Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2011-1C-004

Preservation of Integrity Constraints by Workflow

Xi Liu, Jianwen Su, Jian Yang

Postprint Version. Originally Published in: Lecture Notes in Computer Science
7044, Springer, 2011, pp. 64-81.

Most of the papers available from this document appear in print, and the corresponding
copyright is held by the publisher. While the papers can be used for personal use,

redistribution or reprinting for commercial purposes is prohibited.

http://seg.nju.edu.cn/

Preservation of Integrity Constraints by Workflow

Xi Liut23* Jianwen Su®**, and Jian Yang4

! State Key Laboratory for Novel Software Technology, Nanjing University, China
2 Department of Computer Science and Technology, Nanjing University, China
3 Department of Computer Science, University of California at Santa Barbara, USA
4 Department of Computing, Macquarie University, Australia
liux@seg.nju.edu.cn, su@cs.ucsb.edu, jian.yang@mg.edu.au

Abstract. Integrity constraints on data are typically defined when workflow and
business process models are developed. Keeping data consistent is vital for work-
flow execution. Traditionally, enforcing data integrity constraints is left for the
underlying database system, while workflow system focuses primarily on per-
forming tasks. This paper presents a new mechanism that turns a workflow into
an equivalent one that will preserve integrity constraints. For a given workflow
schema (or model) and a given set of data integrity constraints, an algorithm de-
veloped in this paper injects additional conditions into the workflow schema that
restricts possible execution paths. The modified workflow will guarantee data

onsistency (i.e., satisfaction of the integrity constraints) whenever the workflow
updates the database(s). In addition, we show that our injection mechanism is

data correctness, consistency and completeness. From

’ can be imposed within a database at its design
stage through the use of standafd rule rocedures, and maintained through the use
of error checking and validation rogfines [2]. Data is the most important asset for any
business to make decisions and gaf globa etitiveness. Decisions made on data
that lack integrity can result in losing and even losing business.

Database management systems (DB eveloped for storing and managing
data that is generated and updated by varioy§rapplication orkflow systems are an
important class of software systems that manage organi@a
normally utilize database systems for storing data, e
flow has been studied for over a decade [@g

, and logging. Work-
merging web service
veloped such as

* Supported in part by National Natural Science Foundation hina 9 022 and
No0.61021062) and a grant from China Scholarship Council.
** Supported in part by NSF grant I1S-0812578 and a grant from IBM.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 64
(© Springer-Verlag Berlin Heidelberg 2011

Preservation of Integrity Constraints by Workflow 65

BPMN, BPEL, YAWL, etc. These workflow models mostly focus on the aspect of task
flow control and completely rely on the underlying database systems to take care of
data integrity. However an enterprise workflow system can run across different agen-
cies, departments and organizations, thus it needs to interact with different databases.
Take an online shopping workflow as an example, it may need to communicate with a
customer database that is only logically integrated from databases of different branches
and other partner companies. Distributed DBMS technology does not provide a satis-
factory solution in enforcing effectively data integrity defined across multiple database
systems. Even when a DBMS detects a violation, it is often difficult to locate the origin
in a workflow that causes the error. Also, these underlying databases can be shared by
many applications and workflow systems. On the other hand, there are data integrity
constraints specific to individual workflow, i.e., they are “local” to the workflow in
question. It is not appropriate to enforce such local constraints on databases shared
among different applications including other workflows. With the current trend of us-
ing “cloud” as the outsourcing facility for data storage and management, pushing local
data integrity constraints into a shared database system may result in undesirable ef-
fects. Moreover, it is unclear that cloud would realize mechanisms to maintain data
consistency in loosely coupled databases [E,].
database system can only check/validate data integrity. It still relies on applica-
and workflow to produce the correct data and updates, i.e., adhered to integrity
ints. Therefore, in a complex workflow system interacting with distributed data-
, it will become an obstacle to always let the database systems check data integrity
nd ck to the workflow to make necessary corrections for it to proceed.
me the above discussed problems, we propose a mechanism to make a
workflow Sel aving in terms of data integrity. The key novelty is to modify a work-
flow schema ijecting certain conditions according to the defined integrity con-
straints to\guar@agaiast inconsistent updates. The data integrity is therefore guaranteed
within the wi e further gain the independence of workflow execution from
the underlying databa stems concerning workflow related data updates.

We develop Int:
workflow model of

cept of artifact-centricity in workflow modeling was
introduced in [24]. The beéhgincreased studies on design and modeling using
artifact-centric [B, , ﬂ, rdther data-aware approaches [ﬁgﬂ] The technical de-
velopment of this paper uses the arti ic modeling language GSM (Guard-Stage-
Milestone) [Iﬂ]. The language is a a-model using event-condition-action
rules to capture business stakeholde We develop a formal model to spec-
ify the execution of GSM workflow base on systems and the Z notation [25].
Specified integrity constraints are ensured by gffengthening the guard of the operations
violate integrity. This

process is called guard injection in this paper.

To make guard injection work properly, the inject gstrong enough to pre-
vent any integrity violations and weak enough to allow evem all correct execu-
tions to proceed. The technical challenge is to formulate the ap ridge balance in the
injection algorithm design.

