

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG- 2009-IC-003

Modeling and Integrating Aspects with UML Activity Diagrams

Zhanqi Cui, Linzhang Wang, Xuandong Li, Dianxiang Xu

Postprint Version. Originally Published in: Proceedings of the 24th Annual ACM Symposium on Applied

Computing (ACM SAC2009), USA, ACM Press, 2009, pp.430-437.

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Modeling and Integrating Aspects with UML Activity
Diagrams

Zhanqi Cui, Linzhang Wang and Xuandong Li
State Key Laboratory of Novel Software Technology

Department of Computer Science and Technology, Nanjing University
Nanjing, Jiangsu, P.R. China 210093

zqcui@seg.nju.edu.cn;{lzwang,lxd}@nju.edu.cn

Dianxiang Xu
Department of Computer Science,North Dakota State University,Fargo, ND 58105, USA

dianxiang.xu@ndsu.edu

ABSTRACT
Dealing with crosscutting concerns has been a critical prob-
lem in software development processes. Aspect-Oriented
Programming (AOP) provides a viable programming-level
solution by separating crosscutting concerns from primary
concerns. To facilitate handling crosscutting concerns at
earlier software development phases, this paper proposes an
aspect-oriented modeling and integration approach at the
design level. In our approach, primary concerns are depicted
with UML activity diagrams as primary models, whereas
crosscutting concerns are described with aspectual extended
activity diagrams as aspect models. Each aspect model con-
sists of pairs of pointcut and advice model. Aspect models
can be integrated into primary models automatically. To
this end, a prototype tool called Jasmine-AOI has been im-
plemented as an Eclipse plug-in. With the tool support, we
have conducted two case studies, including 15 primary mod-
els and 8 aspect models. The case studies demonstrate that
our approach can greatly facilitate reasoning about cross-
cutting concerns when a system is modeled with activity
diagrams.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies

General Terms
Design

Keywords
crosscutting concern, aspect-oriented modeling, integration,
UML activity diagram

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

Dealing with crosscutting concerns has been a critical
problem in software development processes. Aspect-oriented
programming (AOP) [1] provides a viable programming-
level solution by modularizing crosscutting concerns into
aspects. Aspect-oriented modeling (AOM) handles cross-
cutting concerns by providing a higher level of abstraction
to alleviate software complexity in the design phase. In
particular, earlier awareness of crosscutting concerns in the
model-centric design can guide the subsequent implementa-
tion and validation activities. UML activity diagrams [2] can
be used for various purposes, such as validating existing re-
quirements, guiding system implementation, and generating
test cases for an implementation. They are usually drawn
to depict control flows, behaviors of software, and scenarios
performed by different stakeholders. Accordingly, crosscut-
ting concerns, such as authentication and logging, cut across
multiple activity diagrams that model different scenarios.
Therefore, a rigorous approach to aspect-oriented modeling
with activity diagrams is highly desirable. This approach is
also expected to integrate aspect models with primary mod-
els automatically in order to reason about the impacts of
crosscutting concerns on the primary concerns.

Proposed solution. In this paper, we propose a rigor-
ous approach of aspect-oriented modeling with activity dia-
grams. In our approach, activity diagrams are not only used
to describe primary concerns, but also extended to represent
crosscutting concerns. Crosscutting concerns are either se-
quential or parallel aspects that are running sequentially or
in parallel with primary concerns. For example, the autho-
rization concern in a banking system is a sequential aspect
because the failure of authorization will terminate the subse-
quent process of the primary concern. An informing concern
that notifies users in a mailing list when subscribed events
happen is a parallel aspect, because failures of informing
should not affect the subsequent primary processes. We in-
tegrate aspect models with primary models by three steps:
identifying join points in the primary models which match
the pointcut models, initializing the advice models based on
the identified join points, and weaving the initialized advice
models into the primary models.

Contributions. The main contribution of this paper is
a lightweight aspect-oriented extension to activity diagrams
for modeling crosscutting concerns as sequential and paral-
lel aspects with pointcut and advice models. The elements
of activity diagrams that can be defined as join points are

430

For Research Only

systematically categorized and appropriate advice types for
them are summarized. A set of rules is developed to auto-
matically integrate aspects with primary models. In addi-
tion, we report two case studies that demonstrate the feasi-
bility and effectiveness of our approach.

The rest of the paper is organized as follows. We start by
introducing the aspectual extension to activity diagrams and
aspect-oriented modeling with activity diagrams in section
2. Section 3 discusses our approaches for integrating aspects
with primary models. Section 4 presents the prototype tool
and the two case studies. Section 5 reviews related work.
Finally we conclude this paper and discuss the future work
in section 6.

2. ASPECT-ORIENTED MODELING WITH
ACTIVITY DIAGRAMS

UML activity diagrams can describe control flow based
program logic at different levels of abstraction and express
concurrency more naturally. The meaning of activity dia-
grams is explained in terms of petri-net notations (tokens,
flows etc.) instead of state machines. There are three types
of elements in activity diagrams: nodes, edges, and groups.
Each node is ActionNode, ControlNode, or ObjectNode. Nodes
in activity diagram are connected by edges which include
ControlFlow and ObjectFlow. Groups are general grouping
constructs for nodes, edges, and groups. A group may con-
tain other groups, and elements can belong to more than one
group. Groups can put related nodes and edges together and
highlight the relationship between them. We formally define
activity diagrams as follows.

