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Abstract—In run-time evolving systems, components may
evolve while the system is being operated. Unsafe run-time
changes may compromise the correct execution of the entire
system. Traditional design-time verification techniques difficultly
cope with run-time changes, and run-time monitoring may detect
disfunctions only too late, when the failure arises. The desire
would be to define advanced monitors with the ability to predict
and prevent the potential errors happening in the future. In this
direction, this paper proposes CASSANDRA, a new approach that
by combining design-time and run-time analysis techniques, can
“look ahead” in the near execution future, and predict potential
failures. During run-time we on-the-fly construct a model of
the future 𝑘-step global state space according to design-time
specifications and the current execution state. Consequently, we
can run-time check whether possible failures might happen in
the future.

Index Terms—Proactive run-time Monitoring, Component-
based Software Engineering, Software Evolution, Failure Pre-
diction.

I. INTRODUCTION

For current software systems that can dynamically change

during run-time, such as service-based and component-based,

existing verification techniques are inadequate to prevent fail-

ures to happen.

Traditional design-time verification techniques (like model

checking) have been revised in order to cope with evolution

(e.g., [4]) but they alone cannot fully support the analysis of

run-time evolving systems. Run-time verification techniques,

based on system monitoring approaches, have become funda-

mental to ensure the correctness of run-time evolving systems

and have received increasing attention by the research commu-

nity [7], [10]. New run-time monitoring techniques like those

in [8], [11], [5] have been proposed, as well as techniques

for combining both design-time and run-time verification [3],

[13], [14]. However, they have the ability to detect errors only

too late, that is, when a failure happens. What is desirable is

instead a technique that, while applied to run-time evolving

systems, can predict potential errors that may happen in the

near future.

Towards this research goal, this paper proposes CAS-

SANDRA, a novel proactive monitoring approach to predict

potential failures by looking ahead the current execution

state. To this end, CASSANDRA combines design-time and

run-time information for proactive run-time verification of

dynamic component-based systems. While traditional passive

monitoring techniques enable the timely detection of pos-

sible problems or malfunctions by recording the execution

traces and/or appropriate parameter values during the system

execution, and reactive monitoring intervene and drive the

system behavior based on the analysis results of the monitored

behaviors. CASSANDRA uses a proactive monitoring that aims

at predicting failures that may potentially happen in the near

future [2].

The proposed proactive monitoring and verification tech-

nique uses run-time information to identify the current execu-

tion state, and checks whether the projection of a design-time

model k steps ahead of the current state satisfies a set of want-

ed/unwanted properties. The execution state is captured by

run-time traces obtained by monitoring the component-based

system execution. Each component equips with a design-time

model in the form of interface automata [6]. The properties we

considered are interaction temporal properties among different

components.

The approach, that is general in principle, is briefly de-

scribed in Section II. The customization of CASSANDRA to

the OSGi 1 component model and framework is presented in

Section III. Section IV concludes the paper and provides a list

of pointers for future work.

II. CASSANDRA, AN APPROACH TO RUN-TIME FAILURE

PREDICTION OF DYNAMICALLY EVOLVING SYSTEMS

In Greek mythology, Cassandra was the daughter of king

Priam and queen Hecuba of Troy. She had the gift of prophecy

but at the same time Apollo placed a curse on her so that

no one would ever believe her predictions. The approach we

are proposing in this paper somehow shares with her the

prophecy capability, being it able to predict in the near future

the possible occurrences of a system failure caused by the

incorrect integration of the system composing components.

Hoping that no curse will be placed on CASSANDRA, this

information can be used in order to avoid and block the

sequence of component interactions leading to the predicted

failure.

1http://www.osgi.org
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The adopted prediction technique is roughly inspired by

model checking techniques where an operational model is

explored to check if a desirable temporal property is satisfied

or violated by the model itself. Nevertheless, differently from

a traditional model checking approach, CASSANDRA explores

design-time system models driven by information and events

observed at run-time. The exploration strategy, starting from

the current system state, looks 𝑘 steps ahead and checks if

there is a property violation in any path shorter than 𝑘 steps

and originating in the current state. Given its characteristics

CASSANDRA can only detect violation of safety properties

and bounded liveness properties where the look-ahead value

is greater than the bounding value.

