

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2011-IJ-001

Path-oriented bounded reachability analysis of composed

linear hybrid systems

Lei Bu, Xuandong Li

Postprint Version. Originally Published in: International Journal on Software Tools for Technology

Transfer, Volume 13, Number 4, pp.307-317, Springer

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

http://seg.nju.edu.cn/

Int J Softw Tools Technol Transfer (2011) 13:307–317
DOI 10.1007/s10009-010-0163-9

REGULAR PAPER

Path-oriented bounded reachability analysis
of composed linear hybrid systems

Lei Bu · Xuandong Li

Published online: 18 June 2010
© Springer-Verlag 2010

Abstract The existing techniques for reachability analysis
of linear hybrid systems do not scale well to the problem size
of practical interest. The performance of existing techniques
is even worse for reachability analysis of a composition of
several linear hybrid automata. In this paper, we present
an efficient path-oriented approach to bounded reachability
analysis of composed systems modeled by linear hybrid auto-
mata with synchronization events. It is suitable for analyzing
systems with many components by selecting critical paths,
while this task was quite insurmountable before because of
the state explosion problem. This group of paths will be trans-
formed to a group of linear constraints, which can be solved
by a linear programming solver efficiently. This approach of
symbolic execution of paths allows design engineers to check
important paths, and accordingly increase the faith in the cor-
rectness of the system. This approach is implemented into a
prototype tool Bounded reAchability CHecker (BACH). The
experimental data show that both the path length and the
number of participant automata in a system checked using
BACH can scale up greatly to satisfy practical requirements.

Keywords Hybrid systems ·
Bounded reachability analysis · Linear hybrid automata ·
Linear programming

L. Bu · X. Li (B)
State Key Laboratory of Novel Software Technology,
Nanjing University, Nanjing, Jiangsu 210093,
People’s Republic of China
e-mail: lxd@nju.edu.cn

L. Bu · X. Li
Department of Computer Science and Technology,
Nanjing University, Nanjing, Jiangsu 210093,
People’s Republic of China
e-mail: bl@seg.nju.edu.cn

1 Introduction

The model checking problem for hybrid systems is very
difficult. Even for a relatively simple class of hybrid sys-
tems, linear hybrid automata (denoted as LHA), the reach-
ability analysis problem is undecidable [1–4]. Several model
checking tools have been developed for reachability analysis
of LHA, but they do not scale well to the size of practi-
cal problems. The state-of-the-art tool HYTECH [5] and its
improvement PHAVer [6] need expensive polyhedra com-
putation, which greatly restricts the solvable problem
size.

In recent years, Bounded Model Checking (denoted as
BMC) [7] has been presented as a technique alternative to
BDD-based symbolic model checking, whose basic idea is
to encode the next-state relation of a system as a proposi-
tional formula, unroll this formula to some integer k, and
search for a counterexample in the model executions whose
length is bounded by k. The BMC problems can be solved
by Boolean Satisfiability (denoted as SAT) methods, which
have achieved tremendous progress in recent years, as sum-
marized in [8].

As extensions to BMC, there are several related works
[9–11] to check linear hybrid systems. In these techniques,
the model checking problems are reduced to the satisfiability
problem of a boolean combination of propositional variables
and linear mathematical constraints. Based on these tech-
niques, several tools were developed, such as MathSAT [11]
and HySAT [9], and all of them are based on a SAT-solver
that calls on demand solver for conjunctions of the domain-
specific constraints [12]. But the experiment results show
that it is difficult to apply those tools to analysis problems of
practical size. The performance of existing techniques is even
worse for reachability analysis of a composition of several
linear hybrid automata.

123

For Research Only

308 L. Bu, X. Li

(a) (b) (c)

Fig. 1 Sample automata and their compositional state space representations

As the existing techniques do not perform well concern-
ing analysis problems of practical size, in this paper, we
propose a complementary approach to develop an efficient
path-oriented technique for bounded reachability analysis of
LHA compositions. This technique checks a group of paths
at a time, one path for each LHA, where both the path length
and the number of participant automata checked can scale
up greatly to satisfy practical requirements. This approach
of symbolic execution of paths can be used by design engi-
neers to check critical paths, and thereby increase the faith
in the system correctness.

For a linear hybrid system consisting of several compo-
nents (LHA), with our approach users can assign a specific
path to each LHA, respectively, and all of the paths are trans-
formed into a group of linear constraints automatically. Then,
a few of constraints about system integration according to
the synchronization events in each path will be added to
ensure that the components cooperate correctly. It follows
that the reachability problem along those specific paths can
be reduced to a linear program. We shall use a simple example
to illustrate this idea below.

Most traditional verification methods of hybrid systems
consisting of several components require the composition
of the set of automata to a unique global automaton, which
leads to the critical problem of state explosion. For exam-
ple, Fig. 1a gives a simple system consisting of three sub-
systems: S, T , and K which synchronize with each other
by events b, e, and f . Even if these three subsystems are
all very simple, the state space of the resulting automata is
still quite large as we can see from Fig. 1b. While using our
path-oriented approach, as each of those three subsystems
only has one path, we simply select all of them for analysis,
as shown in Fig. 1c. First, for each of these three paths we
generate a group of linear constraints that represents all the
timed runs corresponding to the path. For example, for the
path 〈t1〉 → 〈t2〉 → 〈t3〉 → 〈t4〉 → 〈t5〉 of the system T , we

use

〈
ti
δi

〉
to indicate that the system has stayed in location

ti for time delay δi (nonnegative variable). Any timed run
corresponding to this path can be represented by

〈
t1
δ1

〉
→

〈
t2
δ2

〉
→

〈
t3
δ3

〉
→

〈
t4
δ4

〉
→

〈
t5
δ5

〉

where δ1, δ2, δ3, δ4, δ5 must satisfy all the time constraints
enforced by the system, which forms a group of linear con-
straints. Second, several constraints will be added to ensure
that these three components cooperate accurately according
to the synchronization events, which are illustrated by the
dashed lines and SY N(event) in Fig. 1c. Because such a state
space representation by linear constraints is equivalent to the
Cartesian product representation shown in Fig. 1b in terms of
reachability analysis, the reachability analysis problem along
these three paths can be transformed into a linear program-
ming problem, which can be solved efficiently.