Definition 1. (Activity Diagram). An activity diagram
AD is a 4-tuple (N, E, G, F), where:

• N = {n1, n2, · · · , ni} is a finite set of nodes.

• E = {e1, e2, · · · , ej} is a finite set of edges.

• G = {g1, g2, · · · , gk} is a finite set of groups.

• F ⊂ (N × E) ∪ (E × N) is the flow relation between
nodes and edges. Let Predecessor and Successor be
two flow relation functions. For each element e ∈ (N
∪ E), Predecessor(e)={ei |ei ∈ (N ∪ E) ∧ (ei, e) ∈ F},
Successor(e)= {ei|ei ∈ (N ∪ E) ∧ (e, ei) ∈ F};

2.1 A Running Example
Let us consider a banking system adapted from [10]. Fig. 1

and Fig. 2 show the traditional models of withdraw and
transfer scenarios. In the activity diagrams the primary
features are accompanied by five crosscutting security con-
cerns: Authentication, Authorization, Logging, Informing,
and Monitoring. They are indicated by the gray areas. It
is easy to tell that the primary features and crosscutting
concerns are tangled together. Also, most of the crosscut-
ting concerns are involved in both models. This makes them
redundant and difficult to maintain. Our approach will sep-
arate these crosscutting concerns into aspect models.

Two of the crosscutting concerns that appear in the with-
draw scenario are chosen for the running example. One con-
cern is the requirement of authorization which needs to be
performed before transactions, in order to ensure that the
authorized user has been validated. The other concern is the

B a n k C l i e n t

S e l e c t W i t h d r a w

F i l l W i t h d r a w F o r m

D i s p e n s e C a s h

P r o m p t W i t h d r a w F o r m

W i t h d r a w

A u t h o r i z a t i o n

A u t h e n t i c a t i o n

M
onitoring

P
rinting

L
ogging

[No]

[No]

Info rm
ing

[Yes]
V a l i d a t e d

A u t h o r i z e d

[Y e s]

Figure 1: The traditional model of withdraw

requirement of informing users that the balance has been
changed after transactions are completed in order to de-
tect potential embezzlements. Obviously, these two security
concerns also cut across other scenarios that modify account
balance, such as deposit and transfer. Fig. 3 describes the
primary model of the withdraw scenario without considering
the crosscutting concerns. This model is thus much simpler
than Fig. 1. In the following sections, we will illustrate how
to modularize crosscutting concerns into aspect models and
integrate the aspects with the primary model.

2.2 Aspectual Extension to Activity Diagrams
For modeling crosscutting concerns, we follow such terms

as “join point”, “pointcut”, and “advice” from the AspectJ[3]
terminology. However, we introduce them into activity dia-
grams with similar meanings.

As listed in Table 1, we introduce seven stereotypes and
three tagged values into activity diagrams. The Target col-
umn specifies where the extensions could be used. �Pointcut�
is used to stereotype an activity diagram to indicate that it
is a pointcut model. A tagged value “advice” is added to
�Pointcut� for denoting the name of the corresponding
advice model. In order to denote the position of the join
point element in a pointcut model, mark the join point el-
ement with the stereotype �Joinpoint�. An element in
a pointcut model stereotyped with �Argument� indicates
that elements in primary models matched to it are actual ar-
guments of the related formal parameter in the correspond-
ing advice model. A tagged value “parameter” is added to
�Argument� for denoting names of the related formal pa-
rameter. The formal parameters in the corresponding advice
model can map to actual arguments by this tagged value.
�Advice� is used to stereotype an activity diagram to in-
dicate that it is an advice model. A tagged value “type”
is added to �Advice� for denoting the type of the ad-

431

For Research Only

Table 1: Extensions for modeling aspects
Extension Type Applies To Description
�Pointcut� Stereotype Diagram Indicate that an activity diagram is a pointcut model.

advice Tagged Value �Pointcut� Indicate the corresponding advice model of the pointcut model.
�Joinpoint� Stereotype Element Denote the position of the join point element in a pointcut model.
�Argument� Stereotype Element Indicate elements that serve as actual arguments for related formal pa-

rameters in the corresponding advice model.
parameter Tagged Value �Argument� Denote the name of the element in the advice model which are related the

�Argument� element.
�Advice� Stereotype Diagram Indicate that an activity diagram is an advice model.

type Tagged Value �Advice� Indicate the type of the advice model. “type” is either “Before” or “After”.
�Entry� Stereotype Node Denote where tokens flow in an advice model from primary models.
�Exit� Stereotype Node Denote where tokens flow out an advice model to primary models.

�Parameter� Stereotype Element Indicate elements that serve as formal parameters in an advice model.

B a n k C l i e n t

S e l e c t T r a n s f e r

F i l l T r a n s f e r F o r m

T r a n s f e r S u c c e s s

P r o m p t T r a n s f e r F o r m

T r a n s f e r I n t o

A u t h o r i z a t i o n

A u t h e n t i c a t i o n

M o n i t o r i n g

P r i n t i n g

L o g g i n g

I n f o r m i n g

T r a n s f e r F r o m

A u t h o r i z a t i o n

M
onitori ng

P
rinti ng

L o g g i n g

I n f o r m i n g

V a l i d a t e d

A u t h o r i z e d

A u t h o r i z e d

[Y e s]

[N o]

[Y e s]

[N o]
[Y e s]

[N o]

Figure 2: The traditional model of transfer

vice model. �Entry� and �Exit� are used to stereotype
two nodes in an advice model to denote where tokens will
flow in from and flow out to primary models, respectively.
�Parameter� is applied to indicate elements which are for-
mal parameters in an advice model. A formal parameter’s
name equals to the related �Argument� element’s tagged
value “parameter” in the corresponding pointcut model.

