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IIS-Guided DFS for Efficient Bounded Reachability
Analysis of Linear Hybrid Automata

Lei Bu, Yang Yang, and Xuandong Li

State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, Jiangsu, P.R. China 210093
{bulei,lxd}@nju.edu.cn, yangyang@seg.nju.edu.cn

Abstract. In the authors’ previous work, we proposed a linear programming
(LP) based approach to check the reachability specification along one abstract
path in a linear hybrid automaton (LHA) at a time by translating the reachability
problem into the satisfiability problem of a linear constraint set. Then a depth-
first-search (DFS) is deployed on the graph structure of the LHA to check all the
paths with length in the threshold to answer the question of bounded reachability.

In this DFS-style bounded model checking (BMC) algorithm, once a path is
found to be infeasible by the underlying LP solver, a backtracking on the graph
structure will be conducted. Clearly, the efficiency of the algorithm depends on
the accuracy of the backtracking. If the DFS can backtrack to the most reasonable
location, the state space need to search and verify can be reduced significantly.

Fortunately, once a linear constraint set is judged to be unsatisfiable, the irre-
ducible infeasible set (IIS) technique can be deployed on the unsatisfiable con-
straint set to give a quick analysis and find a small set of constraints which makes
the whole program unsatisfiable. In this paper, we adopt this technique into our
DFS-style BMC of LHA to locate the nodes and transitions which make the path
under verification infeasible to guide the backtracking and answer the bounded
reachability of LHA more efficiently.

1 Introduction

Hybrid automata [1] are well studied formal models for hybrid systems with both dis-
crete and continuous state changes. However, the analysis of hybrid automata is very
difficult. Even for the simple class of linear hybrid automata (LHA), the reachability
problem is undecidable [1–4]. The state-of-the-art symbolic model checking techniques
for LHA try to compute the transitive closure of the state space of the system by geomet-
ric computation which is very expensive and not guaranteed to terminate. Several tools
are designed and implemented in this style, like HYTECH [10] and its improvement
PHAVer [11] but they do not scale well to the size of practical problems.

In recent years, bounded model checking (BMC) [5] has been presented as an al-
ternative technique for BDD-based symbolic model checking, whose basic idea is to
encode the next-state relation of a system as a propositional formula, and unroll this
formula to some integer k, using SAT/SMT idea to search for a counterexample in the
model executions whose length is bounded by k. These technique have been used to
answer the reachability problem of LHA also. But, as these techniques require to en-
code the state space of LHA in threshold firstly, when the system size or the given step
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36 L. Bu, Y. Yang, and X. Li

threshold is large, the object problem could be very huge, which greatly restricts the
size of the problem that can be solved [6, 7].

Both symbolic model checking and bounded model checking are facing the complete
state space or the partly complete space under the threshold at one time which is always
too large and complex for the solver to handle. In order to control the complexity of
the verification of LHA, we proposed a linear programming (LP) based approach[8]
to develop an efficient path-oriented reachability checker to check one abstract path in
the graph structure of a LHA at a time to find whether there exists a behavior of the
LHA along this abstract path and satisfy the given reachability specification. In such a
manner, the length of the path and the size of the automaton being checked can be large
enough to handle problems of practical interest. As a straightforward extension, all the
abstract paths with length shorter than or equal to the threshold in the graph structure
can be enumerated and checked one by one by depth-first-search(DFS) traversing to
answer the question of bounded reachability analysis of the LHA.

The above DFS based BMC has shown good performance and scalability in our
previous studies[9, 14]. Nevertheless, it has a lot of space to optimize:

– The simple DFS algorithm checks each path ρ in the given length threshold for the
reachability by solving the corresponding linear program. Although the checking
of a single path is very efficient, if the number of candidate path is large, it will
still be time consuming. However, suppose we are checking whether location v is
reachable in bound k, and v is not contained in ρ at all, we can simply falsify ρ for
the reachability to save computation time.

– Once a path ρ is found to be infeasible, the DFS algorithm will only remove the last
location in the path and backtrack to the location preceding the last one to search
for the next candidate in a recursive manner. This backtracking method does not use
any information of the infeasible path. If the infeasible cone in the linear constraint
set related to ρ can be extracted, then the DFS procedure can backtrack to the exact
place that makes the ongoing path infeasible. Then, the state space needed to search
and verify can be pruned significantly.

Based on the above directions, we optimize our DFS-style BMC algorithm in the
following ways:

– Only when the last location of the current visiting path ρ is contained in the reacha-
bility specification, the DFS procedure will call the underlying decision procedure
to check the feasibility of ρ. Otherwise, the DFS will just go on traversing on the
graph structure to reduce the time overhead.

