Software Engineering Group
Department of Computer Science
Nanjing University
http://%eg.nju.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2011- 1J-002

UML interaction model-driven runtime

verification of Java programs

Li Xuandong, Qiu Xiaokang, Wang Linzhang,
Chen Xin, Zhou Zhou, Yu Ligian, and Zhao Jianhua.

Postprint Version. Originally Published in:
IET Software, Volume 5, issue2, April 2011, p. 142 — 156

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is
prohibited.

http://seg.nju.edu.cn/

www.ietdl.org

Published in IET Software
Received on 27th January 2009
Revised on 24th April 2010
doi: 10.1049/iet-sen.2009.0009

UML i
of Ja

X. Li X. Qiu

State Key Laborato
Department of Comp
E-mail: Ixd@nju.edu.cn

Abstract: The authors use unified m
to construct simple and expressive
for exceptional consistency and mandat@ry cq
described by a given 10D never happent
reference scenario described by a given segue

adhere to a scenario described by a given | In"t
as to gather the program execution traces relate
program to execute for generating the program e
satisfy the given specification. The approach leads t:

as automatic test oracles to detect the wrong temporal ord€rin

1 Introduction

Runtime verification [1—4] is a lightweight approach to
program reliability. Its basic idea is to gather information
during program execution and use it to conclude properties
about the program, either during testing or in operation,
which increases the confidence in whether the program
implementation conforms to its specifications.

Scenarios are widely used as a requirements technique
because they describe concrete interactions and are
therefore easy for customers and domain experts to use.
Scenario-based specifications such as message sequence
charts [5] and unified modelling language (UML)
interaction models [6, 7] offer an intuitive and visual way
of describing system requirements. For object-oriented
programs, such specifications focus on the temporal
ordering of message interactions among objects, which
forms an important aspect of system behaviour.

The program specifications used in runtime verification are
typically represented by formal languages such as temporal
logic [8], regular expressions [9] or state machines [10]. Since
UML became a standard in object management group (OMG)
in 1997, UML interaction models have become an important
class of artefacts in software development processes [11]. In
this paper, we use simple UML interaction models as scenario-
based specifications, and consider runtime verification of Java
programs.

UML sequence diagrams form a class of important UML
interaction models. Each of them describes an interaction,
which is a set of messages exchanged among objects within
a collaboration to effect a desired operation or result, and its

142
© The Institution of Engineering and Technology 2011

ISSN 1751-8806

ction model-driven runtime verification
rograms

g‘ X. Chen Z Zhou L. Yu J.Zhao

OV ftware Technology, Nanjing University, Nanjing, Jiangsu, People’s Republic of China,
r ncé and Technology, Nanjing University, Nanjing, Jiangsu, People’s Republic of China

d @ guage (UML) 2.0 interaction overview diagrams (IODs) and sequence diagrams
enarihb specifications, and present an approach to runtime verification of Java programs
istency. The exceptional consistency requires that any forbidden scenario
dugi execution of a program, and the mandatory consistency requires that if a
iagram occurs during the execution of a program, it must immediately

n scenario-based specification; then they drive the instrumented
; finally they check if the collected program execution traces

tool for testing in which UML interaction models are used
essage interaction in programs.

fo on poral ordering of the message flow [6, 7].
For example, anJUMLgsequence diagram D is depicted in
Fig. la, Which es a scenario about the well-known
example o crossing system in [12, 13]. This

a railroad crossing, in which there
onitor and a barrier controller. When
i iging, it sends a message
arrier. After the train
s a message to the

For facilitating the use of sc@ ecifications, in

this paper we just adopt a sim iongof UML
sequence diagrams, which describ€s ex; scenario
without any alternative and loop. Fo g multiple
scenarios and complete system specifi nsAwe use a

simplified version of UML2.0 interactio
diagrams (IODs) [7], which focuses on t
flow of control where the nodes are sequence diagrams. For
example, Fig. 1 depicts a simple IOD G.

In this paper, we focus on checking Java programs for
message interaction consistency. In object-oriented
programs, we often need to set some restrictions on the
temporal ordering of message interaction along the program
execution flow, which form a class of safety requirements.
For describing such requirements, we introduce the
following four kinds of specifications which are depicted in
Fig. 2:

e ‘Exceptional consistency specifications’ require that any
forbidden scenario described by a given IOD D never
happens during the execution of a program.

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156
doi: 10.1049/iet-sen.2009.0009

www.ietdl.org

. D J G
| :Monitor | !:Controller{ | :Barrier ‘
. Arriving . .
B 2 MoveDown
es €4
Leavi es Down es N
eaving
€7 “8 MoveUp l l
ey - €10 Dy J (D3 J
. Up , CJ CJ
Arriving “12 e
€13 €14 D
a b

Fig. 1 UMidinteragtion models

a Sequence diagram D
b Interaction overview di

D

| &

Do [Poe
o T | |
a D

______ . L,

Backward mandatory consistency specifications

2 T === D)

&3 &4 *— I, o |3 &4

Do [P
D, o G D Dy
—_——_—— —_———
Bidirectional mandatory consistency specifications
Fig. 2 Scenario-based specifications
IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156 143

doi: 10.1049/iet-sen.2009.0009 © The Institution of Engineering and Technology 2011

www.ietdl.org

e ‘Forward mandatory consistency specifications’ require
that if a reference scenario described by a given sequence
diagram D occurs during the execution of a program, then a
scenario described by a given interaction overview diagram
G must follow immediately.

e ‘Backward mandatory consistency specifications’ require
that if a reference scenario described by a given sequence
diagram D occurs during the execution of a program, then it
must follow immediately from a scenario described by a given
10D G.

e ‘Bidirectional
require that if a
sequence diag

mandatory consistency specifications’
rence scenario described by a given
ccurs during the execution of a
eference scenario described by
nce diagram D, follows, then in

In this paper, we approach to runtime
verification of Java progedms for the abeve four kinds of
scenario-based specifications. As depi
runtime verification process is mai
steps. First, guided by UML inte
scenario-based specification we instrumg

execution traces are gathered by the instrumented pr
the program. Last, we check if the collected
execution traces are consistent with the specific
temporal ordering of message interaction.

Instead of checking program execution traces online, wh
is mainly used in program monitoring, our approach does the
consistency checking off-line, which falls into the field of
testing. Our purpose is to develop a supporting tool for
testing in which UML interaction models are used as
automatic test oracles, and use it to detect the wrong
temporal ordering of message interaction in programs.

The paper is organised as follows. In the next section, we
introduce UML interaction models, and give their formal
definitions for runtime verification. Section 3 introduces the
scenario-based specifications considered in this paper,
which are expressed by UML interaction models. The
detailed approach is given in Section 4 to the runtime
verification of Java programs for scenario-based
specifications. The related works are discussed in Section 5,
and some conclusions are given in the last section.

S
rogram

2 UML interaction models

In this paper, UML interaction models are used as scenario-
based specifications for runtime verification of Java programs,
which consist of UML2.0 IODs and sequence diagrams.

2.1 Sequence diagrams

Here we just use a simplified version of sequence diagrams,
which describe exactly one scenario without any alternative
and loop. A sequence diagram considered in this paper has
two dimensions: the vertical dimension represents time and
the horizontal dimension represents different objects. Each
object is assigned a column, and the messages are shown as
horizontal, labelled arrows.

