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1 Introduction

problem is undecidable ]. The state-of-the-art symbolic model checking tt
for LHA try to compute the transitive closure of the state space of the system by geondet-
ric computation which is very expensive and not guaranteed to terminate. Several tools
are designed and implemented in this style, like HYTECH [IE] and its improveme
PHAVer [11] but they do not scale well to the size of practical problems.

In recent years, bounded model checking (BMC) (5] has been presented as an al-
ternative technique for BDD-based symbolic model checking, whose basic idea is to
encode the next-state relation of a system as a propositional formula, and unroll this
formula to some integer k, using SAT/SMT idea to search for a counterexample in the
model executions whose length is bounded by k. These technique have been used to
answer the reachability problem of LHA also. But, as these techniques require to en-
code the state space of LHA in threshold firstly, when the system size or the given step
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threshold is large, the object problem could be very huge, which greatly restricts the
size of the problem that can be solved [Ia, ﬂ].

Both symbolic model checking and bounded model checking are facing the complete

te space or the partly complete space under the threshold at one time which is always
tooW¥arge and complex for the solver to handle. In order to control the complexity of
he verification of LHA, we proposed a linear programming (LP) based approach[lg]
dewelop an efficient path-oriented reachability checker to check one abstract path in
ihe graph structure of a LHA at a time to find whether there exists a behavior of the

A 3 is abstract path and satisfy the given reachability specification. In such a
ma th of the path and the size of the automaton being checked can be large
enougiifo handle prolems of practical interest. As a straightforward extension, all the
abstract paths with shorter than or equal to the threshold in the graph structure
ked one by one by depth-first-search(DFS) traversing to
ded reachability analysis of the LHA.
ased has shown good performance and scalability in our
1. ess, it has a lot of space to optimize:

answer the questi
The above DFS
previous studies[@, 14

— The simple DFS algo [¢ ach path p in the given length threshold for the
reachability by solving th@co nding linear program. Although the checking
of a single path is very efli@i i mber of candidate path is large, it will
still be time consuming. Howev we are checking whether location v is
reachable in bound k, and v is no imyo at all, we can simply falsify p for
the reachability to save computation timg

— Once a path p is found to be infeasible, ﬁa 2lgomithm will only remove the last
location in the path and backtrack to the log cceding the last one to search
for the next candidate in a recursive manner. ing method does not use
any information of the infeasible path. If the infeasi theftinear constraint
set related to p can be extracted, then the DFS proce rack to the exact
place that makes the ongoing path infeasible. Then, the Sta ace fieeded to search
and verify can be pruned significantly.

Based on the above directions, we optimize our DFS-style BMC algor;j
following ways:

— Only when the last location of the current visiting path p is contained i
bility specification, the DFS procedure will call the underlying decision proced
to check the feasibility of p. Otherwise, the DFS will just go on traversing
graph structure to reduce the time overhead.

— Once a linear constraint set is judged to be unsatisfiable, the irreducible infea-
sible set (IIS) technique[lﬂ] can be deployed to give quick analysis of the pro-
gram and find a small set of constraints which makes the whole program un-
satisfiable. We deploy this technique into our DFS-style BMC of LHA to lo-
cate the nodes and transitions which cause the path under verification infeasi-
ble to guide the backtracking and answer the bounded reachability of LHA more
efficiently.
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2 Linear Hybrid Automata and Reachability Verification

This section gives the formal definition of linear hybrid automata and presents the re-
iew of the path-oriented reachability analysis and bounded reachability analysis tech-
ni that were proposed in our previous works|[8, d].

rid automata (LHA) considered in this paper are defined in[13], which
the definition given in ]. The flow conditions of variables in a linear

atuple H = (X,2,V,V°, E,a,B,y), where

- X is a finite set
set of locationss

ed variables; X' is a finite set of event labels; V is a finite

et of initial locations.