2.3 Modeling Aspects
Crosscutting concerns are depicted by aspect models, which

consist of pointcut models and corresponding advice mod-
els, both are specified by extended activity diagrams. An
pointcut model serves as a predicate to select join points
from primary models and specifies advice model to be ap-
plied to these join points picked out from the primary mod-
els. An advice model specifies additional enhancements or
constraints with respect to the crosscutting concern under
study.

B
an

k
C

lie
nt

S e l e c t W i t h d r a w F i l l W i t h d r a w F o r m D i s p e n s e C a s h

P r o m p t W i t h d r a w F o r m W i t h d r a w

Figure 3: The primary model of withdraw

2.3.1 Join Points in the Activity Diagram
In order to design and integrate aspect models, positions

in primary models that are appropriate to apply advices
should be defined firstly. These positions are called join
points. In AspectJ, join points are defined as “Principled
points in the dynamic execution of a program” [3] such as:
method calls, method executions, and object initializations,
whereas join points at the model level are lack of system-
atical analysis and categorization. In [4], join points were
tagged on primary models which would retangles crosscut-
ting concerns with primary features again. McNeile et al.
[5] considered join points as events and states. Fuentes et
al. [6] defined join points as observable behaviors in the ac-
tivity diagram, such as object creation and destruction, the
sending and receiving of a message/method, the throwing of
an event, and the raising of an exception.

In our approach, join points are standard elements of ac-
tivity diagrams where crosscutting enhancements or con-
straints could be added. More specifically, for an element
to be a join point, it should be a standard element and has
an explicit name to distinguish itself from other elements in
an activity diagram, and it can be applied to additional en-
hancements or constraints caused by crosscutting concerns.
For example, an Action can be a join point, however, a Con-
trolNode cannot. Table 2 lists all elements of activity dia-
grams that can be defined as join points.

2.3.2 Pointcut
A pointcut model is used to select join points by specifying

the positions in primary models to which the corresponding
crosscutting concerns should be applied. Stein et al. pre-
sented a graphical way, which is a new diagram named Join
Point Designation Diagram(JPDD) [7], to represent the se-
lection of join points in a programming language indepen-
dent manner. In [8] and [9], pointcuts were specified by
explicit textual directives. In [6], a pointcut model is ex-
pressed by means of a sequence diagram. In our approach,
pointcuts are modeled with extended activity diagrams. We

432

For Research Only

Table 2: Join points in the activity diagram
Join Advice TypeName
Point Before After

Action
√ √ √

AcceptEventAction
√

✕
√

SendSignalAction
√ √

✕
DecisionNode/MergeNode ✕ - -

ForkNode/JoinNode ✕ - -Nodes
InitialNode/ActivityFinal ✕ - -

FlowFinal ✕ - -
DataStore

√ √ √
ObjectNode

√ √ √
ControlFlow

√ √ √
Edges

ObjectFlow
√ √ √

Activity
√ √ √

ExceptionHandler
√ √

✕
ExpansionRegion

√ √ √
Groups

ParameterSet ✕ - -
InterruptibleActivityRegion ✕ - -

ActivityPartition ✕ - -

choose activity diagrams to represent pointcut because we
intend to implicitly filter join points based on their behav-
ioral properties rather than explicit directives. The pointcut
model is defined as follows.

Definition 2. (Pointcut Model). A pointcut model PM
is an extended activity diagram with a 7-tuple (N, E, G, F,
AM, A, j), where:

• N, E, G, F are the nodes, edges, goups, and flow rela-
tions of an activity diagram for the pointcut model.

• AM denotes the name of the corresponding advice
model.

• A = {a1, a2, · · · , au} ⊆ (N ∪ E ∪ G) is a set of actual
arguments. Set A establishes a bridge which connects
formal parameters in the corresponding advice model
to primary models’ elements matched A.

• j ∈ (N ∪ E ∪ G) is a special element that specifies the
location constraints of candidate join points in activity
diagrams of primary concerns.

A pointcut model is stereotyped with �Pointcut�. In or-
der to indicate the corresponding advice model of the point-
cut model, a tagged value “advice” is added to �Pointcut�.
The pointcut model is used to select a set of join points that
satisfy certain constraints from primary models. In the ac-
tivity diagram, join points can be identified by self informa-
tion, structural scope, and running context. Based on the
semantics of the activity diagram, a pointcut model speci-
fies the constraints of candidate join points by the following
three facets:

• Signature pattern of the join points. Such as the names
of elements, the types of elements. Wildcards (such as
“*” and “?”) and logic operators (such as “||”, “&&”,
and “!”) are introduced to improve the expressibility
of pointcut model. Such constraints can be mapped to
the call or execution pointcut in AspectJ.

• Scope constraints. For example, join points can be
specified by indicating which groups they belong to.
Such constraints can be mapped to the within or with-
code pointcut in AspectJ.

