

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG- 2008-IC-005

Jasmine: A Tool for Model-Driven Runtime Verification with

UML Behavioral Models

Zhou Zhou, Linzhang Wang, Zhanqi Cui, Xin Chen, Jianhua Zhao

Postprint Version. Originally Published in: Proceedings of 11th International Symposium of High Assurance

System Engineering (HASE08), IEEE Computer Society Press, 2008, pp.487-490.

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Jasmine: A Tool for Model-Driven Runtime
Verification with UML Behavioral Models

Zhou Zhou, Linzhang Wang, Zhanqi Cui, Xin Chen, Jianhua Zhao
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, P.R.China 210093

Department of Computer Science and Technology, Nanjing University, Nanjing, P.R.China 210093
lzwang@nju.edu.cn

Abstract— This paper describes the Jasmine tool to detect in-
consistencies between the modelled behavior depicted in UML be-
havior models and monitored runtime behavior of Java programs
by runtime verification. Jasmine takes Java programs under
verification and corresponding UML models including sequence
diagrams, activity diagrams and state machine diagrams. Jasmine
imports and parses UML models created by any UML modelling
tools. Jasmine instruments the code directed by the UML models,
so as to relate the monitored runtime behavior to the UML
models. Jasmine drives the instrumented program by existing
test suites to collect the program execution traces. Jasmine checks
the consistencies between the collected program execution traces
and the UML models. It is implemented in Eclipse framework,
working as a stand-alone Java application as well as a plug-in in
Eclipse platform. It is highly automated and has been evaluated
on several case studies.

I. INTRODUCTION

Model-driven engineering based on UML shifts software
development from a code-centric activity to a model-centric
activity gradually since the models can be used to alleviate
software complexity in an abstract level[1], [2]. Design-level
UML behavioral models, such as UML sequence diagrams,
activity diagrams and state machine diagrams, are widely
used to specify and represent various aspects of the expected
behavior of the program in the designer’s viewpoint, and are
also used to drive the realization of implementation in model-
driven engineering. UML sequence diagrams are employed
to describe interactive behavior between objects for use case
scenarios. State machine diagrams are constructed to represent
the possible states and transitions in the life cycle of an object
for an individual class. Also, activity diagrams are designed
to represent the realization of class operations. The behavioral
models under study are supposed to be consistent with the
requirement specification. However, in current research and
practice of model-driven engineering, the code is still im-
plemented by the programmers based on the design model
rather than automatically generated from the design model.
The consistency between the code and the model is still need
to be determined.

Testing and verification are two effective solutions to find
the discrepancies of the program with respect to its specifica-
tion. In this concern, the UML behavioral models are the ratio-
nal oracle against which conformance testing and consistency
verification of the corresponding code implementations can
be done. UML models provide the primary information, only

describe the essential aspects of the specification. They have
already been used to generate test cases. But, only abstract test
cases can be derived directly from the abstract models. In most
cases, concrete test cases can only be created manually, or
partially automated by employing random method. The com-
bination of testing and verification is a promising approach,
named runtime verification, which is a lightweight approach
to program reliability in a way that conduct verification on
previous testing result. Its basic idea is to gather information
during program execution and use it to conclude properties
about the program, either during testing or in operation.

This paper describes the Jasmine tool, which helps program-
mers or modelers in detecting and tracking inconsistencies
between the UML behavior models and Java implementations
by runtime verification in testing phase. The tool is fully
automated and does not require manual intervene or assistance
during the verification. It can be used to provide consistency
feedback, program bugs resulting from the wrong implementa-
tion,and the imperfect behavior models constructed in reverse
engineering for legacy systems.This paper summarizes the
technique and presents the tool and its capabilities.

The paper is organized as follows. In next section, we
introduce the underlying technique of Jasmine. Section 3
introduces the tool architecture and the whole verification
process. Section 4 introduces the evaluation of Jasmine based
on some experiments. The related works are discussed in
Section 5. Section 6 concludes this paper and discusses the
possible extensions in the future.