se elements are of the form (v, o, ¢, ¥, V"), where v,V
areinV,0ceXisal is@’seyof rransition guards of the form a < Zfzo cixi <
b, and ¢ is a set of reset adiio f%he form x := ¢ where x; € X, x € X, a, b, c and
¢; are real numbers (a, b m

- ais a labeling function which ma ation in V to a location invariant which
is a set of variable constraints of the fo ﬁ:o cix; < bwhere x; € X, a,b and
¢; are real numbers (a, b may be 00).

inV to a set of flow conditions
which are of the form x € [a, b] where x € X§ real numbers (a < b). For
any v € V, for any x € X, there is one and on ition X € [a, b] € B(v).
- 7y is a labeling function which maps each location in itial conditions
which are of the form x = a where x € X and a is For any v € VO,

LHA from location to location. Foran LHA H = (X, X, V, V', E, a, B,7),a

(do¥0) @141) (@n—1¥n-1)
o— |

is a sequence of locations of the form (vp) — (v;) — .. V),
oo ol

i, iy @iy i, vis1) € E foreach i (0 < i < n). A path in H is a path segment
an initial location in V°. oo 1o ( )
For a path in H of the form (v,) DIy G Gt
oo o

On-1

(vn), by assigning €ach

Tn-1

location v; with a time delay stamp J; we get a timed sequence of the form <V°> (ode)

6o oo
o1/ @ Tae On
represents a behavior of H such that the system starts at vy, stays there for ¢ time units,
then jumps to v; and stays at v; for §; time units, and so on.
The behavior of an LHA can be described informally as follows. The automaton
starts at one of the initial locations with some variables initialized to their initial values.
As time progresses, the values of all variables change continuously according to the

vi\ @G G v . . ) )
< '> Al O < "} where &; (0 < i < n) is a nonnegative real number, which
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flow condition associated with the current location. At any time, the system can change
its current location from v to v' provided that there is a transition (v, o, ¢, ¥, V') from v
to v whose all transition guards in ¢ are satisfied by the current value of the variables.
ith a location change by a transition (v, o, ¢, ¥, V"), some variables are reset to the new
g, accordingly to the reset actions in . Transitions are assumed to be instantaneous.
LetH =(X,2,V, VO E, a, B,v) be an LHA. Given a timed sequence w of the form
o) <v1 @G @ty v
61 o out \On
atgn has stayed at v; for delay ¢; along with w (0 < i < n), and 4;(x) represents
the time the automaton reaches v; along with w. It follows that Ao(x) = a

(x)z{d if x:=d ey

, let £;(x) represents the value of x (x € X) when

if x =@ < y(vp), and 0O <i<n).

i(x) otherwise

Definition 2. =X,2,V,VO E, a, B,7), a timed sequence of the form
(1;0> oty <g' i Dol ;” represents a behavior of H if and only if the
0 a0 1 n

following condition

(¢o-¥0) @1.41)
= (o) — (i) — ...
oo o

- 01,02,...,0, ensure that each vagiable x € X evolves according to its flow condition

in each location v; (0 < i < € Ci(x) = Ai(x) < u'6; where x € [u;,u] €
BO);
— all the transition guards in ¢; (1 [P ¢ satisfied, i.e. for each transition

guarda < coxp+cix;+---+cx; < bin

— the location invariant of each location v;

- at the time the automaton leaves v;, eac

---+cxp < bina(vy) (0 <i < n)is satis
cili(x)) < b, and

- at the time the automaton reaches v;, each variable constrad

<o+ ox < bina(vy) (0 <i < n)is satisfied, i.e.a <¢

cidi(x) < b.