< < A r g u m e n t > >
{ p a r a m e t e r : = s e r v e r }

B a n k

W i t h d r a w | |
T r a n s f e r * | | D e p o s i t

*<<
Jo

in
po

in
t>

>

< < P o i n t c u t > >
{ a d v i c e : = A d v i c e 2 }

< < P a r a m e t e r > >
s e r v e r

< < E n t r y > >

< < E x i t > >

S e n d E m a i l

< < A d v i c e > >
{ t y p e : = A f t e r }

< < A r g u m e n t > >
{ p a r a m e t e r : = s e r v e r }

B a n k

< < J o i n p o i n t > >
W i t h d r a w | |

T r a n s f e r * | | D e p o s i t

< < P o i n t c u t > >
{ a d v i c e : = A d v i c e 1 }

< < P a r a m e t e r > >
s e r v e r

< < E n t r y > >

A u t h o r i z a t i o n < < E x i t > >
A u t h o r i z e d

[y e s]
[n o]

< < A d v i c e > >
{ t y p e : = B e f o r e }

(a) P o i n t c u t 1

(c) P o i n t c u t 2

(b) A d v i c e 1

(d) A d v i c e 2

Figure 4: Pointcut and advice models of authoriza-
tion and informing

• Running context. For example, join points can be
specified by indicating their predecessor and successor
elements. Such constraints can be mapped to cflow or
cflowbelow pointcut in AspectJ.

In the running example, we construct two pointcut mod-
els to select join points from the primary models where
the authorization and parallel informing aspects emerge, re-
spectively. The pointcut model Pointcut1 depicted in Fig.4
(a) is constructed to select the elements in primary mod-
els to which the authorization advice will be applied. The
pointcut model is stereotyped with �Pointcut�. A tagged
value “advice” indicates the corresponding advice model is
“Adivce1”. This pointcut model describes the constraints
of target join points from the three facets that we defined
in section 2.3.1: the join point is an ActionNode, the name
of node is “Withdraw”, “TransferInto”, “TransferFrom”, or
“Deposit”; the node belongs to an ActivityPartition named
“Bank”; the predecessor and successor elements of the node
are arbitrary. There is an argument element “Bank” in the
pointcut model with a tagged value “parameter:=server”.
This tagged value maps this argument to the formal param-
eter element “server” in Advice1. This pointcut model will
capture the node “Withdraw” in Fig.3. The pointcut model
Pointcut2 depicted in Fig.4 (c) is constructed to select join
points in the primary models to which the parallel inform-
ing advice will be applied. The join points should meet
the following constraints defined in this pointcut model: the
join point is an edge of ControlFlow; the edge has a prede-
cessor node and arbitrary successor nodes (The predecessor
node is in an ActivityPartition named “Bank”, the name of
the predecessor node should be “Withdraw”, “Transfer”, or
“Deposit”). This pointcut model will capture the outgoing
edge of “Withdraw” in Fig.3.

2.3.3 Advice
Advices are also modeled by extended activity diagrams.

An advice model is defined as follows.

Definition 3. (Advice model). An advice model AM is
an extended activity diagram, which can be defined as an
7-tuple (N, E, G, F, P, entry, exit), where:

433

For Research Only

• N, E, G, F are the nodes, edges, groups, and flow re-
lations of an activity diagram for the advice model.

• P = {p1, p2, · · · , pv} ⊆ (N ∪ E ∪ G) is a set of formal
parameters.

• entry ∈ N and exit ∈ N are two nodes that indicate
where the tokens will flow in from and flow out to
primary models, respectively. Predecessor(entry) � E∧

Successor(exit) � E.

An advice model is stereotyped with �Advice�. In or-
der to indicate the type of the advice model, a tagged value
“type” is added to �Advice�. “type” would be either “Be-
fore” or “After”. Similar to AspectJ, an advice can be extra
operations before or after matched join points in primary
models. A “Before” advice is enhancements that should be
finished before the join points, while an “After” advice is
enhancements running after the join points. We impose a
constraint that advice cannot change the flow sequence of
the primary models other than adding additional process se-
quence into the primary models or terminate the progress.
For this reason, the “Around” advice is not supported in
the current approach. The advice types for potential joint
points are listed in Table 1.

In this paper, crosscutting concerns are modeled as se-
quential and parallel aspects. Sequential aspects are criti-
cal features that their running results determine the resid-
ual processes in primary models. Parallel aspects are un-
critical and time consuming features that their running re-
sults should not influence the residual processes in primary
models. In the activity diagram, nodes and groups repre-
sent some operations or behaviors, whereas edges represent
transformation of tokens. This semantic diversity leads to
different effects of advice for nodes and edges. Based on
this difference, the advice for nodes and groups is typically
sequential, and the advice for edges is parallel.