2

66 X. Liu, J. Su, and J. Yang

Customer(custid PRIMARY KEY, Inventory (invid PRIMARY KEY,
email NOT NULL, prod, avail gty, loc)
addr,

UNIQUE(email)) Order(ordid PRIMARY KEY,

custid NOT NULL,
Ship(shipid PRIMARY KEY, invid NOT NULL,
ordid NOT NULL, shipid, qty, ord stat,
addr NOT NULL, FOREIGN KEY (custid)
name NOT NULL, REFERNECES Customer
from NOT NULL, FOREIGN KEY (invid)
ship stat,] REFERNECES Inventory
FOREIGN KEY (ordid) FOREIGN KEY (shipid)
REFERNECES Order) REFERNECES Ship)

Fig. 1. Key artifacts in EzZMart

This paper makes the following technical contributions.

1. We formulate a new technical problem of preserving integrity constraints by mod-
ifying workflow specifications, develop an algorithm for solving this problem, and
prove the correctness of the algorithm.

We introduce the concept of “conservative runs” and show that our solution is also
‘conservative complete”, i.e., injections are always weakest possible.
arrying out this work, we also define a formal transition-system semantics for
(whose alternative semantics were developed recently 9, @]).

e e that although IPM is based on GSM, the methodology and techniques
develo this paper can be easily applied to other workflow specification languages
supperting’lo data models. In particular, IPM works as long as the action effect can

be formulatedias alfransition system (and the workflow execution is guarded).

The remain g paper is organized as follows. Section 2 motivates the problem
and illustrate an example. Section 3 sketches a formal semantics for GSM.
Sections 4 and * d to the injection algorithm and correctness proof, resp.,
with the concepts © and conservative completeness included in Section 5.
Section 6 reports on 1¢
limitation, we omit deta
them in an online appendix

In this section, we illustrate the main problem an example workflow. The example
is specified in the declarative artifact-centric Workflow M [Iﬁ], which provides
the technical setting for this paper.

2.1 The EzMart Workflow

In an online shopping center “EzMart”, a registered custo can ucts and
the purchased items are delivered to the customer’s address. Mod; i artifact-
centric approach [Ia], EzMart contains four artifact classes: CustomergOrdegy Ship, and

Preservation of Integrity Constraints by Workflow 67

Environment (customer, manager, ...)

request
1

? L L Q9
1 Pe;)y bly(1 ! Bank | 1
. 1 an 1 1
Register | Checkout d) rep) yv :
[

Order
paid

1
Contact : Customer I
customer support |
supportd) reply !

Order Order Inventory
further actios action taken sell

Fig. 2. The EzMart workflow in BPMN-like notation

Ship
prepare b

G---=---0

1
\V
Customer Order
register create

Inventory. The artifacts are structured as relations as shown in Fig.[ll where ord stat
can be one of “CREATE”, “INVUPD”, “CANCEL”, or “RETURN”, and ship stat can be
one of “PREPAR”, “SHIPIN”, “FINISH”, or “FAILED”.

Fig.Dlshows a part of EzMart which is a typical online store process The customer
first registers, can then select products and proceed to checkout. An order is created
when the checkout request is made and the customer pays the order using an online
bank service. When the order is paid, a shipment process starts and it completes when

!Ei package is delivered to the customer. After an order is made, the customer may

the customer support to take further action(s) on the order, and the order may
ned or canceled (and also possibly changed to other status), the order status is
pdated accordingly. The back-end inventory management will calculate the available
Juag an order is paid. When the quantity is too low, the inventory manager is
a replenishment process starts that will eventually update the quantity (not

2.2 GS i of EzMart

We now specify compaements of EzMart using the workflow language GSM [Iﬂ].
GSM models compleX b
ative fashion. The beha
condition-action rules.

There are two key construc GS information model and the lifecycle model.
The former consists of the artifact ir attributes (as described in Subsec-
onsisting of guards, milestones, and
f processing of an artifact. A stage
is entered if its guard is true, and ends estone is accomplished (a condition
becomes true). Fig.[3] shows a specification zMart i M that extends the BPMN
workflow shown in Fig.2l In Fig.[3 a stage (body) is shéWn as a®ectangular with round-
corners, a diamond on a stage is the guard (diamond he middle represents
the corresponding stage will create a new artifact insga a circle on a stage is
the milestone (a circle with a bullet indicates a finish ilestone that can
complete a lifecycle).

! In Fig. 2l we use the inclusive gateway of in BPMN, denoted by a dial if a gycle in the
middle. Such a gateway allows one or more branches following to be tak

68 X. Liu, J. Su, and J. Yang

D ictar®
Customer register Tregistered
payorderA ostat :=
checkout ordid=payorder.ordid ... m

further .
i . ki
cregte Jcreated pay aid action actiontaken

ostat :=CREAT; invokes custsupp
gty := checkout.qty,

custid := checkout.custid; ...

Prepare?'eady ship Jsent % (:eeg\é?tr result

| paid*a... | | paid*a... |

%
inv @ CHupdate byQ, 4qq
Inventory ? initiate immated sell Tsold

Fig. 3. GSM lifecycle model of EzMart

!

