

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2002-IC-001

Partial Order Path Technique

for Checking Parallel Timed Automata

Jianhua Zhao, He Xu, Xuandong Li, Tao Zheng and Guoliang Zheng

Postprint Version. Originally Published in: Formal Techniques in Real-Time and

Fault-Tolerant Systems 2002, Pages 417-432

Most of the papers available from this document appear in print, and the corresponding

copyright is held by the publisher. While the papers can be used for personal use,

redistribution or reprinting for commercial purposes is prohibited.

http://seg.nju.edu.cn/

Partial Order Path Technique
for Checking Parallel Timed Automata�

Jianhua Zhao, He Xu, Xuandong Li, Tao Zheng, and Guoliang Zheng

State Key Laboratory of Novel Software Technology
Dept. of Computer Sci. and Tech. Nanjing University

Nanjing, Jiangsu, P.R.China 210093
zhaojh@nju.edu.cn

Abstract. In a parallel composition of timed automata, some transi-
tions are independent to others. Generally the basic method generates
one successors for each of the legal permutations of the transitions. These
successors may be combined into one bigger symbolic state. In other
words, the basic algorithm slices one big symbolic state into pieces. The
number of these pieces can be up to n!, where n is the number of inde-
pendent transitions.
In this paper, we introduce a concept, ‘partial order path’, to avoid treat-
ing the permutations one by one. A partial order path includes a set of
transitions and a partial order on this set. Our algorithm generates one
symbolic successor w.r.t. each partial order path. This big symbolic suc-
cessor is just the combination of the successors w.r.t. all the global paths
which are consistent to this partial order path. It is shown by some case
studies that this method may result in significant space reduction.

1 Introduction

Model checking is a formal technique for validating whether a system model
holds for a specific property. The basic method of model checking is exhaus-
tive exploration of the system state space. However, the state space increases
explosively when the scale of the model increases. Many techniques have been
introduced to attack this problem. Partial order technique is one of the most
efficient ones.

Partial order technique is first introduced for temporal model checking, and
get many successful results[8], [2]. However, the progress of applying such tech-
nique into timed automata is slow. The main reason is that the clocks in different
automaton increase in same rate. Different transition orders will result in dif-
ferent successors. A partial order technique for checking real time systems has
been proposed in [3]. In that paper, the authors let the time of each component
� This work is supported by the National Natural Science Foundation of China

(No.60073031 and No.69703009), the National 863 High-Tech Programme of China
(No.2001AA113203), Jiangsu Province Research Project (No.BK2001033), and
by International Institute for Software Technology, United Nations University
(UNU/IIST).

W. Damm and E.-R. Olderog (Eds.): FTRTFT 2002, LNCS 2469, pp. 417–432, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

For Research Only

418 Jianhua Zhao et al.

automaton evolves independently. The authors proved that there are equiva-
lence relations which can divide the infinite number of unsynchronized states
into finite number of equivalence classes. However, the proof is not constructive.

Some other partial order techniques for checking timed petri net can be found
in [9][10][11]. These techniques remove orderings in the zone on sets of indepen-
dent transitions, reducing the representation size of the timed state space, and
also reducing the number of generated states. They yield significant reduction
in the number of symbolic states at each un-timed state.

In [5], F.Panagi also presented a partial order technique for checking real-
time system models. In that paper, she studied the dependence relation between
transitions, and the cases when partial order reduction can be applied.

In this paper, we propose a so-called ‘partial order path’ technique for real-
time reachablity analysis. Given a global symbolic state (l, D), this technique
calculates the successors of (l, D) w.r.t. a set of global paths, instead of one
global transition, starting from the location.

2 Background

2.1 Timed Automaton Networks

In this subsection, we will give an informal description of timed automata[1]
and timed automaton network. The definition of global paths and executions
are different from, but essentially equivalent to, the ones in the literate.

Give a clock set C, A clock assignment u over C of clocks is a map from C
to real R. For d ∈ R, we use u + d to denote the clock assignment which maps
each clock x in C to the value u(x) + d and for r ⊆ C, [r �→ 0]u to denote the
assignment for C which maps each clock in r to the value 0 and agrees with u
on C − r. For a subset C ′of C, we use u � C ′ to denote the clock assignment
over C ′ satisfying ∀x ∈ C ′ • u(x) = u′(x).

We use B(C) ranged over by D, D1, D2, . . . and g, g1, g2, . . ., to stand for the
set of conjunctions of atomic formula of the form x − y ∼ n for x, y ∈ C ∪ {0},
∼∈ {≤, <, >,≥} and n being an integer. Notice that, a formula like x ∼ n can
be expressed as x−0 ∼ n. Elements of B(C) are called clock constraints over C.
We use u |= D to denote that the clock assignment u ∈ RC satisfies the clock
constraint D ∈ B(C).

A set A of actions includes finite number of labels such that if a is in A, a is
also in A. For convenience, we let a = a.

A timed automaton A is a tuple
 N, l0,A, C, E, I �, where N is a finite
set of locations, l0 ∈ N is the start location; A is a set of actions; C is a finite
set of clocks; E ⊆ N × (A ∪ {⊥}) × B(C) × 2C × N is a set of transitions; I
assigns each location in N a location invariant in B(C).

