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n a parallel composition of timed automata, some transi-
endent to others. Generally the basic method generates
cach of the legal permutations of the transitions. These

order path. This big symbolic suc-
successors w.r.t. all the global paths
ath. It is shown by some case

symbolic successor w.r*
cessor is just the combinatid
which are consistent to this

studies that this method may res ighificant space reduction.
1 Introduction /
Model checking is a formal technique for validaing w T a system model
holds for a specific property. The basic method chigcking is exhaus-
tive exploration of the system state space. However,€he st space increases
explosively when the scale of the model increases. Many niques haye been
introduced to attack this problem. Partial order technique is oned® 0 ost

efficient ones.
Partial order technique is first introduced for temporal model
get many successful results[g], [2]. However, the progress of applyi
nique into timed automata is slow. The main reason is that the clocks in di nt
automaton increase in same rate. Different transition orders will result¥n dif.
ferent successors. A partial order technique for checking real time systems
been proposed in [3]. In that paper, the authors let the time of each componen
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automaton evolves independently. The authors proved that there are equiva-
lence relations which can divide the infinite number of unsynchronized states
into finite number of equivalence classes. However, the proof is not constructive.

Some other partial order techniques for checking timed petri net can be found
in [9][10][11]. These techniques remove orderings in the zone on sets of indepen-
dent transitions, reducing the representation size of the timed state space, and

o reducing the number of generated states. They yield significant reduction
in"the number of symbolic states at each un-timed state.

n [5], F.Panagi also presented a partial order technique for checking real-

stem models. In that paper, she studied the dependence relation between
@ iomns, and the cases when partial order reduction can be applied.

n aper, we propose a so-called ‘partial order path’ technique for real-
ti eachablity analysis. Given a global symbolic state (I, D), this technique
calculates the ors of (I, D) w.r.t. a set of global paths, instead of one

g from the location.

2 Backgro

2.1 Timed Automat works

In this subsection, we wi informal description of timed automatall]
and timed automaton netwgor, finition of global paths and executions
are different from, but essential ent to, the ones in the literate.

Give a clock set C', A clock @ssig
to real R. For d € R, we use u + )
each clock z in C' to the value u(z) @
assignment for C' which maps each clock
on C' — r. For a subset C’of C, we use u >
over C’ satisfying Vo € C’ e u(x) = u/(z).

We use B(C) ranged over by D, Dy, Do, ... and g, g1, g
set of conjunctions of atomic formula of the form
~€ {<,<,>,>} and n being an integer. Notice that;
be expressed as © — 0 ~ n. Elements of B(C) are called clogf’constraints.over C.
We use u = D to denote that the clock assignment u € R® sati
constraint D € B(C).

A set A of actions includes finite number of labels such that i
also in A. For convenience, we let @ = a.

A timed automaton A is a tuple < N, I, A, C, E, I >, where N is aiflite
set of locations, [° € N is the start location; A is a set of actions; C' is & finit
set of clocks; E C N x (AU {L}) x B(C) x 2¢ x N is a set of transition
assigns each location in N a location invariant in B(C).

A timed automaton network is a parallel composition of finite set of timed
automata A, As, ..., A,. These automata share a same set A of actions.

A concrete state of timed automaton A is a tuple (I,u), where [ € N and
u is a clock assignment over C. A state can be viewed as a snapshot of A on a
certain time point when A is evolving. A state of a network A = Ay | ... | A, is

over C of clocks is a map from C
e clock assignment which maps
or ,C C, [r — OJu to denote the
T value 0 and agrees with u
to e the clock assignment

., to stand for the
z,y € CU{0},
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a pair (I, u) where [, called global location, is a vector of control locations of each
automaton and w is a clock assignment over C = Cy U ... U C,. A state of the
network is essentially a combination of local states of the component automata.
In the rest part of this paper, for a transitions e = (I;, —, —, —, 12), we use e

to denote the source location {; of e and ¢ to denote the target location I of e.
A global transition e can be a single transition if e = (—, L,—, —,—), or a

jr of transition ej|es, where e; = (—,a,—,—,—) and es = (—,a,—,—, —) are
transitions of different automata. Given a global transition e, the projection of

A;, denoted e/A;, is defined as follows.

e e is a single transition of A;
e1 eis eq|es or esler, and e; is a transition of A;
o0 else

starting from a location [ is a sequence of transitions
atisfying that a: ! and a:e:q (1<i<n-1).