Order

3
N

Ship

=

We focus on artifact class Order to illustrate how the GSM model of EzMart works.
When the customer is ready to checkout, a checkout event is sent to EzMart. An Order
ifact is then created by stage create, where ord stat is set to “CREATE”, custid and

pay the order, the customer sends a payorder event with ordid matching the
B, The stage pay then opens, and bank service is invoked to pay the order.
k replies, the finish milestone paid is achieved.
is made, the customer can request some further actions on the order.
es so, stage further action opens and customer support human task
1. The milestone actiontaken is achieved by the reply event of cus-
akes the immediate effect on milestone actiontaken to change
mark the status of the order as canceled.
ontrol event paid™ (achieving the milestone paid) can
d sell of Inventory. Furthermore, in stage sell, the
endified by the ID retrieved from the event paid™ is
aid" .ordid).ostat := INVUPD).

tomer suppo
the status of the

trigger stages prepare
ord stat of the Order
assigned to “INVUPD” (i.e.

Stage guard conditions andémiles e formulas on events and attributes (stage
and milestone status is not used). Iff the rémaidder of the paper, the term “sentry” is
used to refer to conditions for both a wlestones.

2.3 Integrity Constraints

are a representation
e integrity constraints
in the artifact rela-
constraints on
er fact, the

must be

Artifacts are stored in a database (conceptually). Data
of the reality and thus integrity constraints arise natur:
in EzMart (e.g. not-null, keys and foreign keys) are a
tion definitions in Fig. [Tl There are additional integrity co
attribute content restrict the domains of attribute values. F
quantity is greater than 0, i.e. gty > 0; for Ship artifacts, sendj

2

Preservation of Integrity Constraints by Workflow 69

different from the delivery address, i.e. from # addr; for Inventory artifacts, the avail-
able quantity is non-negative, avail gty > 0.

In addition to the constraints on attributes of a single artifact, there are further busi-
ness specific constraints:

— Status constraint: Given an artifact s of Ship, if the shipment has started but not yet
finished, the associated order cannot be canceled nor returned. That is, if s.ship stat
is neither “FINISH” nor “FAILED”, and there is an artifact o of Order, such that
s.ordid = o.ordid and o.shipid = s.shipid, then the order status o.ord stat must
not be “RETURN” nor “CANCEL”.

— Address-name constraint: Given an artifact of Order, the delivery address addr
and recipient’s name name of the associated Ship artifact must match the address
addr and name of the associated Customer artifact.

— Ship-from constraint: Given an artifact of Order, the sending address of the ship-
ment must match the inventory warehouse location loc.

— Ship-order reference circle: Given an artifact of Order, the Ship artifact referenced
by attribute o.shipid must also reference back to o, and vice versa.

onally workflow systems rely on the underlying database system to ensure data
ency. However, in reality the data are quite likely stored and managed distribut-
acts in a single artifact class may be stored in several databases. Assume that
bines two old shopping centers that maintain their own customer databases.
i onstraints in EzMart, e.g. the candidate key on Customer, cannot be

! Enforcing Integrity Constraints: A Challenge
(]

¢an be outsourced and the service provider may “pack” similar
data from EzMatt andyother applications together, (2) the customer data EzMart uses

constraints from EzM 1 the repository for Order of EzMart that shares the
same actual data with database of other companies. The data service
provider has to keep the dat: art from the other companies as well as maintaining
constraints from different appliCatio esults in high complexity and expenses. In
general, elevating integrity constraifits loc workflow to global for the data ser-
vice provider is problematic. For e plications may not require quantity
in the order to be strictly positive (cf. attg nt constraint of EzMart).

from the stage. To generalize this idea, associated data 1

preserved within EzMart by strengthening the guard conditio rdg@ifection.
As an extreme, the simplest and effective injection is to injec oathe guard

of every stage. Then no execution would violate the constraints—becaiiSe ti€re will be

70 X. Liu, J. Su, and J. Yang

insert the condition:)
Enable the stage only & create oreated | 4ty = checkout gty
if checkout.gly > 0

Fig. 4. Prevent the violation by strengthen the sentry condition

no execution at all. To make the injection useful, we need to make sure the injected
constraints must be weaker or even the “weakest”. The injection should block all ex-
ecutions that can violate the constraints but should also allow as many executions as
possible that preserve data consistency.

This paper develops a technical approach that calculates injection according to the
constraint set and actions in stage bodies. The approach is proved to be both “sound”
(strong enough to prevent violations) and “conservative complete” (weak enough to
have a useful workflow).

3 A Formal Semantics of GSM

In order to analyze GSM workflow for possible injection, it is necessary to formalize
semantics. In this section, we define the execution model (an operational semantics)
specifications. First we give an intuitive explanation of GSM execution. Then
Sent a transition system semantics for GSM. The formalism is inspired (but not
ted) by the Z notation [25]. Our transition system semantics is complementary
re M operational semantics presented in 19, [18]. Our semantics focuses on
a of data and system variables, and forbids the concurrency between atomic
stages. ABri parison can be found in the online appendix].

3.1 Intuiti X ion

The GSM execution 1 was initially described in (171, and further developed in
[IE]. A workflow S wit rtifacts. An artifact is created when a create-instance
stage opens. A stage o itsisentry is satisfied and then actions defined in the stage
body starts to execute. age update by manager in EzMart opens when
attribute avail gty of the I ct is less than 10. If the stage is to create in-
stance, a new artifact is created, e.g. tage creates a new Order artifact.