A timed automaton network is a parallel composition of finite set of timed
automata A1, A2, . . . , An. These automata share a same set A of actions.

A concrete state of timed automaton A is a tuple (l, u), where l ∈ N and
u is a clock assignment over C. A state can be viewed as a snapshot of A on a
certain time point when A is evolving. A state of a network A = A1 | . . . | An is

For Research Only

Partial Order Path Technique for Checking Parallel Timed Automata 419

a pair (l, u) where l, called global location, is a vector of control locations of each
automaton and u is a clock assignment over C = C1 ∪ . . . ∪ Cn. A state of the
network is essentially a combination of local states of the component automata.

In the rest part of this paper, for a transitions e = (l1,−,−,−, l2), we use
←
e

to denote the source location l1 of e and
→
e to denote the target location l2 of e.

A global transition e can be a single transition if e = (−,⊥,−,−,−), or a
pair of transition e1|e2, where e1 = (−, a,−,−,−) and e2 = (−, a,−,−,−) are
transitions of different automata. Given a global transition e, the projection of
e on Ai, denoted e/Ai, is defined as follows.

e/Ai =

e e is a single transition of Ai

e1 e is e1|e2 or e2|e1, and e1 is a transition of Ai

δ else

A local path of A starting from a location l is a sequence of transitions
e1 → e2 → . . . → en satisfying that

←
e1= l and

→
ei=

←
ei+1 (1 ≤ i ≤ n − 1).

A global path of the network starting from a global location l is a sequence
of transitions e1 → e2 → . . . → en such that for each component automaton Ai,
the sequence e1/Ai → e2/Ai → . . . → en/Ai is a local path of Ai starting from
l[i] if all δ are ignored.

Suppose that on a specific time point, the state of Ai(1 ≤ i ≤ n) is (li, ui). Ai

can stay on li as long as its local clock value satisfies Ii(li), which is the location
invariant of li. It can also change to a state (l′i, u

′
i) if there is a transition (li,⊥

, g, r, l′i) such that ui |= g, u′i = [r → 0]ui and u′i |= I ′i(l
′
i). If two timed automata,

Ai and Aj , respectively stay on (li, ui) and (lj , uj), they can change to new state
(l′i, u

′
i) and (l′j , u

′
j) simultaneously if there are two transitions (li, a, gi, ri, l

′
i),

(lj , a, gj , rj , l
′
j) such that ui |= gi, uj |= gj , u′i = [ri �→ 0]ui, u′j = [rj �→ 0]uj ,

u′i |= Ii(l′i) and u′j |= Ij(l′j) .
We can use executions to record the evolution progress of the component

automata and the network.
A local execution of Ai starting from a state (l, u) is a time stamped local

path (e1, t1) → (e2, t2) → . . . → (ek, tk) → (δ, tk+1), where ti is a real number.
Suppose Ai is on (l, u), if we don’t consider the synchronization between transi-
tions, Ai can evolve as follows. It stays on l for t1 time, then e1 take place, then
stays on

→
e1 for t2 − t1 time, then e2 takes place, . . . , then ek takes place, stays

on
→
ek for tk+1 − tk time. Because the synchronization is ignored here, a local

execution is possibly illegal in the global environment.
A global execution of the network starting from a global state (l, u) is a

time stamped global path (e1, t1) → (e2, t2) → . . . → (ek, tk) → (δ, tk+1) such
that the time stamped transition sequence (e1/Ai, t1) → (e2/Ai, t2) → . . . →
(ek/Ai, tk) → (δ, tk+1) is a local execution of Ai if all the time stamped δs,
except (δ, tk+1), are ignored.

2.2 Symbolic States and Their Reachablity Relationship

Because the value of clocks are real numbers, the state space of a timed automa-
ton network is infinite. However, we can use symbolic states of the form (l, D),

For Research Only

420 Jianhua Zhao et al.

where D ∈ B(C), to express a set of concrete states. Intuitively, (l, D) represents
the set of concrete states (l, u) such that u |= D. There is an equivalence relation
to divide all the symbolic states into finite number of equivalence classes. We
write (l, u) |= (l′, D) if l = l′ and u |= D.

We will use the following four operators on time constraints in this paper.
Let C be a set of clocks, r and C ′ be subsets of C. For two time constraints
D ∈ B(C) and D′ ∈ B(C ′), the operators D↑, r(D), D � C ′ and D′ � C are
defined as follows.

– for all d ∈ R, u + d |= D↑ iff u |= D.
– u |= r(D) iff ∃u′ • (u′ |= D ∧ u = [r �→ 0]u′).
– D � C ′ ∈ B(C ′) and u′ |= D � C ′ iff ∃u • (u |= D ∧ u′ = u � C ′).
– D′ � C ∈ B(C) and u |= D′ � C iff ∃u′ • (u′ |= D′ ∧ u′ = u � C ′).

It can be shown that D↑, r(D) and D′ � C are in B(C) and D � C ′ is in B(C ′).
We now define a strongest post-condition operator sp over the global state

set of the three types of global evolutions.