1€ network starting from a global location [ is a sequence
. — e, such that for each component automaton A;,
— ... = ey /A; is a local path of A; starting from

of transitions e
the sequence e; 4;
I[¢] if all & are igno

Suppose that on a in@ point, the state of A;(1 <1i <mn)is (I;,u;). A;
can stay on [; as long as if§ lo ock value satisfies I;(l;), which is the location
invariant of I;. It can also ate (I}, u;) if there is a transition (I;, L
,g,1,1;) such that u; = g, u}, = [ and ) = I(1}). If two timed automata,
A; and A;, respectively stay on ) u;), they can change to new state
(I, u;) and (I%,u}) simultaneously if two transitions (l;,a, gi,7i,15),
(lj,a,gj,7j,1;) such that u; = gi, u; L= [r; = 0Juy,
ug = 1;(1;) and uj = L;(17)

We can use executions to record the e i ess of the component
automata and the network.

A local execution of A; starting from a state
path (61,t1) — (eg,tz) — ... (6k,tk) — ((5, tk+1),

e stamped local
a real number.

Suppose A; is on (I, u), if we don’t consider the synchroniz between transi-
tions, A; can evolve as follows. It stays on [ for ¢; time, t e1 take_ jplame, then

stayi on ey for to — t; time, then ey takes place, ..., then e takeg§place
on ey for tx41 — tx time. Because the synchronization is ignored here, a
execution is possibly illegal in the global environment.

A global execution of the network starting from a global state{¥
time stamped global path (e1,t1) — (ea,t2) — ... = (ex,tr) — (0, trt
that the time stamped transition sequence (ej/A4;,t1) — (e2/A4;,t2) — ...
(ex/Ai tr) — (0,tr41) is a local execution of A; if all the time stamped 95,
except (0, tx+1), are ignored.

2.2 Symbolic States and Their Reachablity Relationship

Because the value of clocks are real numbers, the state space of a timed automa-
ton network is infinite. However, we can use symbolic states of the form (I, D),
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where D € B(C'), to express a set of concrete states. Intuitively, (I, D) represents
the set of concrete states (I, u) such that w |= D. There is an equivalence relation
to divide all the symbolic states into finite number of equivalence classes. We
write (l,u) = (I, D) ifl =1 and u = D.

We will use the following four operators on time constraints in this paper.
Let C be a set of clocks, 7 and C’ be subsets of C. For two time constraints

€ B(C) and D’ € B(C"), the operators DT, (D), D> C’ and D’ <1 C are
defined as follows.

rallde R,u+dE DT iff u= D.
r(D) iff 3u’ e (v E D Au=[rw 0u).
D" € B(C')and v/ =Do>C'iff Jue (u ED AW =u>C").
eB(C)andu D' <aCiff F e (v ED AU =ur>C").
D', r(D) and D’ <1 C are in B(C) and D> C" is in B(C").
We now défi ongest post-condition operator sp over the global state
global evolutions.

def

— For global délay, ,D) = (I, DT A I(1))

— For a single tr = (I[z], L,g,7,1}) of A;, sp(e)(l, D) (l’ (r(g A
D)) ANI(')), wh )
— For a pair transitions l[§a,gi,ri,l;) € B, and €' = (I[j], @, g;,75,1}) €
def

Ej, splele’)(l, D) = ( Y 9; AD)AIL(I')), where I = I[1; /i][I} /).

In this definition, sp(d)(l, D) re all the set of state reachable from a
state in (I, D) by only time adva ent. (I, D) expresses the set of state
reachable from a state in (I, D) throug wgle transition e € E;. sp(ele’)(l, D)
expresses the set of state reachable Vst in (I,D) through a pair of
matched transitions.

Now we extend the operator sp to global path
be a global path,

~—

et d=e,— 62— ... > e,

) )LD) i
D00 ={ s eplen st 0 DY)

Let p be a global path from [ to I’. From the definition of"sp, we
any concrete state (I, u), (I',u') = sp(p)(l, D) iff there is a state
(I,u) E (I, D) and there is a global execution from (I, u) to (I',u’)
to p.

For each automaton, the local strongest post-operator sp; is similar to s
defined as follows.

