online model checking period). When

LaserApproved is the initial location, tapprove is initialized
to tapprove’s value at time t−

0
, denoted as t−approve. This

is to monitor the continuous duration of approving laser

emission across the temporal boundaries of periodical on-

line model checking.

3. Evaluations

To demonstrate the feasibility of our proposed approach,

we carry out evaluations using real-world windpipe/blood

oxygen level traces 1. The traces are extracted from Phy-

sioNet [2], a comprehensive online public database (set up

by NIH, NIBIB, and NIGMS) of medical traces logged by

various medical institutes in the United States.

Our evaluation aims to validate two claims:

Claim 1 : real-time (i.e., the model checking time cost

is small and bounded) online hybrid systems model

checking of short-run future is possible;

Claim 2 : online short-run modeling of complex medical

parameters (such as blood oxygen level) is accurate.

To validate the first claim, we run our online hybrid

systems model checking program P upon emulated wind-

pipe/blood oxygen level sensors for 1200 seconds. Ev-

ery T = 3 seconds during the 1200-second emulation pe-

riod, our program P queries the emulated sensors for wind-

pipe/blood oxygen level readings. The two emulated sen-

sors reads corresponding real-world traces from PhysioNet

respectively. Based on the readings, P builds online hy-

brid systems models as described in Section 2.2, and veri-

fies it. The specific modeling and verification software used

is PHAVer [7], a well-known hybrid systems model check-

ing tool. Our computation platform is a Lenovo Thinkpad

X201 with Intel Core i5 and 2.9G memory; the OS is 32-bit

Ubuntu 10.10.

Throughout the 1200-second emulation period, program

P carries out 1200/3 = 400 rounds of online modeling

and verifications. The statistics of execution time cost is

described by Table 1. Through the statistics we see that all

executions finish within 1

2
T = 1.5 second, and over 90%

1The windpipe oxygen level traces are derived from windpipe carbon

dioxide level traces.

For Research Only

finish within 1 second. These time costs are all much shorter

than the T = 3 (second) sampling/model-checking period.

If we have to strictly finish model checking before an in-

terval starts, we can carry out 2-stage pipelining with phases

of 0 and 1

2
T = 1.5 second (this implies our sensors are actu-

ally sampling every 1

2
T). With pipelining, real-time online

hybrid systems model checking into the short-run future is

possible.

Table 1. Statistics of execution time cost
of online short-run hybrid systems model
checking (unit: second)

Min Max Mean Std

0.571 1.445 0.727 0.163

To validate the second claim, we carry out statistics on

the prediction error of blood oxygen level curve. During the

online verification, every time instance t0 = kT (k ∈ N,

T = 3 (second)), we sample the blood oxygen level and

predict (see Fig. 4) the blood oxygen level curve in (t0, t0+
T]. Let the predicted blood oxygen level at time (t0 + T)

be S̃pO
2
(t0+T). Let the PhysioNet trace reading of blood

oxygen level at time (t0 + T) be ŜpO
2
(t0 + T). We define

the relative prediction error at time (t0 + T) to be

ERRSpO2
(t0 + T) =

|ŜpO
2
(t0 + T)− S̃pO

2
(t0 + T)|

ŜpO
2
(t0 + T)

.

The statistics of the relative prediction errors throughout

the 1200-second emulation period is described by Table 2.

The statistics show that our online model checking’s pre-

dictions on short-run behavior of blood oxygen level curve

well match the real-world trace.

Table 2. Statistics of blood oxygen level on-
line modeling relative errors (%)

Min Max Mean Std

0 3.31 0.58 0.51

4. Related Work

Our approach is different from the well-known runtime

verification [6]. Runtime verification aims to discover latent

bugs of programs by logging and analyzing the programs’

execution traces under varied inputs/configurations. It is

not for predicting/preventing faults before they ever happen;

whilst our approach is. Considering for many medical CPS

systems, the cost/consequence of possible faults in test runs

is high or even unbearable, our approach of predicting and

preventing faults before they ever happen is necessary.

Qi et al. [13] propose combining model checking and

runtime monitoring for web server dependability. But they

are still focusing on discrete (automata) model checking,

rather than hybrid systems model checking that this paper

is about.

Also, our approach is not model-checker specific, though

our evaluation in this paper uses PHAVer. In fact, we are

considering integrating our approach with other well-known

model checkers, such as Bogor [14], CellExcite [4] etc..

Arney et al. [3] propose using simple differential equa-

tions to model blood oxygen level. However, the paper just

uses the simple model to demonstrate other designs. The

accuracy of the model itself is not the focus of the paper.

