

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2025-IJ-001

Technical Report 2025

prohibited.

2025-IJ-001

BlockSOP: A blockchain-based software
management platform for open collaborative

development

Shuoxiao Zhang, Enyi Tang, Haoliang Cheng, Xinyu Gao, An Guo,

Jianhua Zhao, Xin Chen, Linzhang Wang, Na Meng, Xuandong Li

The Journal of Systems and Software 230 (2025) 112477

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

BlockSOP: A blockchain-based software management platform for open

collaborative developmentI

Shuoxiao Zhang a , Enyi Tang a ,∗, Haoliang Cheng a, Xinyu Gao a, An Guo a , Jianhua Zhao a,
Xin Chen a, Linzhang Wang a , Na Meng b , Xuandong Li a
a State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210093, China
b Virginia Polytechnic Institute and State University, Blacksburg VA 24060, USA

A R T I C L E I N F O

Keywords:
Collaborative development
Contribution
Incentive
Motivation
Blockchain
Smart contract

 A B S T R A C T

Open collaborative development is common and brings tremendous benefits to developers and users. However,
it also poses new challenges. Incentives are a crucial mechanism for promoting open collaborative development,
but developers find it difficult to receive rewards corresponding to their contributions. This has prompted
us to propose a trustworthy incentivization mechanism for collaborative software development based on
blockchain (BlockSOP) to enhance user development motivation. We have innovatively introduced the concept
of contribution points to measure users’ contributions to collaborative development. Smart contracts fairly
allocate project earnings based on the value of users’ contribution points. Additionally, through smart contracts,
we have implemented a secure mechanism combining deposits and credit scores to effectively reduce the
risks of software information leakage and malicious behavior during the collaborative development process.
Experimental results demonstrate that BlockSOP effectively safeguards developers’ interests and significantly
enhances developers’ development motivation and response speed while keeping expenses within a reasonable
range.

For Rese

1. Introduction

Open collaboration has emerged as a critical component of mod-
ern software development practices, affording numerous benefits to
developers and users (Constantino et al., 2023; Barcomb et al., 2020).
By enabling the sharing of knowledge and expertise across a broad,
open network, open-source development can substantially enhance the
efficiency and quality of software development (Tan et al., 2023),
facilitating greater innovation and fostering the creation of software
products (Assavakamhaenghan et al., 2022; Samuel et al., 2022).

However, how to effectively motivate developers to contribute is
a major challenge for open source development, which has led to the
demise of many potential projects (Howison and Herbsleb, 2013; Qiu
et al., 2019a; Dijkers et al., 2018). Unlike traditional proprietary soft-
ware development models that rely on profit margins and licensing fees,
open-source projects often rely on donations, grants, or volunteer con-
tributions, which can be unpredictable and unreliable (Shimada et al.,
2022; Zhang et al., 2022). The challenge of sustaining open-source
projects is compounded by the fact that developers often prioritize their

I Editor: Tao Zhang.
∗ Corresponding author.
E-mail addresses: sx_zhang@smail.nju.edu.cn (S. Zhang), eytang@nju.edu.cn (E. Tang), dg1932001@smail.nju.edu.cn (H. Cheng),

xinyugao@smail.nju.edu.cn (X. Gao), guoan218@smail.nju.edu.cn (A. Guo), zhaojh@nju.edu.cn (J. Zhao), chenxin@nju.edu.cn (X. Chen), lzwang@nju.edu.cn
(L. Wang), nm8247@cs.vt.edu (N. Meng), lxd@nju.edu.cn (X. Li).

paid work over their contributions to open-source projects (Zhang et al.,
2024; Barcomb et al., 2022, 2020; Jamieson et al., 2024), resulting in
a lack of consistent and reliable development resources (Coelho and
Valente, 2017; Iaffaldano et al., 2019b; Li et al., 2022). Additionally,
while open-source projects often have strong communities that support
their development, these communities may not be able to provide the
incentives needed to sustain projects in the long run (Qiu et al., 2019b;
Curto-Millet and Jiménez, 2023; Valiev et al., 2018a).

These challenges have led researchers and practitioners to ex-
plore alternative funding models for open-source development, such
as crowdfunding (Zhou et al., 2021), corporate sponsorship (Butler
et al., 2021), and grant funding (Overney et al., 2020; Overney, 2020).
While these models can provide some level of incentives (Nakasai
et al., 2017; Fan et al., 2024a), they also introduce new challenges.
In particular, developers often lack trust in each other (Wermke et al.,
2022; Ho and Richardson, 2013; Moe and Šmite, 2008), and ensuring
corresponding rewards for their contributions becomes difficult (Hann
et al., 2013), resulting in developer attrition (Yu et al., 2012). In

arch Only

https://doi.org/10.1016/j.jss.2025.112477
Received 21 August 2024; Received in revised form 10 January 2025; Accepted 24
vailable online 23 May 2025
164-1212/© 2025 Elsevier Inc. All rights are reserved, including those for text and
 April 2025

