

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2011-IC-002

Feedback-directed test case generation based on UML activity

diagrams

Xin Chen, Nan Ye, Peng Jiang, Lei Bu, Xuandong Li

Postprint Version. Originally Published in: International Conference on Secure Software Integration

and Reliability Improvement-Companion 2011, IEEE Computer Society Press

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Feedback-directed test case generation based on UML activity diagrams

Xin Chen, Nan Ye, Peng Jiang, Lei Bu, Xuandong Li
State Key Laboratory for Novel Software Technology, Nanjing University

Department of Computer Science and Technology, Nanjing University
Nanjing, Jiangsu, P.R.China 210093

Email: chenxin@nju.edu.cn,{yenan,jiangp}@seg.nju.edu.cn,{bulei,lxd}@nju.edu.cn

Abstract—As UML models are widely used as design
blueprints, model-based techniques can be used in test case
generation. However, test cases obtained from these techniques
are usually abstract test cases, represented as sequences of
actions in abstract models, and heavy human efforts are needed
to translate them into concrete test cases accepted by programs
for execution. To reduce this effort, we present an approach to
automatically generating executable test cases based on activity
diagrams. It relates methods of classes in JAVA programs with
activity nodes in their design models and instruments codes
into JAVA programs to collect traces in execution. Regarding
traces collected in execution as feedbacks, data classifiers that
can predict test inputs’ impact on decision nodes in activity
diagrams are constructed. Those data classifiers are used to
guide the creation of new test inputs that can cover untouched
paths in design models. Experiments show that the approach
can greatly relieve testers’ burden in preparing test cases.

Keywords-Test case generation; Feedback-directed; Activity
Diagram;

I. INTRODUCTION

Software testing is the most widely used approach to
ensuring the quality of software. As the complexity and
size of software systems grow up quickly, manual testing
becomes so labor-intensive and error-prone that it is worth
developing automatic testing techniques, such as automatic
test case generation.

Model-based approaches are widely used in test case
generation. However, they still require heavy manual efforts.
Test cases obtained from model-based approaches are se-
quences of actions in the model, which can not be directly
fed to the software under test. For each sequence of actions
in the model, testers need to work out inputs that can
drive the software’s execution to cover such a sequence.
Manually translating abstract test cases into concrete ones
needs heavily human efforts and a lot of time. Thus, how
to automatically generate concrete test cases from design
models becomes an important problem worthy to be studied.

This paper presents an approach to automatically gen-
erating test inputs for JAVA programs with respect to the
simple path coverage adequacy criteria of their design

This work is supported by the National Natural Science Foundation
of China (No.91018006, No.61003025), National S&T Major Project
(2009z01036-001-001-3), and by the Jiangsu Province Research Founda-
tion(BK2010170).

models i.e. activity diagrams. A simple path refers to a
feasible execution in an activity diagram that starts from
the initial node and end with final nodes. The word ’sim-
ple’ means a path contains no circles. With the help of
testers, methods of classes in programs are related with their
counterparts, activity nodes in activity diagrams. Based on
the relation, tracing codes are instrumented into programs.
Then, instrumented programs are executed with generated
test inputs. Outputs generated by instrumented codes can
show the running traces of methods of classes. By collecting
these feedbacks from execution, the approach constructs a
classifier for each decision node in activity diagrams. Each
classifier can predict test inputs’ impact on its corresponding
decision node. Thus for any uncovered simple path, those
classifiers can point out what should the required test inputs
look like.

Different from existing works[2] which can only generate
abstract test cases. This approach can automatically generate
concrete test inputs accepted by programs. Compared with
the relevant work in [3], the classifiers used to guide test
case generation are not constructed by testers manually but
generated by machines automatically. This approach is also
more effective than our previous work in [1], where the
random test case generation method is applied.