(xo)+c1di(x)) +- - +cili(x) < b;

n)4s satisfied, i.e.

i nstraint a < coxg + c1x; +
(x0) + c1gi(x1) + -+ - +

< coxptcCi1x1 +

vo\ Gowo [vi\ Gwn  Gurwn v, . .
O RV ST S () is a behavior of H, we say path g
60 oo 61 o [ (5,,

@ G . . .
() =5 ... 287 (v,) is feasible, and location v, is reachable along p.
a1

n—

2.2 Reachability Specification and Verification

Reachability Specification. For an LHA H = (X,2,V, VO E. a, B,7), a reachability
specification, denoted as R(v, ¢), consists of a location v in H and a set ¢ of variable
constraints of the form a < coxo+cy1x; +---+¢;x; < b where x; € X forany i (0 <i <),
a,band ¢; (0 < i <) are real numbers.

Definition 4. Let H = (X, 2, V, V', E, a, B,v) be an LHA, and R(v, ) be a reachability

L . o) G G .
specification. A behavior of H of the form { *° ) ‘25" (V1) ‘28 Oty U (V) satis-
60 oo (51 oy Tno 6;1

fies R(v, p) if and only if v, = v and each constraint in ¢ is satisfied when the automaton
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has stayed in v, for delay d,, i.e. for each variable constrainta < coxp+c1x1+- - -+cix; <
bin ¢, a < coln(x0) + c14(x1) + -+ - + cmlu(x)) < b where £,(xx) (0 < k < ) represents
the value of x; when the automaton has stayed at v, for the delay d,,. H satisfies R(v, ¢)

nd only if there is a behavior of H which satisfies R(v, ¢). O

Defifition 5. Given LHA H = (X,X,V,V', E, a, B,7), and reachability specification
(v, ), by introducing a new sink location vg and a sink transition eg into H, which
new LHA Hg. The satisfiability of R(v,¢) on LHA H are equivalent to the
ty of vg in Hg iff a(vg) = 0 and eg = (v, 0, ¢, ¥, vg), where v = v € R(v, ¢),
= 0. m|

Base the above dgfinition, without loss of generality, in the following paragraph,
we will only discug§th€yreachability problem of a given location in the LHA, which
covers the verifig % e reachability specification R(v, ¢).

According 0" De ofi?2, the reachability verification problem of location v, along
the path p can be t into the satisfiability problem of a set of constraints on
variables 6; and {j( ¢ (% | < n). If we use notation @(p, v,) to represent this set
of linear constraints, wei€an €héck whether p reaches location v, by checking whether
O(p, v,) has a solution, whieh can(@e Selved by linear programming (LP) efficiently.

Bounded Reachability Verificatiefr! nded reachability analysis is to look for
a system trajectory in a given thresh can satisfy the given specification. Last
paragraph gives a technique to verify edchability of an abstract path in the LHA.
Based on that, we proposed a bounded reac vélification method in[9] to traverse

the system structure directly by DFS and ch e pétential paths one by one until
a feasible path to the reachability target is foun % threshold is reached.

The pseudocode for this algorithm is shown T he main function is
Verify(H, v, bound) where H is the LHA, v is the reachapility target

is the value of the threshold. This function traverses the st
tion TRAVERSE(stack) recursively, where the input paramete;

ongoing path and keep on traversing. Because whenever a new location
the ongoing path, the algorithm will check the feasibility of it, we call t
the “Eager”-DFS based bounded reachability analysis algorithm.

Instead of encoding the whole problem space to a group of formulas like SAT-
solver, which suffers the state space explosion a lot when dealing with big problems, this
plain DFS style approach only needs to keep the discrete structure and current visitin
path in memory, and check each potential path one by one, which makes it possible to
solve big problems as long as enough time is given. The case studies given in[@] give a
demonstration of this approach which also supports our belief of this argument.