1. For time delay, sp;(6)(l, D) ‘= (I, DT A I(1))
2. For a transition e = (I, —, g,r,1"), spi(e)(I, D) = = (",r(g A D))

de f

This local operator does not consider the synchronizations. We can also similarl
extend sp; to local paths. For a local path p, for any concrete state (I',u’),
(I',u") = spi(p)(l, D) iff there is a state (I, u) such that (I,u) = (I, D) and there
is a local execution from (I,u) to (I’,u’) corresponding to p.
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Definition 1. Symbolic reachablity Given two global symbolic state (I, D)
and (I',D"), we say that (I', D) is reachable from (1, D) iff there is a global path
p such that sp(p)(l,D) = (I',D") for some D" and D' AN D" #+ FALSE.

Using the operator sp, we can get a basic algorithm to check whether a global
symbolic state (I, D) is reachable from another state (I, D). This algorithm, or
its variants, is wildly used in different model checking tools[6][4][7]. The basic
algorithm depicted in Fig[ checks whether a global symbolic state (l¢g¢, Digt)
is reachable from (ly, D). In the figure, for a global location I, we use enable(l)
ote the set {(I[i], L, — =)} U {(l[i],a, =, —)|([j]. @, —,—) [ i # j}. This
hm, or its variants, is wildly used in different model checking tools[6][4][7].
r, we will present a method to improve this algorithm.

PASSED =
WAITING ;
repeat
state (I, D) from WAITING
ING - {(1, D)}.

D') ePASSED then

begin
add (£;D) tofPASSED.
for each fransibion’ e in enabled(l) do
begin
let(l1, D1 sp(e) (1, D))
lf l1 = ltgt A n 7é ¢
return YF
else begin
if (I3, D1) is no ne state in WAITINGUPASSED
WAITING:= WAIT U {(ls, D1)}
end
end
end
end
until WAITING = {}

return NO.

Fig. 1. The basic reachability analysis algorithm

3 Basic Idea of Partial Order Path Technique

Let’s take the system depicted in Fig 2l as an example to show our basic i

of real-time partial-order-path model-checking. Suppose the system stays on
symbolic state (< l11,l21,031 >,21 > 0 Az > 0 Axg > 0). It evolves in the
following way: Ay evolves to lyo through e;1, As evolves to lao through e, an
As evolves to l3a through es;. The basic algorithm calculates the successors in
one-transition step-wise. So it will generally get many successors according to
different global paths: e;; — es; — es1, e11 — e31 — €91 and so on. If ey,
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clocks: x1

lll l12 l13

€11 €12

A O ) O
clocks:l T2 . .

21 €1 22 . 23
A2: O O O
clocks: x3

ls1 es1 1/3-% €32 lsg
%

ansition step, it generates a successor for each
6 successors will be generated in this cases.
ic states can be combined into one states
. Generally, if there are n independent
e n! successors. In this paper, we will
ofthese successors as one symbolic
ar algorithms is smaller.

present a way to generate the co
state. So, the number of states genera

3.1 Partial Order Path

However, the transitions of different automata ot s independent to
each other. They interact with each other through ynchionization mech-
anisms. The orders of some transitions are essential. We u partial order to

express the essential orders and ignore the inessential on

€1,€2,...,em and a partial order < over T. The tuple (T, <) i
der path iff the following condition holds.

1. For any two transitions ey, ex in T and a component automaton A;,
0 and ea/A; # § implies that either e; < eg or es < ey.

2. For each permutation p =e;; — e;, — ... — €5, of T, p is a global path’if,
forallk andl, e;, <e; =k <l

We also say p is a global path consistent to (T, <).

In the rest part of this paper, we will present a method to calculate the successor
w.r.t. a partial order path, instead of a global transition.
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From the definition of global paths, for a partial order path (7, <) and a
component automaton A;, the local transition set {e/4; | (e € T) A (e/A; #
0)} should be able to form a local path of A;. So a partial order path can be
decomposed into a set of local paths.

Definition 3. Local path set. Let [,1' be two global locations of a timed au-
maton network. Let P = aq,as,...,a, be a set of local paths. P is called a
al path set from I to ' if for each i, (1 <i < n), a; is a local path of A; from

1[i] to U'[d].

l . {611 — €12; €21 — €22, gb} is a local path set from < l11, l21, l31 > to

[ to I’ describes a set of possible global paths from [ to [’
amsitions in different local paths can synchronize with each

path set from | tol'. A synchronization solution C
itions satisfying the following conditions.

jon e =(—,a,—,—,—) in P, there is one and
w(e’,e) in C, where e’ = (—,a,—,—, —).
e of different component automata.