– Once a linear constraint set is judged to be unsatisfiable, the irreducible infea-
sible set (IIS) technique[12] can be deployed to give quick analysis of the pro-
gram and find a small set of constraints which makes the whole program un-
satisfiable. We deploy this technique into our DFS-style BMC of LHA to lo-
cate the nodes and transitions which cause the path under verification infeasi-
ble to guide the backtracking and answer the bounded reachability of LHA more
efficiently.
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IIS-Guided DFS for Efficient Bounded Reachability Analysis 37

2 Linear Hybrid Automata and Reachability Verification

This section gives the formal definition of linear hybrid automata and presents the re-
view of the path-oriented reachability analysis and bounded reachability analysis tech-
niques that were proposed in our previous works[8, 9].

2.1 Linear Hybrid Automata

The linear hybrid automata (LHA) considered in this paper are defined in[13], which
is a variation of the definition given in [1]. The flow conditions of variables in a linear
hybrid automaton considered here can be given as a range of values for their derivatives.

Definition 1. An LHA H is a tuple H = (X, Σ,V,V0, E, α, β, γ), where

- X is a finite set of real-valued variables; Σ is a finite set of event labels; V is a finite
set of locations; V0 ⊆ V is a set of initial locations.

- E is a transition relation whose elements are of the form (v, σ, φ, ψ, v′), where v, v′
are in V , σ ∈ Σ is a label, φ is a set of transition guards of the form a ≤ ∑l

i=0 ci xi ≤
b, and ψ is a set of reset actions of the form x := c where xi ∈ X , x ∈ X, a, b, c and
ci are real numbers (a, b may be∞).

- α is a labeling function which maps each location in V to a location invariant which
is a set of variable constraints of the form a ≤ ∑l

i=0 cixi ≤ b where xi ∈ X, a, b and
ci are real numbers (a, b may be∞).

- β is a labeling function which maps each location in V to a set of flow conditions
which are of the form ẋ ∈ [a, b] where x ∈ X, and a, b are real numbers (a ≤ b). For
any v ∈ V , for any x ∈ X, there is one and only one flow condition ẋ ∈ [a, b] ∈ β(v).

- γ is a labeling function which maps each location in V0 to a set of initial conditions
which are of the form x = a where x ∈ X and a is a real number. For any v ∈ V0,
for any x ∈ X, there is at most one initial condition definition x = a ∈ γ(v). �	

Path and Behavior. We use the sequences of locations to represent the evolution of an
LHA from location to location. For an LHA H = (X, Σ,V,V0, E, α, β, γ), a path segment

is a sequence of locations of the form 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉, which satisfies

(vi, σi, φi, ψi, vi+1) ∈ E for each i (0 ≤ i < n). A path in H is a path segment starting at
an initial location in V0.

For a path in H of the form 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉, by assigning each

location vi with a time delay stamp δi we get a timed sequence of the form
〈

v0

δ0

〉
(φ0 ,ψ0)−→
σ0〈

v1

δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1

〈
vn

δn

〉

where δi (0 ≤ i ≤ n) is a nonnegative real number, which

represents a behavior of H such that the system starts at v0, stays there for δ0 time units,
then jumps to v1 and stays at v1 for δ1 time units, and so on.

The behavior of an LHA can be described informally as follows. The automaton
starts at one of the initial locations with some variables initialized to their initial values.
As time progresses, the values of all variables change continuously according to the
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38 L. Bu, Y. Yang, and X. Li

flow condition associated with the current location. At any time, the system can change
its current location from v to v′ provided that there is a transition (v, σ, φ, ψ, v′) from v
to v′ whose all transition guards in φ are satisfied by the current value of the variables.
With a location change by a transition (v, σ, φ, ψ, v′), some variables are reset to the new
value accordingly to the reset actions in ψ. Transitions are assumed to be instantaneous.

Let H = (X, Σ,V,V0, E, α, β, γ) be an LHA. Given a timed sequence ω of the form〈
v0

δ0

〉
(φ0,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1

〈
vn

δn

〉

, let ζi(x) represents the value of x (x ∈ X) when

the automaton has stayed at vi for delay δi along with ω (0 ≤ i ≤ n), and λi(x) represents
the value of x at the time the automaton reaches vi along withω. It follows that λ0(x) = a

if x = a ∈ γ(v0), and λi+1(x) =

{
d if x := d ∈ ψi

ζi(x) otherwise
(0 ≤ i < n).