II. THE UNDERLYING TECHNIQUES

A model-driven runtime verification approach is proposed
to check whether the investigated behavior of the program
is implemented as expected. The theoretical background was
fully described [9], [10], [11]. This approach bridges the
different levels of abstraction between the model and code.
The base-lined behavioral models in design level are directly
reused as the oracle for runtime verification, and drive the
verification process. A set of model coverage criteria is defined
by extending the code-level coverage criteria, to assess the
adequacy of the verification as well as to control the verifi-
cation process. Instrumentation mechanism is used to monitor
runtime behavior and record them in an analyzable format
for postmortem analysis of runtime behavior. However, the
specified behavior is described in UML behavioral model,

2008 11th IEEE High Assurance Systems Engineering Symposium

1530-2059/08 $25.00 © 2008 IEEE

DOI 10.1109/HASE.2008.62

487

Authorized licensed use limited to: Nanjing University. Downloaded on September 15, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

For Research Only

and the monitored runtime behavior is in an execution trace.
To make them comparable directly, we need to relate the
monitored behavior with the UML models. In our research,
a behavior unit modelled in UML sequence diagram, activity
diagram, and state machine diagram is defined as an event
caused by method calling or method execution. Semantically,
the behavior modelled in above UML diagrams could be
depicted as a temporal order of method-level interaction.

The idea of model-driven verification is just to show the
conformance of the expected behavior represented in the mod-
els and the implemented behavior of the program. First, the
UML models are imported and parsed to extract the syntactic
model constructs which can be used to imply behavior seman-
tically. Second, when the implementation became baseline, the
program is instrumented using the UML models as a guide, so
as to relate the runtime behavior, i.e., execution traces, with
the modelled behavior. Then the instrumented code is driven to
execute with the previous generated test inputs. The program
execution traces are monitored and logged to a trace file. Last,
the observed execution traces are compared with respect to the
UML models. It is straightforward to determine whether the
modelled behavior is implemented as expected.

III. TOOL IMPLEMENTATION

In the very beginning, we have developed a model-driven
testing tool named UMLTGF with C++[9], which automat-
ically generates abstract test cases from UML activity dia-
grams. This provides the groundwork for Jasmine tool suite
implemented in Java. Since the executable concrete test cases
could not be derived directly from the abstract UML design
model, we moved on to test execution and runtime verification
other than just focused on test generation. UMLTGF was
extended by incorporating model-driven runtime verification
with UML.

Jasmine was implemented in Eclipse framework, as a Java
application first. And now, it is created in an Eclipse plug-in
architecture, the interface of which are general components
inherited from Eclipse platform. It can view the model, code,
and test in same environment. Model-level test generation,
code-level test execution and postmortem verification are
integrated. The core function in the architecture of Jasmine is
described in Figure 1. Figure 2 depicts a few screen snapshots
of Jasmine, represents the verification result against UML se-
quence diagram,activity diagram, and state machine diagram,
respectively. The tool could be downloaded in [7], including
the executable version, demos and manual documents. The
design and implementation of these components are detailed
as follows.

A. UML Model Parser(MP)

The originally prototype UMLTGF was created as a plug-
in integrated to the modelling tool, Rational Rose. UMLTGF
can easily import and parse the UML specifications(called
.MDL plain text file)with the help of Rose Extensibility
Interface[3], then extract the modelled information and store
them in the specific data structure so as to be accessed by the

Fig. 1. The Tool Architecture

test case generator. Later on, we re-implemented the model
parser with Java, using an open source project CrazyBean[4].
CrazyBean can only process the text format of UML pro-
duced by Rational Rose(.MDL file). Since all modelling tools
provide translation functions to support model interchange by
abiding by XMI standard, in order to make our tool vendor-
independent, we re-implemented the model parser to support
mete-data processing in Jasmine. MP imports and processes
UML in XML format so as to make Jasmine work with any
UML modelling tools(The version of UML depends on the
modelling tools). By parsing the XML-based UML model,
MP can extract behavior information from the design models,
and re-establish the representation of the expected behavior,
so as to provide facilities for further test generation from the
models or verification runtime behavior against the models.