In a sequence diagram, by events we mean the message
sending and the message receiving. The semantics of a
sequence diagram essentially consists of the sequences
(traces) of the message sending (receiving) events. The
order of events (i.e. message sending or receiving) in a
trace is deduced from the visual partial order determined by
the flow of control within each object in the sequence
diagram along with a causal dependency between the events
of sending and receiving a message [5-7, 14]. In
accordance with [14], without losing generality, we assume
that for a pair of events e and ¢’ in a sequence diagram, e
precedes e’ (denoted by e < ¢€) in the following cases:

e Causality: e is a sending event, and ¢’ is its corresponding
receiving event. For example, in the sequence diagram
depicted in Fig. la, e5 precedes e.
e Controllability: The event e appears above the event ¢’ on
the same object column, and e’ is a sending event. This order
reflects the fact that a send event can wait for other events to
occur. On the other hand, we sometimes have less control on
he order in which receive events occur. For example, in the
equence diagram depicted in Fig. la, e, precedes eq.
O order: The receiving event e appears above the
eivihg event ¢’ on the same object column, and the
@ ponding sending events e; and €| appear on a mutual
where e, is above e]. For example, in the
e di depicted in Fig. la, since the receiving
event e, aboye the receiving event e, on the
barrier o corresponding sending events e; and
ey appear i
above ey, €, p

ea
ct an

the controller object where e; is

formal

ition of scenario-based

Definition 1: A sequend
(O,E,M, L, V) where

{(0) to denote the class which o belon,
e F is a finite set of events correspondi
receiving a message.
e M is a finite set of messages. Each mes is of the
form (e, g, €') where e, ¢ € E corresponds to sending and

tofsending or

Original

UML Int
Program

Mod

eraction
els

Program

Instrumentation

Y H

Instrumente
Program

Test Program

Execution Traces

Fig. 3 Runtime verification process

144
© The Institution of Engineering and Technology 2011

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156
doi: 10.1049/iet-sen.2009.0009

receiving the message, respectively, and g is the message
name which is a character string.

e L:E — O is a labelling function which maps each event
e € E to an object L(e) € O which is the sender (receiver)
while e corresponds to sending (receiving) a message.

e Vis a finite set whose elements are pairs (e, €) (e, € € E)
such that e < ¢/, which defines a visual order.

We use ‘event sequences’ to represent the ‘traces’ of
sequence diagrams, which describes the temporal ordering
of the message flow. An event sequence is of the form
eye;” - - "e,, whigliyrepresents that e, | takes place after e;
forany i (0 <

Definition 2.
an event sequence e,
the following condi

o)
e, 1s a p f the events in £, and
e,, satisfy th@Visual order défined by 7/ that is,

e;) € V, then

L4 eo,el, ceey
o 60,6‘1, ceey
forar.lyei.(O <i<m)ande; (0 </ <
O0<i<j<m.

The formal definitions of message uence_charts and
sequence diagrams have been discus 1] for
various verification purposes, and the fgen formal

definitions for UML2.0 sequence diagrams
given in [22—24]. Our definition here does no
those definitions essentially, but are based on t
version of sequence diagrams and the specific ver
purpose in this paper.

2.2 Interaction overview diagrams

A sequence diagram considered in this paper just describes
one scenario. For describing multiple scenarios, we need to
use a simplified version of UML2.0 IODs [7], which
focuses on the overview of the flow of control where the
nodes are simple sequence diagrams. An IOD defines a

composition of a set of sequence diagrams, which
describes potentially iterating and branching system
behaviour.

For example, Fig. 4 depicts an IOD, which specifies the
FIPA Iterated Contract Net Iteration Protocol [25]. This
protocol implements the interaction between the agents
Initiator and Participant such that the Initiator seeks to

www.ietdl.org

and requesting a new (equivalently, revised) bid. The
Initiator issues an initial call for proposals with the cfp
message (in sequence diagram cfp). If the Participant is
willing and able to do the task under the proposed
conditions (in sequence diagram propose), then it replies a
propose message, otherwise it can refuse (in sequence
diagram refuse). When receiving a propose message, the
Initiator may decide that this is the final iteration and
accept the bid (in sequence diagram inform and failure),
or reject it (in sequence diagram reject). After the Initiator
accepts the bid, once the Participant completes the task, it
sends a inform message to the Initiator (in sequence
diagram inform). However, if the Participant fails to
complete the task, a failure message is sent (in sequence
diagram failure). Alternatively the Initiator may decide to
iterate the process by issuing a revised cfp to the
Participant (in sequence diagrams propose and cfp). The
process terminates when the Initiator refuses a proposal
and does not issue a new message cfp, the Initiator
accepts a bid, or the Participant refuses to bid.

Definition 3: An 10D is a tuple
G = (U, N, succ, ref)
where

e U is a finite set of sequence diagrams;

e N={T}UJIU/{L} is a finite set of nodes partitioned
into the three sets: the singleton-set of start node, the set of
ntermediate nodes and the singleton-set of end node,

is the relation which reflects the

of the nodes in N such that any node in N is
the start node; and

functlon that maps each intermediate node

, succ, ref), a ‘path segment’ is a
nodes v,"v,” - - - ", satisfying that

segment v,y "
(v,, L) € succ.

In UML2.0, IODs are de
diagrams in a way that pro
[7]. It follows that the concatena

get better bid from the Participant by modifying the call in an IOD should be interpreted as mode
FIPA Iterated Contract Net Iteration Protoccy
® .
cfp J rejec
niti. :Participant| icipant] M%} Participant]
£_I
O—
refuse/ inform) failur
:Initiator .Participant| :Initiator .Participant| :Initiator Participant|
refuse accept accept
inform failure
|
Fig. 4 10D specifying the FIPA Iterated Contract Net Iteration Protocol
IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156 145

doi: 10.1049/iet-sen.2009.0009

© The Institution of Engineering and Technology 2011

www.ietdl.org

which means that when moving one node to the other, all
events in the previous sequence diagram finish before any
event in the following sequence diagram occurs, which is the
same as the synchronous interpretation in MSC
specifications [19]. Therefore, we define the ‘traces’ of an
IOD G as the event sequences, which are the concatenation
of the traces of the sequence diagrams that make up G. We
use "~ to denote the concatenation of sequences.

Definition 4: For an 10D G = (U, N, succ, ref), an event
sequence

eOAelA o Aen
represents a trace
Vv, -y, in Gs
a trace of ref(v;) for

if and only if there is a path
g — 0'0’\0'1’\ ...
<i<m).

0,,, Where g; is

S

of sequence diagrams and 1ODs, séd to construct

the scenario-based specifications in our erification
approach. In UML 2.0 [7], sequence diagr: ort the
notations of branch, iteration and parallel th€ms which
can be used to describe the compositi e
scenarios. Instead of using those notations 1n gsequien:

diagrams to compose simple scenarios, we usg, sifple

sequence diagrams to describe exactly one scenario
any alternative and loop, and simple IODs to constrict
scenario compositions. Such a hierarchical way is benefic
to construct large-scale and complex specifications and
facilitate the use of specifications. As the IODs can
compose simple scenarios through alternatives, parallel and
loops, our specifications can express any scenarios
described using common sequence diagrams.