Definition 2. For an LHA H = (X, Σ,V,V0, E, α, β, γ), a timed sequence of the form〈
v0

δ0

〉
(φ0 ,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1 ,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1

〈
vn

δn

〉

represents a behavior of H if and only if the

following condition is satisfied:

– 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉 is a path;

– δ1, δ2, . . . , δn ensure that each variable x ∈ X evolves according to its flow condition
in each location vi (0 ≤ i ≤ n), i.e. uiδi ≤ ζi(x) − λi(x) ≤ u′iδi where ẋ ∈ [ui, u′i] ∈
β(vi);

– all the transition guards in φi (1 ≤ i ≤ n − 1) are satisfied, i.e. for each transition
guard a ≤ c0x0+c1x1+ · · ·+clxl ≤ b in φi, a ≤ c0ζi(x0)+c1ζi(x1)+ · · ·+clζi(xl) ≤ b;

– the location invariant of each location vi (1 ≤ i ≤ n) is satisfied, i.e.
- at the time the automaton leaves vi, each variable constraint a ≤ c0x0 + c1x1 +

· · · + cl xl ≤ b in α(vi) (0 ≤ i ≤ n) is satisfied, i.e.a ≤ c0ζi(x0) + c1ζi(x1) + · · · +
clζi(xl) ≤ b, and

- at the time the automaton reaches vi, each variable constraint a ≤ c0x0 + c1x1 +

· · · + clxl ≤ b in α(vi) (0 ≤ i ≤ n) is satisfied, i.e.a ≤ c0λi(x0) + c1λi(x1) + · · · +
clλi(xl) ≤ b. �	

Definition 3. For an LHA H = (X, Σ,V,V0, E, α, β, γ), if a timed sequence of the form〈
v0

δ0

〉
(φ0 ,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1 ,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1

〈
vn

δn

〉

is a behavior of H, we say path ρ = 〈v0〉 (φ0 ,ψ0)−→
σ0

〈v1〉 (φ1 ,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1
〈vn〉 is feasible, and location vn is reachable along ρ. �	

2.2 Reachability Specification and Verification

Reachability Specification. For an LHA H = (X, Σ,V,V0, E, α, β, γ), a reachability
specification, denoted as R(v, ϕ), consists of a location v in H and a set ϕ of variable
constraints of the form a ≤ c0x0+c1x1+ · · ·+clxl ≤ b where xi ∈ X for any i (0 ≤ i ≤ l),
a, b and ci (0 ≤ i ≤ l) are real numbers.

Definition 4. Let H = (X, Σ,V,V0, E, α, β, γ) be an LHA, and R(v, ϕ) be a reachability

specification. A behavior of H of the form
〈

v0

δ0

〉
(φ0 ,ψ0)−→
σ0

〈
v1

δ1

〉
(φ1 ,ψ1)−→
σ1

. . .
(φn−1 ,ψn−1)−→

σn−1

〈
vn

δn

〉

satis-

fies R(v, ϕ) if and only if vn = v and each constraint in ϕ is satisfied when the automaton
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has stayed in vn for delay δn, i.e. for each variable constraint a ≤ c0x0+c1x1+· · ·+clxl ≤
b in ϕ, a ≤ c0ζn(x0) + c1ζn(x1) + · · · + cmζn(xl) ≤ b where ζn(xk) (0 ≤ k ≤ l) represents
the value of xk when the automaton has stayed at vn for the delay δn. H satisfies R(v, ϕ)
if and only if there is a behavior of H which satisfies R(v, ϕ). �	
Definition 5. Given LHA H = (X, Σ,V,V0, E, α, β, γ), and reachability specification
R(v, ϕ), by introducing a new sink location vR and a sink transition eR into H, which
results a new LHA HR. The satisfiability of R(v, ϕ) on LHA H are equivalent to the
reachability of vR in HR iff α(vR) = ∅ and eR = (v, σ, φ, ψ, vR), where v = v ∈ R(v, ϕ),
φ = R(v, ϕ), ψ = ∅. �	
Based on the above definition, without loss of generality, in the following paragraph,
we will only discuss the reachability problem of a given location in the LHA, which
covers the verification of the reachability specification R(v, ϕ).

According to Definition.2, the reachability verification problem of location vn along
the path ρ can be translated into the satisfiability problem of a set of constraints on
variables δi and ζi(x) where (0 ≤ i ≤ n). If we use notation Θ(ρ, vn) to represent this set
of linear constraints, we can check whether ρ reaches location vn by checking whether
Θ(ρ, vn) has a solution, which can be solved by linear programming (LP) efficiently.

Bounded Reachability Verification. The bounded reachability analysis is to look for
a system trajectory in a given threshold which can satisfy the given specification. Last
paragraph gives a technique to verify the reachability of an abstract path in the LHA.
Based on that, we proposed a bounded reachability verification method in[9] to traverse
the system structure directly by DFS and check all the potential paths one by one until
a feasible path to the reachability target is found or the given threshold is reached.