– For global delay, sp(δ)(l, D)
def
= (l, D↑ ∧ I(l))

– For a single transition e = (l[i],⊥, g, r, l′i) of Ai, sp(e)(l, D)
def
= (l′, (r(g ∧

D)) ∧ I(l′)), where l′ = l[l′i/i].
– For a pair transitions e = (l[i], a, gi, ri, l

′
i) ∈ Ei, and e′ = (l[j], a, gj , rj , l

′
j) ∈

Ej , sp(e|e′)(l, D)
def
= (l′, ((ri ∪rj)(gi ∧gj ∧D))∧I(l′)), where l′ = l[l′i/i][l′j/j].

In this definition, sp(δ)(l, D) expresses all the set of state reachable from a
state in (l, D) by only time advancement. sp(e)(l, D) expresses the set of state
reachable from a state in (l, D) through a single transition e ∈ Ei. sp(e|e′)(l, D)
expresses the set of state reachable from a state in (l, D) through a pair of
matched transitions.

Now we extend the operator sp to global paths. Let p = e1 → e2 → . . . → en

be a global path,

sp(p)(l, D) =
{

sp(δ)(l, D) if p is a empty path
sp(δ)(sp(en)(sp(p′)(l, D))) p′ = e1 → e2 → . . . → en−1

Let p be a global path from l to l′. From the definition of sp, we have that, for
any concrete state (l′, u′), (l′, u′) |= sp(p)(l, D) iff there is a state (l, u) such that
(l, u) |= (l, D) and there is a global execution from (l, u) to (l′, u′) corresponding
to p.

For each automaton, the local strongest post-operator spl is similar to sp and
defined as follows.

1. For time delay, spl(δ)(l, D)
def
= (l, D↑ ∧ I(l))

2. For a transition e = (l, −, g, r, l′), spl(e)(l, D)
def
= (l′, r(g ∧ D))

This local operator does not consider the synchronizations. We can also similarly
extend spl to local paths. For a local path p, for any concrete state (l′, u′),
(l′, u′) |= spl(p)(l, D) iff there is a state (l, u) such that (l, u) |= (l, D) and there
is a local execution from (l, u) to (l′, u′) corresponding to p.

For Research Only

Partial Order Path Technique for Checking Parallel Timed Automata 421

Definition 1. Symbolic reachablity Given two global symbolic state (l, D)
and (l′, D′), we say that (l′, D′) is reachable from (l, D) iff there is a global path
p such that sp(p)(l, D) = (l′, D′′) for some D′′ and D′ ∧ D′′ �= FALSE.

Using the operator sp, we can get a basic algorithm to check whether a global
symbolic state (l′, D′) is reachable from another state (l, D). This algorithm, or
its variants, is wildly used in different model checking tools[6][4][7]. The basic
algorithm depicted in Fig 1 checks whether a global symbolic state (ltgt, Dtgt)
is reachable from (l0, D0). In the figure, for a global location l, we use enable(l)
to denote the set {(l[i],⊥,−,−)} ∪ {(l[i], a,−,−)|(l[j], a,−,−) | i �= j}. This
algorithm, or its variants, is wildly used in different model checking tools[6][4][7].
In this paper, we will present a method to improve this algorithm.

PASSED := {}
WAITING := {(l0, D0)}
repeat begin

get an auxiliary state (l, D) from WAITING
WAITING = WAITING - {(l, D)}.
if D �⊆ D′ for all (l, D′) ∈PASSED then

begin
add (l, D) to PASSED.
for each transition e in enabled(l) do
begin

let(l1, D1) = sp(δ)(sp(e)((l, D)))
if l1 = ltgt and D1 ∩ Dtgt �= φ

return YES
else begin

if (l1, D1) is not contained by a state in WAITING∪PASSED
WAITING:= WAITING ∪ {(l1, D1)}

end
end

end
end

until WAITING = {}
return NO.

Fig. 1. The basic reachability analysis algorithm

3 Basic Idea of Partial Order Path Technique

Let’s take the system depicted in Fig 2 as an example to show our basic idea
of real-time partial-order-path model-checking. Suppose the system stays on a
symbolic state (< l11, l21, l31 >, x1 ≥ 0 ∧ x2 ≥ 0 ∧ x3 ≥ 0). It evolves in the
following way: A1 evolves to l12 through e11, A2 evolves to l22 through e21, and
A3 evolves to l32 through e31. The basic algorithm calculates the successors in
one-transition step-wise. So it will generally get many successors according to
different global paths: e11 → e21 → e31, e11 → e31 → e21 and so on. If e11,

For Research Only

422 Jianhua Zhao et al.

clocks: x1

A1 : � � �� �
l11 l12 l13e11 e12

clocks: x2

A2 : � � �� �
l21 l22 l23e21 e22

clocks: x3

A3 : � � �� �
l31 l32 l33e31 e32

Fig. 2. Demo of partial order path model-checking

e21 and e31 respectively reset the clocks x1, x2 and x3, the time constraints
x3 − x2 ≤ 0 and x2 − x3 ≤ 0 will respectively appeared in the successors w.r.t.
the first two paths. If e11, e21, e31 are not synchronizing transitions, the order
of e11, e21, e31 in the paths is inessential. However, because the basic algorithm
calculates the successors in a one-transition step, it generates a successor for each
permutation of the transitions. So 6 successors will be generated in this cases.
However, we know that, these symbolic states can be combined into one states
(< l12, l22, l32 >, x1 ≥ 0∧x2 ≥ 0∧x3 ≥ 0). Generally, if there are n independent
transitions, the basic algorithm will generate n! successors. In this paper, we will
present a way to generate the combination of these successors as one symbolic
state. So, the number of states generated by our algorithms is smaller.