A local path set P may have zerOwgi man chronization solutions.

For each synchronization solution onstruct a global transition set T’
as {e | e is a non-synchronising transit 1 ele’) | (e,€’) is a pair in C}.
We define a relation <p ¢ over T as follo

Definition 5. For any two global transition e e’ if one of the

following conditions holds.

1. There is an automaton A; such that e/A; # 4,
place earlier than €' /A; does in «;.

Proposition 1. The tuple (T, <pc) is a partial order path if <p
order relation.

Proof. Let T = {e1,ea,...,er}. Let p=e;,,€i,,...,€;, be an auxiliary
tation of 7" such that e;, <p ¢ e;,, implies I < m. From the definition of <p ¢,
have that for any component automaton Ay, e;, /A, €,/ Ak, ..., €i, [Ag is just
ay. That is, p is a global path. So (T, <p¢) is a partial order path.

Ezample 2. Let’s suppose that, in the example in Fig[2, e1; = (—,a,—, —, —),
€12 = (_a @, —, —, _)7 €21 = (_767 T T _) and €31 = (_767 Ty T _) be Synchro—
nizing transitions. Let eso and eso be local transitions. For the local path set
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P = {e11 — eiziea1 — exr;e3r — ez}, both €1 = {(e11,e21), (€12,€31)} and
Co = {(e11,e31), (€12, e21)} are synchronization solutions of P.

The global transition set w.r.t. P and C; is T = {(e11]e21), (e12]€31), €22, €32}
The relation <p ¢, over T is { (ei1]e21) <pc, €22, (e11le2r) <pc, (eizles1),
(e11]e21) <p.c, esz2, (e12]es1) <p.c, es2 }. We can check that (T, <pc,) is a par-
tial order path. The global transition sequences (e11]ea1) — eas — (e12les1) —

; (e11]ea1) — (eiz]es1) — ez — e3z and (eq1lear) — (e12]esr) — esz2 — €2
are global paths consistent to (T, <pc, ).

ocal Symbolic Successors

i ion, let (I, D) be a global symbolic state of the network. Let I’ be a
glol@l location ofghe network. Let P = a1, aq,...,a, be a local path set from
ltol'. Let C nchronization solution of P. Let (T, <pc), as described

ler path w.r.t. P and C. We will explain informally how
symbolic successor w.r.t. such a partial order path. We

will first calculage ocal successors w.r.t. a; in P, then compose the local
successors into ofie g ceessor

Let (I,u) be a state. Let Eze;(1 < i < n) be executions from
(1], w > C;) to (I'[s higugh «;. Let v’ be a clock assignment satisfying
that for each i, u' > C; B u; n Exe;(1 < i < n) can be composed into a
global execution from (I, rough a path consistent to (T, <pc) if

the following conditions hold.

1. The executions Exe;(1 <i < g time length.

2. For each transition pair (e, ¢e’) i . ?’ have same time stamp.

3. For any two transitions ¢ and €’ 1 that e <p¢ €, the time
stamp of e(or its component transition) st on-greater than that of
€' (or its component transition).

Notice that, for any global transition e|e’ in T', the\gime st
local executions are same, so we can construct the gl

a local successor w.r.t a local path «;, we introduce a set of auxiliasy cl
for each component automata. The auxiliary clock set C' includes the fol@wing
clocks.

1. A clock ¢ is introduced to record the time length of local execution. Whe
the local execution starts, the initial value of ¢ is 0 and no transition resets
t.

2. For each clock ¢ of the network, a shadow clock ¢ is introduced. Each ¢ has
the same value as ¢ at the start point, and it will never be reset. At the end
of any local executions, the value of ¢ — ¢ is the initial value of c.
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3. For each synchronizing transition e in «a;, a clock ¢, is introduced to record
at what time e takes place. This clock ¢, will only be reset by e. So if e is in
a;, the ending value of t — ¢, is the time point at which e take places. (Two
occurrence of one transition in o will be treated as two different ones.)