The pseudocode for this algorithm is shown in Table.1. The main function is
Verify(H, v, bound) where H is the LHA, v is the reachability target location and bound
is the value of the threshold. This function traverses the graph structure by calling func-
tion TRAVERSE(stack) recursively, where the input parameter stack is the stack which
contains the current visiting path. When the function finds a path which satisfies the
specification, it returns 1, then the upper caller will be informed and the DFS will be
terminated. If the return value is 0, the caller will remove the last location from the
ongoing path and keep on traversing. Because whenever a new location is added into
the ongoing path, the algorithm will check the feasibility of it, we call this algorithm
the “Eager”-DFS based bounded reachability analysis algorithm.

Instead of encoding the whole problem space to a group of formulas like SAT-style
solver, which suffers the state space explosion a lot when dealing with big problems, this
plain DFS style approach only needs to keep the discrete structure and current visiting
path in memory, and check each potential path one by one, which makes it possible to
solve big problems as long as enough time is given. The case studies given in[9] give a
demonstration of this approach which also supports our belief of this argument.

3 Pruning Algorithm For DFS Optimization

The DFS-based algorithm for bounded reachability analysis of LHA reviewed in the
last section gives an intuitive method to traverse and check one path at a time[9]. As
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Table 1. Eager-DFS Based Bounded Reachability Analysis of LHA

Verify (H, v, bound)
1. for each location vI ∈ V0:
2 . begin
3 . new stack s;
4 . s.push(vI);
5 . int res=TRAVERSE(s);
6 . if (res==1) return true;
7 . s.pop(vI);
8 . end
9. return false;

TRAVERSE (stack s)

1 . Get the ongoing path ρ = 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉 from stack s;

2 . check the feasibility of ρ;
3 . if (infeasible) return 0;
4 . if ((feasible)&&(vn == v)) return 1;
5 . if ((s.depth == bound)||(vn doesn’t have any successive location)) return 0;
6 . for each successive location sloc of vn

7. begin
8. s.push(sloc);
9. boolean res=TRAVERSE(s);
10. if (res==1) return res;
11. s.pop(sloc);
12. end
13. return 0;

the number of paths under given bound are finite, this algorithm is guaranteed to termi-
nate. Furthermore, the algorithm only checks the reachability of one path, therefore the
memory usage will not blow up quickly without control.

3.1 Target Location-Guided Lazy-DFS

Basically, the above algorithm makes a tradeoff between space and time to handle prob-
lems with large size. Using our DFS-style BMC algorithm, we can solve a problem with
practical size given enough time. As a result, we have a stable ground for the control of
memory usage. Now let’s turn our direction to time control, which means we want to
give an algorithm to traverse the bounded behavior tree of a LHA more efficiently.

The current Eager-DFS algorithm checks all the paths under the given threshold.
When the threshold is large and the graph structure is complex, there could be nu-
merous candidate paths to check, which could consume a considerably large amount
of computation time. Take the LHA in Fig.1 for example, suppose we want to check
whether v6 is reachable within bound 7, the related bounded behavior tree of this au-
tomaton is shown in Fig.2, which has 37 candidate paths, for example, 〈v1〉 −→

e1
〈v2〉 and

so on. This means the DFS procedure could call the underlying LP solver 37 times in
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Fig. 1. Sample Automaton
Fig. 2. Behavior Tree With Bound 7

the worst case. If the size of bound is larger, the number of path segments need to check
could blow up quickly, which will be the main bottleneck for the entire bounded veri-
fication. Therefore, if there is a method to decrease the number of paths need to check,
then the efficiency of the above algorithm can be improved for sure.

By investigating the 37 paths, we can find that most of the paths are not even related
with the reachability specification. As we are checking whether location v6 is reachable
in bound 7, path segments like 〈v1〉 −→

e1
〈v2〉, 〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 don’t have location v6

involved, therefore these paths can not satisfy the specification for sure and it could be
a waste of time to check their feasibilities by calling a LP solver.

Based on this intuitive idea, we give the first straightforward optimization as fol-
lows: When checking whether location v is reachable along a path ρ, if the location
v is not contained in ρ, the investigation of the feasibility of ρ will be postponed un-
til v is traversed. Comparing with the Eager-DFS algorithm presented in the last sec-
tion which checks the feasibility of the ongoing path whenever a new location is tra-
versed, in this optimization, the calling of the LP solver will only be conducted once
the new traversed location is specification related. Therefore, we name this algorithm as
“Lazy”-DFS.