As we will discuss below, UML interaction models
considered in this paper are used to construct expressive
scenario-based specifications, which are the exceptional

consistency specifications and mandatory consistency
specifications (including forward, backward and bidirectional
mandatory consistency specifications), and these consistency
specifications can express many important properties
frequently concerned in safety critical systems. An exceptional
consistency specification consists of one IOD G, denoted by
S5(G), and requires that any forbidden scenario described by
G never happens during the execution of a program. For
example, there are two interaction models depicted in Fig. 5,
which are about the railway crossing system. The left one is a
sequence diagram D that describes a normal scenario for the
preparation for the train crossing, which should occur during
the program execution. The right one is an IOD G specifying
an exceptional scenario in which the message
Crossing_secured is sent to the monitor before the barrier
is put down, which is forbidden to occur during the program
execution, and forms an exceptional consistency specification.
The forbidden scenarios represent the negative requirements
derived during requirement analysis.
A forward mandatory consistency specification consists of
a sequence diagrams D and an IOD G, denoted by Sp(D, G),
and requires that if a reference scenario described by D occurs
during the execution of a program, then a scenario described
by G must follow immediately. For example, a forward
mandatory consistency specification for the railway crossing
system is depicted in Fig. 6, which requires that from the
scenario for the preparation for the train crossing, the
scenario for raising the barrier after the train passes must
follow immediately. Such kind of specifications can specify
hat the system under verification must leave dangerous
tates in time.
ckward mandatory consistency specification consists
quence diagram D and an IOD G, denoted by
G)gand requires that if a reference scenario described
during the execution of a program, then it

m llo ediately from a scenario described by G.
For = ex ckward mandatory consistency
specificatign for 1lway crossing system is depicted in
Fig. 7, that the scenario for raising the

ses must follow immediately from

D
:Monitor :Comrollej
Train_arriving

IAcknowledgment

Approaching

Low_barrier

Barrier_down

Power_off

s rossing._secured

(G

[:Monitor | Controller]
[Acknowledgment |
Approaching

rossing_secured .
Low_barrier

Barrier_down

Power_off

(Normal scenario)

Fig.5 UML interaction models for the railway crossing system

[DJ
Train_arriving
Acknowledgment

Approaching

:Barrier

Low._barrier

Barrier_down

Power_off

rossing secured

(Exceptional consistency specification)

G

:Controlled :Barrier
Train_passed
Raise_barrier
._" Barrier_up *@

Power_off

Fig. 6 Forward mandatory consistency specification for the railway crossing system

146
© The Institution of Engineering and Technology 2011

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156
doi: 10.1049/iet-sen.2009.0009

www.ietdl.org

[D/
\&M :Cont@j &rrij [Controlle [:B_aLﬂ
Train_arriving .
i3cknowledgment Train.passed . .
|__Approaching | . Raise_barrier
@o— Low_barrier —>© ¢ Bartier_up
Barrier_down
Power_off Power-off
{rossing.secured
Fig. 7 Backward mandatory consistency specification for the railway crossing system
the scenario f ration for the train crossing. Such use one part as a reference scenario, and test or verify if
kind of sp s can specify that a critical action can there is any error in the other part, which is depicted in Fig. 9.
only take place afte gilises action occurs. Since an IOD defines a composition of a set of sequence
A Dbidirectional ory consistency specification diagrams, the scenario-based specifications we present here
consists of two seq s D, and D,, and an 10D are essentially composed of sequence diagrams. For a
G, denoted by Sp nd requires that if a scenario-based specification, we define its ‘object set’ as the
reference scenario descri by D, occurs during the union of the object sets of all the sequence diagrams
execution of a program ard a referencgfS€enario described occurring in the specification. Furthermore, we can extend
by D, follows, then in between th scenarios, a each sequence diagram occurring in a scenario-based
scenario described by G must occ ! r example, a specification such that its object set is just the object set of
bidirectional mandatory consistency sp ation for the the scenario-based specification. Therefore, without losing
railway crossing system is depicted ighng, which generality, we assume that all sequence diagrams occurring
requires that between the scenarios for ie train in a scenario-based specification focus on the same set of

arriving and for permitting the train crossi
for lowering the barrier must exist exactly.
The UML interaction models in requirements In our runtime verification approach, since the scenario-
given by customers or experts could be directly based specifications are used for checking program
scenario-based specifications, and they could be incomp xecution traces, we need to map the objects in a scenario-
provided they describe a complete concerned property. But specification to the ones in a program under
sometimes it is necessary to give an elaborate design f ion. Notice that in many cases an object in a
the specifications. For example, we often need to construct e diagram has no name (the object is just assigned
a mandatory consistency specification for testing and ts name), and that since during the execution of
verification purpose. Suppose that we attempt to detect there are multiple objects belonging to the same

objects, that is, they describe the interaction scenarios on
the same set of objects.

some errors in a program related to a given scenario, which clas§y” th y be multiple object compositions
means that the scenario is not implemented correctly in the corresponding t ject set of a given scenario-based
program. Since the scenario will not occur during the specificatt or a scenario-based specification S
program execution if it is not implemented correctly, it is and a progra ap one object of class 4 in the
difficult for us to decide where and when the scenario object set of

should occur in order to find the related errors further. In set of S to all

this case, we can decompose the scenario into two parts (illustrated in Fig. 10), whig

that constitute a mandatory consistency specification, and all the corresponding objec

1D
:Monitor :Controlled :Comrolled :Barrier
Train.arriving Low_barrier
IAcknowledgment i .—> Barrier_down —»(: ¢
Train_passed
Approaching Power_off

Fig. 8 Bidirectional mandatory consistency specification for the railway crossing system

i
{]
1]
DL
i
1]

—] =T

1
|
L

i
]
1]
DL
ik
1

|
I

I
I

Fig. 9 Decomposing scenarios under verification into mandatory consistency specifications

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156 147
doi: 10.1049/iet-sen.2009.0009 © The Institution of Engineering and Technology 2011

www.ietdl.org

SsJ

LG] [ee] g
et s _7-‘—" ————————————— "'————'.‘:..,.—::‘T.———j
WG a|al [alela]l .. EA AR
. P

Fig. 10 Mapping obj

4 Runtime ver l i Java programs for
scenario-based specifications

In this section, we give the details of
verification of Java programs
specifications expressed by UML inter;
verification process consists of three
instrumentation, program execution
checking, which is depicted in Fig. 3.

eClLs

h to runtime
seenario-based
on models. The

AN SEPSyprogram
agy % istency

4.1 Program instrumentation

The purpose of program instrumentation is to trace all {the
events involved in a given scenario-based specification.

a Java program under verification, we insert some
instructions into its bytecode. Compared with source code
instrumentation, bytecodes instrumentation brings more
flexibility, since it is impossible to obtain applications’
source codes in many cases.

For a Java program under verification, all the sending or
receiving events of a concerned message in a given
scenario-based specification must be logged for the runtime
verification purpose. For each event, the logged information
should include the message type, the message sender or
receiver, and the class of the sender or receiver.

In a Java program, a method call corresponds to a message
sending event, and the beginning of a method execution
corresponds to a message receiving event. Thus we insert
instructions for information gathering before each relevant
invoke instruction and at the beginning of each relevant
method body. For our verification purpose, we still need to
pair each sending event and its corresponding receiving event.
This task is not a trivial one because in parallel Java
programs, the sending events and receiving events of several
messages may interleave with each other. We solve this
problem based on the fact that in one process a sending event
and its corresponding receiving event are always executed in
the same thread and they must happen continuously in that
thread [26]. So we log also the ID of the thread in which the
method (and also the inserted instructions) is executed. Thus,
we can pair each logged sending event with the next receiving
event with the same thread ID.