3 Pruning Algorithm For DFS Optimization

The DFS-based algorithm for bounded reachability analysis of LHA reviewed in the
last section gives an intuitive method to traverse and check one path at a time[9]. As
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Table 1. Eager-DFS Based Bounded Reachability Analysis of LHA

VERIFY (H, v, bound)
1. for each location v; € V0:
2. begin
3. new stack s;
4.  s.push(vy);
int res=TRAVERSE(s);
if (res==1) return true;

. .pop(vy);
en
. return falsg

TRAVERS @
($0¥0) (¢1.41) (Dp—1¥n-1)
! —_—> ... —>
T

(v,) from stack s;

1. Get path p = (vo) — (1)
a0 On-1

2. check the

3. if (infeasible)

4 . if ((feasible)&&(v, =

5. if ((s.depth == bom

6 . for each successive 1

7. begin

8. s.push(sloc);

9. boolean res=TRAVERSE

10. if (res==1) return res;

11. s.pop(sloc);

12. end

13. return O;

the number of paths under given bound are finite, this alg
nate. Furthermore, the algorithm only checks the reachability
memory usage will not blow up quickly without control.

3.1 Target Location-Guided Lazy-DFS

u
one

nteed to termi-
, therefore the

Basically, the above algorithm makes a tradeoff between space and time to h

lems with large size. Using our DFS-style BMC algorithm, we can solve a problem
practical size given enough time. As a result, we have a stable ground for the conti®l of
memory usage. Now let’s turn our direction to time control, which means we want t
give an algorithm to traverse the bounded behavior tree of a LHA more efficiently.

The current Eager-DFS algorithm checks all the paths under the given threshold.
When the threshold is large and the graph structure is complex, there could be nu-
merous candidate paths to check, which could consume a considerably large amount
of computation time. Take the LHA in Fig[l] for example, suppose we want to check
whether vg is reachable within bound 7, the related bounded behavior tree of this au-
tomaton is shown in Fig[2]l which has 37 candidate paths, for example, (v;) — () and

€]

so on. This means the DFS procedure could call the underlying LP solver 37 times in
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Fig. 2. Behavior Tree With Bound 7

the worst case. If the Siz is larger, the number of path segments need to check
could blow up quickly, Which'Wil he main bottleneck for the entire bounded veri-
fication. Therefore, if there méthod¥o decrease the number of paths need to check,
then the efficiency of the abov&algogith be improved for sure.

By investigating the 37 paths, We’c at most of the paths are not even related
with the reachability specification. A ecking whether location vg is reachable
in bound 7, path segments like (v;) — ») — (v3) don’t have location vg

ey e

ification for sure and it could be
2 Ver.

Based on this intuitive idea, we give the firs ghtf rd optimization as fol-
lows: When checking whether location v is reachable g ajpath g, if the location
v is not contained in p, the investigation of the feasibility of p Wi
til v is traversed. Comparing with the Eager-DFS algori

tion which checks the feasibility of the ongoing path when
versed, in this optimization, the calling of the LP solver will only#be conducted once

involved, therefore these paths can not satis

“Lazy”-DFS.
The pseudocode for the function TRAVERSE in Lazy-DFS algorithm

with v, == v . It is clear to see that only when the last location of the curren
iting path p is the target location, the DFS procedure will call the underlying deci
sion procedure to translate the feasibility of p into a linear constraint set and verify
it by LP. Otherwise, the DFS will just go on traversing on the graph structure. Thus,
the number of paths need to be checked can be reduced significantly to raise the effi-
ciency. Again. let’s take the automaton given in Fig[ll for example. Under Lazy-DFS,
there are only 5 paths need to call the underlying decision procedure to check, e.g.,
v - (v2) w (v3) > (va) w (vs) Py (W), (Vi) w (vs) Py (ve) and so on.
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Table 2. Lazy-DFS Based on Target Location-Guided Checking

TRAVERSE (stack s)
1. Get the ongoing path p = (vo) oo} W) Gt | Gniden) (v,) from stack s;
oo o [
2. if(v, ==v)
3. begin

check the feasibility of p;
if (feasible) return 1 else return 0O;

7 .depth == bound)||(v, doesn’t have any successive location)) return 0;
. for each sucgessive location sloc of v,

15. return O;

3.2 IIS-Based Infeasible Constrai g and Backtracking

pecification related, the times of
ly_But it is not always the case.