A milestone is achieved when it try is satisfied and its belonged stage
is open. For example, actiontaken i stage further action is opened and
the reply event from task custsupp co

A stage can also reopen, when its sentry is sati
further action can run several times as long as the e

For example, stage
ion is received. Our
"’ milestones, such

as registered, paid, etc. And only when all of the finish milesto hieved can we
say a workflow execution finishes (formal and strict definitio i
When the status of a stage or a milestone changes, a control ev; ted. The

control event can also be used as a triggering event. An example is théfriggering event

2

Preservation of Integrity Constraints by Workflow 71

of sell. The stage needs a control event paid™ to open, and paid™ denotes the paid
milestone’s achieving.

3.2 GSM Transition Systems

In our execution model, a GSM workflow is a transition system consisting of a state
space (a set of states), an initial state and a set of operations (or transitions). The state
space is a set of all possible “snapshots” of artifacts, each is called a state which spec-
ifies, at a specific time during the execution, the attribute value, the status of stage and
milestones and event queues. The initial state is a special state that the transition system
starts on, where no artifacts exists in the transition system, and event queues are empty.

Operations are transitions from one state to the next, identified by “operation sig-
natures”, and the transition enabling condition (called the “guard”) and state changes
made by the transition (called the “actions”) are specified. There are the following six
types of operations:

— Open : opens a stage, if the stage sentry is satisfied and no other stage is open.
When the stage opens, all of its milestones are set to be not achieved. New instance
is created if the stage is a create-instance stage.

ody : executes the stage body.

ieveClose : achieves a milestone. The operation is enabled when the achiev-
sentry of the milestones is satisfied, and the stage containing the milestone is

Status change of stage d closing, milestone achieving and invalidating gen-
erates control events, wl trol events to be added to the event queue (used
to trigger other stages or es in_the workflow). Parameters of the signature for
each Open operation are the stage n ang (if the stage is a create-instance stage) the
artifact ID, for Body are the stage filame a act ID, for AchieveClose and Invalid
are the milestone name and artifact d meter for DeCQ and DeEQ.

Due to space limitation, only the s nd Open operation (for a create-
instance stage) are presented, an example i en to briefly explain the operations
AchieveClose. A complete formalism of state*space ang Mions is included in [23].

Given a GSM workflow AP, its transition system isfdenoted byA7'S,p. The state space
t column of Fig.[3l
In the state space each artifact class o; is representedig able sisting the artifact

noted by stage or milestone names, such as s,m,...). And th artifact classes
inAPis A = {¢; | i € 1..n}. For any artifact class «, we use S(« o denote
the sets of all stages and milestones of «, resp.

72 X. Liu, J. Su, and J. Yang

The state variable XOp is a finite set of signatures of possible next operations, where
OPSIG is the type of operation signatures. Variable eq and cq are two queues of external
events and control events, resp., where ExtEv and IntEv are respectively the type of
external events and control (internal) events. State variables that do not immediately
help in understanding the execution model are omitted.

STATE Open(create)
ai(id, x,y,...) : ArtifactClass new = Order(newid(),null, .. .,
az(...,,8,m,...) : ArtifactClass TRUE /*create*/, FALSE, FALSE, ...)

: Open(create) € XOp
aun(...) : ArtifactClass VB :A;id:ID; t: S(3).0(id).t = FALSE
XOp : F OPSIG (head eq) isevent checkout

eq : seq ExtEv

: seq IntE
o4 Sed ey Order := Order U {new}

XOp := (XOp — {Open(create)})U
{Body(create, new.id)}

Fig. 5. State space and an example operation

ive an example state s of TSg,\art:

- e set of tables of artifacts of classes Customer, Order, Ship and Inventory.
-5 {Open(create)}, the set of the open stage operation of create of Order.
—&.eq out(...),...)and s.cq = () (empty queue).

On the inigial 11 artifact class tables are empty, next operation set (XOp) is the set

eate-instance stages, external and control event queues (eq and
EzMart, init.XOp is the set of Open(register), Open(create),

iny initiate).

e schema extended from Z notation [IE]E Operation

ge opening. We use Open(create) of Order, specified

sa mple of the operation to open a create-instance

cq) are both emp
Open(prepare) agd O
Operations are e
Open is responsible to
in the right column of

stage. Let s be the current s e example state given above, and s’ be the next state
after the transition specified By the n Open(create). Suppose s.Order has one
row: Order(ord001, cust002, . . .). lf'there 48 ngfstage being open on s, then s satisfies

the guard of Open(create). A new ar
created, where the ID is assigned using a

denoted by the local variable new, is
tem few ID generator, all other attributes
are assigned to null and statuses of all sta ilestones are set to FALSE except the
status of create is set to TRUE. Let’s assumegffie new ID_generator gives ord002 on s.
Then, after this operation, s’.Order has two rows,

Order(ord001, cust002, . ..); Order(ord002, null, . SE, FALSE, ...)

and s XOp = {Body(create, ord002) }. Since the open eate is not used

in EzMart, control event queue cq is kept unchanged.

2 Readers who are familiar with Z can find out our notation still follows u tal idea of
Z, and the extension is only “syntactical” to make our specification easier,

Preservation of Integrity Constraints by Workflow 73

We group achieving of a milestone and closing of its stage in AchieveClose. Con-
sider the operation of achieving milestone actiontaken. The signature of the operation
is AchieveClose(actiontaken, ordid). Suppose that on the current state s, s.XOp contains
AchieveClose(actiontaken, ord002), s.Order(002).pay = TRUE, s.Order(002).paid =
FALSE, and s.eq = (custsuppreply(...)), where event custsuppreply is the reply
from customer support task custsupp. Then this operation can be enabled with ordid tak-
ing the value of ord002. As a result, on the next state, artifact s'. Order(ord002) is updated
as pay = FALSE, paid = TRUE, and ostat is set according to custsuppreply.ostat —
the immediate effect of the event.