3.1 Partial Order Path

However, the transitions of different automata are not always independent to
each other. They interact with each other through some synchronization mech-
anisms. The orders of some transitions are essential. We use a partial order to
express the essential orders and ignore the inessential ones.

Definition 2. Partial order path. Given a set of global transitions T =
e1, e2, . . . , em and a partial order < over T . The tuple (T, <) is a partial or-
der path iff the following condition holds.

1. For any two transitions e1, e2 in T and a component automaton Ai, e1/Ai �=
δ and e2/Ai �= δ implies that either e1 < e2 or e2 < e1.

2. For each permutation p = ei1 → ei2 → . . . → eim
of T , p is a global path if

for all k and l, eik
< eil

⇒ k < l.

We also say p is a global path consistent to (T, <).

In the rest part of this paper, we will present a method to calculate the successor
w.r.t. a partial order path, instead of a global transition.

For Research Only

Partial Order Path Technique for Checking Parallel Timed Automata 423

From the definition of global paths, for a partial order path (T, <) and a
component automaton Ai, the local transition set {e/Ai | (e ∈ T) ∧ (e/Ai �=
δ)} should be able to form a local path of Ai. So a partial order path can be
decomposed into a set of local paths.

Definition 3. Local path set. Let l, l′ be two global locations of a timed au-
tomaton network. Let P = α1, α2, . . . , αn be a set of local paths. P is called a
local path set from l to l′ if for each i, (1 ≤ i ≤ n), αi is a local path of Ai from
l[i] to l′[i].

Example 1. {e11 → e12; e21 → e22; φ} is a local path set from < l11, l21, l31 > to
< l13, l23, l31 >

A local path set from l to l′ describes a set of possible global paths from l to l′.
The synchronizing transitions in different local paths can synchronize with each
other in different ways.

Definition 4. Synchronization solution. Let l, l′ be two global locations. Let
P = α1, α2, . . . , αn be a local path set from l to l′. A synchronization solution C
of P is a set of pairs of transitions satisfying the following conditions.

1. For each synchronizing transition e = (−, a,−,−,−) in P, there is one and
only one pair of the form (e, e′) or (e′, e) in C, where e′ = (−, a,−,−,−).

2. Two transitions of each pair in C are of different component automata.

A local path set P may have zero or many synchronization solutions.
For each synchronization solution C, we can construct a global transition set T

as {e | e is a non-synchronising transition in P} ∪ {(e|e′) | (e, e′) is a pair in C}.
We define a relation <P,C over T as follows.

Definition 5. For any two global transition e and e′, e <P,C e′ if one of the
following conditions holds.

1. There is an automaton Ai such that e/Ai �= δ, e′/Ai �= δ and e/Ai takes
place earlier than e′/Ai does in αi.

2. There is a transition e′′ in T such that e <P,C e′′ and e′′ <P,C e′.

Proposition 1. The tuple (T, <P,C) is a partial order path if <P,C is a partial
order relation.

Proof. Let T = {e1, e2, . . . , ek}. Let p = ei1 , ei2 , . . . , eik
be an auxiliary permu-

tation of T such that eil
<P,C eim

implies l < m. From the definition of <P,C , we
have that for any component automaton Ak, ei1/Ak, ei2/Ak, . . . , eik

/Ak is just
αk. That is, p is a global path. So (T, <P,C) is a partial order path.

Example 2. Let’s suppose that, in the example in Fig 2, e11 = (−, a,−,−,−),
e12 = (−, a,−,−,−), e21 = (−, a,−,−,−) and e31 = (−, a,−,−,−) be synchro-
nizing transitions. Let e22 and e32 be local transitions. For the local path set

For Research Only

424 Jianhua Zhao et al.

P = {e11 → e12; e21 → e22; e31 → e32}, both C1 = {(e11, e21), (e12, e31)} and
C2 = {(e11, e31), (e12, e21)} are synchronization solutions of P.

The global transition set w.r.t. P and C1 is T = {(e11|e21), (e12|e31), e22, e32}.
The relation <P,C1 over T is { (e11|e21) <P,C1 e22, (e11|e21) <P,C1 (e12|e31),
(e11|e21) <P,C1 e32, (e12|e31) <P,C1 e32 }. We can check that (T, <P,C1) is a par-
tial order path. The global transition sequences (e11|e21) → e22 → (e12|e31) →
e32; (e11|e21) → (e12|e31) → e22 → e32 and (e11|e21) → (e12|e31) → e32 → e22
are global paths consistent to (T, <P,C1).