The pseudocode for the function TRAVERSE in Lazy-DFS algorithm is shown be-
low in Table.2. The main difference between this algorithm and the algorithm in Ta-
ble.1 is the checking of the feasibility of the ongoing path is moved into the branch
with vn == v . It is clear to see that only when the last location of the current vis-
iting path ρ is the target location, the DFS procedure will call the underlying deci-
sion procedure to translate the feasibility of ρ into a linear constraint set and verify
it by LP. Otherwise, the DFS will just go on traversing on the graph structure. Thus,
the number of paths need to be checked can be reduced significantly to raise the effi-
ciency. Again. let’s take the automaton given in Fig.1 for example. Under Lazy-DFS,
there are only 5 paths need to call the underlying decision procedure to check, e.g.,
〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉, 〈v1〉 −→

e8
〈v5〉 −→

e5
〈v6〉 and so on.
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Table 2. Lazy-DFS Based on Target Location-Guided Checking

TRAVERSE (stack s)

1 . Get the ongoing path ρ = 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉 from stack s;

2 . if(vn == v)
3. begin
4 . check the feasibility of ρ;
5 . if (feasible) return 1 else return 0;
6. end
7 . if ((s.depth == bound)||(vn doesn’t have any successive location)) return 0;
8 . for each successive location sloc of vn

9. begin
10. s.push(sloc);
11. int res=TRAVERSE(s);
12. if (res==1) return res;
13. s.pop(sloc);
14. end
15. return 0;

3.2 IIS-Based Infeasible Constraint Locating and Backtracking

In general, by only checking the paths which are specification related, the times of
calling the underlying LP solver can be reduced greatly. But it is not always the case.
Still take the automaton given in Fig.1 for example. Based on the Lazy-DFS algorithm
given in Table.2, when checking the automaton according to target location v6, the first
path that the algorithm will call the underlying decision procedure is: ρ = 〈v1〉 −→

e1

〈v2〉 −→
e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉. Suppose it is proved that ρ is not feasible by

calling the underlying LP solver, the algorithm will pop out the last location v6 from the
stack and visit the next branch from v5. Suppose the path segment ρ′′ = 〈v1〉 −→

e1
〈v2〉 −→

e2

〈v3〉 −→
e3
〈v4〉 is already infeasible, as ρ′′ is not related with the reachability target, under

Lazy-DFS the feasibility of ρ′′ will not be checked at all. But, if the algorithm deployed
is the Eager-DFS which checks all the path segments as shown in Table.1, the feasibility
of ρ′′ will be checked right after location v4 is added into the ongoing path. Once ρ′′
is proved to be infeasible, then a backtracking will be conducted immediately, which
means the subtree starting from location v4 with prefix as ρ′′ will not be traversed in
Eager-DFS at all. But, in the Lazy-DFS algorithm, this subtree will still be traversed.
So, is there a method which can reduce the times of solving LP problems as proposed by
Lazy-DFS and also backtrack to the exact place where infeasibility happened to prune
the behavior tree as Eager-DFS? The answer is yes!

Now, let’s come back to the automaton given in Fig.1, in location v3 we have ẋ = 2,
ẏ = 1 and x < 5. According to definition 2, in the related constraint set R, there are
accordingly constrains: δv3 > 0, ζv3 (x) − λv3(x) = 2δv3 , ζv3 (y) − λv3 (y) = δv3 , ζv3(x) < 5,
where λv3 (x) = λv3 (y) = 1 as x and y are reset to 1 on transition e2. On transition e3,
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there is guard x > 3. In location v4, there is invariant y > 4. Therefore, we also have
constraints ζv3 (x) > 3 and ζv3 (y) > 4 in R. If we name this set of constraints as Rρ′ ,
clearly it is unsatisfiable. As ζv3 (x) < 5, ζv3(x) > 3, and ζv3 (x) − 1 = 2δv3 , we can get
1 < δv3 < 2. Because ζv3(y) − 1 = δv3 , we can get 2 < ζv3(y) < 3, which contradicts
with ζv3(y) > 4. As these constraints are generated according to the invariants and
guards from transition e2, e3, and location v3, v4, this implies the path segment 〈v2〉 −→

e2

〈v3〉 −→
e3
〈v4〉 is infeasible, but 〈v2〉 −→

e2
〈v3〉 is an feasible one. Therefore, if the DFS

algorithm is clever enough, it will backtrack to the location v3 and traverse the next
branch 〈v3〉 −→

e9
〈v1〉. So, now the problem is how to locate such a backtracking point?