Therefore, the path-oriented approach presented in this
paper is to check if an LHA composition satisfies a reach-
ability specification along a given group of its component
paths. This approach has been implemented into a prototype
tool Bounded reAchability CHecker (BACH). The experi-
mental data show that both the path length and the number
of participant components in a system checked using BACH
can scale up greatly to satisfy practical requirements.

The rest of the paper is organized as follows. In the next
section, we define the class of linear hybrid automata and
the compositions of linear hybrid automata considered in this
paper. Section 3 presents the linear programming based solu-
tion for the path-oriented reachability analysis of LHA com-
positions. Section 4 describes several case studies to show
the ability of BACH, and also gives a comparison with other
tools. Finally the conclusion is made in Sect. 5.

123

For Research Only

Path-oriented bounded reachability analysis 309

2 Linear hybrid automata and their composition

2.1 Linear hybrid automata

The linear hybrid automata considered in this paper are a var-
iation of the definition given in [1]. The flow conditions of
variables in a linear hybrid automaton considered here may
be given as a range of possible values for their derivatives.

Definition 1 A linear hybrid automaton (LHA) H is a tuple
H = (X, �, V, V 0, E, α, β, γ), where

– X is a finite set of real-valued variables; � is a finite set
of event labels; V is a finite set of locations; V 0 ⊆ V is
a set of initial locations.

– E is a transition relation whose elements are of the form
(v, σ, φ,ψ, v′), where v, v′ are in V ,σ ∈ � is a label,φ is
a set of transition guards of the form a ≤ ∑l

i=0 ci xi ≤ b,
and ψ is a set of reset actions of the form x := c where
xi ∈ X , x ∈ X , a, b, c and ci are real numbers (a, b may
be ∞).

– α is a labeling function which maps each location in V to
a location invariant which is a set of variable constraints
of the form a ≤ ∑l

i=0 ci xi ≤ b where xi ∈ X, a, b and
ci are real numbers (a, b may be ∞).

– β is a labeling function which maps each location in V to
a set of flow conditions which are of the form ẋ = [a, b],
where x ∈ X , and a, b are real numbers (a ≤ b). For any
v ∈ V , for any x ∈ X , there is one and only one flow
condition ẋ = [a, b] ∈ β(v).

– γ is a labeling function which maps each location in V 0

to a set of initial conditions which are of the form x = a
where x ∈ X and a is a real number. For any v ∈ V 0, for
any x ∈ X , there is at most one initial condition definition
x = a ∈ γ (v).

We use the sequences of locations to represent the evolu-
tion of an LHA from location to location. For an LHA H =
(X, �, V, V 0, E, α, β, γ), a path segment is a sequence of

locations of the form 〈v0〉 (φ0,ψ0)−→
σ0

〈v1〉 (φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈vn〉, which satisfies (vi , σi , φi , ψi , vi+1) ∈ E for each i(0 ≤
i < n). A path in H is a path segment starting at an initial

location in V 0. For a path in H of the form 〈v0〉 (φ0,ψ0)−→
σ0

〈v1〉 (φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1
〈vn〉, by assigning each location

vi with a time delay stamp δi we get a timed sequence of the

form

〈
v0

δ0

〉
(φ0,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn

δn

〉
where

δi (0 ≤ i ≤ n) is a nonnegative real number, which repre-
sents a behavior of H such that the system starts at v0, stays
there for δ0 time units, then jumps to v1 and stays at v1 for
δ1 time units, and so on.

The behavior of an LHA can be described informally
as follows. The automaton starts at one of the initial loca-
tions with some variables initialized to their initial values.
As time progresses, the values of all variables change con-
tinuously according to the flow condition associated with the
current location. At any time, the system can change its cur-
rent location from v to v′ provided that there is a transition
(v, σ, φ,ψ, v′) from v to v′ whose all transition guards in φ
are satisfied by the current value of the variables. With a loca-
tion change by a transition (v, σ, φ,ψ, v′), some variables
are reset to the new value accordingly to the reset actions
in ψ . Transitions are assumed to be instantaneous.

Let H = (X, �, V, V 0, E, α, β, γ) be an LHA. Given

a timed sequence ω of the form

〈
v0

δ0

〉
(φ0,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn

δn

〉
, let ζi (x) represent the value of x (x ∈ X)

when the automaton has stayed at vi for delay δi along with
ω (0 ≤ i ≤ n), and λi (x) represent the value of x (x ∈ X) at
the time the automaton reaches vi along with ω(0 ≤ i ≤ n).
It follows that λ0(x) = a if x = a ∈ γ (v0), and λi+1(x) ={

d if x := d ∈ ψi

ζi (x) otherwise
(0 ≤ i < n).