In the running example, the authorization concern is to
check whether or not the user is granted with permissions
before transactions are performed. The informing concern
is to send the user an email after the transactions are suc-
cessfully performed, notifying that the balance has changed.
Fig. 4 (b) models the authorization concern as sequential ad-
vice which means that the authorization action needs to be
performed before the join point nodes. As the advice model
presents, if the user has been granted with permissions, he
can continue the process to finish the transaction. Other-
wise, if the user is unauthorized, the transaction will be ter-
minated. The advice model is stereotyped with �Advice�.
The tagged value “type”, which is tagged on �Advice�,
indicates the type of the advice is “Before”. In the ad-
vice model, there is an element named “server” stereotyped
�Parameter� that serves as a formal parameter. The two
nodes stereotyped �Entry� and �Exit� denote where the
tokens will flow in from and flow out to the primary mod-
els respectively. Fig. 4 (d) models the informing concern as
parallel advice. In the advice model the “SendEmail” ac-
tion is fired at the join point and running in parallel with
the residual flow of the primary model. Informing through
email is a time consuming process and is not a critical fea-
ture. Therefore, the result of the informing advice should
not influence the main flow of the primary model. As the
advice model presents, the action “SendEmail” is fired after
the synchronizion bar.

(b) I n i t i a l i z e d m o d e l o f A d v i c e 1

(d) I n i t i a l i z e d m o d e l o f A d v i c e 2

B a n k

< < E n t r y > >

< < E x i t > > S e n d E m a i l

B a n k

< < E n t r y > >

A u t h o r i z a t i o n

< < E x i t > >

A u t h o r i z e d

[y e s]

[n o]

B
an

k

W i t h d r a w

(a) M a t c h e d s u b - g r a p h
 o f P o i n t c u t 1

M a t c h e d
j o i n p o i n t

B
an

k
C

li
en

t

W i t h d r a w

D i s p e n s e C a s h

M a t c h e d j o i n
p o i n t

(c) M a t c h e d s u b - g r a p h
 o f P o i n t c u t 2

Figure 5: Matched sub-graphs and initialized advice
models of authorization and informing

3. INTEGRATING ASPECT MODELS
To understand how crosscutting concerns affect primary

features, we can integrate the aspect models into the pri-
mary models to create a system model. The integration is
done by finding join points in primary models, initializing
advice models, and weaving advices into primary models.

3.1 Finding Join Points
The first step of integration is to find all join points in a

primary model that match a given pointcut. This is to find
the primary model’s sub-graphs that match the behaviors
defined in the pointcut model. The nodes, edges, and groups
of the primary model are possible join points when they
satisfy the constraints defined in the pointcut model.

Definition 4. (Matching Sub-Graph). A matching sub-
graph between a primary model AD (N1, E1, G1, F1) and
a pointcut model PM (N2, E2, G2, F2, AM, A, j) is a sub-
graph MSD (N3, E3, G3, F3) of AD which satisfies the fol-
lowing conditions.

• N3 ⊆ N1, E3 ⊆ E1, G3 ⊆ G1, and F3 ⊆ F1.

• There is an element ei ∈ (N3 ∪ E3 ∪ G3) conforms1

to PM.j.

• For each element ej ∈ ((N2 ∪ E2 ∪ G2)-PM.j), there
is an element ek ∈ (N3 ∪ E3 ∪ G3) conforms to ej .

The algorithm for finding out all matching sub-graphs be-
tween a primary model and a pointcut model is a bidirec-
tional breadth first traversal of a directed diagram. The
starting points of the traversal are the elements in the pri-
mary model that conform to the join point element of the

1Two elements are said to be conformed to each other if all
attributes of the two elements are equal. Two attributes are
equal if their values are equal with consideration of logical
operations and wildcards or at least one of them is null.

434

For Research Only

pointcut model. The traversal is a recursive process that
compares the predecessor and successor elements of the ini-
tial element and the corresponding element in the pointcut
model, respectively. For each element in the pointcut model,
if a conforming element is found in a sub-graph of the pri-
mary model, the sub-graph is a matching sub-graph, i.e., a
join point is identified in the primary model. Algorithm 1
details how matching sub-graphs are identified.

Algorithm 1. Identifying matching sub-graphs
INPUT: primary model AD (N1, E1, G1, F1),

pointcut model PM (N2, E2, G2, F2, advice, A, j)
OUTPUT: Set MSGs //each MSGi in MSGs is a matching

//sub-graph between AD and PM
for each element ei in AD {

if(ei conforms to PM.j) {
Sub-graph temp := Compare({PM.j}, {ei}, null)
if(temp != null) MSGs := MSGs + temp
// found a matching sub-graph

}
} return MSGs

PROCEDURE: Compare(Set Ele1, Set Ele2, Sub-graph temp)
/*If for all elements in Ele1, there is a corresponding element
in Ele2, then return the subset of Ele2 which match to Ele1,
else return null.*/
for each element ele1 in Set Ele1 {

if there is an ele2 in Ele2 equal to ele1{
if (ele2 is a node) temp.N := temp.N + ele2

else if (ele2 is an edge) {
temp.E := temp.E

⋃
ele2

temp.F := temp.F
⋃

(ele2 , Successor(ele2))
temp.F := temp.F

⋃
(Predecessor(ele2), ele2)

} else temp.G := temp.G
⋃ {ele2}

Ele2 := Ele2 - ele2

Set Pre1 := Predecessor(ele1), Pre2 := Predecessor(ele2)
if (Pre1 != null) Before := Compare(Pre1, Pre2, temp)
if (Before == null) return null

// predecessor elements of ele1 and ele2 not match
Set Succ1 := Successor(ele1), Succ2 :=Successor(ele2)
if (Succ1 != null) After := Compare(Succ1, Succ2, temp)
if (After == null) return null

// successor elements of ele1 are not match to ele2

} else return null // no element in Ele2 matches to ele1

} return temp

Consider Fig. 3. It is the primary model of the withdraw
scenario in the banking system. The node “Withdraw”,
matches to the node stereotyped �Joinpoint� in the point-
cut model Pointcut1 defined in Fig. 4 (a) with the considera-
tion of wildcards and logic operations. So, the sub-graph in
Fig. 5 (a), which contains the ActivityPartition “Bank” and
the node “Withdraw”, matches Pointcut1. Similarly, the
sub-graph in Fig. 5 (c), which contains the ActivityPartition
“Bank”, the node “Withdraw”, the outgoing edge of “With-
draw”, and the node “DispenseCash”, matches the pointcut
model Pointcut2 defined in Fig. 4 (c).