Given its characteristics, the approach is suitable for being

applied to run-time check dynamically evolving component-

based/service-based systems. For such kind of systems, static

verification techniques present some limitations mainly related

to the impossibility to precisely predict the characteristics of

the run-time environment.

The CASSANDRA approach stands on the following assump-

tions:

∙ Each component to be integrated is augmented with a

model of the interface suitable to be used for run-time

checking;

∙ It is possible to map observed run-time events with the

ones included in the formal model used for the run-time

checking;

∙ The execution of one exploration step by the run-time

checking algorithm is faster than the execution of the

corresponding step by the real system. This assumption

is necessary to keep the exploration synchronized with

the real execution.

The algorithm we have implemented relies on a specification

of the component/service behaviour based on the interface

automata formalism [6]. This is a light-weight formalism to

be used for describing the temporal interface behaviors of

software components.

Definition 1: An interface automaton 𝑃 =<

𝑉𝑃 , 𝑉
𝑖𝑛𝑖𝑡
𝑃 , 𝐴𝐼

𝑃 , 𝐴
𝑂
𝑃 , 𝐴

𝐻
𝑃 , 𝑇𝑃 > consists of the following

elements:

∙ 𝑉𝑃 is a set of states.

∙ 𝑉 𝑖𝑛𝑖𝑡
𝑃 is a set of initial states. It is required that 𝑉 𝑖𝑛𝑖𝑡

𝑃

contains at most one state. If 𝑉 𝑖𝑛𝑖𝑡
𝑃 = 0, then 𝑝 is called

empty.

∙ 𝐴𝐼
𝑃 , 𝐴𝑂

𝑃 , and 𝐴𝐻
𝑃 are mutually disjoint sets of input,

output and internal actions. The set of all actions are

denoted by 𝐴𝑃 = 𝐴𝐼
𝑃 ∪𝐴𝑂

𝑃 ∪𝐴𝐻
𝑃 .

∙ 𝑇𝑃 ⊆ 𝑉𝑃 ×𝐴𝑃 × 𝑉𝑃 is the set of transitions.

If 𝑎 ∈ 𝐴𝐼
𝑃 (resp. 𝑎 ∈ 𝐴𝑂

𝑃 , 𝑎 ∈ 𝐴𝐻
𝑃 ), then (𝑣, 𝑎, 𝑣′) is

called an input (resp. output, internal) step. We denote by 𝑇 𝐼
𝑃

(resp. 𝑇𝑂
𝑃 , 𝑇𝐻

𝑃 ) the set of input (resp. output, internal) steps.

The interface automaton 𝑝 is closed if it has only internal

actions, that is, 𝐴𝐼
𝑃 = 𝐴𝑂

𝑃 = ∅; otherwise, we say that 𝑝

is open. An action 𝑎 ∈ 𝐴𝑃 is enabled at a state 𝑣 ∈ 𝑉𝑃 if

there is a step (𝑣, 𝑎, 𝑣′) ∈ 𝑇𝑃 for some 𝑣′ ∈ 𝑉𝑃 . We denote

with 𝐴𝐼
𝑃 (𝑣), 𝐴

𝑂
𝑃 (𝑣), 𝐴

𝐻
𝑃 (𝑣) the subsets of input, output, and

internal actions that are enabled at the state 𝑣, and we let

𝐴𝑃 (𝑣) = 𝐴𝐼
𝑃 (𝑣) ∪𝐴𝑂

𝑃 (𝑣) ∪𝐴𝐻
𝑃 (𝑣).