4 Guard Injection

Based on the GSM execution model, we explore in this section our approach to enforce
integrity constraints. The key idea is to inject conditions according to the specified
constraints and the stage to “block” possible violations. We first define constraints and
some needed notions, and then present the algorithm for guard injection.

Our problem is similar to but different from checking integrity constraints in dis-
ibuted databases where the exact changes to the database are known [@,]. Our
Blem considers workflow specifications when the updates to the database are un-
but parameterized. A key idea of [IEI,] is to “look forward” at the
ondition” of the update and check locally if the constraint with respect to the
ition can be satisfied without looking at database(s). (If not, databases are

ward” to calculate “weakest” precondition of stage and ensures that
potentidily ex@cut@d updates would never violate the constraints.

traint is defined in the following form (cf [E]):

X o(x) — 3y -p(x,y)) Q)
where x and y are finite vec of v s with no repetition, X is nonempty (while
y can be empty), and Formula ¢ 1 ar@ nop@mpty conjunction of artifact relation

atoms and comparison atoms of thetor
or constant and o denotes operators: =, >
artifact IDs or data attributes of artifacts’in A

ere x is a variable and y is a variable
> and <. Variables in x and y are

ferred to as the consequent. For simplicity, we assum
ial atoms (equivalent to TRUE or FALSE). Variables i
variables, while the ones in y as 3-quantified variables.

For example, the attribute content and not-null constraint rderrand spatus con-
straint are given in Section[2land we repeat here:

74 X. Liu, J. Su, and J. Yang

Attribute content and not-null constraint on Order, k.« For each Order artifact, nei-
ther of the references custid and invid is null, and the quantity is larger than 0, i.e.
gty > 0;

Status constraint, r,: Given an artifact s of Ship, if s.ship stat is neither FINISH nor
FAILED, and there is an artifact o of Order, s.t. s.ordid = o.ordid and o.shipid =
s.shipid, then the order status o.ord stat must not be RETURN or CANCEL.

Written in the form of Equation (T)), these two constraint formulas are:

Kaur = Y ordid, custid, invid, shipid, qty, ord stat.
Order(ordid, custid, invid, shipid, qty, ord stat) —
custid # null A invid # null A gty > 0
Ksar = Y ordid, custid, invid, shipid, qty, ord stat, addr, name, from, ship stat.
Order(ordid, custid, invid, shipid, qty, ord stat) N\
Ship(shipid, ordid, addr, name, from, ship stat) N
ship stat # FINISH A ship stat # FAILED —
ord stat # RETURN A ord stat # CANCEL

The complete list of formulas for all constraints in EzMart in the form of Equation (IJ)
can be found in [Iﬁ].

We say a concerning attribute of constraint « is some attribute a..x of some artifact
, where a.aid is in V-quantified variables of x, « is an artifact relation atom in
5, andfany one of the following holds:

ere is a constant appearing at the column of x in artifact relation atom of « in «;

also appears in , where y is a constant or any other variables; or
variable x’ appearing more than once in x and one of its appearances

ibutes of x is denoted by CA(k).
ttributes of Ky and Ky, are

CA(Kgiar) = { Ship.ship stat, Order.shipid, Order.ord stat} .

Given a constraint < an CA(k), the set of writing stages of x is denoted
by WS(x). A writing stage O ch agstage s that x € WriteSet(s), where WriteSet(S)
denotes the set of attributes that can ritten by the body of stage S. The set of writing
milestones of x is denoted by WM (X). A writi@@ milestone of x is such a milestone m
that uses the reply event to update a

In EzMart, the writing stage of conce

Ship.ordid : prepare Ship.ship stat :
Order.shipid : ship Order.ord stat :

4.2 Calculating Injected Conditions

The algorithm to calculate the injection is now presented.
tion is first described. Then the algorithm is given along with exa
content and not-null constraint on Order (k) and status constraintSglfy,.,

n e injec-
attribute

Preservation of Integrity Constraints by Workflow 75

The intuition of the algorithm is to “inject” properly converted constraints into guards
of Open operations of writing stages and stages of writing milestones of concerning
attributes of the constraints. As a result, the guard is strengthened to block all updates
that may violate the integrity constraints, but to allow updates that preserve the data
integrity.

For writing stages, we analyze the stage body to understand how the updates are
made. For example, stage create uses the triggering external event checkout to set
custid, invid and gty — the concerning attribute of k.. The injection is a substitu-
tion for the concerning attribute according to the stage update. The injection is replac-
ing concerning variable in x,,, by corresponding content of event checkout. Assume
there is no violation before the update made by create, if the current state satisfies the
injection, the execution of create under such a checkout event preserves the data con-
sistency regarding to k.. Moreover, such an injection is also weak enough only to
block the updates that result in violation. As for the writing milestones, because there
is no information about the task reply in the workflow, the injection to its stage’s Open
operation has to be made to the strongest—FALSE.