The instrumentation algorithm is depicted in Fig. 11a. Let
D=(0,E,M,L, V) be a sequence diagram in a given
scenario-based specification. For a message m = (e, g, €') in
M, we use m.method to denote the corresponding method in a
program under verification. This method is defined in {(L(e"))
(the class of the receiver of m) or in an ancestor of {(L(¢')) (if

148
© The Institution of Engineering and Technology 2011

it is an inherited one). We can statically find the method
definition based on the class hierarchy. This method begins its
execution when a receiving event ¢’ of m happens. To log the
receiving events, our instrumentation algorithm inserts some
instructions at the beginning of m.method. These inserted
instructions invoke the method ‘Logger.logEvent’ using ‘this’
(the receiver), the string ‘meth_exec’, and the method name as
the real parameters. Fig. 115 shows an example of such
instructions. These instructions first push the real parameters
into the stack, then invoke the method Logger.logEvent. For
each sending event e of m, it is triggered in a method of {(L(e))
the class of the sender of m) and corresponds to an invoke
struction in the method. This method is defined in {(L(e)) or
ik ancestor of {(L(e)). There are four kinds of JVM invoke
mmstructions: INVOKEVIRTUAL, INVOKEINTERFACE,
ESPECIAL and INVOKESTATIC. The

TIC and INVOKESPECIAL instructions are

0 of our consideration because they are used
to invoke ethods, instance initialisation methods,
private m and methods in a superclass of ‘this’.
The forma VIRTUAL instruction is

instruction may send the
specified class is Z(L(¢)) o
specified method is g
INVOKEINTERFACE instruction i

ors of {(L(¢)) and the
at of an

invokeinterface < method8pec

where methodSpec specifies an interface and a »Such
an instruction may send the message m = only if the
class {(L(¢')) implements the specified interface and the
specified method is g. To log the sending events, our
algorithm inserts instructions before each of these invoke
instructions. The inserted instructions are similar to those
depicted in Fig. 10b. However, they invoke the method
Logger.logEvent using ‘this’ (the sender), the string ‘meth-
call’, and the method name as the real parameters. The
instructions inserted by the instrumentation algorithm may
log some irrelevant sending/receiving events. For example,
an object of an ancestor of ((L(¢)) may also execute
m.method so that an irrelevant receiving event is logged,
and an invoke instruction may also invoke the method g of
an ancestor of /(L(¢')), which makes the instructions
inserted before it log irrelevant sending events. To solve

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156
doi: 10.1049/iet-sen.2009.0009

www.ietdl.org

for each message m in M do
at the beginning of m.method, insert instructions that invoke Logger.logFEvent
using this, “meth_exec”, and the method name as real parameters;
for each message m = (e, g,¢’) in M do
for each method me of {(L(e)) (including methods inherited from ancestors) do
begin
for each INVOKEVIRTUAL instructions 4 in the body of me do
if the specified class of ¢ is ((L{e’)) or an ancestor of ¢(L(e’))
and the invoked method of i is g
then immediately before 7, insert instructions that invoke Logger.logEvent
using this, “meth_call”, and the method name as real parameters;
for each INVOKEINTERFACE instructions ¢ in the body of me do
if ¢(L(e’)) implements the specified interface of i
and the invoked method of i is g
then immediately before 7, insert instructions that invoke Logger.logEvent
using this, “meth_call”, and the method name as real parameters;

a

//push the reference this into the stack
g“meth_call” > [50] //push the string“meth_call” to the stack
g "method_name” > [51] //push the method name into the stack
i strument.Logger.logEvent(java.lang.Object, java.lang.String,

ava.lang.String) : void [57] //invoke Logger.logEvent.

b

ic void logEvent{Object obj, String sendRec, String mName }{

logFile.close();
}cateh(Exception e)

Fig. 11 Instrumentation algorithm and inserted code segments

a Instrumentation algorithm
b Example of the instrumented instructions
¢ Method LogEvent of the class logger

this problem, we also log the runtime class names of message
senders/receivers (see Fig. 10c¢) so that those irrelevant events
can be filtered out easily before the off-line consistency
checking.

The method Logger.logEvent is depicted in Fig. 11c. This
method logs all sending/receiving events. It calls
Thread.currentThread to obtain the thread ID, calls
(Object)obj.getClassName to obtain the runtime class name
of the sender/receiver and calls (Object)obj.toString to
obtain the ID string of the sender/receiver. Before running
the instrumented version of a program, the bytecode of
‘Logger’ should be put into proper directory so that this
method can be invoked by the inserted instructions.

The (Object)obj.toString method defined by the class
Object does return distinct hash codes for distinct objects,
but since this is implemented by converting the internal
address of the object into a hash code, it is still possible for
different objects that exist in different time to return the
same hash code. To determine the life cycles of these
dynamic objects, we need to instrument the finaliser of the
concerned classes. Whenever one object is finalised, its
hash code is logged so that we know what a hash code
exactly refers to at different time.

There are two assumptions for the above instrumentation
method. One is that object creation/destruction and return
messages are ignored in our scenario-based specifications so
that we do not need to instrument the corresponding codes
for tracing the corresponding events. The other assumption
is that all the objects occurring in a scenario-based

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156
doi: 10.1049/iet-sen.2009.0009

omAccessFile logFile =
new java.io.RandomAccessFile(logfilename,” rw”);
ile.length());
Thread.current Thread().toString()+sendRec+
+(Object)obj.toString()+{Object)obj.get ClassName()
ame);

one process in the program under
d object exists), which assures that
corresponding receiving event are
same thread. According to the Java
virtual machine specification g an object created by a
process cannot be accessed rocesses. That means
one object cannot be sharg reral processes. Only
threads belonging to the sa share one object
with each other. Under such i sending event
and its corresponding receiving eve ys iggthe same
0 f various

process
the main

specificatign belo
verificatio i

distributed in a network, but this case is a fr
verification focus in this paper. Therefore altho ove
two assumptions form a light limitation o roach, we
think they do not influence the entire verification purpose.

4.2 Program execution

For a program under verification, we gather its execution
traces by running its instrumented version. The program
executions are driven by previous prepared test inputs in a
data pool. During system-level program execution, all the
test inputs are what the users need to provide by keyboard
and/or mouse operation. We can also directly reuse the test
data pool if there exists one for the system testing.

Owing to absence of sufficient real-world data, creating
suitably test data is often a difficult task. In our approach,
test data are generated mainly by random method. Random

149
© The Institution of Engineering and Technology 2011

www.ietdl.org

test generation is a black-box technique, and needs no
information on the internal structure of a program other
than the input type and domain. Random method is
inexpensive charge and could be implemented in an
automatic fashion. Randomness can also increase the
variety of input values so as to exercise and profile different
behaviour of a program under verification.

Having only the test inputs are not enough for the
execution of a program. How and when is the test data fed
to the program? How the program is executed? These
problems should be solved before execution. We need a

s the execution, obtains test data
from the data poolNand feeds the test inputs to the program
upon request.

In our approac
interactive mode §
generation. We assu
input type and domain.

sequence, type, domain and sample n

ovide a heuristic wizard in
ife the random test data
have the knowledge of
pecify the input
his allows us
control over
test input generation for the pfo xgGution at the
system level. Here we just handle simplgiinput type such as
integer, real, char, enumerable set and s@jon,

4.3 Consistency checking

According to the algorithm for instrumenting programs given
in Section 4.1, for an event corresponding to i
(receiving) a message, we can obtain its sender (receiver)
and the class the sender (receiver) belongs to. We also ¢
pair a sending event and its corresponding receiving event
for the same message. For simplicity, from now on we
represent any program execution trace we gather by a
sequence which is of the form g,"e,"---"¢, where each
g (0<i<n) is an event corresponding to sending
(receiving) a message, and the class which the sender
(receiver) of &; belongs to is denoted by 7(s;).