In general, by only checking the path h
calling the underlying LP solver can be red @3
Still take the automaton given in Fig[T] for exathf n the Lazy-DFS algorithm
given in Table2] when checking the automaton a ing et location v, the first
path that the algorithm will call the underlying decisigf’ proc@duregis: p = (v;) —
el

not feasible by

._.
=
S

() — (v3) — (vg) — (vs) — (v6). Suppose it is prgyed th

2 3 4 5
calling the underlying LP solver, the algorithm will pop out th,

(v3) — (v4) is already infeasible, as p”’ is not related with the reachability ta§
e3

Lazy-DFS the feasibility of p”” will not be checked at all. But, if the algorith

of p” will be checked right after location v4 is added into the ongoing path (9
is proved to be infeasible, then a backtracking will be conducted immediately, whi
means the subtree starting from location v4 with prefix as p”” will not be traversed in
Eager-DFS at all. But, in the Lazy-DFS algorithm, this subtree will still be traverse
So, is there a method which can reduce the times of solving LP problems as proposed by
Lazy-DFS and also backtrack to the exact place where infeasibility happened to prune
the behavior tree as Eager-DFS? The answer is yes!

Now, let’s come back to the automaton given in Fig[ll in location v; we have x = 2,
y = land x < 5. According to definition 2, in the related constraint set R, there are
accordingly constrains: 6,, > 0, {,,(x) — 4,,(x) = 20y, {1, (V) = A, (¥) = Oy, Gy (X) < 5,
where A,,(x) = A,,(y) = 1 as x and y are reset to 1 on transition e,. On transition e3,
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there is guard x > 3. In location vq4, there is invariant y > 4. Therefore, we also have
constraints £,,(x) > 3 and {,,(y) > 4 in R. If we name this set of constraints as R,
clearly it is unsatisfiable. As ,,(x) < 5, {,,(x) > 3, and {,,(x) — 1 = 20,,, we can get
< 0y, < 2. Because ¢,,(y) — 1 = d,,, we can get 2 < {,,(y) < 3, which contradicts
withys,,(y) > 4. As these constraints are generated according to the invariants and
uards from transition e,, e3, and location vs, v4, this implies the path segment (vy) —>

is_clever enough it will backtrack to the location v3 and traverse the next
(v1). So, now the problem is how to locate such a backtracking point?

igreducible infeasible set (IIS) techmque[lﬁ] Generally speaking,
R is said to be satisfiable, if there exists a valuation of all the
% ne constraints in R to be true. Otherwise, R is unsatisfiable.
If R is unsatisfigble, theadlS of R is a subset R” C R that R’ is unsatisfiable and for any

Th swer is the

Intuitively speaking, of a linear constraint set is an unsatisfiable set of
constraints that become§| sat le if any constraint is removed. Fortunately, quoted
from[@], the algorithm ate the from a unsatisfiable set is “simple, relatively

efficient and easily incorporation Mito Standard LP solvers”. Actually many software
packages are available which su ient analysis of a linear constraint set and
locating of the minimal IIS, such as ], IBM CPLEX[Iﬁ] and LINDO[IE].
Therefore, given an infeasible path p, iR analyze the constraint set R gen-
erated according to this path to locate the if there is a mapping function to
map each constraint V € R’ to the original ¢ the path, we can manipulate the
structure of the bounded depth behavior tree moge’e

Definition 6. Given LHA H = (X, X,V, V', E, . B,y) fath pl& (vgh 5 vy 5’
o
(Dn-1:¥n-1)
. —
Tn—1

sibility of p. For constraint V € R, the stem location set V¢ of V_ifp is defined as
follows:

(vn), and linear constraint set R which is ge e conding to the fea-

if V is generated according to the time duration on location v; (0 < i g

vi € Vy;