II. FEED-BACK DIRECTED TEST CASE GENERATION

The workflow of our approach is shown in Figure 1. It
consists of three phrases:

1) The preparation before execution phrase consists
of two sequential steps: Relate methods of classes
with activities in activity diagrams and Instrument
JAVA programs under test based on the matching
configuration. On most occasions, the relating process
can be carried out automatically by matching names
of methods and classes on both sides. Methods and
classes on both sides usually share the same names
since classes in implementation must conform to their
counterparts in design models. Unmatched classes and
decision nodes are related by testers. The tracing codes
are instrumented at two places. Before any interested
method is invoked, a piece of codes that can print
the caller’s object identifier, the caller’s type and the
current thread’s identifier is inserted. At the same time,

2011 Fifth International Conference on Secure Software Integration and Reliability Improvement Companion

978-0-7695-4454-0/11 $26.00 © 2011 IEEE

DOI 10.1109/SSIRI-C.2011.12

9

2011 Fifth International Conference on Secure Software Integration and Reliability Improvement - Companion

978-0-7695-4454-0/11 $26.00 © 2011 IEEE

DOI 10.1109/SSIRI-C.2011.12

9

For Research Only

Figure 1. The Workflow of FDT method

a piece of codes printing the callee’s object identifier,
the callee’s type and the current thread’s identifier is
inserted before the first statement in any interested
method’s body.

2) The primary data classifiers generation process
includes threes steps. First, a number of test inputs are
randomly generated. Then, the instrumented program
is executed and fed with these inputs. At last, when
the program terminates, traces outputted in execution
are collected and analyzed. As JAVA programs permit
classes to be shared by many threads, thread identifiers
help to distinguish method’s invocation coming from
different threads. Object identifiers help to match
callees with their callers. Type information helps to
identifier callee’s full name. Orders in output traces
give the temporal orders of methods’ executions. All
these information are gathered to construct data clas-
sifiers of decision nodes in activity diagrams.

3) Before a randomly generated test case is executed,
its execution path in the activity diagram will be
predicted by calculating data classifiers of decision
nodes. Useless inputs that are unable to raise path
coverage will be dropped. To raise their accuracy, data
classifiers are updated after each test case is executed.

III. EXPERIMENTS

An online stock exchange system(OSES) is used in the
experiment. It is a JAVA program, reconstructed from an

Table I
THE PERFORMANCE OF CDT

test cases cov paths cov rate time
total exec

CDT 102453 100 14.2 0.789 102s
CDT 208219 200 15.6 0.867 208s
RT 100 100 13.2 0.733 98s
RT 200 200 15 0.833 199s

example in [4] which consists of 40 classes and 305 meth-
ods. The activity diagram, acting as its design model, has
25 activities, 12 decision nodes and 18 paths.

We set the max number of execution to 100 and 200. For
data Classifier Directed Test case generation(CDT), half of
the executed cases are used to build data classifiers. Each
experiment is repeated five times and the average of path
coverage results are recorded in Table I.

The table shows with the help of data classifiers, the CDT
method achieves higher path coverage with the suite of the
same size. By preventing similar test cases from execution,
the CDT method can travel wider area of the input domain.
At the same time, the computation of classifiers does not
bring too much overhead to the time. When we set the max
number of execution to 1000, both methods can achieve
100% path coverage. And on most occasions, the test suite
generated by CDT is smaller than that by Random Test case
generation(RT).

IV. CONCLUSION

In this paper, we have proposed an automatic test case
generation approach based on activity diagrams. It uses
runtime behaviors of programs as feedback to pick up useful
test cases with respect to the simple path coverage criterion
in activities diagrams from test cases generated in random.
Experiments show the approach can greatly relieve testers’
burden in preparing test cases.

REFERENCES

[1] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, X. LI. UML
Activity Diagram-Based Automatic Test Case Generation For
Java Programs. The Computer Journal, Vol.52, No.5, Oxford
Press, 2009, pp.545-556.

[2] L. C. Briand, Y. Labiche, K. Buist, G. Soccar. Automating
impact analysis and regression test selection based on UML
designs. In proceedings of the International Conference on
Software Maintenance (ICSM’02), IEEE Computer Society,
2002, pp 252-261.

[3] A. Krupp and W. Mueller. Classification trees for random tests
and function coverage. In proceedings of the conference on
Design, automation and test in Europe (DATE’06). European
Design and Automation Association. 2006. pp 1031-1032.

[4] M. Blaha, J. Rumbaugh. Object-Oriented Modeling and Design
with UML(Second Edition). Pearson Education Inc. 2005.

1010

For Research Only

