

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2011-IC-004

Preservation of Integrity Constraints by Workflow

Xi Liu, Jianwen Su, Jian Yang

Postprint Version. Originally Published in: Lecture Notes in Computer Science

7044, Springer, 2011, pp. 64–81.

Most of the papers available from this document appear in print, and the corresponding

copyright is held by the publisher. While the papers can be used for personal use,

redistribution or reprinting for commercial purposes is prohibited.

http://seg.nju.edu.cn/

Preservation of Integrity Constraints by Workflow

Xi Liu1,2,3,�, Jianwen Su3,��, and Jian Yang4

1 State Key Laboratory for Novel Software Technology, Nanjing University, China
2 Department of Computer Science and Technology, Nanjing University, China

3 Department of Computer Science, University of California at Santa Barbara, USA
4 Department of Computing, Macquarie University, Australia

liux@seg.nju.edu.cn, su@cs.ucsb.edu, jian.yang@mq.edu.au

Abstract. Integrity constraints on data are typically defined when workflow and
business process models are developed. Keeping data consistent is vital for work-
flow execution. Traditionally, enforcing data integrity constraints is left for the
underlying database system, while workflow system focuses primarily on per-
forming tasks. This paper presents a new mechanism that turns a workflow into
an equivalent one that will preserve integrity constraints. For a given workflow
schema (or model) and a given set of data integrity constraints, an algorithm de-
veloped in this paper injects additional conditions into the workflow schema that
restricts possible execution paths. The modified workflow will guarantee data
consistency (i.e., satisfaction of the integrity constraints) whenever the workflow
updates the database(s). In addition, we show that our injection mechanism is
“conservative complete”, i.e., the conditions inserted are weakest possible. By
making workflow execution self-behaving, enforcing integrity constraints over
multi-databases is avoided, and constraints specific to a workflow can also be en-
forced effectively. Mechanisms such as this enhance independence of workflow
executions from the environment—a much desired property.

1 Introduction

Data integrity is the assurance of data correctness, consistency and completeness. From
the database perspective, data integrity can be imposed within a database at its design
stage through the use of standard rules and procedures, and maintained through the use
of error checking and validation routines [2]. Data is the most important asset for any
business to make decisions and gain global competitiveness. Decisions made on data
that lack integrity can result in losing opportunities and even losing business.

Database management systems (DBMSs) are developed for storing and managing
data that is generated and updated by various applications. Workflow systems are an
important class of software systems that manage organizational business processes and
normally utilize database systems for storing data, executing tasks, and logging. Work-
flow has been studied for over a decade [16]. Recently with the emerging web service
technology, notations and specifications for workflows have been developed such as

� Supported in part by National Natural Science Foundation of China (No.90818022 and
No.61021062) and a grant from China Scholarship Council.

�� Supported in part by NSF grant IIS-0812578 and a grant from IBM.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 64–81, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

For Research Only

Preservation of Integrity Constraints by Workflow 65

BPMN, BPEL, YAWL, etc. These workflow models mostly focus on the aspect of task
flow control and completely rely on the underlying database systems to take care of
data integrity. However an enterprise workflow system can run across different agen-
cies, departments and organizations, thus it needs to interact with different databases.
Take an online shopping workflow as an example, it may need to communicate with a
customer database that is only logically integrated from databases of different branches
and other partner companies. Distributed DBMS technology does not provide a satis-
factory solution in enforcing effectively data integrity defined across multiple database
systems. Even when a DBMS detects a violation, it is often difficult to locate the origin
in a workflow that causes the error. Also, these underlying databases can be shared by
many applications and workflow systems. On the other hand, there are data integrity
constraints specific to individual workflow, i.e., they are “local” to the workflow in
question. It is not appropriate to enforce such local constraints on databases shared
among different applications including other workflows. With the current trend of us-
ing “cloud” as the outsourcing facility for data storage and management, pushing local
data integrity constraints into a shared database system may result in undesirable ef-
fects. Moreover, it is unclear that cloud would realize mechanisms to maintain data
consistency in loosely coupled databases [8, 13].

A database system can only check/validate data integrity. It still relies on applica-
tions and workflow to produce the correct data and updates, i.e., adhered to integrity
constraints. Therefore, in a complex workflow system interacting with distributed data-
bases, it will become an obstacle to always let the database systems check data integrity
and come back to the workflow to make necessary corrections for it to proceed.

To overcome the above discussed problems, we propose a mechanism to make a
workflow self-behaving in terms of data integrity. The key novelty is to modify a work-
flow schema by injecting certain conditions according to the defined integrity con-
straints to guard against inconsistent updates. The data integrity is therefore guaranteed
within the workflow, and we further gain the independence of workflow execution from
the underlying database systems concerning workflow related data updates.

We develop Integrity Preservation Mechanism (IPM) based on a recent artifact-centric
workflow model of [17]. The concept of artifact-centricity in workflow modeling was
introduced in [24]. There have been increased studies on design and modeling using
artifact-centric [5, 6, 17, 22] or other data-aware approaches [12, 21]. The technical de-
velopment of this paper uses the artifact-centric modeling language GSM (Guard-Stage-
Milestone) [17]. The language is a declarative meta-model using event-condition-action
rules to capture business stakeholders’ view [9, 18]. We develop a formal model to spec-
ify the execution of GSM workflow based on transition systems and the Z notation [25].
Specified integrity constraints are ensured by strengthening the guard of the operations
in the execution workflow schema to prohibit updates that may violate integrity. This
process is called guard injection in this paper.

To make guard injection work properly, the injection must be strong enough to pre-
vent any integrity violations and weak enough to allow some or even all correct execu-
tions to proceed. The technical challenge is to formulate the appropriate balance in the
injection algorithm design.