— if V is generated according to the transition guard in ¢; on transition <
n—1), vy € Vy. Ifi >0, v;_; € Vy as well;

— if V is generated according to the reset action in ; on transition e; (0 < i < n 1),
virr € VyIfi > 0, v, € Vy as well;

— if V is generated according to the flow conditions in §,, location v; (0 < i < n),
v, € Vy. If i > 0, vi;1 € Vy as well;

— if V is generated according to the invariants in «,, in location v; (0 < i < n);

o if V is generated according to {i(x), v; € Vy

o if V is generated according to A;(x), v; € Vy, if i > 0, v;_; € Vy as well. O
Definition 7. Given LHA H = (X,Z,V,V', E,a,5,7), path p = (o) ‘2% (v,y ‘““%’

(¢n lwn 1

(Tn—l

(v, and linear constraint set R which is generated according to the feas1b111ty
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of p. Fora set R" = {V,V,,...,V,} CR, the stem location set of R’ is Vg = Vy, U
Vy,U---UVy,. 0O

ically speaking, given a path p and the linear constraint R, the above two definitions
mark’each constraints ¢ in R,, according to a location v in p. This means, ¢ will not be
ded into R, until p travels to location v. Now, let’s review the constraint set R, given

18 V = {va,v3,v4}.
Su € R, is the only IIS in the constraint set of path p = (v;) — (v;) — (v3) —
3 e e3

learly implies that the path segment before reaching the
dex in the stem location set of R,, which is v4 in p, is
from vy after (v;) — (v,) — (v3) doesn’t need to be

ey e

location with the bigg
feasible. So the sub fee s

traversed.

Furthermore, as mentigne e constraint set that IIS technique located can
be mapped back to a path segmengs po'fin the path p. This path segment can be saved
as a guideline for the future tragersifie, onee.a new traversed path p”’ contains an exact
path segment as p’, we can simply*fa r verification without call the underly-
ing decision procedure, since the syntax € nts in p’ has already been proved to be
infeasible in p, the occurrence of p’ i
unsatisfiable constraints with just variable n

Based on the above discussion, the optimi
below in Table[3l A new function IIS (stack)

function finds the IIS in the constraint set according

AVERSE (stack) is given

& inffoduced_in Table[3] as well. This

(Bowh0)
path (vp) A
ao

(B1:41) @m—-1¥m-1)
. —

)y — .. (v,,) at first, then locates the stem m the IIS con-
o1

straint set. By lomczllting the node vy in the set with the larges
inform the upper caller to backtrack to location v,_; by indicating
Vi—1 and v,,.

Furthermore, once a path segment p’ is located in the IIS, p” will be
global vector Q as “bad examples”. Then in the Traverse function, once a pg
to be specification related, the algorithm will check whether this path contaii§a
example”. If any of the bad examples is hit, the Traverse function will directly ret
the backtracking step to the upper called].

Based on the algorithm given in Table[3] once a path p is proved to be infeasible, a
IIS based method will be called to locate the path segment which makes p infeasible.
Then the DFS algorithm can backtrack to the right position to prune the bounded be-
havior tree efficiently. Besides that, the path segment will be saved to falsify the other
new generated paths under checking to save the computation time.

! Generally speaking, the mapping with bad examples can be preformed once a new location is
added to the path, but the matching will be time consuming if the size of example set is huge,
so we decide to be lazy again to postpone the matching until the target is found.
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Table 3. IIS-DFS Based On Infeasible Path Segment Localization

TRAVERSE (stack s)
1. Get the ongoing path p = (vy) (M) v1) (M) e w”ﬂ'_l) (v,) from stack s;
a0 o Tp-1
2. if(v, ==v)
3. begin
if Qw € Q && w is a path segment in p )
. (i) ($iv1:¥i+1) (@j-1:¥j-1)
locate winp as p, = (v;) — (Vir1) — ... — (V)
i Titl Tj-1
return j-n;
check the feasibility of p;
. if (unfi
9.
10. en
11 . if ((s.depthi=="bound)||(v, doesn’t have any successive location)) return 0;
12 . for each sy@€cessi tion sloc of v,