For each synchronizing transition e = (—, —,r, —, —), it will also reset ¢, when
it takes place. So e is modified to (—,—,r U {c.},—,—) when our algorithm
ulates the local successors.

Definition 6. Extended local clock set. Let A = Ay | Ay [ ... [ Ay be a

edh automaton network._The extended local clock set of A; is C; UC, where C;
clock set of A; and C is the auziliary clock set as described above.

it is requirg

local successors.
local successors.

hen we combine local successors into a global successor,
alue of each auxiliary clock z in C' are same in different
vever these clocks are never tested when we calculate the

FEzample 3. For thainet depicted in Fig [ the extended local clock set of
Al is {wlszatyfl,TQ s, 24, 11 6127082176632}'
To calculate the succdgsorfof a_global symbolic state (I, D), the initial ex-

tended local symbolic state start state of the local executions. From
the definition of auxiliary clocks d assign some time constraints to them

as follows.

Definition 7. Shadow extended lo

bolic state. Let (I, D) be a global

symbolic state. Let A; be a component timed au, n. Let D' be a conjunction
of following atomic formula.

1. t=0.

2. For any clock constraint x —y ~n (or x ~ nYyigaD, %~ n (orz~mn).

8. For each clock x € C;, T = .

The symbolic state (1[i], D) is called the shadow extended Jdeal symbolic state of
(1, D) w.r.t. A;.

From this definition, for each concrete state (I[i],«') in (I[¢], D’)
u(t) = 0, Vo € C; e u/(z) = ¥/ (T). For a clock assignment u oC
set C' of the network, we have that u | D if there is a v/ | D
Ve e Ceou(r) =u(T).

Ezample 4. Let (< l11,l01,0351 >,(x1 — 22 < 0)A(xz3 =0)A(xzg =0) ) Db
global symbolic state. Then the shadow extended local symbolic state of this
state w.r.t. Ap is (lllufl =21 ATo =22 Nt =0AT1 -T2 < 0AT3=0AT4 = 0)

Notice that, the clock T will never be reset and the clock ¢, for each syn
chronizing transitions will only be reset by e. The value ¢ record the time length
from the start point. From the definition of auxiliary clocks and sp;, we have the
following proposition.
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Proposition 2. Let (I[i], D) be an extended local symbolic state of A;. Let a
be a local path from l[i] to U'[i]. Let (I'[i], D") = spi(a)(l[i], D). Then for each
concrete state (I'[i],u;) such that u} = D', the following conditions hold.

K2

1. The concrete state (I'[i],u}) is reachable from a state (I[i],u;) in (I[i], D)
through o, and u;[z] = w;[T] = w}[T] — wi[t], wi[t] =0, and
. the value ul[t] is the time length of the local execution from (I[i],u;) to
(U1, ui)-
Of each synchronizing transition e in the local execution, the time stamp is
t] = ujce].

roposition, for each concrete state in the local extended symbolic
succg$gor, we can decide the time length of the local execution, the time stamp
of €ach synchrox transition, and from which concrete state the execution
starts. So we pose these local successors into one global successor.

3.3 Composiag t tended Local Symbolic States

In the above subsedfion, sent a way to calculate local successors. Some
information are incorp@tatedfint@the local successors. Give a concrete state in
a local successor, we can Enowa from which concrete state this one evolves, the

time length of the corresp xecution, and when the synchronizing
transitions take place in this ex¢€u
Let (I, D) be a global symbo o Ao | A1 | ... Ap. Let (I[i], D;) be

the shadow extended local symbolic stz D)ywrt. A;. Let P=aq,...,ay,

be a local path set from [ to . Let C % nc ization solution of P. Let T
be the global transition set w.r.t. P and € L, <P ) is a partial order path,
we can get the global successor of (I, D) w.r4 (T, v the operator defined

below. ’

s, we can define
a global successor operator sp as follows. Let (I'[i], DL} = i) (U[i], D;) where
1<i<n,and Dc = /\(e,e’)EC(Ce = Ce/). Let D' = D¢ /\( iSn(DI' C)))

sp(T,<pc)(l,D)=(',D'>C)
where C' is the clock set of the network, and C is the set of all auzi 0