B. Model Directed Instrumentation(MDI)

For a Java program, MDI inserts some probe statements
into its source code to investigate the method interaction,
when the probe statements are executed, monitored behavior
will be dumped to a trace file. The program execution traces
gathered are a sequence of events corresponding to method
interaction. Because we want to track the runtime behavior
related to modelled behavior in the models, in order to reduce
the cost of irrelevant information instrumentation, only the
method interaction described in the models is focused on
in MDI, and probes related to the model are inserted into
the code. The insert position in the code is determined by
the feature of the information to be collected. Traditional
instrumentation is only concerned with the method execution.
We want to track the runtime behavior in finer granularity.
The probe statement of method calling is inserted before the

488

Authorized licensed use limited to: Nanjing University. Downloaded on September 15, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

For Research Only

calling statement of method calling, and the probe statement
of method execution is inserted before the first statement of
the method definition of the method executing. Thus we can
monitor method calling and method execution event pair at
runtime execution. The dynamic behavior, such as method
calling and method execution, can be profiled by the execution
of the instrumented statement and recorded into a trace file.
Currently, MDI can instrument Java source code, and Java
Byte code with the help of BCEL(Byte Code Engineering
Library)[6].

C. Data-Driven Program Execution

For a program under verification, we gather its execution
traces by running its instrumented version. The program
executions are driven by previous prepared test inputs in a
data pool. During system-level program execution, all the test
inputs are what the users need to provide by keyboard and/or
mouse operation. We can also directly reuse the test data pool
if there exists one for the system testing.

Due to absence of sufficient real-world data, creating suit-
ably test data is often a difficult task. Random test generation
is a black-box technique, and needs no information on the
internal structure of a program other than the input type
and domain. In this concern, randomness can increase the
variety of input values so as to exercise and profile different
behavior of a program under verification. Random method
is also inexpensive charge and could be implemented in an
automatic fashion.

In our approach, Jasmine provides a heuristic wizard, TCG,
in interactive mode to customize the random test data gen-
eration. We assume that users have the knowledge of input
type and domain. Users can specify the input sequence, type,
domain, and sample number. This allows us to take advantage
of randomness but still have control over test input generation
for the program execution at the system level. Here we just
handle simple input type such as integer, real, char, enumerable
set, and so on.

Only the test inputs are not enough for execution of a
program. How and when is the test data fed to the program?
How the program is executed? These problems should be
solved before execution. We create a driver in Jasmine, TCE,
to ensure the program execution process in a mode without hu-
man intervention. TCE activates a program under verification,
controls the execution, gets test data from the data pool, and
feeds the test inputs to the program upon request. Currently,
TCE follows Junit testing framework.

D. Model-Based Verification(MBV)

The most important concern of testing and verification is
oracle. Traditionally, oracle is manually created based the
requirement, or the verdict is done by engineers manually.
Jasmine reuses the design models as the oracle of runtime
verification. Any execution of Java programs is a sequence
of method calling and method execution events at runtime.
So the monitored behavior is a sequence of method call and
method execution, which correspond to the message sends and

Fig. 2. The Panels of Jasmine

receives in the models because of the guided instrumentation.
Thus, runtime execution trace can be compared directly with
the UML models. Currently, Jasmine can verify the program
behavior against UML sequence diagram, activity diagram and
state machine diagram. Since above three diagrams model de-
sirable different aspect of behavior with different notations and
semantics, Jasmine provides a separate verification component
for each diagram, such as SDV for sequence diagram, ADV
for activity diagram, and SMV for state machine diagram in
Figure 1. If a trace is not match any path in the UML model,
Jasmine will report that an inconsistency is detected. we can
conclude that some measures should be taken to drill into the
corresponding test cases, program modules, and models, to
locate and remove the inconsistency.