Definition 2 For an LHA H = (X, �, V, V 0, E, α, β, γ),

a timed sequence of the form

〈
v0

δ0

〉
(φ0,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn

δn

〉
represents a behavior of H if and only

if the following condition is satisfied:

– 〈v0〉 (φ0,ψ0)−→
σ0

〈v1〉 (φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1
〈vn〉 is a path;

– δ1, δ2, . . . , δn ensure that each variable x ∈ X evolves
according to its flow condition in each location vi (0 ≤
i ≤ n), i.e., uiδi ≤ ζi (x) − λi (x) ≤ u′

iδi

where ẋ = [ui , u′
i] ∈ β(vi);

– all the transition guards in φi (1 ≤ i ≤ n−1) are satisfied,
i.e., for each transition guard

a ≤ c0x0 + c1x1 + · · · + cl xl ≤ b in φi ,

a ≤ c0ζi (x0)+ c1ζi (x1)+ · · · + clζi (xl) ≤ b;

– the location invariant of each location vi (1 ≤ i ≤ n) is
satisfied, i.e.,

– at the time the automaton leaves vi , each variable con-
straint a ≤ c0x0 + c1x1 + · · · + cl xl ≤ b in α(vi)

(0 ≤ i ≤ n) is satisfied, i.e., a ≤ c0ζi (x0)+c1ζi (x1)+
· · · + clζi (xl) ≤ b, and

– at the time the automaton reaches vi , each variable
constraint a ≤ c0x0 + c1x1 + · · · + cl xl ≤ b in

123

For Research Only

310 L. Bu, X. Li

α(vi) (0 ≤ i ≤ n) is satisfied, i.e.,

a ≤ c0λi (x0)+ c1λi (x1)+ · · · + clλi (xl) ≤ b.

For ρ = 〈v0〉 (φ0,ψ0)−→
σ0

〈v1〉 (φ1,ψ1)−→
σ1

· · · (φn−1,ψn−1)−→
σn−1

〈vn〉
which is a path of an LHA H , let L(ρ) represent the set of
the behaviors of H of the form〈
v0

δ0

〉
(φ0,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1,ψ1)−→
σ1

· · · (φn−1,ψn−1)−→
σn−1

〈
vn

δn

〉
.

2.2 Composition of linear hybrid automata

For a group of linear hybrid automata, their composition is
defined as a product linear hybrid automaton generated by
synchronizing all the components with respect to the same
event labels.

Definition 3 Let H1 = (X1, �1, V1, V 0
1 , E1, α1, β1, γ1)

and H2 = (X2, �2, V2, V 0
2 , E2, α2, β2, γ2) be two LHA,

where X1 ∩ X2 = ∅. The composition of H1 and H2, denoted
as H1||H2, is an LHA N = (X, �, V, V 0, E, α, β, γ)where

– X = X1 ∪ X2;� = �1 ∪�2; V = V1 × V2;
V 0 = V 0

1 × V 0
2 ;α((v1, v2)) = α(v1) ∪ α(v2);

β((v1, v2))=β(v1)∪β(v2); γ ((v1, v2))=γ (v1)∪γ (v2);

– E is defined as follows:

– for a ∈ �1 ∩ �2, for every (v1, a, φ1, ψ1, v
′
1) in E1

and (v2, a, φ2, ψ2, v
′
2) in E2, E contains ((v1, v2), a,

φ1 ∪ φ2, ψ1 ∪ ψ2, (v
′
1, v

′
2));

– for a ∈ �1 \ �2, for every (v, a, φ, ψ, v′) in E1 and
every t in V2, E contains ((v, t), a, φ, ψ, (v′, t));

– for a ∈ �2 \ �1, for every (v, a, φ, ψ, v′) in E2 and
every t in V1, E contains ((t, v), a, φ, ψ, (t, v′)).

For all m > 2, the composition of LHA H1, H2, · · · , Hm ,
denoted as H1||H2|| . . . ||Hm , is an LHA which is defined
recursively as H1||H2|| . . . ||Hm = H1||H ′ where
H ′ = H2||H3|| . . . ||Hm .

We call a composition of linear hybrid automata CLHA for
short. Let N = H1||H2|| . . . ||Hm be a CLHA where Hi =
(Xi , �i , Vi , V 0

i , Ei , αi , βi , γi) (1 ≤ i ≤ m) and ρ be a path
in N of the form

ρ = 〈v0〉 (φ0,ψ0)−→
σ0

〈v1〉 (φ1,ψ1)−→
σ1

· · · (φn−1,ψn−1)−→
σn−1

〈vn〉.

It follows that vi = (vi1, vi2, · · · , vim) (0 ≤ i ≤ n) where
vik ∈ Vk (1 ≤ k ≤ m). For any k (1 ≤ k ≤ m), we con-
struct the sequence ρk from ρ as follows: replace any vi with

vik(0 ≤ i ≤ n), and for any
(φi−1,ψi−1)−→

σi−1
〈vik〉 (1 ≤ i ≤ n),

if (vi−1k, σi−1, φ, ψ, vik) ∈ Ek , then replace it with
(φ,ψ)−→
σi−1

〈vik〉, otherwise remove it. It follows that ρk is a path in Hk .
We say that ρk is the projection of ρ on Hk . Intuitively, ρk is
the execution trace of N on Hk when N runs along ρ.

3 Path-oriented bounded reachability analysis using
linear programming

In this section, we present a solution for path-oriented
bounded reachability analysis of compositions of linear
hybrid automata based on linear programming.

For an LHA H = (X, �, V, V 0, E, α, β, γ), a reach-
ability specification, denoted as R(v, ϕ), consists of a loca-
tion v in H and a set ϕ of variable constraints of the form
a ≤ c0x0 + c1x1 + · · · + cl xl ≤ b where xi ∈ X for any
i (0 ≤ i ≤ l), a, b and ci (0 ≤ i ≤ l) are real numbers.