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0009-0004-3023-5027
https://orcid.org/0000-0001-9004-1292
https://orcid.org/0009-0005-8661-6133
https://orcid.org/0000-0003-4794-1652
https://orcid.org/0000-0002-0230-5524
mailto:sx_zhang@smail.nju.edu.cn
mailto:eytang@nju.edu.cn
mailto:dg1932001@smail.nju.edu.cn
mailto:xinyugao@smail.nju.edu.cn
mailto:guoan218@smail.nju.edu.cn
mailto:zhaojh@nju.edu.cn
mailto:chenxin@nju.edu.cn
mailto:lzwang@nju.edu.cn
mailto:nm8247@cs.vt.edu
mailto:lxd@nju.edu.cn
https://doi.org/10.1016/j.jss.2025.112477
https://doi.org/10.1016/j.jss.2025.112477

S. Zhang et al. The Journal of Systems & Software 230 (2025) 112477
Table 1
A comparative analysis of features in BlockSOP, BountySource, Gitcoin and OpenCollective
 Feature description BlockSOP BountySource Gitcoin OpenCollective
 Ability to fairly distribute income to all involved contributors √

× × ×
 Detection of malicious behaviors √

×
√

∖
√

∖
 Security mechanism to prevent copyright infringement √

× × ×
 Direct investment income from projects √

× × ×
 Progressively granting access rights of projects with fine-grained permissions √

× × ×
 Transparent processes empowered by blockchain √

×
√

×

r

financial services, trust is a relatively important factor influencing
customer behavior (Tyler and Stanley, 2007; Pi et al., 2012; Leblang
et al., 2022; Oláh et al., 2021). The lack of trust in open source
collaboration can give rise to a series of issues, particularly in terms
of code loopholes and inequitable incentive distribution. On one hand,
distrust in open source collaboration can lead developers to focus on
superficial outcomes, neglecting code quality and security, which in
turn may introduce code loopholes, such as the infamous Heartbleed
bug (Zhang et al., 2014). On the other hand, the lack of trust in
incentive allocation is another critical issue facing the open source
community. When incentive mechanisms fail to allocate resources
fairly, some contributors’ efforts may be overlooked (Lamprecht et al.,
2020). For example, many open source developers on GitHub rely
on unstable donations from sponsors, leading to a significant loss of
contributors.

In light of these issues, this paper proposes BlockSOP, a novel
blockchain-based platform for managing software development de-
signed to enhance user motivation towards open collaboration in soft-
ware projects. We define the end-users as true appreciators of the
intrinsic value of the software and users willing to invest in the soft-
ware. BlockSOP establishes a direct link between the principal source
of revenue and the end-users. Through progressive opening model we
proposed, developers and end-users create a mutually beneficial trading
relationship with clearly defined profit margins. More details about the
progressive opening model will be discussed in Section 2. Contributors of
the project are rewarded with market income proportionate to their
level of contribution. To ensure transparency and trustworthiness, we
implement BlockSOP using blockchain techniques.

The progressive opening model forms the fundamental basis of Block-
SOP and serves to safeguard the fine-grained proprietary rights of
each contributor during the open collaborative software development
process. This model involves granting developers from the open world
progressively increasing access to the artifacts in a project based on
their contributions. As research suggests, developers’ intention to en-
gage in copyright infringements decreases as their stake in the propri-
etary rights of the project increases (Lazear and Rosen, 1981). Hence,
BlockSOP grants these developers increased access to the artifacts
during open collaboration. Conversely, developers who lack sufficient
proprietary rights may need to rent access rights in order to complete
jobs in the open collaboration. They can pay back the borrowed access
rights later by earning contribution points through their work on the job.

BlockSOP offers a novel approach to incentivize continued contri-
butions to open collaborative software projects by rewarding project
contributors with income from the market based on their percentage
of contribution. To measure each contributor’s proprietary stake in a
project, we introduce the concept of contribution points. These points
represent the proportion of proprietary rights a contributor has earned
in a project and are determined by a predefined contribution point
earning scheme specific to each project. Income from the market is then
distributed among contributors based on the proportion of contribution
points that they have earned. It is worth noting that different projects
are independent of each other, and contribution points from one project
cannot be used interchangeably with those of another project.

We introduce blockchain-based techniques to construct mechanisms
for our models and schemes with transparency and trust. By leveraging

For Resea

2
smart contracts, BlockSOP automatically calculates and distributes in-
come to contributors in accordance with their contribution points, elimi-
nating the need for manual and potentially biased distribution meth-
ods. Moreover, the blockchain-based framework provides a tamper-
proof record that ensures contributors’ proprietary rights are protected
throughout the software development process.

Furthermore, we have introduced blockchain-based technology to
establish models and security mechanisms that are transparent and
trustworthy. By deploying smart contracts, BlockSOP automatically cal-
culates and distributes income to contributors based on their contribu-
tion points, eliminating potential biases that manual income distribution
may bring. Additionally, the blockchain-based security mechanisms
protect the proprietary rights of contributors, enhancing the trust of
the entire development process.