For Research Only

66 X. Liu, J. Su, and J. Yang

Customer(custid PRIMARY KEY,
email NOT NULL,
addr,
UNIQUE(email))

Ship(shipid PRIMARY KEY,
ordid NOT NULL,
addr NOT NULL,
name NOT NULL,
from NOT NULL,
ship stat,
FOREIGN KEY(ordid)

REFERNECES Order)

Inventory (invid PRIMARY KEY,
prod, avail qty, loc)

Order(ordid PRIMARY KEY,
custid NOT NULL,
invid NOT NULL,
shipid, qty, ord stat,
FOREIGN KEY(custid)

REFERNECES Customer
FOREIGN KEY(invid)

REFERNECES Inventory
FOREIGN KEY(shipid)

REFERNECES Ship)

Fig. 1. Key artifacts in EzMart

This paper makes the following technical contributions.

1. We formulate a new technical problem of preserving integrity constraints by mod-
ifying workflow specifications, develop an algorithm for solving this problem, and
prove the correctness of the algorithm.

2. We introduce the concept of “conservative runs” and show that our solution is also
“conservative complete”, i.e., injections are always weakest possible.

3. In carrying out this work, we also define a formal transition-system semantics for
GSM (whose alternative semantics were developed recently [9, 18]).

We note here that although IPM is based on GSM, the methodology and techniques
developed in this paper can be easily applied to other workflow specification languages
supporting logical data models. In particular, IPM works as long as the action effect can
be formulated as a transition system (and the workflow execution is guarded).

The remainder of the paper is organized as follows. Section 2 motivates the problem
and illustrates GSM with an example. Section 3 sketches a formal semantics for GSM.
Sections 4 and 5 are devoted to the injection algorithm and correctness proof, resp.,
with the concepts of soundness and conservative completeness included in Section 5.
Section 6 reports on related work, and Section 7 concludes the paper. Due to space
limitation, we omit detailed formalisms and technical proofs in the paper, and include
them in an online appendix [23].

2 A Motivating Example and GSM

In this section, we illustrate the main problem with an example workflow. The example
is specified in the declarative artifact-centric workflow model GSM [17], which provides
the technical setting for this paper.

2.1 The EzMart Workflow

In an online shopping center “EzMart”, a registered customer can buy products and
the purchased items are delivered to the customer’s address. Modeled with an artifact-
centric approach [6], EzMart contains four artifact classes: Customer, Order, Ship, and

For Research Only

Preservation of Integrity Constraints by Workflow 67

Customer
register

Order
create

Order
pay

Order
paid

Ship
prepare

Register
request

Checkout

Bank
reply

Pay by
bank

Order
further action

Contact
customer

support

Order
action taken

Customer
support

reply

Inventory
sell

…

…

…

Environment (customer, manager, …)

Fig. 2. The EzMart workflow in BPMN-like notation

Inventory. The artifacts are structured as relations as shown in Fig. 1, where ord stat
can be one of “CREATE”, “INVUPD”, “CANCEL”, or “RETURN”, and ship stat can be
one of “PREPAR”, “SHIPIN”, “FINISH”, or “FAILED”.

Fig. 2 shows a part of EzMart which is a typical online store process.1 The customer
first registers, can then select products and proceed to checkout. An order is created
when the checkout request is made and the customer pays the order using an online
bank service. When the order is paid, a shipment process starts and it completes when
the package is delivered to the customer. After an order is made, the customer may
contact the customer support to take further action(s) on the order, and the order may
be returned or canceled (and also possibly changed to other status), the order status is
updated accordingly. The back-end inventory management will calculate the available
quantity as an order is paid. When the quantity is too low, the inventory manager is
notified and a replenishment process starts that will eventually update the quantity (not
showed in Fig. 2).

2.2 GSM Specification of EzMart

We now specify key components of EzMart using the workflow language GSM [17].
GSM models complex business process with globalization and out-sourcing in a declar-
ative fashion. The behavior and constraints of business operations are specified in event-
condition-action rules.

There are two key constructs in GSM: the information model and the lifecycle model.
The former consists of the artifacts and their data attributes (as described in Subsec-
tion 2.1). The latter is specified using “stages” consisting of guards, milestones, and
stage bodies. Intuitively, a stage represents a phase of processing of an artifact. A stage
is entered if its guard is true, and ends when a milestone is accomplished (a condition
becomes true). Fig. 3 shows a specification of EzMart in GSM that extends the BPMN
workflow shown in Fig. 2. In Fig. 3, a stage (body) is shown as a rectangular with round-
corners, a diamond on a stage is the guard (diamond with a “+” in the middle represents
the corresponding stage will create a new artifact instance), and a circle on a stage is
the milestone (a circle with a bullet indicates a finish milestone, a milestone that can
complete a lifecycle).

1 In Fig. 2, we use the inclusive gateway of in BPMN, denoted by a diamond with a cycle in the
middle. Such a gateway allows one or more branches following to be taken.

For Research Only

68 X. Liu, J. Su, and J. Yang

Customer

Order

prepare+ readyShip

Inventory

paid+∧…

register registered
+

pay paid

ship sent

inv

initiate initiated
+ sell sold

deliver

report result

update by

manager
added

qtyav<10

create created+ further

action
actiontaken

checkout ostat :=
custsuppreply.ostat

invokes custsuppostat :=CREAT;
qty := checkout.qty;
custid := checkout.custid; ...

payorder∧
ordid=payorder.ordid ∧…

paid+∧…

Fig. 3. GSM lifecycle model of EzMart

We focus on artifact class Order to illustrate how the GSM model of EzMart works.
When the customer is ready to checkout, a checkout event is sent to EzMart. An Order
artifact is then created by stage create, where ord stat is set to “CREATE”, custid and
ordid (reference to associated customer and inventory, resp.) and the qty are set accord-
ing to the content of the triggering event checkout.

To pay the order, the customer sends a payorder event with ordid matching the
artifact ID. The stage pay then opens, and bank service is invoked to pay the order.
When the bank replies, the finish milestone paid is achieved.

After the order is made, the customer can request some further actions on the order.
If the customer does so, stage further action opens and customer support human task
custsupp is invoked. The milestone actiontaken is achieved by the reply event of cus-
tomer support. This reply takes the immediate effect on milestone actiontaken to change
the status of the order, e.g. mark the status of the order as canceled.