Definition 2: An execution fragment of an interface au-

tomaton 𝑝 is a finite alternating sequence of states and actions

𝑣0, 𝑎0, 𝑣1, 𝑎1,...,𝑣𝑛 such that (𝑣𝑖, 𝑎𝑖, 𝑣𝑖+1) ∈ 𝑇𝑃 for all

0 ≤ 𝑖 < 𝑛. Given two states 𝑣, 𝑢 ∈ 𝑉𝑃 , we say that 𝑢 is

reachable from 𝑣 if there is an execution fragment whose first

state is 𝑣, and whose last state is 𝑢. The state 𝑢 is reachable

in 𝑝 if there exists an initial state 𝑣 ∈ 𝑉 𝑖𝑛𝑖𝑡
𝑃 such that 𝑢 is

reachable from 𝑣.

Since interface automata will interact through actions

synchronization, the formal theory on how they compose

needs to be defined. In particular the resulting automata can

be calculated in linear time.

Definition 3: Two interface automata 𝑃 and 𝑄 are compos-

able if:

∙ 𝐴𝐻
𝑃 ∩𝐴𝑄 = 𝐴𝐻

𝑄 ∩𝐴𝑃 = ∅
∙ 𝐴𝐼

𝑃 ∩𝐴𝐼
𝑄 = 𝐴𝑂

𝑃 ∩𝐴𝑂
𝑄 = ∅

If 𝑃 and 𝑄 are composable, then 𝑠ℎ𝑎𝑟𝑒𝑑(𝑃,𝐴) = 𝐴𝑃 ∩𝐴𝑄 =
(𝐴𝐼

𝑃 ∩𝐴𝑂
𝑄) ∪ (𝐴𝐼

𝑄 ∩𝐴𝑂
𝐼 ).

Definition 4: Let 𝑃 and 𝑄 be two composable interface

automata. Their product 𝑃 ⊗ 𝑄 is the interface automata we

define below:

𝑉𝑃⊗𝑄 = 𝑉𝑃 × 𝑉𝑄

𝑉 𝑖𝑛𝑖𝑡
𝑃⊗𝑄 = 𝑉 𝑖𝑛𝑖𝑡

𝑃 × 𝑉 𝑖𝑛𝑖𝑡
𝑄

𝐴𝐼
𝑃⊗𝑄 = (𝐴𝐼

𝑃 ∪𝐴𝐼
𝑄)∖𝑠ℎ𝑎𝑟𝑒𝑑(𝑃,𝑄)

𝐴𝑂
𝑃⊗𝑄 = (𝐴𝑂

𝑃 ∪𝐴𝑂
𝑄)∖𝑠ℎ𝑎𝑟𝑒𝑑(𝑃,𝑄)

𝐴𝐻
𝑃⊗𝑄 = 𝐴𝐻

𝑃 ∪𝐴𝐻
𝑄 ∪ 𝑠ℎ𝑎𝑟𝑒𝑑(𝑃,𝑄)

𝑇𝑃⊗𝑄 =
{(𝑣, 𝑢), 𝑎, (𝑣′, 𝑢)) ∣ 𝑎 ∈ 𝐴𝐻

𝑃 ∪ (𝐴𝑂
𝑃 ∖𝑠ℎ𝑎𝑟𝑒𝑑(𝑃,𝑄))∧

(𝑣, 𝑎, 𝑣′) ∈ 𝑇𝑃 } ∪
{(𝑣, 𝑢), 𝑎, (𝑣, 𝑢′)) ∣ 𝑎 ∈ 𝐴𝐻

𝑄 ∪ (𝐴𝑂
𝑄∖𝑠ℎ𝑎𝑟𝑒𝑑(𝑃,𝑄))∧

(𝑢, 𝑎, 𝑢′) ∈ 𝑇𝑄} ∪
{(𝑣, 𝑢), 𝑎, (𝑣′, 𝑢′)) ∣ 𝑎 ∈ 𝑠ℎ𝑎𝑟𝑒𝑑(𝑃,𝑄) ∧ (𝑣, 𝑎, 𝑣′) ∈ 𝑇𝑃∧

(𝑢, 𝑎, 𝑢′) ∈ 𝑇𝑄}

CASSANDRA is then based on a run-time checking algo-

rithm that takes in input the interface automata for the various

components, the look-ahead value 𝑘, the temporal property

that should not be violated by the system and performs the

following steps

1) The interface automata of the various components are

composed on the fly to construct the tree of possible paths

of length smaller than 𝑘,

2) When a system interaction event is detected the explo-

ration is moved ahead of one step. In particular:

a) All the subtrees rooted in a next state linked by an

event different from the one detected are discarded;

b) For each leaf in the subtree rooted in the next state

linked by the detected event, the exploration is pushed

ahead of one step;
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c) In case a property is violated an alert event is generated

specifying the trace leading to the property violation.