3.2 Local Symbolic Successors

In this section, let (l, D) be a global symbolic state of the network. Let l′ be a
global location of the network. Let P = α1, α2, . . . , αn be a local path set from
l to l′. Let C be a synchronization solution of P. Let (T, <P,C), as described
above, be a partial order path w.r.t. P and C. We will explain informally how
to calculate the global symbolic successor w.r.t. such a partial order path. We
will first calculate the local successors w.r.t. αi in P, then compose the local
successors into one global successor.

Let (l, u) be a concrete state. Let Exei(1 ≤ i ≤ n) be executions from
(l[i], u � Ci) to (l′[i], u′i) through αi. Let u′ be a clock assignment satisfying
that for each i, u′ � Ci = u′i. Then Exei(1 ≤ i ≤ n) can be composed into a
global execution from (l, u) to (l′, u′) through a path consistent to (T, <P,C) if
the following conditions hold.

1. The executions Exei(1 ≤ i ≤ n) have same time length.
2. For each transition pair (e, e′) in C, e and e′ have same time stamp.
3. For any two transitions e and e′ in T satisfying that e <P,C e′, the time

stamp of e(or its component transition) must be non-greater than that of
e′(or its component transition).

Notice that, for any global transition e|e′ in T , the time stamp of e and e′ in their
local executions are same, so we can construct the global execution as follows.
For each transition e in T , the time stamp of e is that of e/Ai in αi if e/Ai �= δ.
From the definition of <P,C , the condition 3 holds if the condition 2 holds. So
we get a global execution corresponding to a path consistent to (T, <P,C).

We must present a way to check the above conditions in a symbolic way
because the algorithm operates on symbolic states. To do this, when calculating
a local successor w.r.t a local path αi, we introduce a set of auxiliary clocks
for each component automata. The auxiliary clock set C includes the following
clocks.

1. A clock t is introduced to record the time length of local execution. When
the local execution starts, the initial value of t is 0 and no transition resets
t.

2. For each clock c of the network, a shadow clock c is introduced. Each c has
the same value as c at the start point, and it will never be reset. At the end
of any local executions, the value of c − t is the initial value of c.

For Research Only

Partial Order Path Technique for Checking Parallel Timed Automata 425

3. For each synchronizing transition e in αi, a clock ce is introduced to record
at what time e takes place. This clock ce will only be reset by e. So if e is in
αi, the ending value of t − ce is the time point at which e take places. (Two
occurrence of one transition in α will be treated as two different ones.)

For each synchronizing transition e = (−,−, r,−,−), it will also reset ce when
it takes place. So e is modified to (−,−, r ∪ {ce},−,−) when our algorithm
calculates the local successors.

Definition 6. Extended local clock set. Let A = A1 | A2 | . . . | An be a
timed automaton network. The extended local clock set of Ai is Ci ∪C, where Ci

is the clock set of Ai and C is the auxiliary clock set as described above.

In our algorithm, the local operator spl of Ai will operate on Ni × B(Ci ∪ C).
The clocks in C is somehow ’global’ because they appear in different extended
local symbolic state. When we combine local successors into a global successor,
it is required that the value of each auxiliary clock x in C are same in different
local successors. However these clocks are never tested when we calculate the
local successors.

Example 3. For the network depicted in Fig 2, the extended local clock set of
A1 is {x1, x2, t, x1, x2, x3, x4, ce11 , ce12 , ce21 , ce32}.

To calculate the successor of a global symbolic state (l, D), the initial ex-
tended local symbolic state of Ai is the start state of the local executions. From
the definition of auxiliary clocks, we should assign some time constraints to them
as follows.

Definition 7. Shadow extended local symbolic state. Let (l, D) be a global
symbolic state. Let Ai be a component timed automaton. Let D′ be a conjunction
of following atomic formula.

1. t = 0.
2. For any clock constraint x − y ∼ n (or x ∼ n) in D, x − y ∼ n (or x ∼ n).
3. For each clock x ∈ Ci, x = x.

The symbolic state (l[i], D′) is called the shadow extended local symbolic state of
(l, D) w.r.t. Ai.

From this definition, for each concrete state (l[i], u′) in (l[i], D′), we have that
u(t) = 0, ∀x ∈ Ci • u′(x) = u′(x). For a clock assignment u over the clock
set C of the network, we have that u |= D if there is a u′ |= D′ such that
∀x ∈ C • u(x) = u′(x).

Example 4. Let (< l11, l21, l31 >, (x1 − x2 ≤ 0) ∧ (x3 = 0) ∧ (x4 = 0)) be a
global symbolic state. Then the shadow extended local symbolic state of this
state w.r.t. A1 is (l11, x1 = x1 ∧x2 = x2 ∧ t = 0∧x1 −x2 ≤ 0∧x3 = 0∧x4 = 0).

Notice that, the clock x will never be reset and the clock ce for each syn-
chronizing transitions will only be reset by e. The value t record the time length
from the start point. From the definition of auxiliary clocks and spl, we have the
following proposition.