Definition 4 Let H =(X, �, V, V 0, E, α, β, γ) be an LHA,
and R(v, ϕ) be a reachability specification. A behavior of H
of the form〈
v0

δ0

〉
(φ0,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn

δn

〉

satisfies R(v, ϕ) if and only if vn = v and each variable
constraint in ϕ is satisfied when the automaton has stayed in
vn for delay δn , i.e., for each variable constraint a ≤ c0x0 +
c1x1 + · · · + cl xl ≤ b in ϕ,

a ≤ c0ζn(x0)+ c1ζn(x1)+ · · · + cmζn(xl) ≤ b

where ζn(xk) (0 ≤ k ≤ l) represents the value of xk when
the automaton has stayed at vn for the delay δn .H satisfies
R(v, ϕ) if and only if there is a behavior of H which satisfies
R(v, ϕ).

In this paper, the problem we concern is to check if a
CLHA N = H1||H2|| . . . ||Hm satisfies a reachability spec-
ification by having a behavior along a set of finite paths in
H1, H2, . . . , Hm , which is defined formally as follows:

Definition 5 Let N = H1||H2|| . . . ||Hm be a CLHA,
P = {ρ1, ρ2, . . . , ρm} be a path set, where ρi is a finite
path in Hi (1 ≤ i ≤ m), and R(v, ϕ) be a reachability spec-
ification. P satisfies R(v, ϕ) if and only if there is a path ρ
of N satisfies the following condition:

– the projection of ρ on Hi is ρi (1 ≤ i ≤ m), and
– there is a behavior of N in L(ρ) which satisfies R(v, ϕ).

Let N = H1||H2|| . . . ||Hm be a CLHA, and
P = {ρ1, ρ2, . . . , ρm} be a path set where ρi is a finite path
in Hi (1 ≤ i ≤ m). In general, according to Definitions 4 and
5, the problem of checking P for a reachability specification
R(v, ϕ) could be solved by traversing the related behavior
of N and checking if R(v, ϕ) is satisfied. But this approach

123

For Research Only

Path-oriented bounded reachability analysis 311

suffers from the infinite state space and state space explosion
problems. In the following, we present a linear programming
based solution to the problem, which is based on the concept
of trails. Intuitively, a trail of N consists of the behavior
of H1, H2, . . . , Hm which are synchronized in terms of the
same event labels.

Definition 6 Let N = H1||H2|| . . . ||Hm be a CLHA, where
Hi = (Xi , �i , Vi , V 0

i , Ei , αi , βi , γi) (1 ≤ i ≤ m). A trail
τ of N is of the form (ω1, ω2, . . . , ωm) where each ωi (1 ≤
i ≤ m) is a behavior of Hi of the form

〈
vi0

δi0

〉
(φi0,ψi0)−→
σi0〈

vi1

δi1

〉
(φi1,ψi1)−→
σi1

. . .
(φini −1,ψini −1)−→

σini −1

〈
vini

δini

〉
, and satisfies the syn-

chronization constraint, i.e. for any k, j (1 ≤ k, j ≤ m),

– δk0 + δk1 + · · · + δknk = δ j0 + δ j1 + · · · + δ jn j ,
– for any σkp (0 ≤ p ≤ nk) which is the dth occurrence in
ωk of the elements in �k ∩ � j , there is σ jq (0 ≤ q ≤
n j), which is the dth occurrence in ω j of the elements in
�k ∩� j , such that σ jq = σkp and δk0 +δk1 +· · ·+δkp =
δ j0 + δ j1 + · · · + δ jq .

For a CLHA, in essence its trails form another represen-
tation of its behavior.

Definition 7 Let N = H1||H2|| . . . ||Hm be a CLHA where
Hi = (Xi , �i , Vi , V 0

i , Ei , αi , βi , γi) (1 ≤ i ≤ m),
τ = (ω1, ω2, . . . , ωm) be a trail of N where ωi (1 ≤ i ≤ m)

is of the form

〈
vi0

δi0

〉
(φi0,ψi0)−→
σi0

〈
vi1

δi1

〉
(φi1,ψi1)−→
σi1

. . .
(φini −1,ψini −1)−→

σini −1〈
vini

δini

〉
, and R(v, ϕ) be a reachability specification. τ satis-

fies R(v, ϕ) if and only if v = (v1n1, v2n2 , . . . , vmnm) and
each variable constraint in ϕ is satisfied when Hi has stayed
in vini for the delay δini (1 ≤ i ≤ m), i.e., for each variable
constraint a ≤ c0x0 + c1x1 + · · · + cl xl ≤ b in ϕ,

a ≤ c0ζn(x0)+ c1ζn(x1)+ · · · + cmζn(xl) ≤ b

where for any k (0 ≤ k ≤ l), if xk ∈ Xi (1 ≤ i ≤ m) then
ζn(xk) (0 ≤ k ≤ l) represents the value of xk when Hi has
stayed at vini for the delay δini .

Theorem 1 Let N = H1||H2|| . . . ||Hm be a CLHA, and
R(v, ϕ) be a reachability specification. N satisfies R(v, ϕ)
if and only if there is a trail of N which satisfies R(v, ϕ).

The proof of this theorem is presented in “Appendix”. For
a CLHA N = H1||H2|| . . . ||Hm , for a path set
P = {ρ1, ρ2, . . . , ρm} whereρi is a finite path in Hi (1 ≤ i ≤
m), let L(P) represent the set of the trails of N which are of
the form (ω1, ω2, . . . , ωm) where ωi ∈ L(ρi)(1 ≤ i ≤ m).
From Definition 5 and Theorem 1, we have the following
corollary.