III. OSGI CASSANDRA CUSTOMIZATION

While the theory outlined in Section II has a general idea

in principle, we customize it into the OSGi component model

and framework.

In OSGi, components (coming in the form of bundles

for deployment) can be remotely installed, started, stopped,

updated and uninstalled without requiring a reboot. For this

purpose, each bundle is loaded with a different class loader

and the “Hot-Deployment feature” enables to add new bundles

to the platform without affecting the running services, that

feature is very interesting. While there are a number of

implementations of the OSGi Specification, we decided to

use Equinox2, published by the Eclipse Foundation, since it

is a well-proven implementation which offers all necessary

features of our approach.

In order to get run-time interaction information among

OSGi bundles, we make use of the Equinox Aspects3 project

for the Eclipse platform that integrates aspect weaving, using

AspectJ, into the Equinox OSGi implementation. It is possible

to define and to deploy aspects inside of bundles independently

of other bundles. To realize this, Equinox Aspects integrate

the load-time aspect weaving functionality of AspectJ into the

OSGi run-time itself. It takes care of finding aspects inside

bundles and weaving these aspects into other bundles at load-

time. Every time a class is loaded into the JVM, the applicable

aspects are woven into it.

Figure 1 shows the main scenario on how to customize

CASSANDRA into a OSGi-based dynamic component-based

system. The OSGi bundle developers provide the architecture

with a set of wrappers of bundles (each wrapper is equipped

with source code, the corresponding interface automata model

and the Aspect codes). The developers also provide a set of

wanted/unwanted properties represented through the Property

Sequence Chart (PSC) formalism [1]. Then PSCs are translated

into Büchi automata for proactive monitoring. In order to make

our monitoring approach have prediction ability, during run-

time we take 𝑘 steps looking ahead at the interface automata

models to construct the temporary Global State Machine

(GSM) according to the current run-time information. We on-

the-fly construct the GSM with 𝑘 steps looking ahead. Then,

the approach can proactively check at step 𝑥 whether possible

failures could happen in the future 𝑥+ 𝑘 steps. Consequently,

the application users can take measures to avoid these failures.

The implementation is divided into two stages (design-time

and run-time), with several steps each.

A. Design-Time

Step 1 - Architectural Specification

As the first step, the developer is required to describe the

initial architecture of the evolvable OSGi application, in terms

of the initial components the system will run. Any architecture

2http://www.eclipse.org/equinox
3http://www.eclipse.org/equinox/incubator/aspects/
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Fig. 1. Overview of OSGI CASSANDRA customization

description language that can describe components, their inter-

faces, and bindings with other components can be used in this

step. We can use the tool Charmy [12] to help the developer

to construct the system architecture.

Step 2 - Interface Formal Specification

The pre-condition of this step is that the interface automata

must be consistent with the source codes. We have already de-

fined the mapping between the source codes and the interface

automata. A private method of source codes is just mapped

into an internal action in the interface automata model while a

public or protect method is mapped into an input or out action

in the interface automata model. Then, the developers provide

a wrapper of each basic OSGi bundle. The wrapper permits

to add the original OSGi bundles with the representation of

the interface automata, in XML format. The wrapper contains

also aspect-based source codes that are necessary to instrument

the bundle at run-time with mechanisms for notifying the

invocations the bundle will receive, and to expose the interface

automata so that can be retrieved by an external analyzer.