When the order is paid, the control event paid+ (achieving the milestone paid) can
trigger stages prepare of Ship and sell of Inventory. Furthermore, in stage sell, the
ord stat of the Order artifact identified by the ID retrieved from the event paid+ is
assigned to “INVUPD” (i.e. Order(paid+.ordid).ostat := INVUPD).

Stage guard conditions and milestones are formulas on events and attributes (stage
and milestone status is not used). In the remainder of the paper, the term “sentry” is
used to refer to conditions for both guard and milestones.

2.3 Integrity Constraints

Artifacts are stored in a database (conceptually). Data in workflow are a representation
of the reality and thus integrity constraints arise naturally [6]. Some integrity constraints
in EzMart (e.g. not-null, keys and foreign keys) are already shown in the artifact rela-
tion definitions in Fig. 1. There are additional integrity constraints. The constraints on
attribute content restrict the domains of attribute values. For each Order artifact, the
quantity is greater than 0, i.e. qty > 0; for Ship artifacts, sending address must be

For Research Only

Preservation of Integrity Constraints by Workflow 69

different from the delivery address, i.e. from �= addr; for Inventory artifacts, the avail-
able quantity is non-negative, avail qty ≥ 0.

In addition to the constraints on attributes of a single artifact, there are further busi-
ness specific constraints:

– Status constraint: Given an artifact s of Ship, if the shipment has started but not yet
finished, the associated order cannot be canceled nor returned. That is, if s.ship stat
is neither “FINISH” nor “FAILED”, and there is an artifact o of Order, such that
s.ordid = o.ordid and o.shipid = s.shipid, then the order status o.ord stat must
not be “RETURN” nor “CANCEL”.

– Address-name constraint: Given an artifact of Order, the delivery address addr
and recipient’s name name of the associated Ship artifact must match the address
addr and name of the associated Customer artifact.

– Ship-from constraint: Given an artifact of Order, the sending address of the ship-
ment must match the inventory warehouse location loc.

– Ship-order reference circle: Given an artifact of Order, the Ship artifact referenced
by attribute o.shipid must also reference back to o, and vice versa.

2.4 Enforcing Integrity Constraints: A Challenge

Traditionally workflow systems rely on the underlying database system to ensure data
consistency. However, in reality the data are quite likely stored and managed distribut-
edly. Artifacts in a single artifact class may be stored in several databases. Assume that
EzMart combines two old shopping centers that maintain their own customer databases.
Some integrity constraints in EzMart, e.g. the candidate key on Customer, cannot be
handled properly and easily by one database system alone [14].

The recent trend of cloud computing and SOA brings other opportunities: (1) data
management of EzMart can be outsourced and the service provider may “pack” similar
data from EzMart and other applications together, (2) the customer data EzMart uses
may be owned by a separate data service provider who may not respect data integrity
constraints from EzMart. Consider the repository for Order of EzMart that shares the
same actual data with electronic order database of other companies. The data service
provider has to keep the data of EzMart from the other companies as well as maintaining
constraints from different applications. This results in high complexity and expenses. In
general, elevating integrity constraints local to one workflow to global for the data ser-
vice provider is problematic. For example, other applications may not require quantity
in the order to be strictly positive (cf. attribute content constraint of EzMart).

It is desirable for a workflow to block its own updates if they violate integrity con-
straints. Consider the attribute content constraint on Order that requires for each Order
artifact o, o.qty > 0. In Fig. 4, the stage create uses the triggering event checkout to
assign qty. Then if we strengthen the sentry of the guard to allow only the event with
checkout.qty > 0 to pass, the constraint on Order cannot be violated by the update
from the stage. To generalize this idea, associated data integrity constraints should be
preserved within EzMart by strengthening the guard condition— the guard injection.

As an extreme, the simplest and effective injection is to inject FALSE to the guard
of every stage. Then no execution would violate the constraints—because there will be

For Research Only

70 X. Liu, J. Su, and J. Yang

create+ created
...
qty := checkout.qty
...

insert the condition:
Enable the stage only
if checkout.qty > 0

Fig. 4. Prevent the violation by strengthen the sentry condition

no execution at all. To make the injection useful, we need to make sure the injected
constraints must be weaker or even the “weakest”. The injection should block all ex-
ecutions that can violate the constraints but should also allow as many executions as
possible that preserve data consistency.

This paper develops a technical approach that calculates injection according to the
constraint set and actions in stage bodies. The approach is proved to be both “sound”
(strong enough to prevent violations) and “conservative complete” (weak enough to
have a useful workflow).

3 A Formal Semantics of GSM

In order to analyze GSM workflow for possible injection, it is necessary to formalize
its semantics. In this section, we define the execution model (an operational semantics)
of GSM specifications. First we give an intuitive explanation of GSM execution. Then
we present a transition system semantics for GSM. The formalism is inspired (but not
restricted) by the Z notation [25]. Our transition system semantics is complementary
to recent GSM operational semantics presented in [9, 18]. Our semantics focuses on
manipulation of data and system variables, and forbids the concurrency between atomic
stages. A brief comparison can be found in the online appendix [23].

3.1 Intuitive Explanation

The GSM execution model was initially described in [17], and further developed in
[18]. A workflow starts with no artifacts. An artifact is created when a create-instance
stage opens. A stage opens if its sentry is satisfied and then actions defined in the stage
body starts to execute. For example, stage update by manager in EzMart opens when
attribute avail qty of the Inventory artifact is less than 10. If the stage is to create in-
stance, a new artifact is created, e.g. create stage creates a new Order artifact.

A milestone is achieved when its achieving sentry is satisfied and its belonged stage
is open. For example, actiontaken is achieved when stage further action is opened and
the reply event from task custsupp comes (i.e. the head event in the external event
queue is reply from custsupp). A milestone is invalidated when its invalidating sentry is
satisfied, i.e. the milestone changes to or stays in the status of not achieved.

A stage can also reopen, when its sentry is satisfied again. For example, stage
further action can run several times as long as the event takeaction is received. Our
workflow model extends the GSM slightly with the notion of “finish” milestones, such
as registered, paid, etc. And only when all of the finish milestones are achieved can we
say a workflow execution finishes (formal and strict definition in Section 5).