The modular design of BlockSOP enhances both the system’s ef-
ficiency and scalability, while optimizing computational complexity.
Specifically, the Contribution Point Usage Module, with a constant
complexity of 𝑂(1), ensures high efficiency. The Get Contribution Point
Module and Arbitration Module exhibit linear complexities of 𝑂(𝑁) and
𝑂(𝑀𝑙𝑜𝑔𝑀 + 𝐾), respectively, effectively handling the growth in user
scale. Although the watermark embedding and extraction modules are
influenced by code size, their complexity of 𝑂(𝐿2) remains relatively
manageable. The overall complexity distribution of BlockSOP supports
large-scale collaborative development, ensuring both operational effi-
ciency and scalability.

In Table 1, we present a comparative analysis of BlockSOP, Boun-
tySource (Zhou et al., 2021a), Gitcoin (Choetkiertikul et al., 2023;
Schmid and Shestakov, 2024) and OpenCollective (Zhou et al., 2022),
highlighting their distinct features and functionalities. BountySource
and Gitcoin represent pioneering platforms in the domain of software
development crowdfunding. BountySource primarily offers rewards for
achieving specific tasks or goals, while Gitcoin harnesses the potential
of blockchain technology to facilitate funding for open-source develop-
ment. OpenCollective is a platform designed to facilitate transparent
and collaborative funding for open-source projects and community-
driven initiatives. However, these platforms exhibit limitations in moti-
vating sustained contributions to open collaborative software projects,
a formidable challenge in its own right, as well as ensuring fairness.

BlockSOP’s advantage over BountySource, Gitcoin and OpenCollec-
tive in income distribution lies in its fairness based on smart contracts.
Smart contracts automatically allocate rewards according to actual
contributions, ensuring transparency and fairness in income distri-
bution. In contrast, BountySource, Gitcoin and OpenCollective rely
on human judgment, which is susceptible to subjective decisions or
external factors, leading to potential inequities. BlockSOP’s malicious
behavior detection mechanism is supported by blockchain’s security
features, enabling the timely identification and tracking of malicious
activities. In comparison, Gitcoin and OpenCollective primarily de-
pends on community feedback and manual review, which introduces
delays and vulnerabilities, while BountySource lacks an effective mali-
cious behavior detection system. As a result, BlockSOP is more efficient
in preventing malicious actions. BlockSOP enhances copyright protec-
tion for projects through blockchain technology, ensuring that code
ownership and copyrights can be verified and traced via on-chain
data. In contrast, BountySource, Gitcoin and OpenCollective lack a
systematic approach to copyright protection. By integrating blockchain

ch Only

S. Zhang et al.

The Journal of Systems & Software 230 (2025) 112477

r

smart contracts, BlockSOP ensures transparent fund flow, with investor
funds directly invested into projects, generating returns automatically
based on project progress. In comparison, BountySource, Gitcoin and
OpenCollective primarily rely on funding mechanisms, which have a
more indirect and opaque investment return structure. Thus, BlockSOP
offers investors a clearer and more direct path to returns. In terms of
access control, BlockSOP uses a progressive opening model to ensure
that sensitive information is only accessible to authorized person-
nel, a level of fine-grained management that is difficult to achieve
in BountySource, Gitcoin and OpenCollective. BlockSOP provides a
public and transparent workflow based on blockchain, ensuring trans-
parency in project management, fund flow, and code submissions. In
contrast, BountySource and OpenCollective still depend on backend
management, lacking transparency.

The main contributions of this paper are as follows:

• We propose a blockchain-based trustworthy management plat-
form for collaborative software development, with the aim of
enhancing users’ motivation for development contributions. In-
novatively, we introduce the concept of shares in software col-
laboration, distributing software project earnings based on user
contribution percentages, while ensuring users’ rightful interests
through blockchain technology.

• We establish a security mechanism based on a combination of
deposit and credit scores to prevent malicious behavior and code
leakage during collaborative development. Using game theory,
we simulate user profits under different decision scenarios and
conduct user surveys to demonstrate the validity of the security
mechanism and the trustworthiness of the entire development
process.

• By comparing experimental data with BountySource and Open-
Collective, we have demonstrated that BlockSOP is superior to
BountySource in enhancing software development motivation and
response speed, BlockSOP is more likely to attract investors’ atten-
tion than OpenCollective.

• We experimentally test the gas consumption and performance
of BlockSOP and Gitcoin, and the results indicate that BlockSOP
outperforms Gitcoin slightly in terms of throughput and latency,
and the overhead is also within a reasonable range.

The remaining sections of the paper are structured as follows:
In Section 2, we provide a detailed explanation of the progressive
openness model. Subsequently, Section 3 introduces the background of
blockchain tamper-proof and smart contracts. Moving forward, Sec-
tion 4 presents the key modules of our mechanism along with their
implementation details. Our security mechanism is elaborated upon
in Section 5. The evaluation results and corresponding discussion are
presented in Section 6. Section 7 presents a comprehensive overview
of the related work pertaining to this paper. Lastly, in Section 8, we
conclude our findings and discuss future work.