Fig. 2 Train Gate Controller

Corollary 1 Let N = H1||H2|| . . . ||Hm be a CLHA,
P = {ρ1, ρ2, . . . , ρm} be a path set where ρi is a finite path
in Hi (1 ≤ i ≤ m), and R(v, ϕ) be a reachability specifi-
cation. P satisfies R(v, ϕ) if and only if there is τ ∈ L(P)
which satisfies R(v, ϕ).

Let R(v, ϕ) be a reachability specification. For a CLHA
N = H1||H2|| . . . ||Hm , for a path set P = {ρ1, ρ2, . . . , ρm}
where ρi is a finite path in Hi (1 ≤ i ≤ m), based on
Corollary 1 we can reduce the satisfaction problem of P
for R(v, ϕ) to a linear program as follows. Suppose that
any τ ∈ L(P) is of the form (ω1, ω2, . . . , ωm) where each

ωi ∈ L(ρi)(1 ≤ i ≤ m) is of the form

〈
vi0

δi0

〉
(φi0,ψi0)−→
σi0〈

vi1

δi1

〉
(φi1,ψi1)−→
σi1

. . .
(φini −1,ψini −1)−→

σini −1

〈
vini

δini

〉
, and Hi = (Xi , �i ,

Vi , V 0
i , Ei , αi , βi , γi) (1 ≤ i ≤ m). Since that τ satisfies

R(v, ϕ) means that the following condition holds: for any
i (1 ≤ i ≤ m),

– δi0, δi1, . . . , δini ensure that each variable x ∈ Xi evolves
according to its flow condition in each location vi j

(0 ≤ j ≤ ni), all the transition guards in φi j (0 ≤ j <
ni) are satisfied, and that all the variable constraints in
αi (vi j) (0 ≤ j ≤ ni) are satisfied (Definition 2),

123

For Research Only

312 L. Bu, X. Li

Table 1 Data on the Train Gate
Controller system Path Train (〈T0〉 −→

approach
〈T1〉−→

in
· · · 〈T3〉)k−→

exi t
〈T0〉

Gate (〈G0〉−→
lower

〈G1〉−→
down

· · · 〈G3〉)k−→
up

〈G0〉

Controller (〈C0〉 −→
approach

〈C1〉−→
lower

· · · 〈C2〉)k−→
raise

〈C0〉

k Constraint Variable Memory (MB) Time (s)

90 7,033 2,166 256 178.456

130 10,153 3,126 512 534.058

180 14,053 4,326 1,024 1,189.788

250 19,513 6,006 2,048 3,147.031

– δi0, δi1, . . . , δini satisfy the synchronization constraint
(Definition 6), and

– δi0, δi1, . . . , δini ensure that all the variable constraints in
ϕ are satisfied (Definition 7),

which forms a group of linear inequalities on δi0, δi1, . . . , δini

(1 ≤ i ≤ m), denoted as �(P,R(v, ϕ)), we can check if
P satisfies R(v, ϕ) by checking if the group�(P,R(v, ϕ))
of linear inequalities has a solution, which can be solved by
linear programming.

There are a number of efficient software packages avail-
able for linear programming. Utilizing these software pack-
ages we can develop an efficient tool for path-oriented
bounded reachability analysis of CLHAs where the length
of the path, the size of each LHA, and the component num-
ber are all closer to the practical problem scales.

4 Implementation and evaluation

The solution presented in the above section has been imple-
mented into a prototype tool BACH (Bounded reAchability
CHecker for linear hybrid automata). This section examines
its performance with several case studies, and compares it
with the existing tools.

4.1 Tool description

BACH is implemented in Java, and can be downloaded from
http://seg.nju.edu.cn/BACH/. It provides a convenient graph-
ical LHA editor and two reachability checkers: path-oriented
reachability checker and bounded reachability checker. The
path-oriented reachability checker does bounded reachabili-
ty analysis of a specific path given by user, while the bounded
reachability checker investigates all the paths in the bound
limit one by one by using the path-oriented checker to per-
form bounded reachability analysis. The early version of
BACH is a reachability analyzer taking as input a unique
LHA [13,14]. Through the implementation of the solution

Fig. 3 Fischer Mutual Exclusion Protocol

presented in the above section, the current version of BACH
can support path-oriented reachability analysis of LHA com-
positions, and it has also integrated a bounded reachability
checker for LHA compositions [15]. The main functionality
of BACH is provided by the following set of services:

– Graphical LHA Editor This component allows users to
construct, edit, and perform syntax analysis of LHA inter-
actively. This Editor can also transform the graphical rep-
resentation of LHA to a readable text file which is used
as the input file for reachability checking.

123

For Research Only

http://seg.nju.edu.cn/BACH/

Path-oriented bounded reachability analysis 313

Table 2 Data on the Fischer
Mutual Exclusion Protocol with
10 processes

Path Pro_1 (〈s1〉 −→
test_0_1

〈s2〉 −→
set_1_1

· · · 〈s4〉)k −→
set_0_1

〈s1〉

Pro_2 (〈s1〉 −→
test_0_2

〈s2〉 −→
set_2_2

. . . 〈s4〉)k −→
set_0_2

〈s1〉

.

Pro_10 (〈s1〉 −→
test_0_10

〈s2〉 −→
set_10_10

. . . 〈s4〉)k −→
set_0_10

〈s1〉

SV (〈0〉 −→
test_0_1

. . . 〈0〉)k −→
set_0_1

〈0〉

k Constraint Variable Memory (MB) Time (s)

15 5,753 2,422 256 213.32

20 7,653 3,222 512 498.6

30 11,453 4,822 1,024 1,638.844

40 15,253 6,422 2,048 3,845.857

Table 3 Data on the Fischer
Mutual Exclusion Protocol with
40 processes

Path Pro_1 (〈s1〉 −→
test_0_1

〈s2〉 −→
set_1_1

. . . 〈s4〉)k −→
set_0_1

〈s1〉

Pro_2 (〈s1〉 −→
test_0_2

〈s2〉 −→
set_2_2

. . . 〈s4〉)k −→
set_0_2

〈s1〉

… . . .