Step 3 - Properties Specification

A set of wanted/unwanted properties referring to several

different OSGi bundles is provided at this step. The properties

to be verified can be of various nature and can refer to

a single component or to several components. This work

focusses on interaction temporal properties, that are functional

and temporal properties assigned to interacting components

called property sequence charts(PSCs). PSCs are an extended

graphical notation of a subset of UML 2.0 sequence diagrams,

which is proposed in [1] to specify temporal properties. PSCs

have two basic message types: ArrowMSGs and IntraMSGs.

The ArrowMSGs The messages are classified into Regular,

Required and Fail to define possible, mandatory and unde-

sired interactions. IntraMSGs are used to describe constraints

that restrict the future and past exchange of messages (ar-

rowMSGs). Constraints are classified into unwanted message

constraints and chain constraints. PSCs have four operators:

Strict, Parallel, Loop and Alt. The Strict operator explicitly

specifies a strict ordering between a pair of messages; no other

message is allowed in between. The Parallel, Loop and Alt

operators specify parallel merging (i.e., interleaving), iteration

and alternative behavior, respectively.
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B. Run-Time

Step 4 - Bundle Weaving

In this step, we will run the OSGi applications with aspects

to get the run-time trace. Aspect-oriented computing [9] is

continuing to increase in popularity. The modularity inherent

in OSGi and Eclipse offers unique opportunities for man-

aging and applying aspects by supplying them in bundles

and directing their application to particular sets of bundles.

The goal of EquinoxAspect is to allow developers to use the

Equinox together with AspectJ by combining the benefits of

both worlds. Using a load-time weaving extension it is possible

to add AspectJ aspects to a bundle-based system just by putting

them into general OSGi bundles.

Step 5 - Failure Prediction via Proactive Monitoring

A novel proactive run-time monitoring algorithm imple-

mented the idea in Section II is proposed to carry on this

step. The input of this algorithm is the updated run-time

trace, a set of interface automata for the OSGi bundles, an

interaction property represented by a PSC, and the 𝑘 steps

looking ahead. The output of this algorithm is yes or possible

errors detected within the explored 𝑘 steps ahead. The future

𝑘 steps global state space is represented by all the possible

future execution traces which are checked against the Büchi

automaton translated by PSC. If the Büchi automaton goes to

the final state, an error trace will be shown to the developers.

Step 6 - Bundles Run-Time Management

The OSGi bundles can be added or removed at run-time

without rebooting. Please note that when a new bundle is

added into the system, its corresponding interface automata

and the new related properties are also synchronized at run-

time. The dynamics nature of OSGi bundles are supported

by Equinox Aspects as well. Equinox Aspects triggers update

of woven bundles automatically when aspect bundles are

installed, updated or uninstalled.

Step 7 - Proactive Monitoring Again

In this step, we will proactive re-monitor the system with the

new property after OSGi bundles change. The systems do not

need to restart, however, the proactive monitor approach needs

to restart because new bundles are added into the system.

Please note when new bundles are added or old bundles

are deleted from the systems, Steps 4-7 can be repeated to

proactive monitor possible failures in the future.

IV. CONCLUSIONS AND FUTURE WORK

This paper has proposed CASSANDRA, a novel proactive

run-time monitoring approach for predicting failures in dy-

namic evolvable system. The approach combines design-time

and run-time verification techniques as a way to predict pos-

sible failures that may happen in the near future. Eventually,

the approach has been customized to the OSGi component

framework.

A substantial list of future works for CASSANDRA is in our

wish list. More specifically, we plan to: i) Apply CASSANDRA

to real OSGi-based run-time evolving applications, ii) Measure

the performance and overhead in large case study and further

compare to our previous non-proactive monitoring tool [15],

iii) take into consideration scenarios that require properties

themselves to evolve during system evolution, iv) Study

how much to look ahead (i.e., how to set-up the look ahead

parameter properly), in order to derive a completely useful

theory that could be used to guide how to monitor real

systems, v) Manage time and probability in the interface

automata, so to be able to predict more precise failures

limited by timing and probabilistic properties, vi) Consider

other types of run-time and parameterized properties which

cannot be verified at design-time.
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