For Research Only

426 Jianhua Zhao et al.

Proposition 2. Let (l[i], D) be an extended local symbolic state of Ai. Let α
be a local path from l[i] to l′[i]. Let (l′[i], D′) = spl(α)(l[i], D). Then for each
concrete state (l′[i], u′i) such that u′i |= D′, the following conditions hold.

1. The concrete state (l′[i], u′i) is reachable from a state (l[i], ui) in (l[i], D)
through α, and ui[x] = ui[x] = u′i[x] − u′i[t], ui[t] = 0, and

2. the value u′i[t] is the time length of the local execution from (l[i], ui) to
(l′[i], u′i).

3. Of each synchronizing transition e in the local execution, the time stamp is
u′i[t] − u′i[ce].

From this proposition, for each concrete state in the local extended symbolic
successor, we can decide the time length of the local execution, the time stamp
of each synchronizing transition, and from which concrete state the execution
starts. So we can compose these local successors into one global successor.

3.3 Composing the Extended Local Symbolic States

In the above subsection, we present a way to calculate local successors. Some
information are incorporated into the local successors. Give a concrete state in
a local successor, we can know from which concrete state this one evolves, the
time length of the corresponding local execution, and when the synchronizing
transitions take place in this execution.

Let (l, D) be a global symbolic state of A = A0 | A1 | . . . An. Let (l[i], Di) be
the shadow extended local symbolic states of (l, D) w.r.t. Ai. Let P = α1, . . . , αn

be a local path set from l to l′. Let C be a synchronization solution of P. Let T
be the global transition set w.r.t. P and C. If (T, <P,C) is a partial order path,
we can get the global successor of (l, D) w.r.t. (T, <P,C) by the operator defined
below.

Definition 8. Global successors. Using the above denotations, we can define
a global successor operator sp as follows. Let (l′[i], D′i) = spl(αi)(l[i], Di) where
1 ≤ i ≤ n, and DC = ∧(e,e′)∈C(ce = ce′). Let D′ = DC ∧ (∧1≤i≤n(D′i � (C ∪C))).

sp(T, <P,C)(l, D) = (l′, D′ � C)

where C is the clock set of the network, and C is the set of all auxiliary clocks.

Notice that, if we use sp to compose the local successors, for any global
transition e|e′ in T , it requires that ce = c′e. That is, t − ce = t − c′e, so the time
stamps of e and e′ in their local executions are equal. In each local execution
Exei, if e1 takes place earlier than e2 does, the time stamp of e1 is not greater
than that of e2. From the definition of <P,C , for any two global transitions e
and e′ in T , e <P,C e′ implies the time stamp of e is not greater than that of e′.
In this case, we do not explicitly require that the time stamp e should not be
greater than that of e′ if e <P,C e′.

For Research Only

Partial Order Path Technique for Checking Parallel Timed Automata 427

Lemma 1. Using the above denotations, the symbolic state sp(T, <P,C)(l, D) is
just the set of concrete states reachable from a concrete state in (l, D) through a
global path p, which is consistent to the partial order path (T, <P,C).

Proof. From the definition of �, for each concrete state (l′, u′) in sp(P)(C)(l, D),
there is a concrete state (l′, u′′) in (l′, D′) such that u′ = u′′ � C. From the
definition of D′, y we have that for each i, (l′, u′′�(Ci∪C)) is in spl(αi)(l[i], Di).
From proposition 2, we have that there is a local execution Exei(1 ≤ i ≤ n)
from (l[i], vi) to (l′[i], u′′ � (Ci ∪ C)). For each clock x in Ci, vi(x) = vi(x) =
u′′(x)−u′′(t). The time length of Exei is u′′(t). And each synchronizing transition
e in Exei takes place at the time point u′′[t]−u′′[ce]. We can construct a sequence
of time-stamped transitions based on the local executions as follows.

1. The global transition set of this execution is T .
2. The time stamp of a transition e in T is just that of e, or its projection, in

its local execution.
3. The take-place order is as follows, e takes place previously to e′ either if the

stamp of e is less than that of e′, or if the time stamp of e is equal to e′ and
e <P,C e′.

From the definition of sp and <P,C , the transition sequence is a path consistent
to (T, <P,C). The time constraints of timed automata are satisfied because the
time stamps of local executions satisfy the time constraints. So this sequence of
time-stamped transitions is a global execution from (l, u) to (l′, u′), where for
each clock x in C, u(x) = vi(x) = u′′(x) − u′′(t). So (l, u � C) is a concrete
state in (l, D). Thus we prove that each concrete state in sp(T, <P,C)(l, D) is
reachable from a concrete state in (l, D).

Now we prove another direction of this lemma. Let (l′, u′) be a concrete state
which is reachable from a state (l, u) in (l, D) through a global path consistent to
(T, <P,C). So we have a global execution Exe from (l, u) to (l′, u′). Let Exei =
Exe/Ai, 1 ≤ i ≤ n, be the projections of Exe on Ai. From the definitions of spl

and sp and the auxiliary clock set, (l′, u′) is in sp(T, <P,C)(l, D).