When the status of a stage or a milestone changes, a control event is generated. The
control event can also be used as a triggering event. An example is the triggering event

For Research Only

Preservation of Integrity Constraints by Workflow 71

of sell. The stage needs a control event paid+ to open, and paid+ denotes the paid
milestone’s achieving.

3.2 GSM Transition Systems

In our execution model, a GSM workflow is a transition system consisting of a state
space (a set of states), an initial state and a set of operations (or transitions). The state
space is a set of all possible “snapshots” of artifacts, each is called a state which spec-
ifies, at a specific time during the execution, the attribute value, the status of stage and
milestones and event queues. The initial state is a special state that the transition system
starts on, where no artifacts exists in the transition system, and event queues are empty.

Operations are transitions from one state to the next, identified by “operation sig-
natures”, and the transition enabling condition (called the “guard”) and state changes
made by the transition (called the “actions”) are specified. There are the following six
types of operations:

– Open : opens a stage, if the stage sentry is satisfied and no other stage is open.
When the stage opens, all of its milestones are set to be not achieved. New instance
is created if the stage is a create-instance stage.

– Body : executes the stage body.
– AchieveClose : achieves a milestone. The operation is enabled when the achiev-

ing sentry of the milestones is satisfied, and the stage containing the milestone is
opened. When the milestone is achieved, its stage is closed. And if the milestone is
triggered by some external events, immediate effect is taken on the attributes.

– Invalid : invalidates a milestone (changes the milestone status to not achieved).
– DeCQ : removes the head event from control event queue. This operation has a

lower priority than the above four types of operations.
– DeEQ : removes the head event from external even queue. This operation has the

lowest priority. That is, only when none of the above five types of operations can
be enabled, can DeEQ be enabled.

Status change of stage opening and closing, milestone achieving and invalidating gen-
erates control events, which are also control events to be added to the event queue (used
to trigger other stages or milestones in the workflow). Parameters of the signature for
each Open operation are the stage name and (if the stage is a create-instance stage) the
artifact ID, for Body are the stage name and artifact ID, for AchieveClose and Invalid
are the milestone name and artifact ID, and no parameter for DeCQ and DeEQ.

Due to space limitation, only the state space and Open operation (for a create-
instance stage) are presented, an example is given to briefly explain the operations
AchieveClose. A complete formalism of state space and operations is included in [23].

Given a GSM workflow AP, its transition system is denoted by TSAP. The state space
is specified by the construct STATE in Z notation, shown in the left column of Fig. 5.

In the state space each artifact class αi is represented as a table consisting the artifact
ID, the data attribute value (denoted by x, y, . . .), and stage and milestone status (de-
noted by stage or milestone names, such as s,m,. . .). And the set of all artifact classes
in AP is A = {αi | i ∈ 1 . .n}. For any artifact class α, we use S(α) and M(α) to denote
the sets of all stages and milestones of α, resp.

For Research Only

72 X. Liu, J. Su, and J. Yang

The state variable XOp is a finite set of signatures of possible next operations, where
OPSIG is the type of operation signatures. Variable eq and cq are two queues of external
events and control events, resp., where ExtEv and IntEv are respectively the type of
external events and control (internal) events. State variables that do not immediately
help in understanding the execution model are omitted.

STATE
α1(id, x, y, . . .) : ArtifactClass
α2(. . . , , s, m, . . .) : ArtifactClass
...
αn(. . .) : ArtifactClass
XOp : F OPSIG
eq : seq ExtEv
cq : seq IntEv
...

Open(create)

new = Order(newid(), null, . . . ,
TRUE /*create*/, FALSE, FALSE, . . .)

Open(create) ∈ XOp
∀β : A; id : ID; t : S(β) � β(id).t = FALSE

(head eq) isevent checkout

. . .

Order := Order ∪ {new}
XOp := (XOp − {Open(create)})∪

{Body(create, new.id)}

Fig. 5. State space and an example operation

We give an example state s of TSEzMart:

– s.A is the set of tables of artifacts of classes Customer, Order, Ship and Inventory.
– s.XOp = {Open(create)}, the set of the open stage operation of create of Order.
– s.eq = 〈checkout(. . .), . . . 〉 and s.cq = 〈 〉 (empty queue).

On the initial state, all artifact class tables are empty, next operation set (XOp) is the set
of Open operations for create-instance stages, external and control event queues (eq and
cq) are both empty. As for EzMart, init.XOp is the set of Open(register), Open(create),
Open(prepare) and Open(inv initiate).

Operations are defined using the schema extended from Z notation [25].2 Operation
Open is responsible to handle stage opening. We use Open(create) of Order, specified
in the right column of Fig. 5, as an example of the operation to open a create-instance
stage. Let s be the current state as the example state given above, and s′ be the next state
after the transition specified by the operation Open(create). Suppose s.Order has one
row: Order(ord001, cust002, . . .). If there is no stage being open on s, then s satisfies
the guard of Open(create). A new Order artifact, denoted by the local variable new, is
created, where the ID is assigned using a system new ID generator, all other attributes
are assigned to null and statuses of all stages and milestones are set to FALSE except the
status of create is set to TRUE. Let’s assume the new ID generator gives ord002 on s.
Then, after this operation, s′.Order has two rows,

Order(ord001, cust002, . . .); Order(ord002, null, . . . , TRUE, FALSE, FALSE, . . .)

and s′.XOp = {Body(create, ord002)}. Since the open stage event of create is not used
in EzMart, control event queue cq is kept unchanged.

2 Readers who are familiar with Z can find out our notation still follows the fundamental idea of
Z, and the extension is only “syntactical” to make our specification easier.

For Research Only

Preservation of Integrity Constraints by Workflow 73

We group achieving of a milestone and closing of its stage in AchieveClose. Con-
sider the operation of achieving milestone actiontaken. The signature of the operation
is AchieveClose(actiontaken, ordid). Suppose that on the current state s, s.XOp contains
AchieveClose(actiontaken, ord002), s.Order(002).pay = TRUE, s.Order(002).paid =
FALSE, and s.eq = 〈custsuppreply(. . .)〉, where event custsuppreply is the reply
from customer support task custsupp. Then this operation can be enabled with ordid tak-
ing the value of ord002. As a result, on the next state, artifact s′.Order(ord002) is updated
as pay = FALSE, paid = TRUE, and ostat is set according to custsuppreply.ostat —
the immediate effect of the event.