IV. RELATED WORK AND EVALUATION

Testing tools only focus on observable system-level output
during test execution. The verdict is made based on the
comparison of observed output and expected output. Internal
behavior is not considered by testing. Verification tools either
employ model checking techniques with high formalism,or
facilitate engineers with checklist for manual review. It is not
easy to use formal verification techniques directly in industry
because the specification languages in the verification tools
are too formal and theoretical to master easily for engineers.
Runtime verification makes use of the advantages of both
testing and verification. The runtime verification techniques
have been used for Java programs to monitor temporal prop-
erties and detect program errors such as deadlocks, data races,
and memory leak. In those works, the specification languages
are based on formal notations or event-based programming
notations. Java MAC[12] , HAWK[13], JASS[14] define their
own specification languages, which are based on temporal
logic. Java-MOP[15], [16] is another runtime verification tool
for Java programs. Its key feature is its extensible logic
framework. In those works, the specifications need to be

489

Authorized licensed use limited to: Nanjing University. Downloaded on September 15, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

For Research Only

elaborated based on programs, and it is difficult to reuse design
or other specifications directly. Relatively, in our approach, a
program under verification could be regarded as a black box,
and the specifications in requirements and design could be
directly reused.

Jasmine is a tool inherit advantages from both testing and
verification tools. With Jasmine, we have conducted several
case studies[9], [10], [11]. It did find some inconsistencies
between the design models and implementations of these lab
created projects, which result from the wrong implementation.
From our experience in evaluation, the advantages of Jasmine
are as follows. First, it significantly reduces the engineering
effort in comparing an application’s expected behavior and
runtime behavior. Second, it needs no further formalism other
than UML for the users. Third, instant feedback in coding
phase of behavioral inconsistency between the models and
implementation is a fundamental best practice in the software
engineering. In this case, the defect could be removed as early
as possible, thus reducing the cost of defect removal. Four,
Jasmine employs instrumentation technique to monitor run-
time behavior in addition to its traditional usage of collecting
code coverage. Last, its open architecture makes integration
and extension easy.

The field of runtime verification overlaps with the field of
testing from the perspective of test oracles. Jasmine performs
consistency checking off-line, which essentially leads a sup-
porting tool for testing in which the UML-based specifications
are used as automatic test oracles. The existing works on
runtime verification have typically focused on program mon-
itoring, which interleaves the analysis and recording program
information with program execution. So far, Jasmine is not a
commercial-grade product. In order to evaluate the scalability
and usability of Jasmine, we try to find a appropriate real
project in industry to apply our techniques. We have conducted
an experiment with such a real project. This case study
accidently indicates that Jasmine can help engineers verify
whether their manually created design models are perfect with
respect to the legacy system. So, in our opinion, how far
Jasmine can go in the industry depends on the future of model-
driven engineering.

V. CONCLUSION AND FUTURE WORK

We have presented Jasmine, a tool implements the model-
driven runtime verification approach. Jasmine integrates design
specifications and implementations by rigorous verification for
identifying inconsistencies between UML behavioral models
and Java programs. It is tightly integrated with the most
popular modelling and testing environment. Jasmine can be
used to detect not only the program bugs resulting from
the wrong implementation, but also the imperfect behavior
models constructed in reverse engineering for legacy systems.
To our knowledge, it is the first tool which generalizes runtime
verification techniques to verify Java implementations against
UML models. It can be applied directly to the real project
designed with UML and implemented with Java in the industry
since it only depends on UML and Java.

Using the Eclipse framework opens the potential to link
Jasmine with a lot of other Eclipse plug-in contributions
and aims to simplify the extension of the tool. Jasmine is
an ongoing project. Currently, only UML sequence diagram,
activity diagram and state machine diagram can be processed,
and only consistencies related to the temporal sequence of
method interaction can be identified in our tool suite. We plan
to expand the approach to support other behavior models in
UML 2.0 and other behavior categories, and to improve the
scalability, stability and usability of Jasmine for applicable
to real project. In addition, it is necessary to improve the
consistency checking algorithms in Jasmine for producing the
analysis result faster.