4 The Algorithms

In the previous sections, we present a method to generate the successors of a
symbolic state w.r.t. a partial order path. However, the number of partial order
paths leaving from a state is infinite. And we can not find an equivalence relation
over the set of extended local symbolic states. So in our algorithm, we limit the
number of local successors by limit the length local pathes. We count only the
partial order path of which the local paths have at most M transitions. In the
algorithm, for an un-timed state l, we use PM (l) to denote the local path set,
of which all local paths has no more than M transitions.

PM (l) = {P | (the length of each local path in P is not greater than M)}.

For Research Only

428 Jianhua Zhao et al.

We use TM (l) to denote the set of partial order paths of which the length of local
paths are no more than M .

TM (l) = {(P, <P,C) | P ∈ PM (l) ∧ (<P,C is a partial order)}

The improved algorithm is depicted in Fig 3. The improved one is same as
the basic one except the part used to calculate successors.

Passed := {}
Waiting := {(l0, D0)}
repeat begin

get an auxiliary state (l, D) from WAITING
WAITING = WAITING - (l, D)
if D �⊆ D′ for all (l, D′) ∈ PASSED then

begin
add (l, D) to PASSED.
For each p in TM (l) do
begin

let (l1, D1) = sp(p)(l, D)
if l1 = ltgt and D1 ∩ Dtgt �= φ

return YES
else begin

if (l1, D1) is not contained by a state in WAITING∪PASSED
WAITING:= WAITING ∪ {(l1, D1)}

end
end

end
end

until WAITING = {}
return NO.

Fig. 3. The improved algorithm

5 Checking Systems Using Shared Variables

We have presented an algorithm to checking parallel timed automata using syn-
chronizing labels. The technique presented in this paper can also be applied to
parallel systems using shared variables.

Notice that, we can record the time point at which a transition takes place. So
for each transition e which testing or setting shared variables, we can introduce
an auxiliary clock ce to record when e takes place. When we try to combine the
local successors, we can give such a partial order over the local transitions that
each transition sequence which is consistent to the partial order is a global path.
For any two transitions e and e′ such that e must take place later that e′, we
can add the constraint ce ≤ ce′ in to the combined extended global successor.

For Research Only

Partial Order Path Technique for Checking Parallel Timed Automata 429

6 Performance Analysis and Case Studies

Let (l, D) be a global symbolic state, and p1, p2 be two global paths from l to
l′. In the basic algorithm, two successors(if exist) sp(p1)(l, D) and sp(p2)(l, D)
will be generated. However, in the improved algorithm, these two successors will
be included by a generated symbolic state if p1 and p2 are consistent to same
partial order path. So the improved algorithm will generate less symbolic states
when it checks a timed automaton network. The technique used in this algorithm
improve the memory efficiency by generating bigger symbolic states.

We enumerate the partial order paths starting from l by enumerating the local
path sets from l and the corresponding synchronization solutions. However, we
don’t have to calculate the local successors for each partial order path. Notice
that a local path may be of many partial order paths, we can first calculate the
local successors for local paths. The global successor sp(p)(l, D) is generated by
just combining the local successors, which are calculated previously.

A handicap of this technique is that some auxiliary clocks are introduced
to record extra information. More clocks means that more memory space are
need for each symbolic state. More CPU time is also required for operations on
these symbolic states. However, these auxiliary clocks are only used when the
algorithm calculates sp(p)(l, D), where p ∈ TM (l) . The number of local symbolic
successors are decide only by the number of the leaving local paths. Additional
clocks will not increase the number of local successors. As soon as all successors
of (l, D) w.r.t. the leaving partial order paths are generated, the local successors
can be removed. The symbolic states in WAITING and PASSED are over the
original clock set C. So the extra space requirement because of the auxiliary
clock set is limited.

� � � ��xi := 0
?v = 0

�xi ≤ 10, xi := 0
!v := i

�xi > 10, xi := 0
?v = i

��

� �xi := 0
!v := 0

� �
� �

xi := 0
!v := 0

ei5

Ai Bi Ci
ei1 ei2 ei3

ei4

Csi

Shared Variable: v; Clock xi;

Fig. 4. The ith process of Fischer’s exclusive protocol

We have incorporated this technique into our experimental tool. We applied
this technique to several examples. The following tables are the performance
data of our tool when it is used to check CSMA protocol and Fischer’s protocol.

Fischer’s protocol ensures mutex access to criteral regions using one shared
variable and local clocks. Our tool checks the Fischer’s protocol(as depicted in
Fig 4) of 10 processes by exact and exhaustive exploration, using about 17 hours

For Research Only

430 Jianhua Zhao et al.

Number of process 2 3 4 5 6 7 8 9 10
States generated 22 104 494 2392 11694 57220 278782 1291337 6347930

TIME < 1 S. < 1 S. < 1 S. 3 S. 15 S. 157 S. 26.6 M. 2.2 H. 17.1 H.

Fig. 5. Space performance when checking Fischer’s Protocol

Number of process 2 3 4 5 6 7 8
States generated(POP) 15 84 527 2877 13561 56836 218007

Time(POP) < 1 S < 1 S 3 S 21 S 5.0 M 31.6 M 3.7 H
States generated(w/o POP) 15 93 675 4794 34507 N/A N/A

Fig. 6. Space performance when checking CSMA Protocol

in a Pentium4/1G memory computer. The total memory used by the algorithm
is about 800M. As reported in the web page ‘http://www.docs.uu.se/rtmv/ up-
paal/benchmarks’, the tool UPPAAL check’s this protocol of 7 processes by
exact exhaustive exploration. It can check this protocol of 11 processes using
‘convex hull’ approximation technique.