In the following we present the detail of the algorithm. To begin with, implicit foreign
key references are made explicit in the constraint set. A stage, e.g. ship, of one artifact

«, e.g. Ship, can write attributes of artifact class (3, e.g. Order.shipid. Then the for-
@ ey constraint is added to the integrity constraint set, if it is not already specified:

Y aid, bid, x . a(aid, bid, x) A bid # null — Jy . 5(bid,y)

y are disjoint vectors of other “unrelated” attributes in « and [, resp. In
Ezl art pf the foreign key dependencies are already specified.

Algorit uard injection
Input:
Output: In]
Set Inj(s or eSinAP;

foreach K€ K and x
foreach s € WS(

1 Inj(s) := Inj(s) ASUBMF, s [, aid]), where
aid is the artifact #'in O, id]) in TSap;
endfch

foreach m € WM(x) do
Inj(s) := FALSE

endfch
endfch
The procedure of injection is given in Algorithm[Il ansition system 7S4p
of GSM specification AP and the set of integrity const; put. The output is the
injection function /nj which maps each stage in AP to a ord la. The idea of

in riable x
rted x by

the algorithm is simple. For each constraint « in K and for e
of &, if x is going to be written by a stage S, the algorithm inject:

76 X. Liu, J. Su, and J. Yang

replacing x with the assignment in the body of S, where the substitution is accomplished
by function SUB (given below); if x is going to be written by a reply event triggering a
milestone, then FALSE is injected.

The function SUB used in Line[T] of Algorithm[Ilis to convert the constraint formula
k according to the stage S and (if S is not a create-instance stage) the artifact ID aid.
Concerning attributes and artifact relations are replaced according to the assignments
in the body of s.

First, in Line2lof SUB, by function explicitref (), reference dependency premises are
added when the stage writes attributes of another artifact class. The substitution proce-
dure then starts by taking care of each V-quantified o IDs. The variable x is replaced by
the assignment in the stage body (Line[3), and the ID is replaced (Line H), by newid()
if the stage creates new instance; otherwise, by the artifact ID of the updated artifact in
the stage assignment (denoted by lhsid, which is ID field of head event if the artifact is
identified by the event or aid otherwise). After the variables are properly replaced, they
are removed from the V-quantified variable list. Note that when the stage is creating an
instance, replacing the id with newid() also replace the relation atom to TRUE because
the new instance is going to be inserted and therefore the relation atom holds. Note that
after the substitution, 3(. .. ,newid(), ...) is further replaced by FALSE for any artifact

ation (3, and id o newid() is further replaced by FALSE for % id unless o is # . More

@ al details of SUB can be found in the online appendix [23].

Function. SUB (k, S[,aid]) returns the constraint formula after substitution

V-quantified artifact IDs of the artifact whose attribute is updated in S;
plicitref (k);

4

else
con := con(lhsid
endif
ret := ret N\ con
endfch
return ret

In EzMart, for the attribute content and n@t-null constwaimt on Order (K. in Sub-
section [£.1), all of the three concerning variables argffeplacediby the corresponding
content of event checkout in stage create. And sincgithe stage ¢feates a new instance,
the Order artifact relation atom is replaced by TRUE. e substitution result,
after trivial reduction,

SUB(Kanr, Create) = TRUE — (head eq).custid # null
(head eq).invid # null A (head e

Preservation of Integrity Constraints by Workflow 77

Then for the status constraint (kg in Subsection[£.1)), the stage sell of Inventory sets
Order((head cq).ordid).ord stat to “INVUPD”, where by the stage sentry, head cq is a
paid+ event. Therefore we have,

SUB(Kgiar, S€ll, invid) = ¥ custid, shipid, qty, ord stat, addr, name, from, ship stat.
Order((head cq).ordid, custid, invid, shipid, qty, INVUPD) A
Ship(shipid, (head cq).ordid, addr, name, from, ship stat) N\
ship stat # FINISH A ship stat # FAILED —
INVUPD # RETURN A INVUPD # CANCEL

where ordid is replaced by (head cq).ordid, and ord stat is replaced by the constant
INVUPD. And obviously, this is equivalent to TRUE.

After Algorithm [Tl completes, injection to stages of Order is given as follows. Note
that trivial expressions are directly removed and the injected formula is reduced.

Inj(create) = SUB(kaur, Create) A
demail, addr, name, info, prod, avail qty, loc, price.
Customer((head eq).custid, email, addr, name, info) N\
Inventory((head eq).invid, prod, avail qty, loc, price)
Inj(further action) = FALSE

Ssccond conjunct injection on stage create is the one for foreign key constraint (to
% wer and Inventory); injections for ship-order reference circle, address-name, ship-

mfand status constraint are all reduced to TRUE. Injection on further action is FALSE
ecau tiontaken milestone of this stage uses the reply event to update ord stat, a
) ttribute of the status constraint K.

ec lete list of constraints and injections on EzMart can be found in [Iﬁ].

5 Sou S Conservative Completeness

To state the corrgctne e injection algorithm, we first define some technical no-
tions. Examples fr
of “soundness” and “cd

Definition 1 (run and comp . Let AP be a GSM specification, TS4p its transi-
tin@sequence of states and operations

where sq, 51, . . . are states (specified by STAT) ©0 is the initial state, and 79, #1, ... are
operations (specified by OPER), such that fof€ach #; (i Zg@ms; = guard(t;).