The answer is the irreducible infeasible set (IIS) technique[12]. Generally speaking,
a set of linear constraints R is said to be satisfiable, if there exists a valuation of all the
variables which makes all the constraints in R to be true. Otherwise, R is unsatisfiable.
If R is unsatisfiable, then IIS of R is a subset R′ ⊆ R that R′ is unsatisfiable and for any
R
′′ ⊂ R′, R′′ is satisfiable.
Intuitively speaking, the IIS of a linear constraint set is an unsatisfiable set of

constraints that becomes satisfiable if any constraint is removed. Fortunately, quoted
from[12], the algorithm to locate the IIS from a unsatisfiable set is “simple, relatively
efficient and easily incorporation into standard LP solvers”. Actually many software
packages are available which supports the efficient analysis of a linear constraint set and
locating of the minimal IIS, such as MINOS[16], IBM CPLEX[17] and LINDO[18].
Therefore, given an infeasible path ρ, we can simply analyze the constraint set R gen-
erated according to this path to locate the IIS R′. Now, if there is a mapping function to
map each constraint ∇ ∈ R′ to the original elements in the path, we can manipulate the
structure of the bounded depth behavior tree more efficiently.

Definition 6. Given LHA H = (X, Σ,V,V0, E, α, β, γ), path ρ = 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1

. . .
(φn−1 ,ψn−1)−→

σn−1
〈vn〉, and linear constraint set R which is generated according to the fea-

sibility of ρ. For constraint ∇ ∈ R, the stem location set V∇ of ∇ in ρ is defined as
follows:

– if ∇ is generated according to the time duration on location vi (0 ≤ i ≤ n), δvi ≥ 0,
vi ∈ V∇;

– if ∇ is generated according to the transition guard in φi on transition ei (0 ≤ i ≤
n − 1), vi+1 ∈ V∇. If i > 0, vi−1 ∈ V∇ as well;

– if ∇ is generated according to the reset action in ψi on transition ei (0 ≤ i ≤ n − 1),
vi+1 ∈ V∇.If i > 0, vi−1 ∈ V∇ as well;

– if ∇ is generated according to the flow conditions in βvi location vi (0 ≤ i ≤ n),
vi ∈ V∇. If i > 0, vi+1 ∈ V∇ as well;

– if ∇ is generated according to the invariants in αvi in location vi (0 ≤ i ≤ n);
• if ∇ is generated according to ζi(x), vi ∈ V∇
• if ∇ is generated according to λi(x), vi ∈ V∇, if i > 0, vi−1 ∈ V∇ as well. �	

Definition 7. Given LHA H = (X, Σ,V,V0, E, α, β, γ), path ρ = 〈v0〉 (φ0 ,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1

. . .
(φn−1 ,ψn−1)−→

σn−1
〈vn〉 and linear constraint set Rwhich is generated according to the feasibility
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of ρ. For a set R′ = {∇1,∇2, . . . ,∇m} ⊆ R, the stem location set of R′ is VR′ = V∇1 ∪
V∇2 ∪ · · · ∪ V∇m . �	

Basically speaking, given a path ρ and the linear constraintRρ, the above two definitions
mark each constraints φ in Rρ according to a location v in ρ. This means, φ will not be
added into Rρ until ρ travels to location v. Now, let’s review the constraint set Rρ′ given
in the beginning of this section again. Rρ′ = {δv3 > 0, ζv3(x) − λv3 (x) = 2δv3 , ζv3(y) −
λv3 (y) = δv3 , λv3 (x) = 1, λv3(y) = 1, ζv3(x) < 5, ζv3(x) > 3, ζv3(y) > 3}. Clearly the stem
location set of Rρ′ is V = {v2, v3, v4}.

Suppose Rρ′ is the only IIS in the constraint set of path ρ = 〈v1〉 −→
e1
〈v2〉 −→

e2
〈v3〉 −→

e3

〈v4〉 −→
e4
〈v5〉 −→

e5
〈v6〉, because if any constraint in Rρ′ is removed, the new constraint

set is satisfiable. Then, it clearly implies that the path segment before reaching the
location with the biggest index in the stem location set of Rρ′ , which is v4 in ρ, is
feasible. So the sub tree starting from v4 after 〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 doesn’t need to be

traversed.
Furthermore, as mentioned above, the constraint set that IIS technique located can

be mapped back to a path segments ρ′ in the path ρ. This path segment can be saved
as a guideline for the future traversing, once a new traversed path ρ′′ contains an exact
path segment as ρ′, we can simply falsify ρ′′ for verification without call the underly-
ing decision procedure, since the syntax elements in ρ′ has already been proved to be
infeasible in ρ, the occurrence of ρ′ in ρ′′ will just be translated into the same set of
unsatisfiable constraints with just variable name changed.