4 Guard Injection

Based on the GSM execution model, we explore in this section our approach to enforce
integrity constraints. The key idea is to inject conditions according to the specified
constraints and the stage to “block” possible violations. We first define constraints and
some needed notions, and then present the algorithm for guard injection.

Our problem is similar to but different from checking integrity constraints in dis-
tributed databases where the exact changes to the database are known [14, 19]. Our
problem considers workflow specifications when the updates to the database are un-
known but parameterized. A key idea of [14, 19] is to “look forward” at the
“post-condition” of the update and check locally if the constraint with respect to the
post-condition can be satisfied without looking at database(s). (If not, databases are
consulted to check the integrity constraints.) The injection technique developed in this
paper “looks backward” to calculate “weakest” precondition of stage and ensures that
potentially executed updates would never violate the constraints.

4.1 Integrity Constraints

In this paper, each integrity constraint κ is defined in the following form (cf [2]):

κ = ∀ x � (φ(x) → ∃ y � ψ(x, y)) (1)

where x and y are finite vectors of variables with no repetition, x is nonempty (while
y can be empty), and Formula φ and ψ are nonempty conjunction of artifact relation
atoms and comparison atoms of the form x ◦ y, where x is a variable and y is a variable
or constant and ◦ denotes operators: =, �=, ≥, ≤, > and <. Variables in x and y are
artifact IDs or data attributes of artifacts in AP. There is at least one artifact relation
atoms in φ. Formula φ uses all variables in x and ψ uses all variables in y.

The conjunctive atoms in φ are premises and the right hand side of the arrow is re-
ferred to as the consequent. For simplicity, we assume all constraints are free from triv-
ial atoms (equivalent to TRUE or FALSE). Variables in x are referred to as ∀-quantified
variables, while the ones in y as ∃-quantified variables.

For example, the attribute content and not-null constraint on Order and status con-
straint are given in Section 2 and we repeat here:

For Research Only

74 X. Liu, J. Su, and J. Yang

Attribute content and not-null constraint on Order, κattr: For each Order artifact, nei-
ther of the references custid and invid is null, and the quantity is larger than 0, i.e.
qty > 0;

Status constraint, κstat: Given an artifact s of Ship, if s.ship stat is neither FINISH nor
FAILED, and there is an artifact o of Order, s.t. s.ordid = o.ordid and o.shipid =
s.shipid, then the order status o.ord stat must not be RETURN or CANCEL.

Written in the form of Equation (1), these two constraint formulas are:

κattr = ∀ ordid, custid, invid, shipid, qty, ord stat�
Order(ordid, custid, invid, shipid, qty, ord stat) →

custid �= null ∧ invid �= null ∧ qty > 0
κstat = ∀ ordid, custid, invid, shipid, qty, ord stat, addr, name, from, ship stat�

Order(ordid, custid, invid, shipid, qty, ord stat) ∧
Ship(shipid, ordid, addr, name, from, ship stat) ∧
ship stat �= FINISH ∧ ship stat �= FAILED →

ord stat �= RETURN ∧ ord stat �= CANCEL

The complete list of formulas for all constraints in EzMart in the form of Equation (1)
can be found in [23].

We say a concerning attribute of constraint κ is some attribute α.x of some artifact
class α, where α.aid is in ∀-quantified variables of κ, α is an artifact relation atom in
κ, and any one of the following holds:

– there is a constant appearing at the column of x in artifact relation atom of α in κ;
– there is a variable x′ appearing at the column of α.x in artifact relation atom of α,

and x′ ◦ y also appears in κ, where y is a constant or any other variables; or
– there is some variable x′ appearing more than once in κ and one of its appearances

is at the column of α.x in artifact relation atom of α.

The set of concerning attributes of κ is denoted by CA(κ).
The sets of concerning attributes of κattr and κstat are

CA(κattr) = {Order.custid, Order.invid, Order.qyt}
CA(κstat) = {Ship.ordid, Ship.ship stat, Order.shipid, Order.ord stat} .

Given a constraint κ and an attribute x ∈ CA(κ), the set of writing stages of x is denoted
by WS(x). A writing stage of x is such a stage s that x ∈ WriteSet(s), where WriteSet(s)
denotes the set of attributes that can be written by the body of stage s. The set of writing
milestones of x is denoted by WM(x). A writing milestone of x is such a milestone m
that uses the reply event to update attribute x.

In EzMart, the writing stage of concerning attributes of κattr is create; and the writing
stages and the writing milestone of concerning attributes of κstat are

Ship.ordid : prepare Ship.ship stat : prepare, ship
Order.shipid : ship Order.ord stat : create, sell, actiontaken

4.2 Calculating Injected Conditions

The algorithm to calculate the injection is now presented. The intuition of the injec-
tion is first described. Then the algorithm is given along with examples using attribute
content and not-null constraint on Order (κattr) and status constraints (κstat).

For Research Only

Preservation of Integrity Constraints by Workflow 75

The intuition of the algorithm is to “inject” properly converted constraints into guards
of Open operations of writing stages and stages of writing milestones of concerning
attributes of the constraints. As a result, the guard is strengthened to block all updates
that may violate the integrity constraints, but to allow updates that preserve the data
integrity.

For writing stages, we analyze the stage body to understand how the updates are
made. For example, stage create uses the triggering external event checkout to set
custid, invid and qty — the concerning attribute of κattr. The injection is a substitu-
tion for the concerning attribute according to the stage update. The injection is replac-
ing concerning variable in κattr by corresponding content of event checkout. Assume
there is no violation before the update made by create, if the current state satisfies the
injection, the execution of create under such a checkout event preserves the data con-
sistency regarding to κattr. Moreover, such an injection is also weak enough only to
block the updates that result in violation. As for the writing milestones, because there
is no information about the task reply in the workflow, the injection to its stage’s Open
operation has to be made to the strongest—FALSE.