3.2 Initializing Advice Models
For the purposes of reuse, advice models are parameter-

ized as templates. Formal parameters in an advice model
serve as interfaces. The elements captured by the corre-
sponding pointcut model from primary models bear simi-
larity to actual parameters in a function call. An advice
model needs to be initialized before being woven into pri-
mary models if it contains any formal parameters. All the
formal parameters in it are replaced with the elements from
the primary models which conform to the related actual ar-
guments of the corresponding pointcut model. Thus, we
establish a mechanism for parameter-passing between pri-
mary and aspect models. This mechanism makes an advice

model reusable as a template upon various environments of
join points in primary models. Algorithm 2 describes how
an advice model is initialized.

Algorithm 2. Initializing an advice model
INPUT: pointcut model PM (N1, E1, G1, F1, AM, A, j),

advice model AM(N2, E2, G2, F2, P , entry, exit),
MSGi which is a matching sub-graph

OUTPUT: AMi (Ni, Ei, Gi, Fi, Pi, entryi, exiti)
//Initialized advice model of AM using MSGi

Ni := N2, Ei := E2, Gi := G2, Fi := F2, Pi := P ,
entryi := entry, exiti := exit

for each pv in Pi {
element au := the actual argument in PM.A related to pv

element e := the element in MSGi which conforms to au

replace pv with e
} return AMi

In the two advice models of the running example in Fig. 4,
there is a formal parameter of an ActivityPartition ‘server”
in both Advice1 and Advice2. This formal parameter in-
tends to catch the ActivityPartition in primary models which
represents the server side. Pointcut1 and Pointcut2 both
capture ActivityPartition “Bank” for the formal parameter
‘server”. The ActivityPartition “Bank” is the actual value
of the formal parameter ‘server”. The effect of initializing
Advice1 and Advice2 is that the ActivityPartition ‘server”
in both of the two advice models are replaced with “Bank”
in the primary model. The initialized advice modes are de-
picted in Fig. 5 (b) and (d).

3.3 Weaving Advices into Primary Models
In this subsection, we discuss the weaving of initialized

advices and primary models based on the types of advice
and join points. Our approach allows to explicitly specify
the precedence in which aspect models are integrated.

If the join point of a pointcut model is a node or a group,
the effect of weaving an advice model into a primary model
is that the additional processes designed in the advice model
are inserted into the primary model based on the identified
join points. The advice will process before or after the join
points, depending on the advice type, the actions defined
in the advice model, and the sequential primary model. If
the join point of a pointcut model is an edge, the effect of
weaving an advice model into a primary model is to syn-
chronize running flows of the advice and the primary model
at the identified join points. If the advice type is “Before”,
the processes designed in the advice model and the primary
model run in parallel and then they are synchronized at the
join point. Otherwise, if the advice type is “After”, the
join point forks two tokens to fire the advice model and the
residual of the primary model simultaneously. The detail of
weaving an advice model with a primary model is given in
algorithm 3.

Fig. 6 is the integrated model of the withdraw scenario af-
ter weaving the advice models of authorization and inform-
ing with the primary model. In this model, the authoriza-
tion advice was inserted before the “Withdraw” node and
the informing advice was inserted after outgoing edge of the
“Withdraw” node. With the petri-net like semantics of the
activity diagram, it is obvious to find that the “Withdraw”
can only be fired after successfully authorized. Its firing will
enable both “DispenseCash” and “SendEmail”. And the re-
sult of informing is disrelated with the main action flow of
the withdraw scenario. This running semantic fulfills the
requirements of authorization and informing.

In fact, the two security concerns in the withdraw sce-

435

For Research Only

B
an

k
C

l i e
nt

S e l e c t W i t h d r a w F i l l W i t h d r a w F o r m D i s p e n s e C a s h

P r o m p t W i t h d r a w F o r m W i t h d r a w A u t h o r i z a t i o n

S e n d E m a i l

A u t h o r i z e d

[y e s]
[n o]

Figure 6: The integrated model of withdraw

nario also cut across other scenarios that modify account
balance (e.g., deposit and transfer). The aspect models re-
flect the authorization and informing concerns of all balance
changing operations in the banking system. So the aspect-
oriented modeling that encapsulates crosscutting concerns
can be easily reused in other applications.