Notice that, if we use sp to compose the local successors, for any“glob
transition ele’ in T, it requires that ¢, = ¢,. That is, t — ¢, = ¢ — ¢, so the ti
stamps of e and ¢’ in their local executions are equal. In each local executio
FExe;, if ey takes place earlier than ey does, the time stamp of ey is not greater
than that of e;. From the definition of <p ¢, for any two global transitions
and e’ in T', e <p ¢ €' implies the time stamp of e is not greater than that of e’.
In this case, we do not explicitly require that the time stamp e should not be
greater than that of ' if e <p ¢ €.
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Lemma 1. Using the above denotations, the symbolic state sSp(T, <p c)(l, D) is
Just the set of concrete states reachable from a concrete state in (I, D) through a
global path p, which is consistent to the partial order path (T, <pc).

Proof. From the definition of >, for each concrete state (l’ u') in 3p(P)(C)(1, D),
there is a concrete state (I',u”) in (I', D’) such that v' = u” > C. From the

finition of D', y we have that for each 4, (I',u" > (C;UC)) is in sp; () (1[i], D;).
From proposition [2] we have that there is a local execution Fze;(1 < i < n)
from (I[i],v;) to (I'[i],u” > (C; U C)). For each clock = in C;, vi(z) = v;(T) =
u”(t). The time length of Exe; is u”(t). And each synchronizing transition
eatakes place at the time point u”[t]—u" [c.]. We can construct a sequence
mped transitions based on the local executions as follows.

is as follows, e takes place previously to €’ either if the

stamp of e it <@ at of ¢/, or if the time stamp of e is equal to ¢’ and
e<pce
From the definition of sp ple, the transition sequence is a path consistent

to (T, <pc). The time colgtraint imed automata are satisfied because the
time stamps of local executions e time constraints. So this sequence of
time-stamped transitions is a glgba ion from (I,u) to (I',u"), where for
each clock z in C, u(z) = v;(x) "(t). So (I,ur>C) is a concrete
state in (I, D). Thus we prove that ete state in Sp(T, <p.c)(l, D) is
reachable from a concrete state in (I,

Now we prove another direction of th1s
which is reachable from a state (I, u) in (I, D) thro,
(T, <p,c). So we have a global execution Eze fr
Exe/A;, 1 <1i < n, be the projections of Exe on
and 3p and the auxiliary clock set, (I',u') is in 5p(T,

' u') be a concrete state
balgath consistent to
" u). Let Exe; =
efinitions of sp;

4 The Algorithms

In the previous sections, we present a method to generate the su

symbolic state w.r.t. a partial order path. However, the number of partial er
paths leaving from a state is infinite. And we can not find an equivalence rélatio
over the set of extended local symbolic states. So in our algorithm, we limit
number of local successors by limit the length local pathes. We count only th
partial order path of which the local paths have at most M transitions. In the
algorithm, for an un-timed state I, we use Pj(l) to denote the local path set]
of which all local paths has no more than M transitions.

Py (1) = {P | (the length of each local path in P is not greater than M)}.
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We use Ty (1) to denote the set of partial order paths of which the length of local
paths are no more than M.

Tu(l) ={(P,<pc) | P€Punu(l)A(<pc is a partial order)}

The improved algorithm is depicted in Fig Bl The improved one is same as
e basic one except the part used to calculate successors.

end
end
end
until WAITING = {}
return NO.

Fig. 3. The improved algo

5 Checking Systems Using Shared Variables

We have presented an algorithm to checking parallel timed automa s
chronizing labels. The technique presented in this paper can also be appliéd to
parallel systems using shared variables.

Notice that, we can record the time point at which a transition takes place
for each transition e which testing or setting shared variables, we can introduc
an auxiliary clock ¢, to record when e takes place. When we try to combine the
local successors, we can give such a partial order over the local transitions tha
each transition sequence which is consistent to the partial order is a global path.
For any two transitions e and €’ such that e must take place later that e’, we
can add the constraint ¢, < ¢/ in to the combined extended global successor.
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6 Performance Analysis and Case Studies