According to Section 3, the object set of a scenario-based
specification is mapped to all the corresponding object
compositions in a program under verification. In a program
execution trace, since the events may be triggered by the
different objects with the same class, there may be multiple
scenarios generated by different object compositions, and
thus during consistency checking we need to consider the
scenarios generated by those object compositions
respectively, that is, we select one object composition at a
time and check their message sending or receiving event
sequence in the program execution trace for the specification
without considering the events triggered by other objects.
Therefore for simplicity we assume that in any program
execution trace we consider, there is just one object
composition corresponding to the object set of a given
scenario-based specification, that is, any program
execution trace satisfies that there is a bijection function that
maps each object triggering the events in the trace to an
object with the same class in the object set of the given
specification.

For matching the program execution traces and the traces of
a given sequence diagram, we define the ‘trails’ of a sequence

diagram as follows. Given a sequence
diagram D = (O, E, M, L, V), a program execution trace
gy g;"---"g, is a trail of D if it can be mapped into a

trace of D, that is, there is a corresponding trace of D of the
form e;"e,” - - - "e, such that

150
© The Institution of Engineering and Technology 2011

e for each i (0 <i <n), the class which the sender or
receiver of g; belongs to is the same as the one which the
sender or receiver of e; belongs to, that is, 7(g;) = {(L(e;));
e for each i (0 <i<mn), if e¢; is a message sending
(receiving) event, then g; corresponds the same message
sending (receiving) event; and

o if(e, g ¢)isinM (0 <i<j<n),thene; and & is a pair
of the sending and receiving events for the same message.

Similarly, we define the trails of an IOD G as a program
execution trace, which is the concatenation of the trails of
the sequence diagrams that make up G. Given an
IOD G = (U, N, succ, ref), a program execution trace
p=2g,"g g, is a trail of G if it can be mapped into a

n
trace of G, that is, there is a path v,"v,”- - - "v,, in G such that

* p=pyp - "py and
e p; is a trail of ref(v;) for each i (0 < i < m).

In the following, we give the solutions to exceptional
consistency checking and mandatory consistency checking.

4.3.1 Exceptional consistency checking: Let Sq(G) be
an exceptional consistency specification which consists of
one IOD G. It requires that any forbidden scenario
described by G never happens during the execution of a
program. For a program execution trace p = g,’e;"--- "€,
if there is a subsequence €;°¢; ;" --"¢; (0 <i<j <m)inp
which is a trail of G, then we say that a scenario described
y G occurs in p. Thus, we define that a program execution
satisfies Sg(G) if no scenario described by G occurs in
ram execution trace.
= (U, N, succ, ref) be an IOD. For a program

ace p=¢g,'g ---"g, a path segment
g in G such that (T, v,) € succ is a ‘pre-left
imag€ of e is (0 < i < n) such that

where each p; 0<j
there is a path in
scenario of G occurs in p,

m) is a trail of ref (v;). It is clear that if
eft image of p, then a
such a path by ‘left
m to check if there

algorithm traverses each path
from the start node T. The path
traversed is stored in a list variabl€ ‘cu
successive node ‘node’ of the last nod
first check whether it is such that
corresponding to currentpath is a left image
then return ‘true’, and we are done. If ° such that
the path segment corresponding to ‘currentpath’ is a pre-left
image of p, then we add node to currentpath and start the
search from it, otherwise we search the other successive
nodes. The algorithm backtracks when all the successive
nodes of the last node of currentpath are explored.
Based on this algorithm, the exceptional consistency
checking of G for p is simple. We just need to check if
there is a left image in G for each subsequence
€. g4 g, (0 <k <n). This algorithm can also be
used in the forward mandatory consistency checking, which
will described in the following subsection.

Similarly, we define the ‘pre-right images’ and ‘right
images’ of a program execution trace p = g,"g;"---"g, in
an IOD G = (U, N, succ, ref). A path segment vy"v,"---v,

. For each
ath’, we
segment

m

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156
doi: 10.1049/iet-sen.2009.0009

www.ietdl.org

currentpath := {T);
repeat
node := the last node of currentpath;
if all successive nodes of node are explored through currentpath
then /*backtracking®/ delete the last node of currentpath
else begin /*explore an unexplored successive node through currentpath*/
node 1= a successive node of node not explored through currentpath;
if node is such that the path segment corresponding to currentpath
is a left image of p
then return true;
if node is such that the path segment corresponding to currentpath
is a pre-left image of p
then append node to currentpath;

end
until currentpath = {};
turn false.

Fig. 12 Algorithm fo¥ ¢ ing left images in an 10D

in G such that (v,,, 1

is i (0 <i<n) such t
where each p; (0 <j <m

re-right image of pif there trail of D, and checking if there is a left image of
it 8= PP Py Eip1 842 00 8, NG

a trail of reffy). It is clear that

i ge of p, then 4.3.3 Backward mandatory consistency checking:

a scenario of G occurs in p, and e a path by Let Sg(D,G) be a backward mandatory consistency
right image of p. We can develogfan alg to check if specification, which consists of a sequence diagram D and
there is a right image of p in G, wh 1 i i an IOD G. It requires that if a reference scenario described
Fig. 13. The structure of the algorith Me by D occurs during the execution of a program, then it
one of the algorithm for checking left imagesNdepicted in must follow immediately from a scenario described by

ft G. Thus, for a program execution trace p =¢gy’¢,"--- "¢

ne

images is that the depth first search is reversed p satisfies Sp(D,G) if for any subsequence
from the end node L. Clearly, this algorithm cag, support gg; +1 g (0=isg < n) of p which is a trail of D,
the existential consistency checking. This algori C here is a subsequence g g (0<k<i)of p
also be used in the backward mandatory consisted€y h1ch is a trail of G (i.e. there is a right image of

checking, which will be described in Section 4.2.3. g inG).

4.3.2 Forward mandatory consistency checking: Let d in Fig. 13, we can check a program execution
Sp(D, G) be a forward mandatory consistency specification, -"g, for a Dbackward mandatory
which consists of a sequence diagrams D and an 10D G. It

'ﬁcatlon SB(D G) as follows: finding out
requires that if a reference scenario described by D occurs - "g; (0 <i<j<n)of pwhich

during the execution of a program, then a scenario i i ecking 1f there is a right image of

described by G must follow immediately. Thus, for a i

program execution trace p=2¢gg - Asn, p

satisfies Sp(D, G) if for any subsequence &g, - g; .3. idi j andatory consistency checking:

O0O<i<j<n) of p Wthh is a trail of D there is a irg alhmandatory consistency

subsequence ,,°€;," - "&; (j <k < n) of p which is a specification which consists Sequence diagrams D,

trail of G (i.e. there is a left image of ¢; _HASJ- g, in G). and D,, and an 10D G. that if a reference
Based on the algorithm for checking left images in an IOD scenario described by D; 0 g the execution of a

depicted in Fig. 12, we can check a program execution trace program and a reference scena by D, follows

p=¢,g ---"g, for a forward mandatory consistency then in between these two scenarig” a scgariogdescribed

specification Sg(D, G) as follows: finding out each by G must occur exactly. Thus, grafi’ execution
subsequence &;°g; ;" "¢; (0 <i <j <n) of p which is a trace p = g,"¢," - - - "¢, p satisfies Sp(for any
currentpath 1= (L);
repeat
node := the last node of currentpath;
if all preceding node of node are explored through currentpath
then /*backtracking®/ delete the last node of currentpath
else begin /*explore an unexplored preceding node through currentpath*/
node := a preceding node of node not explored through currentpath;
if node is such that the reversal of the path segment corresponding to
currentpath is a right image of p
then return true;
if node is such that the path segment corresponding to currentpath
is a pre-right image of p
then append node to currentpath;
end
until currentpath = {};
return false.
Fig. 13 Aigorithm for checking right images in an 10D
IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156 151

doi: 10.1049/iet-sen.2009.0009 © The Institution of Engineering and Technology 2011

www.ietdl.org

subsequence of p of the form

&8 g gL g, e g g ey,

where

0<i<j<k<m<n,
the subsequence ¢;°¢; " - -
the subsequence €,"g; ;" -+ - "¢,
any subsequence of the form g, ;" ---
b < k) is not any trail of D, or D,,

“e; is a trail of Dy,
is a trail of D,, and
ey (j<a<

ogram execution trace p = g,"g," - - - g,
atory consistency specification
ding out each subsequence of

Sp(Dy, D,, G) as fo
p of the form

€i €y "'88+1 g CCk1 Ei il T Ep

where

e 0<i<j<k<m<n,

e the subsequence €;°; ;- -+ "

e the subsequence £,"g; ;" - "¢, d

e any subsequence of the form g,’¢, ;" §: "¢, <

b < k) is not any trail of D, or D,,

and checking if the subsequence &, ";,," -+ "g;_
of G by the algorithm for checking left images or right images
in an 1I0D.

4.4 Implementation and evaluation

We have implemented a tool prototype UIMDRIVER to
support the runtime verification approach presented above,
which can be downloaded from http:/seg.nju.edu.cn/
UIMDRIVER/. It has been used to perform several case
studies for evaluating the potential and usability of our
runtime verification approach.

4.4.1 Tool prototype: UIMDRIVER is implemented in
Java as a plug-in component on the Eclipse platform [27],
and its GUI is shown in Fig. 14a. It consists of five
components as shown in Fig. 14b. The UML model editor
can help users to create or edit both sequence diagrams and
IODs, which is built on the top of the eclipse plug-in
component Topcased [28]. The test case manager sets up
test configurations, and supports users to manually establish

an object mapping from a given scenario-based specification
to a program (bytecodes) under verification. Based on this
mapping the instrumentor can automatically instrument
probe codes into the program (bytecodes) with the help of
the Byte Code Engineering Library [29]. The run manager
starts up the instrumented program and collects its execution
traces. The verifier checks if the collected program execution
traces are consistent with the specification on temporal
ordering of message interaction.

When using UIMDRIVER to check a program (bytecodes)
for a scenario-based specification, one should create the
models by using the UML model editor. Then with the help
of the test case manager, he needs to map the objects in the
models to their counterpart in the bytecodes, and set up
running configurations of test cases by hand. Once the object
mapping and test configurations are ready, the following
process is automated: the test case manager invokes the
instrumentor to generate the probe codes, the run manager
drives the execution of test cases based on their running
configurations and collects the execution traces, and the
verifier performs the conformance checking.

For a scenario-based specification and a program, once an
inconsistent case between them is detected by UIMDRIVER,
there are two causes for the case: one is the program bugs
resulting from the wrong temporal orders of method calls, the
other cause is that the UML models used as the specification
are imperfect (incorrect or incomplete) themselves. This
implies that UIMDRIVER can also be used to detect
imperfect UML interaction models. For example, in reverse

ngineering of legacy systems, we often need to derive UML

odels from codes. In those cases UIMDRIVER can be used
k if the derived UML models are imperfect.
andatory consistency specifications in our approach
interpreted in a ‘tight’ view, which means that if
scenario described by the given sequence
urmg the execution of a program, then it
ere to a scenario described by
1s view, in program execution no
d to occur in between the two
scenarios des e specification. There is also a
‘loose’ view to
specifications, whi
described by the given seq

a reference scenario
am occurs during the
adhere to, ‘possibly
the given IOD.
tion the other
twogscenarios

plements

sistency

intermittently’,
Accordlng to this view, in
scenarios are allowed to occur in b
described in the specification.
both the interpretations for the m
specifications.

Run Manager *— | UIMDRIVER Verifier

Fig. 14 GUI and architecture of tool prototype

152
© The Institution of Engineering and Technology 2011

UML Models Test Case

Editor Manager [Instrumentor

F===7 —_———

| Topcased } | BCEL :

L L
b

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156
doi: 10.1049/iet-sen.2009.0009

J

:NetToBank
T

|:Transac
L

|:ReceiptPRT| |:CustomerCOVJ

l] |] ==
T T

1

etS ecifi'csFormCuston%er |
:g:E))

l
1 i
selectTran:saction :
l
1
[[
send logSend !
logResponse! !
1 i
rintReceipt

I
continueSéssion ! E]
1 j
I 1
) I
I i

getMenuChoice

S WS % A

e diagram for the transaction use case

:CustomerCO J .

getMenuqhoice

send

Fig. 15 Sequence diagrams and specifications in the ATM systém

4.4.2 Case studies: UIMDRIVER has been uesd to
perform several case studies for evaluating the potential and
usability of our runtime verification approach.

Experiments on an ATM system: One experiment is taken on an
automated teller machine simulation system [30], which is a
complete example of object-oriented analysis, design and
programming applied to a moderate size problem. In [30], the
detailed documentations about analysis, design and
implementation are given. As depicted in Fig. 15, a sequence
diagram derived from transaction use case is selected to
construct specifications, which describes the event flow that
all the individual types of transaction (withdrawal, deposit,
transfer, inquiry) must conform to. It includes two successive
scenarios: the first is the business logic of one transaction
in which the messages getSpecificsFromCustomer,
selectTransaction and getMenuChoice occur in the
proper order, which corresponds to ask the customer to select
the transaction type and the menu choice; the second is the
transaction tracing process which consists of receipt printing
and information logging. This sequence diagram is used to
construct an exceptional consistency specification and a
backward mandatory consistency specification, respectively,

www.ietdl.org

-

!:ReceiptPRT! I:CustomerCOl‘*
T T
1

[

|:NetToBank
L
T

|:Transac
L

getMenuChoice

|
send logRespons:
logSend

etS ecifi%sFormCustow‘per I
:g:E | |
|

e

selectTran:saction
1
I
)
1
rintReceipt i
)
1
I

—_——— e

R S

continueSéssion ! D
1 1
I I
) [
1 i

®

Exceptional consistency specification

:NetToBank| |:ReceiptPRT| |:CustomerCOV\J
1L][1
T T T

rintReceipt ' i

1 i i
continueSkssion ;
I ! I

1 | I

:Transac

istency specification

aregdepicted in Fig. 15. The exceptional consistency
specifi is constructed by exchanging the positions of
m lo d and logResponse in the sequence
diagram, yitich vielatesgthe requirement that messages sent to
the bank Should be J@gged first and then messages got from
the bank a forms a forbidden scenario in the
program. Th ry consistency specification is

g the sequence diagram, which
ater the tracing process
has been completed.
First, UIMDRIVER

consistent with
es, and

to check if the program executi@
the specifications. The experiment is
UIMDRIVER reports no inconsiste
manually a bug in the program by chai
events corresponding to message g
logResponse. The experiment conducts 30 ti
each time UIMDRIVER drives the pro cutlon 20
times with random test cases. Although UIMDRIVER finds
out the inconsistent case in each experiment, the first
occurrences of the inconsistent case in the experiments are
different because of using random test cases. Fig. 16 depicts

20 0
e 8
g1s 815 iii
T 10 f T 10 |
5 el |l 5, | [T |
2l M 2 LRI o L A
1 3 & 7 9 11 13 16 17 19 21 23 2 21 29 1 3 5 7 8 11 13 16 1T 18 21 23 25 271 29

Exceptional consistency checking

Fig. 16 Experimental results of the ATM system

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156
doi: 10.1049/iet-sen.2009.0009

Backward mandatory consistency checking

153
© The Institution of Engineering and Technology 2011

www.ietdl.org

how many times the program has been executed in each
experiment when the first occurrence of the inconsistent case
is detected.