Algorithm 3. Weaving an advice model
INPUT: primary model AD (N1, E1, G1, F1), advice model AM,

pointcut model PM (N2, E2, G2, F2, AM, A, j), Set MSGs
//MSGs is a set matched sub-graphs between AD and PM

OUTPUT: WM (N3, E3, G3, F3)
for each sub-graph MSGi in MSGs {

AMi (Ni, Ei, Gi, Fi, Pi, entryi, exiti) :=
the initialized advice model of AM based on MSGi

Element ji := the element in MSGi which conforms to PM.j
if ji is a node and AM is a “Before” advice{

Edge e := Predecessor(ji)
Node n1 := Predecessor(e), n2 := ji

} else if ji is a node and AM is an “After” advice {
Edge e := Successor(ji),
Node n1 := ji, n2 := Successor(e)

} else if ji is an edge {
Edge e := ji

Node n1 := Predecessor(ji), Node n2 := Successor(ji)
}
Edge se := Successor(AMi.entry), pe := Predecessor(AMi.exit)
WM.N3 := AD.N1

⋃
AMi.Ni, WM.E3 := AD.E1

⋃
AMi.Ei

WM.G3 := AD.G1

⋃
AMi.Gi, WM.F3 := AD.F1

⋃
AMi.Fi

WM.F3 := WM.F3 - (AMi.entry, se) + (n1, se)
WM.F3 := WM.F3 - (pe, AMi.exit) + (pe, n2)
WM.N3 := WM.N3 - AMi.entry - AMi.exit
WM.E3 := WM.E3 - e

} return WM

4. PROTOTYPE TOOL AND CASE STUDY
In order to perform the integration automatically, we have

implemented a prototype tool named Jasmine-AOI 2 as an
Eclipse plug-in. With the support of Jasmine-AOI, we have
conducted two case studies: a banking system adapted from
[10] and a point-of-sale terminal (POST) system adapted
from CoCoME3 . In the banking system, there are eight ac-
tivity diagrams that describe the primary functional fea-
tures. Five of the scenarios “login”, “logout”, “add ac-
count”, “delete account”, and “update account” are per-
formed by clerks and the other three scenarios “withdraw”,
“transfer”, and “deposit” are performed by clients. In the
POST system, there are seven activity diagrams that de-
scribe the primary functional features. Scenarios “login”
and “logout” are performed by cashiers, scenarios “sale”
and “refund” by customers, scenarios “start up” and “shut
down” by managers, and scenario “add new user” by system
administrators.

Based on the functional scenarios we distilled out eight
crosscutting concerns. Five of them are sequential aspects

2Jasmine-AOI, http://cs.nju.edu.cn/lzwang/Jasmine-AOI/
3rCOS CoCoME, http://www.iist.unu.edu/cocome/

and three are parallel aspects. Table 3 shows the details of
all crosscutting aspects. The primary, pointcut, and advice
models are created in Enterprise Architect (EA)4, and are
imported to Jasmine-AOI, respectively. After assigning the
precedence of the aspects, the tool initializes them based on
the identified join points and weaves them into the primary
models to generate integrated system models. We manually
verified these integrated models and validated that they con-
form to both the primary requirements and the crosscutting
concerns in Table 3. The models can then guide the sub-
sequent aspect-oriented programming and testing activities.
Through the case studies, we found that modeling cross-
cutting concerns separately can reduce the complexity of
primary models. Furthermore, the eight aspect models are
reused fifty eight times in the primary models of the two sys-
tems. This indicates the feasibility of reusing aspect models
through our aspect-oriented modeling approach.

5. RELATED WORK
Aspect-oriented modeling can be done with different no-

tations. Jacobson and NG [11] leveraged the use case dia-
gram with �extend� relationship for modeling aspects as
extension use cases for extension points defined in base use
case. Xu et al. developed an aspect-oriented extension to
petri-nets for modeling and verifying security concerns [12].
Zhang et al. [13] presented aspect-oriented state machines
for modeling state-crosscutting concerns.

Several approaches have been proposed to integrate aspect-
orientation with UML diagrams. France et al. presented
directives for composing class diagrams based on its syntax
[14, 8]. They also proposed a technique to compose sequence
diagrams using tags on primary models [4]. Xu et al. pro-
vided an approach to weave state charts with aspect models
for testable specification and test generation [9, 15]. Whittle
et al. presented an aspect composition language SDMATA
for state diagrams to support rich composition forms [16]. In
order to solve the problem of multiple weaving of sequence
diagrams, Jézéuel [17] defined the correspondence between
a base model and a pointcut as three isomorphisms. In their
approach, join points can be detected even some events oc-
cur between the events specified in the pointcut. Klein et
al. [18] proposed a semantic based composing technique for
sequence and interaction overall diagrams. Fuentes et al.
[6] described how to construct and execute aspect-oriented
activity diagram models and illustrate with an online book
store example. Table 4 compares our approach to most re-
lated works from various perspectives.