Based on the above discussion, the optimized function TRAVERSE (stack) is given
below in Table.3. A new function IIS (stack) is introduced in Table.3 as well. This

function finds the IIS in the constraint set according to the ongoing path 〈v0〉 (φ0 ,ψ0)−→
σ0

〈v1〉 (φ1 ,ψ1)−→
σ1

. . .
(φm−1 ,ψm−1)−→

σm−1
〈vm〉 at first, then locates the stem location set from the IIS con-

straint set. By locating the node vk in the set with the largest index, this function will
inform the upper caller to backtrack to location vk−1 by indicating the distance between
vk−1 and vm.

Furthermore, once a path segment ρ′ is located in the IIS, ρ′ will be added into a
global vector Ω as “bad examples”. Then in the Traverse function, once a path is found
to be specification related, the algorithm will check whether this path contains any “bad
example”. If any of the bad examples is hit, the Traverse function will directly return
the backtracking step to the upper caller1.

Based on the algorithm given in Table.3, once a path ρ is proved to be infeasible, an
IIS based method will be called to locate the path segment which makes ρ infeasible.
Then the DFS algorithm can backtrack to the right position to prune the bounded be-
havior tree efficiently. Besides that, the path segment will be saved to falsify the other
new generated paths under checking to save the computation time.

1 Generally speaking, the mapping with bad examples can be preformed once a new location is
added to the path, but the matching will be time consuming if the size of example set is huge,
so we decide to be lazy again to postpone the matching until the target is found.
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Table 3. IIS-DFS Based On Infeasible Path Segment Localization

TRAVERSE (stack s)

1 . Get the ongoing path ρ = 〈v0〉 (φ0,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φn−1 ,ψn−1)−→
σn−1

〈vn〉 from stack s;

2 . if(vn == v)
3. begin
4 . if (∃ω ∈ Ω && ω is a path segment in ρ )

5 . locate ω in ρ as ρω = 〈vi〉 (φi,ψi)−→
σi
〈vi+1〉 (φi+1 ,ψi+1)−→

σi+1
. . .

(φ j−1 ,ψ j−1)−→
σ j−1

〈vj〉;
6 . return j-n;
7 . check the feasibility of ρ;
8 . if (unfeasible)
9 . return IIS(s);
10. end
11 . if ((s.depth == bound)||(vn doesn’t have any successive location)) return 0;
12 . for each successive location sloc of vn

13. begin
14. s.push(sloc);
15. int res=TRAVERSE(s);
16. if (res==1) return res;
17. s.pop(sloc);
18. if (res < 0) return res+1;
19. end
20. return 0;

IIS (stack s)

1 . Get the ongoing path ρ = 〈v0〉 (φ0,ψ0)−→
σ0
〈v1〉 (φ1 ,ψ1)−→

σ1
. . .

(φm−1 ,ψm−1)−→
σm−1

〈vm〉 from stack s;

2 . Locate the stem location set Vρ and the accordingly path segment ρ′ of ρ;
3 . Ω.add(ρ′);
4 . Get the location vk in Vρ with the largest index;
5 . return k-m;

4 Case Studies

In order to evaluate the performance of the optimization methods presented in this pa-
per, we upgrade our bounded reachability checker for LHA: BACH[9, 14] to a new
version BACH 3 (http://seg.nju.edu.cn/BACH/). BACH 3 shares the graphical
LHA Editor with BACH. As the LP solver underlying BACH is OR-objects[15] which
does not support the functionality of IIS analysis. BACH 3 calls the IBM CPLEX[17]
instead, which gives a nice support of IIS analysis.

In the experiments, we evaluate the performance of BACH 3 under three different
settings according to the underlying DFS algorithm, which are Eager-DFS, Lazy-DFS
and IIS-DFS respectively. The experiments are conducted on a DELL workstation (Intel
Core2 Quad CPU 2.4GHz, 4GB RAM).
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As the comparisons between Eager-DFS and other related tools are already reported
in[9], in this section, we focus on the comparison between the three different DFS al-
gorithms to show the performance of the optimization methods presented in this paper.

We use three benchmarks in the experiments. The first LHA is the sample automaton
given in Fig.1 in this paper. The second one is the temperature control system used in
our previous case studies in[9]. The third automaton is the automated highway example
introduced in[19] with 5 cars included. These automata are shown in Fig.3. For the
sample automaton, we are checking whether location v6 is reachable. In the other two
automata, the reachability of the target location under checking is v4 for temperature
control system, which stands for that no rod is available in the nuclear reactor; and v6

for the automated highway which stands for that a car collision will happen.