Let (I, D) be a global symbolic state, and p1, p2 be two global paths from [ to
. In the basic algorithm, two successors(if exist) sp(p1)(l, D) and sp(p2)(l, D)
will be generated. However, in the improved algorithm, these two successors will
be included by a generated symbolic state if p; and py are consistent to same
rtial order path. So the improved algorithm will generate less symbolic states
when it checks a timed automaton network. The technique used in this algorithm
improve the memory efficiency by generating bigger symbolic states.
Wie enumerate the partial order paths starting from [ by enumerating the local
@ setg from [ and the corresponding synchronization solutions. However, we
th local path

o calculate the local successors for each partial order path. Notice
local successorsd@r@ecal paths. The global successor 5p(p)(l, D) is generated by
&3

may be of many partial order paths, we can first calculate the
] successors, which are calculated previously.

technique is that some auxiliary clocks are introduced

to record extra jon. More clocks means that more memory space are

need for each s . More CPU time is also required for operations on
these symbolic stat@s. Hewever, these auxiliary clocks are only used when the
algorithm calculates Sp{g®) “Yghere p € Ty (1) . The number of local symbolic
successors are decide only@by@he®umber of the leaving local paths. Additional
clocks will not increase th cal successors. As soon as all successors
of (I, D) w.r.t. the leaving parti aths are generated, the local successors
can be removed. The symbolic Sgate TING and PASSED are over the
original clock set C. So the extra eqUirement because of the auxiliary
clock set is limited.
eiq /
Z’,L =
lv :=0
x; =0 o/ Nz; < 10.z; :=0
70 =0 " To =4 "
i eil i €j2
x; := 0
v : =10
€i5

Shared Variable: v; Clock x;;

Fig. 4. The ith process of Fischer’s exclusive protocol

We have incorporated this technique into our experimental tool. We applie
this technique to several examples. The following tables are the performance
data of our tool when it is used to check CSMA protocol and Fischer’s protocol

Fischer’s protocol ensures mutex access to criteral regions using one shared
variable and local clocks. Our tool checks the Fischer’s protocol(as depicted in
FigH) of 10 processes by exact and exhaustive exploration, using about 17 hours
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Number of process|| 2 3 4 5 6 7 8 9 10
States generated 22 104 | 494 |2392]11694|57220| 278782 |1291337|6347930
TIME <18S.|<18S.|<18.38S.{158S.|157 S.|26.6 M.| 2.2 H. |17.1 H.

Fig. 5. Space performance when checking Fischer’s Protocol

Number of process 2 3 415 6 7 8
States generated(POP) 15 | 84 |527]2877]13561| 56836 218007
Time(POP) < 18S|<1S|3S|21 S|5.0 M|31.6 M| 3.7TH
States generated(w/o POP)|| 15 | 93 [675[4794(34507| N/A | N/A

Fig. 6. Space performance when checking CSMA Protocol

technique.
is a protocol used in a broadcast network with a
first checked by Kronos[12]. In Figlf, we can

see that when checking protocol, our technique also result in noticeable
space reduction.
The above case studies sho is technique is effective in some cases.

ace reduction in some other cases.
ique needs extra space and CPU

However, the technique may result in%ttl
The perform becomes worse becauSe thi
time for calculating partial order pat

7 Conclusions and Future Works

In this paper, we proposed a so-called ‘partial or
time reachablity analysis. Given a global symbolic s

nique for real-
, this technique

sidering synchronization between different automata. After the local suc€essor;
are calculated, this technique can combine these local successors into global
cessors w.r.t. the partial order over the transitions. However, combining thes
local successors needs some additional information. Some auxiliary clocks are
introduced to record these information.

In [3], the authors let the time of each component automaton evolves indepen-
dently. However, they did not give a constructive equivalence relation over the
set of un-synchronized states. Our technique also calculate the local successors
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independently. But these successors are combined into global states immediately.
So we avoid checking the equivalence between two un-synchronized states.

This technique has been incorporated into an experimental tool. By apply-
ing these tool to several cases, we show that this technique may result in an
improvement in time- and space- efficiency.

The primitive algorithm generates a reachability graph of the model being

ecked. The nodes of this graph is the generated symbolic states. Each edge
is"labeled by a global transitions. There is a edge labeled e from s to s’ if and
if the successor of s w.r.t. e is included by s’. Our technique also generates
ar graph except that the edges are labeled by partial order paths. Notice
A transition can be viewed as a special partial order path. Most properties
e verified based on the basic graph can also be verified based on the
our algorithm.

The timed auto@atq el of Fischer’s protocol and CSMA protocol used in
this paper are dow om homepage of UPPAAL(http://www.docs.uu.se/
rtmv/uppaal).
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