13. begin
14. s.push(slo
15. int res=TRA SE(

16. if (res==1) returnies;
17. s.pop(sloc);

18. if (res < 0) return res+1;
19. end

20. return O;

1IS (stack s)
1. Get the ongoing path p = (vo) Gow) ) ) MY (v,,) from stack s;
a0 o1 -1

2. Locate the stem location set V,, and the accordingl§f/path seg@menfip’ of p;
3. Q.add(p’);

4. Get the location vy in V,, with the largest index;

5. return k-m;

4 Case Studies

In order to evaluate the performance of the optimization methods presente

per, we upgrade our bounded reachability checker for LHA: BACH[@, ] to a
version BACH 3 (http://seg.nju.edu.cn/BACH/). BACH 3 shares the graphical
LHA Editor with BACH. As the LP solver underlying BACH is OR-objects|15] whic
does not support the functionality of IIS analysis. BACH 3 calls the IBM CPLEX[17]
instead, which gives a nice support of IIS analysis.

In the experiments, we evaluate the performance of BACH 3 under three different
settings according to the underlying DFS algorithm, which are Eager-DFS, Lazy-DFS
and IIS-DFS respectively. The experiments are conducted on a DELL workstation (Intel
Core2 Quad CPU 2.4GHz, 4GB RAM).
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As the comparisons between Eager-DFS and other related tools are already reported
in[@], in this section, we focus on the comparison between the three different DFS al-
orithms to show the performance of the optimization methods presented in this paper.
We use three benchmarks in the experiments. The first LHA is the sample automaton
given in Fig[Ilin this paper. The second one is the temperature control system used in
ur previous case studies in[9]. The third automaton is the automated highway example

C ed in[@] with 5 cars included. These automata are shown in Fig[3l For the
tomaton, we are checking whether location vg is reachable. In the other two

reachability of the target location under checking is v4 for temperature
cO » which stands for that no rod is available in the nuclear reactor; and vg
for thefautomated higlwway which stands for that a car collision will happen.

=12 =10

i € 18101, %, e [8,10]

(A) Temperature Control System

(B) Automated Highway

Fig. 3. Experimental Automata

We conduct these three DFS algorithms on all of these three automata. The time
limit is set as 2 hours in the experiments. The performance data for each benchmark are
shown in Table 3l and [l respectively. In these tables we show the total time spent for
each problem w.r.t different bound size. Furthermore, in order to show the performance
of the optimization techniques in decreasing the number of paths to check, we also
collect and report the times BACH 3 calls the underlying LP solver -CPLEX, each call
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means a unique path is transformed into an LP constraint set and solved by CPLEX. To
demonstrate these data more intuitively, we also show the plotted graphs in Figdl

Table 4. Performance Data On The Sample Automaton In 2 Hours

Eager-DFS Lazy-DFS 1IS-DFS
Total Time (Sec.)[Call CPLEX|Total Time (Sec.)[Call CPLEX|Total Time (Sec.)[Call CPLEX

0.252 51 0.063 17 0.046 2
7.111 431 1.487 853 0.124 2
98.354 3223 44.610 46037 0.343 2
1036.987 23743 2784.989 2544981 1.322 2
N/A N/A N/A N/A 10.729 2