2. Progressive opening model

Our blockchain-based software development management platform,
BlockSOP, endeavors to improve the software development landscape
by fostering transparency and sustainability. This innovative paradigm
is underpinned by the conviction that valuable open-source software
especially need end-users financing (Bonaccorsi and Rossi, 2003). Tra-
ditional open-source financing models, dependent on sponsor support,
can inadvertently undermine the customer experience, as software
features cater predominantly to sponsor interests (Zhou et al., 2021b;
Wang et al., 2022). In certain instances of sponsored open-source
software, sponsors may view the software products as tools serving
their corporate strategies, rather than valuable resources that address
customer needs (Fan et al., 2024b). Recognizing that the software
development industry is driven by innovation and customer require-
ments (Jahn et al., 2024; Zahedi et al., 2018; Casadesus-Masanell

For Resea

3
Fig. 1. The process through which different contributors gain deep access to the project
via the progressive opening model.

and Llanes, 2015), we posit that a customer-centric approach fosters
enhanced satisfaction, positive word-of-mouth, and increased prod-
uct adoption, thereby nurturing a virtuous cycle of developmental
productivity.

Achieving the dual goals of openness and financial viability presents
a formidable challenge (Voong and Saebi, 2023). To address this chal-
lenge, we propose an innovative solution: the progressive opening model.
This model seeks to optimize collaborative efforts by striking a balance
between these competing interests. It offers a practicable financing
framework that implements a permission-based system, restricting ac-
cess to software components based on a contributor’s role. By re-
stricting interactions to the only components necessary for a given
contribution, the progressive opening model mitigates potential project
leakage, thus ensuring the integrity of the project and the feasibility
of financing strategies. Simultaneously, the model reduces the risk of
information leaks from high-access roles by directly associating access
levels with project ownership and tying ownership to the project’s
benefits.

As illustrated in Fig. 1, contributors in BlockSOP can be categorized
into two types: high contribution points contributor and low contribu-
tion points contributor. The progressive open model assigns different
levels of access based on the contributor’s degree of involvement. Low
contribution points contributor can rent contribution points to gain ac-
cess to specific project details, thereby enhancing overall understanding
of the project. Upon completing his contributions, he is required to
return the corresponding rented points. This rental mechanism ensures
that low contribution points contributor can acquire deep understand-
ing of the project. In contrast, high contribution points contributor can
directly exchange contribution points for access to the entire project.
These two options provide flexible choices for contributors with vary-
ing levels of involvement, ultimately improving the efficiency and
effectiveness of collaborative development.

In particular, this model operates on the principle of ownership
allocation commensurate with individual contribution. Greater contri-
butions to the software project yield more substantial ownership rights.
These rights confer three key privileges: a larger share of project ben-
efits, decision-making power on significant project matters, and access
to a broader range of core and peripheral project components. This
strategic amalgamation of rights serves to deter key contributors from
disclosing sensitive project information, thereby addressing potential
trust issues during the open collaboration process. High-access roles, by
virtue of their substantial stake in the project’s benefits, are less likely
to jeopardize their own interests by leaking valuable project assets.

In open collaborations involving ordinary contributors with limited
ownership rights, these contributors only necessitate access to compo-
nents essential for their respective tasks. In order to inherit the spirit of
open source, the progressive opening model introduces a mechanism to al-
low ’ rented’ access to newcomers, in which novice contributors need to
demonstrate the value of their contributions to project decision-makers
and prove that the access permissions they request are reasonable
in order to successfully obtain access permissions. Project owners are
composed of the project creators, outstanding developers, and excellent
investors. They will consider the validity of the contribution and the

ch Only

S. Zhang et al.

The Journal of Systems & Software 230 (2025) 112477

r

extent of access requested, assess the risk and make a final decision
to grant or withhold access. This decision-making process involves
voting among multiple decision-makers, emphasizing the project owners’
critical role, as their decisions impact the interests of larger ownership
roles.

The model also provides for rented access to be reimbursed by
contributors through contribution points, awarded upon task completion.
We refer to the contribution points that have not yet exchanged code
access permissions as unexecuted contribution points and the contribu-
tion points that have exchanged code access permissions as executed
contribution points. These points have inherent access rights governed
by our platform’s rules. Initially, contribution points are unexecuted and
can be exchanged for specific code access rights. After this exchange,
the points become executed and can only be used to obtain a share
in software revenue and decision-making rights. Consequently, novice
contributors can reimburse their ’rented’ access by converting their
contribution points from unexecuted to executed status. Meanwhile,
established contributors can acquire access rights for new tasks by
redeeming previously accrued unexecuted contribution points. This model
addresses insufficient access rights while preserving project security
and financial viability in open collaboration.

3. Background

In this section, we briefly present key background information about
blockchain tamper-proof and smart contracts.