Pro_40 (〈s1〉 −→
test_0_40

〈s2〉 −→
set_40_40

. . . 〈s4〉)k −→
set_0_40

〈s1〉

SV (〈0〉 −→
test_0_1

. . . 〈0〉)k −→
set_0_1

〈0〉

k Constraint Variable Memory (MB) Time (s)

3 4,763 2,002 256 147.15

5 7,083 3,282 512 563.867

7 10,483 4,562 1,024 1,463.619

10 15,403 6,482 2,048 4,279.917

– Path-Oriented Reachability Checker The checker
requires users to select a specific path set which includes
one path for each component, respectively, and uses the
method presented in this paper to check whether the reach-
ability specification is satisfied along with the given path
set.

– Bounded Reachability Checker This checker uses the
path-oriented checker as underlying solver. It traverses
all the path sets below the threshold by a tailored Depth-
First Search algorithm, and checks the related path set for
reachability using linear programming to perform
bounded reachability checking.

4.2 Case studies

On a DELL workstation (Intel Core2 Quad CPU 2.4 GHz,
4 GB RAM, actually only 2 GB is used by the limitation of

Java memory allocation), we evaluate the potential of the
path-oriented reachability checker in BACH by three groups
of case studies which are explained below. These three exam-
ples are all coming from previous studies of real-time and
hybrid systems [3,16,17]. Although they are still academic
examples, the sizes of the problems we solve here are quite
big and close to the practical interest, e.g., for Fischer Mutual
Exclusion Protocol, the largest system we solve consisting
of 320 processes.1

Train Gate Controller. The first case study is the well-
studied Train Gate Controller model [16]. This system is

1 The paths we selected in Sects. 4.2 and 4.3 are all reachable. We do
not include unreachable paths in the experiments because the perfor-
mance of BACH’s path-oriented reachability checker is only related to
the size of the problem, e.g., the number of locations and constraints in
the path-set.

123

For Research Only

314 L. Bu, X. Li

Fig. 4 Nuclear Reactor System

composed of three components: TRAIN, GATE and CON-
TROLLER as shown in Fig. 2. In this system, we conduct an
experiment to check whether the time consistency of these
three components can still be satisfied after the integrated sys-
tems have run together for many loops. The paths we choose
and the experimental data are shown in Table 1. From this
table, we can find that in the biggest case we solved, all the
checked paths of these three components can traverse the
unique main loop at least 250 times before the system can
get blocked.

Fischer Mutual Exclusion Protocol. The second case study
is the Fischer Mutual Exclusion Protocol [3]. This system
consists of several competing processes which all attempt to
enter the critical section. The automaton we use to model
process_i is shown in Fig. 3. As these processes communi-
cate with each other by a shared variable, in order to handle
them in BACH’s context (synchronization by share labels),
we build an LHA: Shared Variable (denoted as SV) to repre-
sent all the evaluation and reset actions on the shared variable.
For example, Fig. 3 shows an automaton which models all the
possible actions that process_m and process_n can manipu-
late the shared variable. The LHA we used in case study for

SV is based on this but with more processes. We conduct a
group of experiments based on this protocol by scaling up the
number of processes, i.e., 10 and 40 processes. The experi-
ment and overhead data shown in Tables 2 and 3 can greatly
support our belief in our tool’s processing ability.

Nuclear Reactor System. The third case study is the Nuclear
Reactor System from [17]. This system controls a nuclear
reactor with n rods whose model is shown in Fig. 4. The sys-
tem uses these rods to absorb neutrons one by one and hence
lowers the temperature of the system. Each rod that has just
been moved out of the heavy water must stay out of the heavy
water and cool for several time units. The reachability spec-
ification we want to check is whether the system can keep
running safely with these rods for a long time. Similarly to
the experiments of the Fischer Mutual Protocol, we conduct
two groups of experiments using 10 and 40 rods accordingly.
The performance data are shown in Tables 4 and 5. We can
see that the largest problem we can solve is a system with 40
rods and loops for 12 times. As the size of the linear program
generated is linear in the size of system (number of paths
and locations in each path), it is possible to check a system
containing much more component automata with a shorter
path for each component.

4.3 Comparison

We also conduct several experiments to compare the path-
oriented reachability checker in BACH with other compet-
itive tools. As we are concerning path-oriented reachability
in this paper, we select the models which have only one path
for each process for comparison. The automaton we chose
are the acyclic version of Fischer Mutual Exclusion Protocol
(Fig. 5) and Nuclear Reactor System (Fig. 6) which have only
one path. The reachability specification we want to check is
whether there exists such an execution that all the processes
can enter the s4/recover location eventually.

We conduct the experiments using two state-of-the-art
tools with respect to linear hybrid automata. They are the
traditional LHA checker: PHAVer [6], and BMC-style HA
checker: HySAT [9]. We also encode the path-oriented reach-
ability problem of these acyclic models to SMT problems
using classical interleaving encoding method, and solve them
by MathSAT [10].

If the checker fails to generate results within 1 h, we treat
it as a time out. The experiment data are shown graphically
in Figs. 7 and 8 with respect to Fischer Mutual Exclusion
Protocol and Nuclear Reactor System. From these figures,
we can see that for the path-oriented reachability analysis,
our tool is much more efficient than the other tools. BACH
can handle the system consisting of 320 processes/rods in
one hour, while PHAVer can only handle 11 processes/rods,
HySAT exhausted all the memory when tackling problem of

123

For Research Only

Path-oriented bounded reachability analysis 315

Table 4 Data on the Nuclear
Reactor System with 10 rods Path Rod_1 (〈out〉 −→

add_1
. . . 〈recover〉)k −→

recover y_1
〈out〉

Rod_2 (〈out〉 −→
add_2

. . . 〈recover〉)k −→
recover y_2

〈out〉

… . . .