In the following we present the detail of the algorithm. To begin with, implicit foreign
key references are made explicit in the constraint set. A stage, e.g. ship, of one artifact
class α, e.g. Ship, can write attributes of artifact class β, e.g. Order.shipid. Then the for-
eign key constraint is added to the integrity constraint set, if it is not already specified:

∀ aid, bid, x � α(aid, bid, x) ∧ bid �= null → ∃ y � β(bid, y)

where x and y are disjoint vectors of other “unrelated” attributes in α and β, resp. In
EzMart, all of the foreign key dependencies are already specified.

Algorithm 1. Guard injection
Input: TSAP and K
Output: Inj : S → FO

Set Inj(s) := TRUE for each stage s in AP;
foreach κ ∈ K and x ∈ CA(κ) do

foreach s ∈ WS(x) do
Inj(s) := Inj(s) ∧ SUB(κ, s [, aid]), where1

aid is the artifact ID in Open(s [, aid]) in TSAP;
endfch
foreach m ∈ WM(x) do

Inj(s) := FALSE

endfch
endfch

The procedure of injection is given in Algorithm 1. It takes the transition system TSAP

of GSM specification AP and the set of integrity constraint K as input. The output is the
injection function Inj which maps each stage in AP to a first order formula. The idea of
the algorithm is simple. For each constraint κ in K and for each concerning variable x
of κ, if x is going to be written by a stage s, the algorithm injects the converted κ by

For Research Only

76 X. Liu, J. Su, and J. Yang

replacing x with the assignment in the body of s, where the substitution is accomplished
by function SUB (given below); if x is going to be written by a reply event triggering a
milestone, then FALSE is injected.

The function SUB used in Line 1 of Algorithm 1 is to convert the constraint formula
κ according to the stage s and (if s is not a create-instance stage) the artifact ID aid.
Concerning attributes and artifact relations are replaced according to the assignments
in the body of s.

First, in Line 2 of SUB, by function explicitref (κ), reference dependency premises are
added when the stage writes attributes of another artifact class. The substitution proce-
dure then starts by taking care of each ∀-quantified α IDs. The variable x is replaced by
the assignment in the stage body (Line 3), and the ID is replaced (Line 4), by newid()
if the stage creates new instance; otherwise, by the artifact ID of the updated artifact in
the stage assignment (denoted by lhsid, which is ID field of head event if the artifact is
identified by the event or aid otherwise). After the variables are properly replaced, they
are removed from the ∀-quantified variable list. Note that when the stage is creating an
instance, replacing the id with newid() also replace the relation atom to TRUE because
the new instance is going to be inserted and therefore the relation atom holds. Note that
after the substitution, β(. . . , newid(), . . .) is further replaced by FALSE for any artifact
relation β, and id ◦ newid() is further replaced by FALSE for any id unless ◦ is �= . More
technical details of SUB can be found in the online appendix [23].

Function. SUB(κ, s[, aid]) returns the constraint formula after substitution

IDκ := all ∀-quantified artifact IDs of the artifact whose attribute is updated in s;
con := explicitref (κ);2

ret := TRUE;
foreach id in IDκ do

con := con[exp/β(id).x], where x and exp are vectors of the same length3

and for any 0 ≤ i < #x, s.Body contains β(id).xi := expi ;
if s.creatInst = TRUE then4

con := con[TRUE/α(id, . . .)], where s ∈ S(α);
con := con[newid()/id]

else
con := con[lhsid/id];

endif
ret := ret ∧ con

endfch
return ret

In EzMart, for the attribute content and not-null constraint on Order (κattr in Sub-
section 4.1), all of the three concerning variables are replaced by the corresponding
content of event checkout in stage create. And since the stage creates a new instance,
the Order artifact relation atom is replaced by TRUE. This gives the substitution result,
after trivial reduction,

SUB(κattr, create) = TRUE → (head eq).custid �= null ∧
(head eq).invid �= null ∧ (head eq).qty > 0

For Research Only

Preservation of Integrity Constraints by Workflow 77

Then for the status constraint (κstat in Subsection 4.1), the stage sell of Inventory sets
Order((head cq).ordid).ord stat to “INVUPD”, where by the stage sentry, head cq is a
paid+ event. Therefore we have,

SUB(κstat, sell, invid) = ∀ custid, shipid, qty, ord stat, addr, name, from, ship stat�
Order((head cq).ordid, custid, invid, shipid, qty, INVUPD) ∧
Ship(shipid, (head cq).ordid, addr, name, from, ship stat) ∧
ship stat �= FINISH ∧ ship stat �= FAILED →

INVUPD �= RETURN ∧ INVUPD �= CANCEL

where ordid is replaced by (head cq).ordid, and ord stat is replaced by the constant
INVUPD. And obviously, this is equivalent to TRUE.

After Algorithm 1 completes, injection to stages of Order is given as follows. Note
that trivial expressions are directly removed and the injected formula is reduced.

Inj(create) = SUB(κattr, create) ∧
∃ email, addr, name, info, prod, avail qty, loc, price�

Customer((head eq).custid, email, addr, name, info) ∧
Inventory((head eq).invid, prod, avail qty, loc, price)

Inj(further action) = FALSE

The second conjunct injection on stage create is the one for foreign key constraint (to
Customer and Inventory); injections for ship-order reference circle, address-name, ship-
from and status constraint are all reduced to TRUE. Injection on further action is FALSE

because actiontaken milestone of this stage uses the reply event to update ord stat, a
concerning attribute of the status constraint κstat.

The complete list of constraints and injections on EzMart can be found in [23].

5 Soundness and Conservative Completeness

To state the correctness of the injection algorithm, we first define some technical no-
tions. Examples from EzMart are given along the definitions and the technical results
of “soundness” and “conservative completeness”.

Definition 1 (run and complete run). Let AP be a GSM specification, TSAP its transi-
tion system. A run of TSAP is an alternating sequence of states and operations

ρ = s0t0s1t1 . . . tn−1sn

where s0, s1, . . . are states (specified by STATE), s0 is the initial state, and t0, t1, . . . are
operations (specified by OPER), such that for each ti (i ≥ 0), si |= guard(ti).