The blockchain is fundamentally a decentralized, distributed peer-
to-peer (P2P) network wherein all nodes share equal status (Zantalis
et al., 2024; Pacheco et al., 2023). This structure effectively mitigates
network attacks targeting central nodes and addresses the issue of
single-point failures. It accomplishes this by utilizing transactions as a
medium for data communication and resource exchange (Monrat et al.,
2019; Alzoubi et al., 2022). Serving as a unique form of database,
the blockchain not only stores data but also ensures its trusted trans-
mission. In practical applications, valuable assets can be digitized and
securely stored within the blockchain (Zhou et al., 2024). Leverag-
ing its inherent properties of tamper resistance, decentralization, and
traceability, the blockchain can provide low-risk, cost-effective security
service solutions (Ren et al., 2023).

The tamper-evident property of blockchain arises from its unique
structure: blocks, containing transaction data, are chronologically
added to the chain (Nguyen et al., 2018). Altering any block’s data
requires the regeneration of all subsequent blocks. The consensus
mechanism is crucial in making modifications to multiple blocks pro-
hibitively expensive, rendering such tampering virtually infeasible (Li,
2021). In proof-of-work blockchain networks, a user must control at
least 51% of the computational power to alter data (Gervais et al.,
2016). However, this is counterproductive for users with substantial
computational power, thereby enhancing the reliability of blockchain
data.

Smart contracts represent a digitally encoded set of commitments,
encompassing agreements that delineate the conditions under which
the participants can execute these commitments (Zou et al., 2021).
These contracts facilitate transactions that are not only trusted but also
traceable and irreversible, thereby eliminating the need for third-party
intermediaries (Zheng et al., 2020; Liao et al., 2023).

As illustrated in Fig. 2, the smart contract is essentially a condi-
tional code that operates on the blockchain. It comprises two main
components: functions, which are the executable code units within the
contract, and data, which represent the state of the smart contract. The
contract terms, along with their corresponding trigger conditions and
response rules, are predefined within the code. The smart contract is a
collaborative agreement, mutually accepted and signed by all involved
parties. It is submitted along with the user-initiated transaction, dissem-
inated via the P2P network, and subsequently verified by miners before
being stored in a specific block of the blockchain. Upon receiving the

For Resea

4
Fig. 2. The structure of a typical smart contract on Ethereum.

returned contract address and other relevant information, the user can
invoke the contract by initiating a transaction. The system’s preset in-
centive mechanism motivates miners to contribute their computational
power towards transaction verification.

The trustworthiness and immutability of smart contracts primarily
stem from two factors: First, once a smart contract is deployed to the
blockchain network, its code and execution results are broadcast to
the entire network, with all nodes storing and verifying this informa-
tion (Luu et al., 2016). Additionally, the execution process of the smart
contract is recorded on the blockchain and ordered sequentially with
timestamps. This recording method ensures the chronological order
and consistency of the information, and since the transaction records
are publicly accessible, anyone can review and verify the execution
of the smart contract, further enhancing its trustworthiness. Second,
under consensus mechanisms such as Proof of Work (PoW), altering an
already deployed smart contract would require an attacker to control
more than 50% of the global network’s computational power (Hu et al.,
2020). Acquiring such a large amount of computational power would
require substantial resources, making it extremely costly and virtually
impossible to achieve. Therefore, once a smart contract is deployed on
the blockchain, it is inherently immutable.

4. Approach

This section presents the technical details of BlockSOP.1

4.1. Main workflow of blocksop

Fig. 3 delineates the primary workflow of BlockSOP, which is com-
posed of three principal modules: Get Contribution Points Module, Con-
tribution Points Usage Module, and Arbitration Module. Our platform’s
goal is to ensure that all contributors to the software project, whether
they are developers or investors, can transparently and fairly share the
ownership and benefits of the project.

In the mechanism proposed in this paper, potential users can apply
to join the project by investing or completing technical tasks. Upon
successful admission, the Get Contribution Points Module is activated.
This module requires users to contribute to the corresponding software
project in order to earn unexecuted contribution points. These contribution
points can be obtained through investment or technical contributions.
Once users have successfully earned unexecuted contribution points, the
Use Contribution Points Module is activated, allowing users to use these
unexecuted contribution points to gain more code access permissions,
which can then be converted into contribution points.

If malicious behavior occurs during the development process, the
project owner can invoke the Arbitration Module. This module randomly
selects users from a high-credit user database to form a jury, and the

1 The BlockSOP is available at https://www.BlockSOP.com/

ch Only

https://www.BlockSOP.com/

S. Zhang et al. The Journal of Systems & Software 230 (2025) 112477
Fig. 3. Main workflow of the BlockSOP.
Fig. 4. The process of get contribution points module.

For

r

jury votes to determine the authenticity of the malicious behavior. If the
malicious behavior is confirmed, the system will punish the malicious
user. For example, deducting their corresponding credit scores.