N/A N/A N/A N/A 1040.308 2

On The Temperature Control System Benchmark In 2 Hours

Tech. ager- Lazy-DFS TIS-DFS
Bound : Total Time (Sec.)|Call CPLEX |Total Time (Sec.)[Call CPLEX
5 0.022 3 0.075 3
15 0.58 127 0.595 23
25 9.669 4095 1.77 43
35 386.743 131071 19.867 63
40 3389.555 1048575 141.046 75
50 N/A 6470.308 95
Table 6. Performance Data On The A ighyay System Benchmark In 2 Hours
Tech. Eager-DFS 1IS-DFS
Bound Total Time (Sec.)|[Call CPLEX Total Time (Sec.)|[Call CPLEX
5 1.115 61
10 27.877 2045
15 822.996 65533
20 N/A N/A 1689.658
25 N/A N/A N/A

DFS 822.9 seconds to check 65533 paths. By using Lazy-DFS, the verificati®
decreased to 79.6 seconds by only checking 21844 paths. Finally, when use 1IS-
the verification is finished in only 1.6 seconds, and only 20 paths are verified.

The reason is that in our DFS schema, each time a candidate path is found, th
algorithm will call the underlying LP solver to reason the feasibility of the path. When
the size of path and/or the number of candidate paths is large, the reasoning by LP
will be very time consuming. By using optimization techniques presented in this paper,
the number of paths need to check is reduced significantly, thus, it is possible to solve
problem more quickly and to solve larger problems. In detail:

— By introducing Lazy-DFS, the number of candidate paths to check can be reduced
in most of the cases, that’s the reason that Lazy-DFS outperforms Eager-DFS.
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Sample Automaton Temperature Control System Automated Highway System

7200 7200 7200
3600 3600 X 3600

1000 1000 * 1000

Time (second)
s
*

Time (second)
s

Time (second)

Eager-DFS 014777
Lazy-DFS - o

IIS-DFS % IIS-DFS % I1S-DES -
0 20 3 40 50 6 70 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25
e Bound (number of discrete locations) Bound (number of discrete locations) Bound (number of discrete locations)

Eager-DFS —— Eager-DFS ——
Lazy-DFS - Lazy-DFS -

114006

400000

100000

10000

1000

Times of Solve LP.
3
8

Times of Solve LP.

Eager-

Lazy.DFS —x— )

A OFe Tx iy Eager-DFS —— 100
¢ Lazy-DFS -

IIS-DFS -3

.
IIS-DFS %

) 1
70 5 10 15 20 25 30 3 40 45 50 5 10 15 20 25
Bound (number of discrete locations) Bound (number of discrete locations)

Call CPLEX

— By introducing IIS-BES ath is infeasible, IIS can locate the exact path
segment where the infeasibilityshappens to guide the backtracking. Besides this, the
infeasible path segment caffjbe sayved “bad example” that if any future candidate
path has a same path segme d example”, the candidate path can be
falsified for the feasibility reasonihg ut call the underlying LP solver. That’s
the reason that IIS-DFS outperfor n almost all the experiments.

— Indeed, if a candidate path can be matg a “bad example”, then it can be
falsified directly without call the underl S to save computation time.
Nevertheless, when the size of the candidatepaflt set is_huge, the comparison be-
tween each of the candidate path and the “bad €xa setiwill also be very time
consuming, that’s the reason that as shown in our data, the"togdl'time spent is not
proportional to the times of calling CPLEX.

5 Conclusion

The bounded reachability analysis of hybrid automata is difficult. Even
ple class of linear hybrid automata (LHA), the state-of-the-art tools can only
systems with few continuous variables, control nodes and small bound.

In this paper, we present an algorithm to check the bounded reachability of L
a DFS manner. Only the abstract path related with the reachability specification wil
be analyzed by the underlying LP solver. If the path is judged to be infeasible, the IIS
technique will be deployed on the infeasible path to locate the path segment which
makes this path infeasible to guide the backtracking of the DFS.

We implement the optimization techniques presented in this paper into BACH
which is a bounded reachability checker for LHA. The experiments on BACH greatly
strengthen our belief that with the help of the optimization methods presented in this
paper, the size of the problem that BACH can solve is increased substantially while the
time for solving the same problem is reduced significantly as well.
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