In this paper, the target models are general design mod-
els instead of other types of models. While in [14], Reddy
provided an aspect-oriented modeling method for the UML
class diagram which is commonly used to design the statical
structural of software. The semantic based composing tech-
nique in [18] is proposed for sequence charts, which are used
to design interaction of software. In this paper, we focus on
aspect-oriented modeling with UML activity diagram, which
is a powerful tool to design behaviors of software at different
levels of abstraction.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present an aspect-oriented approach for

modeling and integrating crosscutting concerns as sequen-

4Enterprise Architect, http://www.sparxsystems.com.au/

436

For Research Only

Table 3: Crosscutting concerns in the Bank and POST system
Advice Join Point Occurrence OccurrenceConcerns
Type Type

Description
in Bank in POST

Authenticating Before Node Validate legal user. 7 6
Authorizing Before Node Guarantee critical operations are empowered. 6 5
Integrity Before Node Avoid adding duplicate items to the database. 2 1
Auditing After Node Record operations performed by employees. 5 5
Logging After Node Log operations performed by clients. 3 2
Printing After Edge Printing receipts after transactions finished. 6 2
Monitoring After Edge Monitor operations performed by clients for find-

ing potential abnormity.
3 2

Informing After Edge Inform clients when subscribed events happened. 3 0

Table 4: Comparison with most related works
Xu et al. [12] Reddy et al. [14] Xu et al. [9, 15] Klein et al. [18] Fuentes et al. [6] Jasmine-AOI

Primary Model Petri-net Class Diagram State Model Sequence Chart Activity Diagram Activity Diagram
Pointcut Model Textual Textual Textual Sequence Chart Sequence Chart Activity Diagram
Join point Declaration Explicit Explicit Explicit Implicit Implicit Implicit
Advice Model Petri-net Class Diagram State Model Sequence Chart Activity Diagram Activity Diagram
Selection Method Direct Direct Direct Semantics Structure Syntax
Tool Support - Kompose - - - Jasmine-AOI
Target Model Verification Design Testing,Verification Design Executable Design

tial and parallel aspect models based on UML activity dia-
grams. We add lightweight extensions to standard activity
diagrams with stereotypes and tag values. An aspect model
is designed as pairs of pointcut model and advice model with
extended activity diagrams. Advice models are woven into
primary models according to corresponding pointcut mod-
els. Two case studies have been conducted to demonstrate
the feasibility of our approach. Concerning the future work,
we will focus on verifying integrated models against system
requirements and testing system implementation against the
verified models. We also intend to build an aspect model
repository of typical crosscutting concerns. The aspect mod-
els can then be reused in different applications.

7. ACKNOWLEDGEMENT
The authors at Nanjing University are supported by the

National 863 High-Tech Programme of China (No.2007AA01
0302), the National Natural Science Foundation of China
(No.60721002 and No.60603036), the Jiangsu Province Re-
search Foundation (BK2007139), and Scientific Research Foun-
dation of Graduate School of Nanjing University (No.2008CL07).

8. REFERENCES
[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In ECOOP, pp.
220–242, 1997.

[2] OMG, UML Superstructure v2.1:, http://www.omg.
org/technology/documents/formal/uml.htm.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In ECOOP, pp. 327–353, 2001.

[4] R. Reddy, A. Solberg, R. France, and S. Ghosh.
Composing Sequence Model Using Tags. In MoDELS
workshop on Aspect-Oriented Modeling, 2006.

[5] M. McNeile and E. Roubtsova. Csp Parallel
Composition of Aspect Models. In AOSD workshop on
Aspect-Oriented Modeling, pp. 13–18, 2008.

[6] L. Fuentes and P. Sánchez. Towards Executable
Aspect-Oriented UML Models. In AOSD workshop on

Aspect-Oriented Modeling, pp. 28–34, 2007.

[7] D. Stein, S. Hanenberg, and R. Unland. Expressing
Different Conceptual Models of Join Point Selections
in Aspect-Oriented Design. In AOSD, pp. 15–26, 2006.

[8] R. B. France, I. Ray, G. Georg, and S. Ghosh.
Aspect-Oriented Approach to Early Design Modelling.
IEE Proceedings - Software, 151(4):173–186, 2004.

[9] D. Xu and W. Xu. State-Based Incremental Testing of
Aspect-Oriented Programs. In AOSD, pp. 180–189,
2006.

[10] R. C. Bjork. ATM. http://www.math-
cs.gordon.edu/courses/cs211/ATMExample/.

[11] I. Jacobson and P.-W. Ng. Aspect-Oriented Software
Development with Use Cases. Addison-Wesley
Professional, 2004.

[12] D. Xu and K. E. Nygard. Threat-Driven Modeling
and Verification of Secure Software Using
Aspect-Oriented Petri Nets. IEEE Transaction on
Software Engineering, 32(4):265–278, April 2006.

[13] G. Zhang, M. M. Hölzl, and A. Knapp. Enhancing
UML State Machines with Aspects. In MoDELS, pp.
529–543, 2007.

[14] Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. M.
Bieman, N. McEachen, E. Song, and G. Georg.
Directives for Composing Aspect-Oriented Design
Class Models. T. Aspect-Oriented Software
Development I, pp. 75–105, 2006.

[15] D. Xu, I. Alsmadi, and W. Xu. Model Checking
Aspect-Oriented Design Specification. In COMPSAC,
pp. 491–500, 2007.

[16] J. Whittle, A. Moreira, J. Araújo, P. K. Jayaraman,
A. M. Elkhodary, and R. Rabbi. An Expressive
Aspect Composition Language for UML State
Diagrams. In MoDELS, pp. 514–528, 2007.

[17] J.-M. Jézéquel. Model Driven Design and Aspect
Weaving. Journal of Software and Systems Modeling
(SoSyM), 7(2):209–218, May 2008.

[18] J. Klein, L. Hélouët, and J.-M. Jézéquel.
Semantic-Based Weaving of Scenarios. In AOSD, pp.
27–38, 2006.

437

For Research Only