Experiments on FIPA lIterated Contract Net Iteration
Protocol: Another case study is about the FIPA Iterated
Contract Net Iteration Protocol (FIPA-ICNIP)[25], which is
specified in Section 2.2 by an IOD shown in Fig. 4. We
check if the FIPA-ICNIP protocol is implemented soundly
by the FIPA-OS v2.2.0 [31] which is an open source
system. The first step is splitting the specification in Fig. 4
into a forward datory consistency specification, as

bidding.
generated 5000 task
and get 5000 exec
consistency checking f the total 5000 execution
traces, 259 traces forward mandatory
specification. All of them d6 not reach the end node of the
IOD in the specification, and terming

diagram propose. After a dg
discovered that all these violatio

we

g the message
essage
cfp to Participant, which is inconsistent f#1 FIPA-
ICNIP specification [25].

In addition to the above case studies, we
experiments which are derived from a bridge t
system with 21 classes and 193 methods totall
official retirement insurance system with 17 classes and
methods totally. All the experiments have considera
supported our approach that UML interaction models are
used as automatic test oracles to detect the wrong temporal

ordering of message interaction in programs.

c
10

1

5 Related work

The runtime verification techniques have been used for Java
programs [8, 9, 32—36] to monitor temporal properties and
detect program errors such as deadlocks, data races and
memory leak. In those works, the specification languages
are based on formal notations or event-based programming
notations. In general, the advantage of our runtime
verification approach is to use UML interaction models to
construct simple and expressive scenario-based
specifications so as to facilitate the runtime verification
application in industry.

Some works on runtime verification of Java programs are
based on the idea of Design by Contract [37], and support
to represent the design assertions directly in programs
which are used for monitoring and verification. Jass [34]
allows Java classes to be annotated with specifications
based on CSP, which is a pre-compiler and supports
assertion monitoring. JML [32] is a notation for specifying
the detailed design of Java classes and interfaces using a
slight extension of Java’s expression syntax, and its tools
support runtime debugging of Java code. The literature [8]
and [9] extend JML with temporal logic and regular
expressions, respectively. In those works, the specifications
need to be elaborated based on programs, and it is difficult
to reuse design or other specifications directly. Relatively,
in our approach, a program under verification could be
regarded as a black box, and the specifications in
requirements and design could be directly reused.

To our knowledge, there has been few literature on runtime

erification of Java programs for scenario-based
ifications expressed by UML interaction models which
on the temporal ordering of message interactions
oljects. A scenario-based testing approach is
38] based on a simple subset of live sequence

J

Initiator ‘

‘:Participa nq

cfp

4

[<o/ ‘

propose/ refuse/
:Initiator Participant| _E cInitiator . Participant] sInitiator :Participant|
cfy ropose refuse]
fe————
‘ N ¢
reject/ /nfor/rm/ failure/
zInitiator . Participant cInitiator . Participant] Initiator :Participant|
reject accept accept
inform failure

o

Fig. 17 Forward mandatory consistency specification for the FIPA Iterated Contract Net Iteration Protocol

154
© The Institution of Engineering and Technology 2011

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156
doi: 10.1049/iet-sen.2009.0009

charts [39]. In that work, no implementation technique is
given, and the specification language cannot be used to
describe the backward and bidirectional mandatory
consistency specifications considered in this paper. A
preliminary work [21] has been given by us for runtime
verification of Java programs for scenario-based
specifications. But in that work, we just used simple
sequence diagrams to construct the scenario-based
specifications, which cannot describe potentially iterating
and branching system behaviour, and instrument programs
on their source codes. The idea of using UML models as
specifications in ime verification has been extended by
us to UML s ine diagrams [40]. In that work,
UML state ine diagrams are used as specifications to
runtime veitficationgof Java programs for the consistency
on object message refery temporal ordering, and the
techniques of progia mentation and consistency
Iso several works [41—43]

on verifying Java prog
techniques [44] whose ¢
program state spaces.

The field of runtime verification
testing from the perspective of

testing
in which the scenario-based specificatio sed as
automatic test oracles. There are a numb
UML model-based testing [45—49] whose inte
different from the one of our work, which are
deriving test cases and constraints from
models. Those work could be integrated in our approach
generating test cases to drive programs under verification.

The existing works on runtime verification have
typically focused on program monitoring, which interleaves
the analysis and recording program information with
program execution [50]. For this kind of online analysis, it
is necessary to improving the consistency checking
algorithms in our approach for producing the analysis
result faster. It is also promising to establish our
approach on multi-core platforms for achieving better
performance [51].

6 Conclusion

In this paper, we use UML2.0 IODs and sequence diagrams to
construct simple and expressive scenario-based
specifications, and give an approach to runtime verification
of Java programs. This approach leads to a supporting tool
for testing in which UML interaction models are used as
automatic test oracles to detect the wrong temporal ordering
of message interaction in programs.

Since UML has become widely accepted as a modelling
standard for object-oriented software development, our
work could facilitate runtime verification application in
industry. In this paper, our work focuses on the runtime
verification of Java programs, but the underlying approach
and ideas are more general and may also be applied to the
runtime verification of the other object-oriented programs.

7 Acknowledgement

Thanks to the anonymous reviewers for their valuable
comments and suggestions. This work is supported by the
National Natural Science Foundation of China (No.
90818022, No. 60721002), the National 863 High-Tech
Programme of China (No. 2009AA01Z148, No.

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156
doi: 10.1049/iet-sen.2009.0009

www.ietdl.org

2007AA010302), the National Grand Fundamental Research
973 Program of China (No. 2009CB320702), and by the
National S&T Major Project (2009z01036-001-001-3).

8 References

1 Havelund, K., Rosu, G. (Eds.): Proc. First Workshop on Runtime
Verification, Electronic Notes in Theoretical Computer Science, 2001,
vol. 55, Issue 2
2 Runtime Verification: http://www.runtime-verification.org/
3 Wikipedia encyclopedia. ‘Runtime Verification’. http://en.wikipedia.
org/wiki/Runtime_verification
4 Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: ‘Collecting statistics
over runtime executions’, Electron. Notes Theoret. Comput. Sci.,
2002, 70, (4), pp. 36—55
5 ITU-T: ‘Recommendation Z.120. ITU - telecommunication
standardization sector’. Geneva, Switzerland, May 1996
6 Rumbaugh, J., Jacobson, 1., Booch, G.: ‘The unified modeling language
reference manual’ (Addison-Wesley, 1999)
7 OMG. ‘UML2.0 superstructure specification’. http:/www.uml.org,
October 2005
8 Trentelman, K., Huisman, M.: ‘Extending JML specifications with
temporal logic’. Proc. Ninth Int. Conf. on Algebraic Methodology and
Software Technology (AMAST2002), 2002, (LNCS, 2422),
pp. 334-348
9 Cheon, Y., Perumandla, A.: ‘Specifying and checking method call
sequences of Java programs’, Softw. Qual. J., 2007, 15, pp. 7-25
10 Drusinsky, D.: ‘Semantics and runtime monitoring of TLCharts:
statechart automata with temporal logic conditioned transitions’,
Electron. Notes Theoret. Comput. Sci., 2005, 113, pp. 3-21
11 Dobing, B., Parsons, J.: ‘How UML is used?’, Commun. ACM, 2006, 49,
(5), pp. 109-113
12 Kluge, O.: ‘Modelling a railway crossing with message sequence chatrs
and Petri Nets’, in Ehrig, H. (Ed.): ‘Petri technology for communication-
based systems — advance in Petri Nets’, 2003, (LNCS, 2472),
pp. 197-218
13 eitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: ‘Comparing different
appuoaches for specifying and verifying real-time systems’. Proc. 10th
Workshop on Real-Time Operating Systems and Software,
, 1993, pp. 122129
‘Software reliability methods’ (Springer, 2001)