Kim et al. [10] also studied the laser tracheotomy

MDPnP. But their focus is not on hybrid systems model

checking.

5. Conclusions and Future Work

Through our case study on laser tracheotomy MDPnP,

we show that our online short-run approach can effectively

address the two challenges in MDPnP CPS hybrid systems

model checking. By focusing on online and short-run fu-

ture, many originally hard to describe/predict human body

parameters become describable and predictable; and many

parameters become fixed numerical values, which greatly

reduces verification state space. Our empirical evaluations

based on real-world vital sign traces show that our approach

is feasible in the sense of both execution time and modeling

accuracy.

As future work, we will theoretically prove and improve

our approach’s real-time time cost bound. We will also pro-

pose a more comprehensive MDPnP development and run-

time framework that integrates our proposed approach.

6. Acknowledgement

The research project related to this paper in Hong

Kong Polytechnic University (HK PolyU) is supported in

part by Hong Kong RGC General Research Fund (GRF)

PolyU 5245/09E, The HK PolyU Internal Competitive Re-

search Grant (DA) A-PJ68, HK PolyU Newly Recruited Ju-

nior Academic Staff Grant A-PJ80, HK PolyU Fund for

CERG Project Rated 3.5 (DA) grant A-PK46, and De-

partment of Computing start up fund. Lei Bu is sup-

ported by the National Natural Science Foundation of China

(No.90818022, No.91018006) and National S&T Major

Project (2009z01036-001-001-3). Xue Liu is supported in

part by NSERC Discovery Grant 341823-07, and FQRNT

grant 2010-NC-131844. Rong Zheng is supported in part by

For Research Only

the National Science Foundation (NSF) under award CNS-

0832089.

References

[1] Medical Device Plug-and-Play (MDPnP). http://www.

mdpnp.org.

[2] PhysioNet: the Research Resource for Complex Physiologic

Signals. http://www.physionet.org.

[3] D. Arney, M. Pajic, J. Goldman, I. Lee, R. Mangharam, and

O. Sokolsky. Toward patient safety in closed-loop medical

device systems. Proceedings of the 1st International Con-

ference on Cyber-Physical Systems, Apr. 2010.

[4] E. Bartocci, F. Corradini, E. Entcheva, R. Grosu, and S. A.

Smolka. Cellexcite: An efficient simulation environment for

excitable cells. BMC Bioinformatics, 9(2):1–13, Mar. 2008.

[5] E. Clarke, O. Grumburg, and D. Peled. Model Checking.

MIT Press, 1999.

[6] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collect-

ing statistics over runtime executions. ENTCS, 70:4, 2002.

[7] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Sys-

tems past HyTech. Proc. of HSCC’05, LNCS 2289:258–273,

2005.

[8] J. A. Grass. Patient-controlled analgesia. Anesthesia &

Analgesia, 101(5S):S44–S61, Nov. 2005.

[9] T. Henzinger. The theory of hybrid automata. Proc. of the

11th Annual IEEE Symposium on Logic in Computer Sci-

ence, pages 278–292, 1996.

[10] C. Kim, M. Sun, S. Mohan, H. Yun, L. Sha, and T. F. Ab-

delzaher. A framework for the safe interoperability of medi-

cal devices in the presence of network failures. Proceedings

of the 1st International Conference on Cyber-Physical Sys-

tems, Apr. 2010.

[11] I. Lee and O. Sokolsky. Medical cyber physical systems.

Proc. of DAC, 2010.

[12] J. X. Mazoit, K. Butscher, and K. Samii. Morphine in post-

operative patients: Pharmacokinetics and pharmacodynam-

ics of metabolites. Anesthesia and Analgesia, 105(1):70–78,

2007.

[13] Z. Qi, A. Liang, H. Guan, M. Wu, and Z. Zhang. A hy-

brid model checking and runtime monitoring method for

c++ web services. Proc. of the Fifth International Joint Con-

ference on INC, IMS and IDC, 2009.

[14] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An exten-

sible and highly-modular software model checking frame-

work. Proc. of the 9th European Software Engineering Con-

ference (ESEC/FSE-11), 2003.

[15] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang. Cyber-

physical systems: A new frontier. Machine Learning in Cy-

ber Trust: Security, Privacy, and Reliability, pages 3–13,

2009.

[16] P. Tabuada. Verification and Control of Hybrid Systems: A

Symbolic Approach. Springer, 2009.

For Research Only