Rod_10 (〈out〉 −→
add_10

. . . 〈recover〉)k −→
recover y_10

〈out〉

Con. (〈rod_0〉 −→
add_1

. . . 〈rod_10〉)k −→
remove_10

〈rod_0〉

k Constraint Variable Memory (MB) Time (s)

15 6,825 1,522 256 166.359

25 11,325 2,522 512 686.799

35 15,825 3,522 1,024 1,840.322

50 22,575 5,022 2,048 5,400.634

Table 5 Data on the Nuclear
Reactor System with 40 rods Path Rod_1 (〈out〉 −→

add_1
. . . 〈recover〉)k −→

recover y_1
〈out〉

Rod_2 (〈out〉 −→
add_2

. . . 〈recover〉)k −→
recover y_2

〈out〉

… . . .

Rod_40 (〈out〉 −→
add_40

. . . 〈recover〉)k −→
recover y_40

〈out〉

Con. (〈rod_0〉 −→
add_1

. . . 〈rod_40〉)k −→
remove_40

〈rod_0〉

k Constraint Variable Memory (MB) Time (s)

4 7,485 1,682 256 220.724

6 11,085 2,482 512 738.245

9 16,485 3,682 1,024 2,121.607

12 21,885 4,882 2,048 5,144.191

18 processes/17 rods, and the largest problem which Math-
SAT can solve consists of 45 processes/63 rods, respectively.
These data support our belief in BACH greatly. They also sup-
port our argument that for path-oriented reachability analysis,
our technique outperforms the Cartesian Product technique
used in general model checking methods and the interleaving
encoding technique introduced in SAT-based bounded model
checking methods.

The above experiments are preliminary, but they can basi-
cally indicate a clear potential of our approach. We believe

Fig. 5 Acyclic version of Fischer Mutual Exclusion Protocol

if the linear programming package2 in BACH is replaced by
an advanced commercial package, the performance will be
even better.

For a composed linear hybrid system considered in this
paper, its components communicate with each other by shared
labels. Recently, the shared variables whose values can also
change with time has been used for communication in com-
posed timed systems. For this kind of communication mode,
a partial-order reduction based technique has been presented
for bounded model checking of timed automata composi-
tions [19]. Extending our approach for supporting this kind
of mode will be a next work.

2 The linear programming software package integrated in BACH is
from OR-Objects of DRA Systems [18] which is a free collection of
Java classes for developing operations research, scientific and engineer-
ing applications.

123

For Research Only

316 L. Bu, X. Li

Fig. 6 Acyclic version of Nuclear Reactor System

 0.001

 0.1

 1

 10

 100

 3600

 2 6 11 17 45 80 160 320

T
im

e
(s

ec
on

d)

Number of Protocol

BACH
MathSAT

HySAT
PHAVer

Fig. 7 Data on the acyclic Fischer Mutual Exclusion Protocol

 0.001

 0.1

 1

 10

 100

 3600

 2 6 11 16 30 63 100 160 320

T
im

e
(s

ec
on

d)

Number of Nuclear Rods

BACH
MathSAT

HySAT
PHAVer

Fig. 8 Data on the acyclic Nuclear Reactor System

5 Conclusion

In this paper, we present an efficient path-oriented approach
for bounded reachability analysis of composed linear hybrid
automata. It is suitable for analyzing the systems with many
components by selecting critical paths, respectively, while
this task is quite insurmountable before due to the state explo-
sion problem. This approach has been implemented into a
prototype tool BACH, and the experiment data show that
BACH has good performance and scalability.

Since the existing reachability analysis tools for linear
hybrid systems do not scale well to the size of practical prob-
lems, it is necessary to do deeper analysis for the critical paths
in the system as complement so as to increase the faith in
the correctness of the system. We believe that BACH could
become a powerful assistant to design engineers for reach-
ability analysis of linear hybrid systems.

Acknowledgments Thanks to the anonymous reviewers and editors
for their valuable comments and suggestions. This work is supported by
the National Natural Science Foundation of China (No. 90818022, No.
60721002), the National Grand Fundamental Research 973 Program

of China (No. 2009CB320702), and by the National 863 High-Tech
Programme of China (No. 2009AA01Z148, No. 2007AA010302).

Appendix: Proofs of Theorems

Theorem 1 Let N = H1||H2|| . . . ||Hm be a CLHA, and
R(v, ϕ) be a reachability specification. N satisfies R(v, ϕ)
if and only if there is a trail of N which satisfies R(v, ϕ).
Proof The half of the claim, if N satisfies R(v, ϕ) then there
is a trail of N which satisfies R(v, ϕ), can be proved as fol-
lows. According to Definitions 4 and 5, N satisfies R(v, ϕ)
if and only if there is a behavior ω of N of the form

ω =
〈
v0

δ0

〉
(φ0,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn

δn

〉

which satisfies R(v, ϕ), where vi = (vi1, vi2, . . . , vim) for
any i (0 ≤ i ≤ n). Similarly to the projection construc-
tion of a path in Sect. 2.2, we can construct a trail τ =
(ω1, ω2, . . . , ωm) of N as follows. For any k (1 ≤ k ≤ m),
we construct a behavior ωk of Hk from ω as:

1. replacing any vi with vik (0 ≤ i ≤ n), and

2. for any
(φi−1,ψi−1)−→

σi−1

〈
vik

δik

〉
(1 ≤ i ≤ n), if

(vi−1k, σi−1, φ, ψ, vik) ∈ Ek

then replacing it with
(φ,ψ)−→
σi−1

〈
vik

δik

〉
otherwise removing

(φi−1,ψi−1)−→
σi−1

〈
vik

δik

〉
and replacing

〈
vi−1k

δi−1k

〉
with

〈
vi−1k

δi−1k +δik

〉
.