15 ann, G.J., Peled, D.: ‘An analyzer for message sequence
oncepts Tools, 1996, 17, pp. 70-77
16 .. ‘Timing constraints in message sequence

c. FORTE/PSTV’97, 1997
W.: ‘Extension of UML sequence diagrams
oc. Int. UML Workshop, 1998, (LNCS,

17 Seemann:

18 Firley, T., Huhn, M,

e, T., Goltz, U.: “Timed sequence

645-660
g of message sequence
cy Theory, 1999, (LNCS,

19 Alur, R., Yannakakis, M.:
charts’. Proc. 10th Int. Conf
1664), pp. 114—129

20 Li, X., Lilius, J.: ‘Timing analysis of

pp. 661-674
21 Li, X., Wang, L., Qiu, X., Lei, B, et al.: *
programs for scenario-based specifications’.

4006), pp. 94—-106

22 Lund, M.S., Stolen, K.: “A fully general operati
2.0 sequence diagrams with potential and mandatory choice’. Proc. 14th
Int. Symp. on Formal Methods (FM2006), 2006, (LNCS, 4085),
pp. 380—-395

23 Haugen, O., Husa, K.E., Runde, R.K., Stolen, K.: ‘STAIRS towards
formal design with sequence diagrams’, Softw. Syst. Model., 2005, 4,
(4), pp. 355-367

24 Cengarle, M.V., Knapp, A.: ‘Operational semantics of UML 2.0
interactions’. Technical report TUM-10505, (Technische Universitat
Munchen, 2005

25 Foundation for Intelligent Physical Agents: ‘FIPA Iterated Contract Net
Iteration Protocol specifications’. http://www.fipa.org/specs/fipa00030/,
2002

26 Lindholm, T., Yellin, F.: ‘Java virtual machine specification’ (Prentice-
Hall PTR, 1999, 2nd edn.)

27 Eclipse — an open development platform. http://www.eclipse.org/

28 Topcased. http://www.topcased.org/

29 The homepage of BCEL. http:/jakarta.apache.org/bcel/index.html

155
© The Institution of Engineering and Technology 2011

www.ietdl.org

30

31

32

33

34

35

36

37

38

39

40

41

156

Bjork, R.C.: “The simulation of an automated teller machine’. http://
www.math-cs.gordon.edu/local/courses/cs2 1 1/ATMExample/Links.html
Nortel Networks Corporation. ‘FIPA-OS distribution notes’. http:/fipa-
os.sourceforge.net, 2002

Leavens, G.T., Leind, KR M., Poll, E., Ruby, C., Jacobs, B.: ‘JML:
notations and tools supporting detailed design in Java’. Addendum to the
2000 Proc. Conf. on Object-oriented Programming, Systems, Languages,
and Applications, ACM Press, 2000, pp. 105-106

d’Amorim, M., Havelund, K.: ‘Event-based runtime verification of Java
programs’. Proc. Int. Workshop on Dymaic Analysis, (WOAD2005),
2005, pp. 1-7

Bartetzko, D., Fischer, C., Moller, M., Wehrheim, H.: ‘Jass — Java with
assertions’, Electr. Notes Theoretical Comput. Sci., 2001, 55, (2),

pp. 103-117
Havelund, K., R s ‘An overview of runtime verification tool Java
PathExplorer’ h. Syst. Des., 2004, 24, (2), pp. 189-215

7 1., Sokolsky, O., Viswanathan, M.: ‘Java-
urance tool for Java programs’, Formal Meth.
29-155

pp. 40-51

Lettrai, M., Klose,
time UML models’. Pree.
Language, (UML2001), 20

monitoring and testing of real-
. Conf. on Unified Modeling

diagram driven runtime verification
interaction consistency’. Proc. 23rd Annual 4
Computing, (ACM SAC2008), 2008, pp. 384
Park, D.Y.W., Stern, U., Skakebak, J.U., Will, 4D a model
checking’. Proc. First Int. Workshop on Automated Pro; ‘Analysis,
Testing, and Verification, 2000

© The Institution of Engineering and Technology 2011

42

43

44

45

46

47

48

49

50

51

Holzmann, G.J., Smith, M.H.: ‘Software model checking: extracting
verification models from source code’. Proc. 12th Int. Conf. on
Formal Description Techniques FORTE/PSTV’99, Beijing, China,
October 1999

Havelund, K., Pressburger, T.: ‘Model checking JAVA programs using
JAVA PathFinder’, Int. J. Sofiw. Tools Technol. Transfer, 2000, 2,
pp. 366—381

Clarke, E.M., Grumberg, O., Peled, D.A.: ‘Model checking’ (The MIT
Press, 1999)

Offutt, J., Abdurazik, A.: ‘Generating tests from UML specifications’. Proc.
Second Int. Conf. on Unified Modeling Language, (UML1999), 1999,
(LNCS, 1723), pp. 416—429

Chevalley, P., Thevenod-Fosse, P.: ‘Automated generation of statistical
test cases from UML state diagrams’. Proc. Int. Computer Software and
Applications Conf., 2001, pp. 205-214

Kim, Y.G., Hong, H.S., Cho, S.M., Bae, D.H., Cha, S.D.: ‘Test case
generation from UML state diagrams’, [EEE Proc. Softw., 1999, 146,
(4), pp. 187-192

Abdurazik, A., Offutt, J.: ‘Using UML collaboration diagrams for
static checking and test generation’. Proc. Third Int. Conf. on
Unified Modeling Language, (UML2000), 2000, (LNCS, 1939),
pp. 383-395

Ali, S., Jaffar-ur Rehman, M., Briand, L.C., Ashar, H., Zafar, Z.,
Nadeem, A.: ‘A state-based approach to integration testing for object-
oriented programs’. Technical report SCE-05-08, Department of
Systems and Computer Engineering, Carleton University, Canada, 2005
Dwyer, M.B., Kinneer, A., Elbaum, S.: ‘Adaptive online program
analysis’. Proc. Int. Conf. on Software Engineering, (ICSE2007),
2007, pp. 220—229

Yang, L., Tang, J., Zhao, J, Li, X: ‘A case study for
monitoring-oriented programming in multi-core architecture’. Proc.
Int. Workshop on Multicore Software Engineering, (IWMSE2008),
Germany, 2008, pp. 47—-52

IET Softw., 2011, Vol. 5, Iss. 2, pp. 142-156
doi: 10.1049/iet-sen.2009.0009