Additionally, we record important information such as users’ con-
tribution copyrights, the amounts of unexecuted and executed contri-
bution points, credit scores, voting results, platform income, and ex-
penses on the blockchain network to ensure the fairness and trans-
parency throughout the entire development and distribution process.
The blockchain network will ultimately distribute income transparently
and fairly based on users’ contribution points.

4.2. Get contribution points module

Fig. 4 describes the process of getting contribution points.
Users can participate in a project in two ways. Firstly, by investing.

Users can invest in our software projects by purchasing a trading
contract. Once successfully purchased, the user will successfully join
the software project and receive the corresponding unexecuted contri-
bution points. The investment process helps users access more code
information about our software projects because curious people from
the open world can always pay for more code access, even if they
cannot technically contribute. The money invested is also distributed
according to the value of each contributor’s contribution to the project.
This process is also done through smart contracts to ensure fairness in
the distribution process.

Secondly, by completing a technical task. When a user submits a
completed technical task, a voting contract allows the project owners
to review the technical task and evaluate whether the user can join
the software project. Once a user successfully joins the project, he
must make new contributions and submit the expected contribution
points. If he receives votes from more than 80% of the project owners,
he will successfully obtain the expected contribution points. But if he
receives just over 60% of the votes from the project owners, the expected
contribution points are invalid. Still, all project owners will provide their
considered values for contribution points, and the final average will serve
as the user’s ultimate contribution points value. If he receives less than
60% of the votes, he will not receive any contribution points, and he will
need to make new contributions.

The algorithm for the process of users getting contribution points is
shown in Algorithm 1.

Resea
5
Algorithm 1 Get Contribution Points Algorithm
Input:
1: Number of Project Owners 𝑁 ;
2: Contribution Points Value 𝑉𝑖;
3: Expected Contribution Points Value 𝑉𝑒;
4: The Number of Assenting Votes from Project Owners 𝐴;𝐴 ≤ 𝑁
Output: Final Contribution Points Value 𝑉𝑓
5: Submit Technical Tasks and Expected Contribution Points Value 𝑉𝑒
6: Project Owners Vote on 𝑉𝑒
7: if 𝐴 ≥ 0.8𝑁 then
8: 𝑉𝑓=𝑉𝑒
9: else if 𝐴 ≥ 0.6𝑁 then
10: Set 𝑉𝑖 by 𝑁 Project Owners and Calculate Average Value
11: 𝑉𝑓 = 𝑆𝑈𝑀(𝑉𝑖)

𝑁
12: else
13: 𝑉𝑓 = 0
14: end if
15: Return 𝑉𝑓

In Fig. 4, the first voting instance, Vote to join project, aims to
filter out suitable users for project participation. By allowing project
members to vote, the system ensures that only qualified individuals are
selected, thus guaranteeing that new members possess the necessary
technical skills or ethical standards. This approach helps prevent low-
quality contributions or malicious behavior from negatively impacting
the overall quality of the project. The second voting instance, Vote to
verify, is intended to assess the contribution points a user deserves. Re-
lying solely on unilateral decisions for distributing contribution points
could lead to unfair allocations or even manipulation. The voting
mechanism decentralizes decision-making, ensuring that the allocation
is collectively recognized, thereby reducing the risks of manipulation
and abuse of the system.

The main distinction between these two methods of project partic-
ipation lies in the speed at which users acquire unexecuted contribution
points. Users who join the project through investment can immediately
obtain unexecuted contribution points in proportion to their invested
amount. Conversely, users who join by completing technical tasks must
make new contributions, submit the tasks, and pass the vote of the
current project owners to acquire unexecuted contribution points. It is

ch Only

S. Zhang et al.

The Journal of Systems & Software 230 (2025) 112477

r

Fig. 5. Sequence diagram for developer and investor to obtain contribution points.

worth noting that different projects are independent of each other,
and contribution points from one project cannot be used interchangeably
with those of another project.

Fig. 5 shows the time sequence diagram for developer and investor
to obtain contribution points. It is obvious that investment is a faster way
to obtain unexecuted contribution points.

The time complexity of the Get Contribution Points Module is
approximately 𝑂(𝑁), as it requires iterating over 𝑁 project owners for
voting.

4.3. Contribution points usage module

Fig. 6 illustrates the entire process of using contribution points. When
a user aims to acquire additional code access rights, he needs to
exchange their contribution points through smart contracts. The contract
examines whether the user’s contribution points are executed or unexe-
cuted. If the contribution points are executed, they cannot be used to
obtain more code access rights. However, if they are unexecuted, the
points can be exchanged based on the predetermined exchange rate set
within the software project. The corresponding unexecuted contribution
points are converted into executed contribution points upon successful ex-
change. The executed contribution points cannot be further exchanged for
code access rights. However, both unexecuted and executed contribution
points grant contributors equal software profit-sharing rights. Software
profit refers to the income distribution that occurs whenever a user
invests in our software project. Smart contracts allocate the income
based on the proportional value of contribution points held by each
contributor in the project.