Let τ = (ω1, ω2, . . . , ωm). Since ω is a behavior of N which
satisfies R(v, ϕ), τ is a trail of N and satisfies R(v, ϕ).

The other half claim follows the claim that if there is a
trail of N which satisfies R(v, ϕ) then there is a behavior of
N satisfies R(v, ϕ), which can be proved as follows. Given
a trail τ = (ω1, ω2, . . . , ωm) of N which satisfies R(v, ϕ),
where ωi is a behavior of Hi (1 ≤ i ≤ m) of the form〈
vi0

δi0

〉
(φi0,ψi0)−→
σi0

〈
vi1

δi1

〉
(φi1,ψi1)−→
σi1

. . .
(φini−1 ,ψini−1)−→

σini−1

〈
vini

δini

〉
,

we can get a total order of all the transitions in τ according to
the time spot the transition is fired, and do the reverse work
of the construction process in the last part simply, which will
results in a single behavior ω of N of the form

ω =
〈
v0

δ0

〉
(φ0,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn

δn

〉

where vi = (vi1, vi2, . . . , vim) (0 ≤ i ≤ n). Since τ is a trail
of N which satisfies R(v, ϕ), which means all the conditions
in Definitions 2, 6, 7 are satisfied,ω is a behavior of N which
satisfies R(v, ϕ) also. Above all, the claim holds. �

123

For Research Only

Path-oriented bounded reachability analysis 317

References

1. Henzinger, T.: The theory of hybrid automata. In: Proceedings of
the 11th Annual IEEE Symposium on Logic in Computer Science,
pp. 278–292 (1996)

2. Kesten, Y., Pnueli, A., Sifakis, J., Yovine, S.: Integration graphs: a
class of decidable hybrid systems. In: Hybrid System. LNCS, vol.
736, pp. 179–208

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho,
P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algo-
rithmic analysis of hybrid systems. Theor. Comput. Sci. 138, 3–
34 (1995)

4. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable
about hybrid automata? J. Comput. Syst. Sci. 57, 94–124 (1998)

5. Henzinger, T., Ho, P.-H., Wong-Toi, H.: HYTECH: a model checker
for hybrid systems. In: Software Tools for Technology Transfer,
vol. 1, pp. 110–122 (1997)

6. Frehse, G.: PHAVer: algorithmic verification of hybrid systems
past HyTech. In: Proceeding of Hybrid Systems: Computation and
Control’05. LNCS, vol. 2289, pp. 258–273 (2005)

7. Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded
model checking. In: Advance in Computers, vol. 58. Academic
Press, London (2003)

8. Zhang, L., Malik, S.: The quest for efficient boolean satifiability
solvers. In: Proceedings of CAV 2002. LNCS, vol. 2404, pp. 17–36.
Springer, Berin (2002)

9. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.:
Efficient solving of large non-linear arithmetic constraint systems
with complex boolean structure. J. Satisf. Boolean Model. Com-
put. 1, 209–236 (2007)

10. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying
industrial hybrid systems with MathSAT. Electron. Notes Theor.
Comput. Sci. 119(2), 17–32 (2005)

11. Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.:
Bounded model checking for timed systems. In: Conference on
Formal Techniques for Networked and Distributed Systems. In:
LNCS, vol. 2529, pp. 243–259 (2002)

12. Ábrahám, E., Becker, B., Klaedtke, F., Steffen, M.: Optimizing
bounded model checking for linear hybrid systems. In: Proceed-
ings of VMCAI 2005. LNCS, vol. 3385, pp. 396–412

13. Li, X., Jha, S., Bu, L.: Towards an efficient path-oriented tool for
bounded reachability analysis of linear hybrid systems using linear
programming. In: ENTCS, vol. 174, issue 3, pp. 57–70 (2007)

14. Bu, L., Li, Y., Wang, L., Li, X.: BACH: Bounded ReachAbility
CHecker for linear hybrid automata. In: Proceedings of the 8th
International Conference on Formal Methods in Computer Aided
Design, pp. 65–68. IEEE Computer Society Press, Portland, OR,
USA (2008)

15. Bu, L., Li, Y., Wang, L., Chen, X., Li, X.: BACH 2: Bounded
ReachAbility CHecker for compositional linear hybrid systems.
In: Proceedings of the 13th Design Automation and Test in Europe
Conference, Dresden, Germany, pp. 1512–1517 (2010)

16. Alur, R.: Timed automata. In: Proceedings of the 11th International
Conference on Computer-Aided Verification. In: LNCS, vol. 1633,
pp. 8–22. Springer, Berlin (1999)

17. Wang, F.: Symbolic parametric safety analysis of linear hybrid
systems with bdd-like data structures. IEEE Trans. Softw.
Eng. 31(1), 38–51 (2005)

18. OR-Objects of DRA Systems. http://OpsResearch.com/
OR-Objects/index.html

19. Malinowski, J., Niebert, P.: SAT based bounded model checking
with partial order semantics for timed automata. In: Proceedings
of TACAS 2010, Paphos, Cyprus. LNCS, vol. 6015, pp. 405–419
(2010)

123

For Research Only

http://OpsResearch.com/OR-Objects/index.html
http://OpsResearch.com/OR-Objects/index.html