Let A be the set of artifact classes in AP. A run ρ is said to be finished iff state sn

satisfies that for each artifact of α : A with id : ID,

– there is a finish milestone achieved, i.e. ∃m : M(α) � m is a finish milestone ∧
α(id).m = TRUE; and

– there is no stage being open, i.e. ∀ s : S(α) � α(id).s = FALSE.

For Research Only

78 X. Liu, J. Su, and J. Yang

In EzMart, each run starts with the initial state and followed by an open stage operation
of register, create, prepare or inv initiate. On state s1, only the stage body operation
of the just opened stage in t0 can be enabled. State s2 is the result of the stage body
operation. The run is finished if on the last state in the run, milestones registered of all
artifacts of Customer, paid of all artifacts of Order, result of all artifacts of Ship and the
initiated of all artifacts of Inventory, are all achieved, and there is no stage being open.

Given a run, if it does not violates any constraint, we say this run is sound.

Definition 2 (Sound run). Let AP be a GSM specification, TSAP be its transition sys-
tem and K a set of integrity constraints on artifacts of AP. A run ρ of TSAP is said to
be K-sound iff for each κ ∈ K, κ holds in every state in ρ. When K is clear from the
context, we simply say ρ is sound.

Consider run ρ1 = s0t0s1t1s2t2s3 in EzMart where t0 is Open(register) and creates a
new Customer artifact with ID cust001, t1 is Body(register, cust001) which sets
Customer(cust001).email to abcdef.com, and t2 is AchieveClose(registered, cust001).
We can see that ρ1 is a finished run, and also sound. Because email is not empty, at-
tribute content constraint on Customer is satisfied on all of the states in ρ1. There is
only one artifact in the system, the candidate key and foreign keys are also satisfied,
and all business specific constraints are also satisfied.

Now consider another run ρ2 = s0t0 · · · tisi+1 · · · . Suppose on si, there is an arti-
fact Ship(ship005).ship stat = SHIPIN and ti is AchieveClose(action taken, ord002). If
Order(ord002).shipid = ship005 and the immediate effect of reply event is to set the
Order(ord002).ord stat to CANCEL, then status constraint (κstat, see Subsection 2.1) is
violated, because the order ord002 is canceled when the purchased item is still shipping.
Therefore ρ2 is not a sound run.

In business processes, many tasks are third-party services or human tasks. It is not
reasonable to assume all tasks will strictly follow some contract. We have to be pre-
pared that external tasks may give unpredictable reply in the domain. To ensure the
constraints are never violated, we need to be cautious or conservative. Therefore, in the
Algorithm 1, if the reply event may update a concerning attribute of a constraint, FALSE

is injected to the associating stage.

Definition 3 (Conservative run). Let AP, TSAP and K be the same as in Definition 2. A
finished run ρ of TSAP is said to be K-conservative iff ρ is sound and for any constraint
κ ∈ K, there is no reply event being used to update any attribute in CA(κ). When K is
clear from the context, we simply say ρ is conservative.

Consider a run ρ3 = s0t0 · · · sktksk+1 · · · , and tk is Body(further action, ord002). The
milestone actiontaken belongs to stage further action, and is a writing milestone of con-
cerning attributes ord stat of status constraint. Therefore ρ3 is not conservative.

The transition system of AP with injection according to integrity constraint set K is
denoted by InjTSAP(K). When K is clear from the context, InjTSAP(K) is simply writ-
ten as InjTSAP. It is constructed by concatenating in conjunction Inj(s) with the original
guard of Open operation of each stage s. (If Inj(s) is equivalent to TRUE, then the op-
eration guard after injection is equivalent to the one before.) The definition of “correct”
injection, is given by the notion of “soundness” and “conservative completeness” of

For Research Only

Preservation of Integrity Constraints by Workflow 79

transition system with injection, where soundness captures no violation—the injection
is strong enough, while conservative completeness allows the maximal behavior under
conservative strategy— the injection is weak enough.

Definition 4 (Sound and conservative complete injection). Let AP, TSAP and K be
the same as in Definition 2, and Inj be the guard injection function. We say the injection
Inj is sound iff each finished run of InjTSAP is sound, conservative complete iff each
conservative run of TSAP is also a conservative run of InjTSAP.

The main property of our algorithm is now stated, a proof can be found in the online
appendix [23].

Theorem 1. Given a GSM specification AP and a set of integrity constraints K, the
transition system with injection, InjTSAP, is both sound and conservative complete.

Again, we take advantage of EzMart to illustrate the idea of injection correctness. First,
for any run of InjTSEzMart, there is no violation. Take stage create as an example. If the
head event of eq satisfies the sentry and injection of create, then, because Inj(create)
uses the assignment in create, after the update made in the body of create, the constraint
is still satisfied. And because Inj(further action) = FALSE, this injection can block any
possible updates made by the incoming reply event, and therefore ensures the integrity
constraints.

Then, suppose there is a conservative run ρ of TSEzMart that is not in InjTSEzMart. If
this is because the Open operation of create cannot be enabled in the injected workflow,
say (head eq).qty = 0, then Inj(create) fails; in ρ after the update made by create, the
qty of newly created artifact of Order is 0 which violates the attribute content constraint
on Order, and thus ρ cannot be sound. If it is because of the blocking in the injected
system of Open operation of further action, then ρ is not conservative. Therefore, the
injected workflow InjTSEzMart is both sound and conservative complete.

6 Related Work

Triggers are a powerful tool to “fix” constraint violations as a reactive means, e.g. [7]. In
distributed databases, checking constraints involving remote databases is expensive. It
was discussed in [15] to maintain distributed integrity constraint efficiently by reducing
the necessity to look at remote databases. It was investigated in [14] to use local data to
test conjunctive query constraints with arithmetic comparison. In [19], a similar prob-
lem is discussed on conjunctive query constraints with negations. The approach used to
generate complete local tests is basically to check constraint containment and calculate
local tests with respect to “post-condition” of specific updates. To the contrary, our in-
jection is to calculate the weakest precondition conservatively of potential updates and
to ensure that updates never result in violation.