Let A be the set of artifact classes in AP. A run p '
satisfies that for each artifact of o : A with id : ID,

— there is a finish milestone achieved, i.e. 3m :
a(id).m = TRUE; and
— there is no stage being open, i.e. Vs : S(a) . a(id).s = F

78 X. Liu, J. Su, and J. Yang

In EzMart, each run starts with the initial state and followed by an open stage operation

of register, create, prepare or inv initiate. On state s;, only the stage body operation

of the just opened stage in ¢y can be enabled. State so is the result of the stage body

operation. The run is finished if on the last state in the run, milestones registered of all

artifacts of Customer, paid of all artifacts of Order, result of all artifacts of Ship and the

initiated of all artifacts of Inventory, are all achieved, and there is no stage being open.
Given a run, if it does not violates any constraint, we say this run is sound.

Definition 2 (Sound run). Let AP be a GSM specification, TS4p be its transition sys-
tem and K a set of integrity constraints on artifacts of AP. A run p of TSup is said to
be K-sound iff for each k € K, k holds in every state in p. When K is clear from the
context, we simply say p is sound.

Consider run p; = sotgs1t152t253 in EzZMart where 7 is Open(register) and creates a
new Customer artifact with ID cust001, 7, is Body(register,cust001) which sets
Customer(cust001).email to abcdef . com, and #5 is AchieveClose(registered, cust001).
We can see that p; is a finished run, and also sound. Because email is not empty, at-
tribute content constraint on Customer is satisfied on all of the states in p;. There is
ly one artifact in the system, the candidate key and foreign keys are also satisfied,
1 business specific constraints are also satisfied.

consider another run p2 = sofg - - - #;Si+1 - - - . Suppose on s;, there is an arti-
p(ship005).ship stat = SHIPIN and ¢, is AchieveClose(action taken, ord002). If
rder(ed002).shipid = ship005 and the immediate effect of reply event is to set the
'@ D2).0rd stat to CANCEL, then status constraint (kg see Subsection 2.1)) is
ed ause the order ord002 is canceled when the purchased item is still shipping.

Therefexe po a sound run.

In busifiess\pro€esses, many tasks are third-party services or human tasks. It is not
reasonable tasks will strictly follow some contract. We have to be pre-
pared that exte ay give unpredictable reply in the domain. To ensure the
constraints are n dmwe need to be cautious or conservative. Therefore, in the
Algorithm[I] if the rep)
is injected to the associ

guard of Open operation of each stage s. (If Inj(s) is equiva
eration guard after injection is equivalent to the one before.) The

Preservation of Integrity Constraints by Workflow 79

transition system with injection, where soundness captures no violation—the injection
is strong enough, while conservative completeness allows the maximal behavior under
conservative strategy— the injection is weak enough.

Definition 4 (Sound and conservative complete injection). Let AP, TS4p and K be
the same as in Definition[2] and /nj be the guard injection function. We say the injection
Inj is sound iff each finished run of InjTS,p is sound, conservative complete iff each
conservative run of TS p is also a conservative run of InjTSap.

The main property of our algorithm is now stated, a proof can be found in the online
appendix 23].

Theorem 1. Given a GSM specification AP and a set of integrity constraints K, the
transition system with injection, InjTS4p, is both sound and conservative complete.

Again, we take advantage of EzMart to illustrate the idea of injection correctness. First,
for any run of InjTSg,nart, there is no violation. Take stage create as an example. If the
head event of eq satisfies the sentry and injection of create, then, because Inj(create)
uses the assignment in create, after the update made in the body of create, the constraint
igstill satisfied. And because Inj(further action) = FALSE, this injection can block any

, suppose there is a conservative run p of TSg,Mart that is not in InjTSg, nart- If
ause the Open operation of create cannot be enabled in the injected workflow,
).qty = 0, then Inj(create) fails; in p after the update made by create, the
created artifact of Order is 0 which violates the attribute content constraint

on Ovder, and thdg p cannot be sound. If it is because of the blocking in the injected
system offOpép, operation of further action, then p is not conservative. Therefore, the
injected w Mart 18 both sound and conservative complete.

6 Related

Triggers are a powerful fi
distributed databases, chec nstraints involving remote databases is expensive. It
was discussed in [15] to maini#fin di ity constraint efficiently by reducing
the necessity to look at remote dat vestigated in 14] to use local data to
test conjunctive query constraints omparison. In [19], a similar prob-
lem is discussed on conjunctive query ¢ ith negations. The approach used to

local tests with respect to “post-condition” of specific
jection is to calculate the weakest precondition conse
to ensure that updates never result in violation.

It is also studied that by enhancing the underlying $ d onsistency can be

eral communication protocols between different sites to main nsigfency (13].
When strict consistency cannot be ensured, enforcing the weakene nstraints

80 X. Liu, J. Su, and J. Yang

is possible by a rule-based configurable toolkit presented in [@]. While these work con-
struct strong data management systems, our work makes a minimum requirement on
underlying DBMSs.

Using preconditions can also be found in [@] and [ﬂ]. The idea of finding weakest
precondition rooted in (10]. The difference of using preconditions between our work
and program verification is that the variable states and properties are on databases.
In [@l]), the authors explored appropriate transaction languages to ensure integrity con-
straints using weakest preconditions. Calculation of weakest precondition was not dis-
cussed. In [[11], authors studied the automated construction of artifact-centric workflows
so that the workflow execution results are consistent with requirement defined on data,
where weakest precondition of each task is calculated.