The CSMA/CD protocol is a protocol used in a broadcast network with a
multi-access bus. This protocol is first checked by Kronos[12]. In Fig 6, we can
see that when checking CSMA protocol, our technique also result in noticeable
space reduction.

The above case studies show that this technique is effective in some cases.
However, the technique may result in little space reduction in some other cases.
The perform becomes worse because this technique needs extra space and CPU
time for calculating partial order paths.

7 Conclusions and Future Works

In this paper, we proposed a so-called ‘partial order path’ technique for real-
time reachablity analysis. Given a global symbolic state (l, D), this technique
calculates the successors of (l, D) w.r.t. a set of global paths starting from the
location. This set of global paths is expressed as a partial order path. Each
successor can be expressed by one symbolic state. So the improved algorithm
can have a better space efficiency.

This technique first suppose that each component timed automaton evolves
independently to each others. The local successors are calculated without con-
sidering synchronization between different automata. After the local successors
are calculated, this technique can combine these local successors into global suc-
cessors w.r.t. the partial order over the transitions. However, combining these
local successors needs some additional information. Some auxiliary clocks are
introduced to record these information.

In [3], the authors let the time of each component automaton evolves indepen-
dently. However, they did not give a constructive equivalence relation over the
set of un-synchronized states. Our technique also calculate the local successors

For Research Only

Partial Order Path Technique for Checking Parallel Timed Automata 431

independently. But these successors are combined into global states immediately.
So we avoid checking the equivalence between two un-synchronized states.

This technique has been incorporated into an experimental tool. By apply-
ing these tool to several cases, we show that this technique may result in an
improvement in time- and space- efficiency.

The primitive algorithm generates a reachability graph of the model being
checked. The nodes of this graph is the generated symbolic states. Each edge
is labeled by a global transitions. There is a edge labeled e from s to s′ if and
only if the successor of s w.r.t. e is included by s′. Our technique also generates
a similar graph except that the edges are labeled by partial order paths. Notice
that, a transition can be viewed as a special partial order path. Most properties
which can be verified based on the basic graph can also be verified based on the
graph generated by our algorithm.

Acknowledgement

The timed automaton model of Fischer’s protocol and CSMA protocol used in
this paper are downloaded from homepage of UPPAAL(http://www.docs.uu.se/
rtmv/uppaal).

References

1. R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In Proc. of
ICALP’90, LNCS 443, 1990.

2. Rajeev Alur, Robert K. Brayton, Thomas A. Henzinger, Shaz Qadeer, and Sri-
ram K. Rajamani. Partial-order reduction in symbolic state-space exploration. In
Proceedings of the Ninth International Conference on Computer-aided Verification
(CAV 1997), LNCS 1254, pages 340–351. Springer-Verlag, 1997.

3. Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial Order
Reductions for Timed Systems. In Proc. of the 9th International Conference on
Concurrency Theory, September 1998.

4. C.Daws, A.Olivero, S.Tripakis, and S.Yovine. The tool kronos. In DIMACS Work-
shop on Verification and Control of Hybrid Systems, LNCS 1066. Springer-Verlag,
October 1995.

5. F.Pagani. Partial orders and verification of real-time systems. In B. Jonsson and
J. Parrow, editors, Proc. of Formal Techniques in Real-Time and Fault-Tolerant
Systems, LNCS 1135, pages 327–346. Springer-Verlag, 1996.

6. Kim G Larsen and Paul Pettersson Wang Yi. UPPAAL: Status & Developments.
In Orna Grumberg, editor, Proceedings of the 9th International Conference on
Computer-Aided Verification. Haifa, Israel,, LNCS 1254, pages 456–459. Springer-
Verlag, June 1997.

7. T.A.Henzinger and P.-H. Ho. Hytech: The cornell hybrid technology tool. In
Proc. of Workshop on Tools and Algorithms for the Construction and Analysis of
Systems, 1995. BRICS report series NS-95-2.

8. Hans van der Schoot. Partial-order verification in spin can be more efficient,
http://citeseer.nj.nec.com/vanderschoot97partialorder.html.

For Research Only

432 Jianhua Zhao et al.

9. T.G.Rokicki. Representing and Modeling Circuits, 1993. PhD thesis, Standford
University.

10. C.J. Myers, T.G.Rokicki, and T.H.Y.Meng. POSEET timing and its application
to the synthesis and verification of gate-level timed circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits 18(6):769-786, June 1999.

11. W. Belluomini and C. J. Myers. Timed state space exploration using POSETs.
IEEE Transactions on Computer-Aided Design of Integrated Circuits, 19(5), May
2000.

12. Sergio Yovine. Kronos: A verification Tool for Real-Time Systems. Springer In-
ternational Journal of Software Toolls for Technology Transfer 1(1/2), Oct 1997.

For Research Only