In the Contribution Point Usage Module, the redemption of contri-
bution points is performed via a smart contract, with a time complexity
of approximately 𝑂(1).

4.4. Arbitration module

Fig. 7 describes the workflow of the Arbitration Module, which is a
key component in ensuring that the entire development process is safe

For Resea

6
Fig. 6. Contribution points usage module.

Fig. 7. Arbitrary module.

Fig. 8. Sequence diagram for arbitration.

and secure. This module is particularly important to reduce the risk of
malicious behaviors.

When project owners identify potentially malicious behavior, they
initiate the arbitration process. The jury is composed of 𝐾 highly
reputable users randomly selected from the 𝑀 platform users. The
jury ’s task is to invoke the voting contract and vote on the authenticity
and severity of the user’s malicious behavior. If the user’s malicious
behavior is confirmed, the platform will impose punitive measures
based on the severity of the malicious behavior. For example, deducting
the user’s credit scores, where the credit scores are directly proportional
to the contribution points and earnings the user can obtain. Thus, a
decrease in credit scores reduces the user’s potential earnings. In severe
cases, it may result in the user being blacklisted and barred from further
project participation. Further details regarding the credit scores can be
found in Section 5.2.

Fig. 8 describes the timing diagram of the arbitration process,
which first requires the project owners to deploy a smart contract for
arbitration voting. When a malicious user attacks, the project owners
can initiate a report to the jury, invoke the voting function in the
arbitration contract and eventually punish the malicious user according
to the voting result.

ch Only

S. Zhang et al.

The Journal of Systems & Software 230 (2025) 112477

r

Fig. 9. The leakage behavior of malicious users.

Fig. 10. The process of security mechanism.

In the Arbitration Module, BlockSOP first requires sorting the repu-
tation of 𝑀 users, with a time complexity of approximately 𝑂(𝑀𝑙𝑜𝑔𝑀).
Subsequently, 𝐾 high-reputation users are randomly selected to vote,
and the time complexity of the voting process is approximately 𝑂(𝐾).
Therefore, the overall complexity of the arbitration module is approx-
imately 𝑂(𝑀𝑙𝑜𝑔𝑀 +𝐾).

5. Blockchain security mechanism

In this section, we delve into the potential issue of code leakage in
software projects. Malicious users may invest in purchasing software
codes from the platform and then illegally resell it for personal gain.
Such code leakage can result in significant financial losses to our project
and severely undermine the interests of platform users. The entire
process of illegal resale is illustrated in Fig. 9.

To safeguard the interests of all platform users, we have imple-
mented a robust security mechanism to prevent malicious users from
leaking code information. This includes a deposit mechanism based
on smart contracts and code watermarking technology, as well as a
credit score system built on blockchain, which provides corresponding
rewards and punishments to users.

Assuming that most malicious users are profit-driven, our goal
is to maximize the cost of information leakage for malicious users
while promptly rewarding informers. This creates a competitive profit
landscape, compelling users to refrain from leaking code information.
From a technical standpoint, the rewards and penalties of BlockSOP are
immediately enforced.

The steps of the smart contract based deposit mechanism to resist
code leakage are outlined below, with detailed interactions illustrated
in Fig. 10.

Step 1: The project owner publishes the trading contract and stores
the software codes to be sold in the trading contract.

For Resea
7
Step 2: The user 𝑃 who wants to purchase the software codes must
transfer the amount of 𝑐 to the contract account.

Step 3: The trading contract delivers the software codes with an
embedded watermark to the user. Furthermore, each contributor will
generate a bonus in the amount of 𝑟𝑐, where 𝑟 signifies 𝑃 ’s contribution
ratio to the overall contribution of the software.

Step 4: The trading contract transfers the amount 𝑐 from the contract
account to the project owners’ accounts.

Step 5: At the same time as the trading contract is released, the
project owner releases the reporting contract. All users who purchase
the software codes must deposit 𝑚 into the account of the reporting
contract with a maintenance duration of 𝑡.

Step 6: The user deposits the deposit 𝑚 into the account of the
reporting contract.

Step 7 : The leaker makes a code leakage transaction for the pur-
chased software at the price of 𝑐′. It is worth mentioning that in
this transaction, the leaker can sign a confidential contract with the
purchaser to prevent himself from being reported and require the
purchaser to pay a deposit of 𝑚′ with a maintenance duration of 𝑡′.

Step 8: The informer transfers the deposit 𝑚′ to the leaker and
receives the leaked software codes.

Step 9: The informer submits the purchased leaked software codes
to the reporting contract, thus reporting the code leakage.

Step 10: The watermark in the leaked software codes is extracted
for verification, and if the code leakage is true, the leaker’s deposit of
𝑚 will be transferred to the informer. In addition, his credit scores will
also be deducted.

Step 11: If the user does not leak any code information within the
duration of 𝑡, then 𝑚 will be refunded to the user in full.