Fig. 3. Experimental Automata

We conduct these three DFS algorithms on all of these three automata. The time
limit is set as 2 hours in the experiments. The performance data for each benchmark are
shown in Table.4,5,and 6 respectively. In these tables we show the total time spent for
each problem w.r.t different bound size. Furthermore, in order to show the performance
of the optimization techniques in decreasing the number of paths to check, we also
collect and report the times BACH 3 calls the underlying LP solver -CPLEX, each call
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means a unique path is transformed into an LP constraint set and solved by CPLEX. To
demonstrate these data more intuitively, we also show the plotted graphs in Fig.4.

Table 4. Performance Data On The Sample Automaton In 2 Hours

Eager-DFS Lazy-DFS IIS-DFS�����Bound
Tech.

Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX
10 0.252 51 0.063 17 0.046 2
20 7.111 431 1.487 853 0.124 2
30 98.354 3223 44.610 46037 0.343 2
40 1036.987 23743 2784.989 2544981 1.322 2
50 N/A N/A N/A N/A 10.729 2
70 N/A N/A N/A N/A 1040.308 2

Table 5. Performance Data On The Temperature Control System Benchmark In 2 Hours

Eager-DFS Lazy-DFS IIS-DFS�����Bound
Tech.

Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX
5 0.062 16 0.022 3 0.075 3

15 1.595 636 0.58 127 0.595 23
25 46.004 20476 9.669 4095 1.77 43
35 2256.519 655356 386.743 131071 19.867 63
40 N/A N/A 3389.555 1048575 141.046 75
50 N/A N/A N/A N/A 6470.308 95

Table 6. Performance Data On The Automated Highway System Benchmark In 2 Hours

Eager-DFS Lazy-DFS IIS-DFS�����Bound
Tech.

Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX Total Time (Sec.) Call CPLEX
5 1.115 61 0.113 20 0.383 20

10 27.877 2045 1.328 340 0.656 20
15 822.996 65533 79.611 21844 1.647 20
20 N/A N/A 1689.658 349524 28.225 20
25 N/A N/A N/A N/A 1242.241 20

We can see that with any of the optimizations deployed, the size of the problem that
can be solved are increased significantly and the performance for the same question
are clearly optimized. Furthermore, IIS-DFS outperforms Lazy-DFS substantially. Take
the automated highway system as example, when bound is set as 15, it cost Eager-
DFS 822.9 seconds to check 65533 paths. By using Lazy-DFS, the verification time is
decreased to 79.6 seconds by only checking 21844 paths. Finally, when use IIS-DFS,
the verification is finished in only 1.6 seconds, and only 20 paths are verified.

The reason is that in our DFS schema, each time a candidate path is found, the
algorithm will call the underlying LP solver to reason the feasibility of the path. When
the size of path and/or the number of candidate paths is large, the reasoning by LP
will be very time consuming. By using optimization techniques presented in this paper,
the number of paths need to check is reduced significantly, thus, it is possible to solve
problem more quickly and to solve larger problems. In detail:

– By introducing Lazy-DFS, the number of candidate paths to check can be reduced
in most of the cases, that’s the reason that Lazy-DFS outperforms Eager-DFS.
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Sample Automaton Temperature Control System Automated Highway System
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Fig. 4. Performance of Bounded Reachability Analysis in 2 Hours

– By introducing IIS-DFS, when a path is infeasible, IIS can locate the exact path
segment where the infeasibility happens to guide the backtracking. Besides this, the
infeasible path segment can be saved as a “bad example” that if any future candidate
path has a same path segments as the “bad example”, the candidate path can be
falsified for the feasibility reasoning without call the underlying LP solver. That’s
the reason that IIS-DFS outperforms Lazy-DFS in almost all the experiments.

– Indeed, if a candidate path can be matched with a “bad example”, then it can be
falsified directly without call the underlying LP solver to save computation time.
Nevertheless, when the size of the candidate path set is huge, the comparison be-
tween each of the candidate path and the “bad example” set will also be very time
consuming, that’s the reason that as shown in our data, the total time spent is not
proportional to the times of calling CPLEX.

5 Conclusion

The bounded reachability analysis of hybrid automata is difficult. Even for the sim-
ple class of linear hybrid automata (LHA), the state-of-the-art tools can only analyze
systems with few continuous variables, control nodes and small bound.

In this paper, we present an algorithm to check the bounded reachability of LHA in
a DFS manner. Only the abstract path related with the reachability specification will
be analyzed by the underlying LP solver. If the path is judged to be infeasible, the IIS
technique will be deployed on the infeasible path to locate the path segment which
makes this path infeasible to guide the backtracking of the DFS.

We implement the optimization techniques presented in this paper into BACH
which is a bounded reachability checker for LHA. The experiments on BACH greatly
strengthen our belief that with the help of the optimization methods presented in this
paper, the size of the problem that BACH can solve is increased substantially while the
time for solving the same problem is reduced significantly as well.
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