It is also studied that by enhancing the underlying systems, data consistency can be
maintained in loosely coupled databases. A framework was developed that uses sev-
eral communication protocols between different sites to maintain data consistency [13].
When strict consistency cannot be ensured, enforcing the weakened integrity constraints

For Research Only

80 X. Liu, J. Su, and J. Yang

is possible by a rule-based configurable toolkit presented in [8]. While these work con-
struct strong data management systems, our work makes a minimum requirement on
underlying DBMSs.

Using preconditions can also be found in [4] and [11]. The idea of finding weakest
precondition rooted in [10]. The difference of using preconditions between our work
and program verification is that the variable states and properties are on databases.
In [4], the authors explored appropriate transaction languages to ensure integrity con-
straints using weakest preconditions. Calculation of weakest precondition was not dis-
cussed. In [11], authors studied the automated construction of artifact-centric workflows
so that the workflow execution results are consistent with requirement defined on data,
where weakest precondition of each task is calculated.

Rules were given in [20] to derive a set of functional dependencies that hold on
query results on given relations. Decidability of dependency implication problem on
Datalog programs was studied in [1]. Preservation of integrity constraints by a set of
parameterized transactions was studied for relational databases [3] and for semantic
databases [26].

7 Conclusion

This paper develops an approach to ensure data integrity within workflow execution by
injecting converted constraints into guard of updates. The injection is proved to ensure
data integrity while allowing all conservative runs of the original workflow.

The problem raised in this paper is hardly solved, there are many interesting issues
to explore further. In one direction, it is desirable to extend this method for constraints
with aggregations and arithmetic. Also, conservative requirement for injection can be
relaxed by considering more accurate task models such as semantic web services and
task contracts in the workflow. Another area of interest is to consider workflow with
concurrent executions, which will require new injection techniques. Finally, it is in-
teresting to investigate how techniques such as guard injection can be combined with
mechanisms in federated databases [13].

Acknowledgment. The authors are grateful to Richard Hull (IBM T. J. Watson Re-
search Center) for his informative discussions on the GSM semantics.

References

1. Abiteboul, S., Hull, R.: Data functions, datalog and negation. In: Proc. ACM SIGMOD Int.
Conf. on Management of Data (1988)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
3. Abiteboul, S., Vianu, V.: A transaction-based approach to relational database specification.

Journal of the ACM 36(4), 758–789 (1989)
4. Benedikt, M., Griffin, T., Libkin, L.: Verifiable properties of database transactions. In: Proc.

ACM Symposium on Principles of Database Systems (PODS), pp. 117–127 (1996)
5. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-

centric business process models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

For Research Only

Preservation of Integrity Constraints by Workflow 81

6. Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business processes.
In: Handbook of Research on Business Process Modeling. Information Science Publishing
(2008)

7. Ceri, S., Widom, J.: Deriving production rules for constraint maintainance. In: Proc. Int.
Conf. on Very Large Data Bases (VLDB), pp. 566–577 (1990)

8. Chawathe, S., Garcia-Molina, H., Widom, J.: A toolkit for constraint management in hetero-
geneous information systems. In: Proc. Int. Conf. on Data Engineering (1996)

9. Damaggio, E., Hull, R., Vaculı́n, R.: On the equivalence of incremental and fixpoint se-
mantics for business artifacts with guard-stage-milestone lifecycles. In: Rinderle-Ma, S.,
Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 396–412. Springer, Heidelberg
(2011)

10. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM 18(8), 453–457 (1975)

11. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business processes.
In: Proc. Int. Conf. on Database Theory, ICDT (2009)

12. Glushko, R.J., McGrath, T.: Document Engineering: Analyzing and Designing Documents
for Business Informatics and Web Services. The MIT Press (2008)

13. Grefen, P., Widom, J.: Protocols for integrity constraint checking in federated databases.
Distrib. Parallel Databases 5, 327–355 (1997)

14. Gupta, A., Sagiv, Y., Ullman, J.D., Widom, J.: Constraint checking with partial information.
In: Proc. ACM Symp. on Principles of Database Systems (PODS), pp. 45–55 (1994)

15. Gupta, A., Widom, J.: Local verification of global integrity constraints in distributed
databases. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 49–58 (1993)

16. Hollingsworth, D.: The workflow reference model: 10 years on. In: Workflow Handbook.
Workflow Management Coalition, pp. 295–312 (2004)

17. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F(T.), Hobson, S., Linehan,
M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing the Guard-Stage-
Milestone Approach for Specifying Business Entity Lifecycles (Invited talk). In: Bravetti,
M. (ed.) WS-FM 2010. LNCS, vol. 6551, pp. 1–24. Springer, Heidelberg (2011)

18. Hull, R., Damaggio, E., Masellis, R.D., Fournier, F., Gupta, M., Heath III, F., Hobson, S.,
Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculı́n, R.: Business artifacts with
guard-stage-milestone lifecycles: Managing artifact interactions with conditions and events.
In: Proc. ACM Int. Conf. on Distributed Event-Based Systems, DEBS (2011)

19. Huyn, N.: Maintaining global integrity constraints in distributed databases. Constraints 2,
377–399 (1997)

20. Klug, A.: Calculating constraints on relational expression. ACM Trans. Database Syst. 5,
260–290 (1980)

21. Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fundamental require-
ments and their support in existing approaches. Int. Journal of Information System Modeling
and Design (IJISMD) 2(2), 19–46 (2011)

22. Liu, G., Liu, X., Qin, H., Su, J., Yan, Z., Zhang, L.: Automated realization of business work-
flow specification. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009.
LNCS, vol. 6275, pp. 96–108. Springer, Heidelberg (2010)

23. Liu, X., Su, J., Yang, J.: Preservation of Integrity Constraints by Workflow: Online Appendix,
http://seg.nju.edu.cn/˜liux/pub/CoopIS11_appendix.pdf

24. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

25. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice-Hall (1992)
26. Su, J.: Dependency preservation in semantic databases. Acta Inf. 31, 27–54 (1994)

For Research Only

http://seg.nju.edu.cn/~liux/pub/CoopIS11_appendix.pdf