Acknowledgements
The authors are Supported by the National Science Foundation
of China under Grant No. 60721002, 60603036, and by the
National 863 High-Tech Programme of China under Grant
No.2007AA010302, and by the Jiangsu Province Research
Foundation under Grant No. BK2007139.

REFERENCES

[1] Stuart Kent, Model Driven Engineering, Third International Conference
on Integrated Formal Methods (IFM 2002), LNCS 2335, pp. 286-298,
2002.

[2] OMG, UML2.0 Superstructure Specification, available at
http://www.uml.org, Oct. 2005.

[3] REI. ftp.software.ibm.com/software/rational/docs/v2002/Rose REI guide.pdf
[4] CrazyBean. http://crazybeans.sourceforge.net/
[5] Eclipse - an open development platform. http://www.eclipse.org/
[6] BCEL. http://jakarta.apache.org/bcel/index.html.
[7] Jasmine. http://cs.nju.edu.cn/lzwang/Jasmine/index.html.
[8] Mingsong Chen, Xiaokang Qiu, Wei Xu, Linzhang Wang, Jianhua Zhao,

and Xuandong Li UML Activity Diagram-Based Automatic Test Case
Generation For Java Programs The Computer Journal, Oxford Press,
2007, doi:10.1093/comjnl/bxm057.

[9] Wang, L., Yuan, J., Yu, X., Hu, J., Li, X. and Zheng, G., Gener-
ating Test Cases from UML Activity Diagram Based on Gray-Box
Method. Proceedings of the 11th Asia-Pacific Software Engineering
Conference (APSEC2004), Busan, Korea, 30 Nov.- 4 Dec. 2004,
284–291, IEEE Computer Society, New Jersey.

[10] Li Xuandong, Wang Linzhang, Qiu Xiaokang, Lei Bin, Yuan Jiesong,
Zhao Jianhua, Zheng Guoliang. Runtime Verification of Java Programs
for Scenario-Based Specifications. In Proceedings of the 11th Interna-
tional Conference on Reliable Software Technologies (AE2006), LNCS
4006, Springer, 2006, pp.94-106.

[11] Xuandong Li, Xiaokang Qiu, Linzhang Wang, Bin Lei, Eric Wong,UML
State Machine Diagram Driven Runtime Verification of Java Programs
for Message Interaction Consistency,the 23rd Annual ACM Symposium
on Applied Computing, Vila Gal in Fortaleza, Cear, Brazil, March 16 -
20, 2008.

[12] M. Kim, S. Kannan, I. Lee, O. Sokolsky and M. Viswanathan, ”Java-
MaC: A Run-time Assurance Tool for Java Programs”, In Electronic
Notes in Theoretical Computer Science, Vol.55, Issue 2, Elsevier, 2001.

[13] M. d’Amorim, and K. Havelund, ”Event-Based Runtime Verification of
Java Programs”, In Workshop on Dynamic Analysis (WODA 2005),
2005.

[14] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. ”Jass- Java
with Assertions”, In Electronic Notes in Theoretical Computer Science,
Vol.55, Issure 2, Elsevier, 2001.

[15] F. Chen, M. d’Amorim, and G. Rosu. ”A Formal Monitoring-Based
Framework for Software Development and Analysis”, In Proceedings of
ICFEM’04, volume 3308 of LNCS, pages 357-372, 2004.

[16] F. Chen, G. Rosu. ”Java-MOP: A Monitoring Oriented Programming
Environment for Java”, In proceedings of TACAS’05, volume 3440 of
LNCS, pages 546-550, 2005.

490

Authorized licensed use limited to: Nanjing University. Downloaded on September 15, 2009 at 03:47 from IEEE Xplore. Restrictions apply.

For Research Only