Rules were given in [@] to derive a set of functional dependencies that hold on
query results on given relations. Decidability of dependency implication problem on
Datalog programs was studied in]. Preservation of integrity constraints by a set of
parameterized transactions was studied for relational databases [@] and for semantic
databases [IE].

Conclusion

per develops an approach to ensure data integrity within workflow execution by
g converted constraints into guard of updates. The injection is proved to ensure

nd arithmetic. Also, conservative requirement for injection can be
relaxed bfgconsidering more accurate task models such as semantic web services and
task contr t flow. Another area of interest is to consider workflow with
concurrent exec@ich will require new injection techniques. Finally, it is in-
teresting to investigate owgechniques such as guard injection can be combined with
mechanisms in federate bases].

Acknowledgment. The or! ateful to Richard Hull IBM T.J. Watson Re-
search Center) for his infor dis ions on the GSM semantics.
References

1. Abiteboul, S., Hull, R.: Data functions, datalo negation. In: Proc. ACM SIGMOD Int.
Conf. on Management of Data (1988)
2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Datab#s¢
3. Abiteboul, S., Vianu, V.: A transaction-based approachito relationdll database specification.
Journal of the ACM 36(4), 758-789 (1989)

4. Benedikt, M., Griffin, T., Libkin, L.: Verifiable properti¢’ nsactions. In: Proc.
ACM Symposium on Principles of Database Systems (PODS), p (1996)
5. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Toward lysi§of artifact-

centric business process models. In: Alonso, G., Dadam, P., Roseman PM 2007.

LNCS, vol. 4714, pp. 288-304. Springer, Heidelberg (2007)

10.

11.

12.

13.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Preservation of Integrity Constraints by Workflow 81

Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business processes.
In: Handbook of Research on Business Process Modeling. Information Science Publishing
(2008)
Ceri, S., Widom, J.: Deriving production rules for constraint maintainance. In: Proc. Int.
Conf. on Very Large Data Bases (VLDB), pp. 566-577 (1990)
Chawathe, S., Garcia-Molina, H., Widom, J.: A toolkit for constraint management in hetero-
geneous information systems. In: Proc. Int. Conf. on Data Engineering (1996)
Damaggio, E., Hull, R., Vaculin, R.: On the equivalence of incremental and fixpoint se-
mantics for business artifacts with guard-stage-milestone lifecycles. In: Rinderle-Ma, S.,
Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 396-412. Springer, Heidelberg
(2011)
Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM 18(8), 453-457 (1975)
Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business processes.
In: Proc. Int. Conf. on Database Theory, ICDT (2009)
Glushko, R.J., McGrath, T.: Document Engineering: Analyzing and Designing Documents
for Business Informatics and Web Services. The MIT Press (2008)
Grefen, P., Widom, J.: Protocols for integrity constraint checking in federated databases.
Distrib. Parallel Databases 5, 327-355 (1997)
Gupta, A., Sagiv, Y., Ullman, J.D., Widom, J.: Constraint checking with partial information.
: Proc. ACM Symp. on Principles of Database Systems (PODS), pp. 45-55 (1994)
ta, A., Widom, J.: Local verification of global integrity constraints in distributed
bases. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 49-58 (1993)
ollingsworth, D.: The workflow reference model: 10 years on. In: Workflow Handbook.
Management Coalition, pp. 295-312 (2004)
Damaggio, E., Fournier, F., Gupta, M., Heath III, F(T.), Hobson, S., Linehan,
. A S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing the Guard-Stage-
toneVApptach for Specifying Business Entity Lifecycles (Invited talk). In: Bravetti,
M. (edf) W 2010. LNCS, vol. 6551, pp. 1-24. Springer, Heidelberg (2011)
Hull, RS Masellis, R.D., Fournier, F., Gupta, M., Heath III, F., Hobson, S.,
Linehan, M., Mar S., Nigam, A., Sukaviriya, P., Vaculin, R.: Business artifacts with
guard-stage-milestons¥lifegyeles: Managing artifact interactions with conditions and events.
In: Proc. ACM Int"Caqu ributed Event-Based Systems, DEBS (2011)
Huyn, N.: Maintaini Itegrity constraints in distributed databases. Constraints 2,
377-399 (1997)
Klug, A.: Calculating co
260-290 (1980)
Kiinzle, V., Weber, B., Reichert, Objectaw;
ments and their support in existing c
and Design (IJISMD) 2(2), 1946 (2011
Liu, G., Liu, X., Qin, H., Su, J., Yan, Z., Zhang &7 Automated realization of business work-
flow specification. In: Dan, A., Gittler, F., mani, F. SOC/ServiceWave 2009.
LNCS, vol. 6275, pp. 96-108. Springer, Heidelberg (2
Liu, X., Su, J., Yang, J.: Preservation of Integrity Constgaints by Woilkflow: Online Appendix,
http://seg.nju.edu.cn/~1liux/pub/Coopl€ll_app@€hdix.pdf
Nigam, A., Caswell, N.S.: Business artifacts: An approaMt' specification. IBM
Systems Journal 42(3), 428-445 (2003)
Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. P
Su, J.: Dependency preservation in semantic databases. Acta Inf. 31,

raifits on ional expression. ACM Trans. Database Syst. 5,

usiness processes: Fundamental require-
ournal of Information System Modeling

http://seg.nju.edu.cn/~liux/pub/CoopIS11_appendix.pdf