5.1. Blockchain watermark traceability module

Code watermark (Li et al., 2023; Sun et al., 2023) is the practice
of embedding specific markers or information within software or code,
akin to digital watermarks, to enable tracking, identification, or protec-
tion of the code. This technique is often used to safeguard intellectual
property, prevent piracy, track the use of source code, or authenticate
the legitimacy of code (Miller et al., 2004; Kirchenbauer et al., 2023).

Code reordering facilitates the discreet insertion of watermarks, mak-
ing them harder for leakers to detect while also enabling the tracking of
the leaker. This paper implements code reordering by repeatedly altering
the execution order of any two lines of code within a code segment 𝑆,
ensuring the program executes correctly. As shown in Algorithm 2, the
specific algorithm starts by detecting all possible pairs of line numbers
within the given code segment that can be swapped, storing them in
a collection 𝐿. Each pair of line numbers⟨𝐿𝑖, 𝐿𝑗⟩ in 𝐿 must satisfy the
following conditions: exchanging these two lines of code will not affect
the correct execution of the program. Then, a subset 𝐿′ is randomly
and non-repetitively selected from 𝐿, and for each pair of line numbers
⟨𝐿𝑖, 𝐿𝑗⟩in 𝐿′, the corresponding code lines are swapped to generate
a new code segment 𝑆′. Simultaneously, 𝐿′ is saved as watermark
information in the watermark database 𝑃 on the server. Once code
leakage occurs, the user corresponding to the watermark of the leaked
code can be identified through the saved watermark information.

After generating the new code segment 𝑆′ through code reordering,
in the event of code leakage, the user responsible for code leakage can
be identified through the saved watermark information library corre-
sponding to the code watermark. Since the watermark information 𝐿′

associated with each user is unique, it also identifies the user’s identity.
Algorithm 3 outlines the specific procedure. Initially, the algorithm
retrieves all watermark information from the watermark library 𝑃 . For
each watermark information 𝐿′, it sequentially extracts all pairs of line
numbers ⟨𝐿𝑖, 𝐿𝑗⟩ contained in 𝐿′, swaps the code lines corresponding
to the line number pairs, and converts the leaked code block 𝑀 into
𝑀 ′ accordingly. Then, the algorithm calculates the similarity between
each transformed 𝑀 ′ and the original code segment 𝑆, adding each

ch Only

S. Zhang et al.

The Journal of Systems & Software 230 (2025) 112477

r

Algorithm 2 Code Reordering Watermark Algorithm
Input: Code Segment 𝑆
Output: 𝑆′

1: Detect All Interchangeable Code Pairs and Generate Set 𝐿=< 𝐿1, 𝐿2 >,⋯ , <
𝐿𝑛−1, 𝐿𝑛 >

2: Randomly and Non-repeatedly Select 𝐿′ ∈ 𝐿
3: for < 𝐿𝑖, 𝐿𝑖+1 >∈ 𝐿′ do
4: < 𝐿𝑖, 𝐿𝑖+1 >→< 𝐿𝑖+1, 𝐿𝑖 >
5: end for
6: Generate New Code Segment 𝑆′

7: Add 𝐿′ to Set 𝑃
8: Return 𝑆′

similarity score to the collection 𝑁 . After adding all similarities, it
identifies the watermark information 𝐿′ corresponding to the maximum
value 𝑁𝑖 in the collection 𝑁 , thereby determining the user who leaked
the code information.

Algorithm 3 Watermark Detecting Algorithm
Input:
1: Code Segment 𝑆
2: Leaked Code Segment 𝑀
3: 𝑃 in Algorithm2
Output: Max Similarity
4: for 𝐿′ ∈ 𝑃 do
5: for < 𝐿𝑖, 𝐿𝑖+1 >∈ 𝐿′ do
6: < 𝐿𝑖, 𝐿𝑖+1 >→< 𝐿𝑖+1, 𝐿𝑖 >
7: Get One Copy of The Extracted Watermarking Code 𝑀 ′

8: end for
9: Calculate Similarity 𝑀,𝑆 → Set 𝑁
10: end for
11: Return Max of 𝑁𝑖
12: Get the Watermarked User Corresponding to 𝑁𝑖

The complexity of the watermarking algorithm primarily depends
on the number of lines 𝐿 and the complexity is approximately 𝑂(𝐿2).

5.2. Credit module

The Credit Score (CS) directly indicates the quality of a user’s de-
velopment activities. This score is recorded via blockchain technology,
ensuring transparency and fairness throughout the process. The CS is
bifurcated into two components: the score accrued by users (positive
CS) and the score deducted from users (negative CS). To provide a
more precise measure of a user’s credit, we aggregate the positive and
negative CS across all projects. The CS is unique to each user, and the
final CS is computed by adding the base CS to the positive CS and
subtracting the negative CS.

The cumulative positive CS (𝑃) and negative CS (𝑁) are calculated
as follows:

𝑃 =
𝑛
∑

𝑗=1

𝑚
∑

𝑘=1
𝑃𝐶𝑗𝑘 (1)

𝑁 =
𝑛
∑

𝑗=1

𝑚
∑

𝑘=1
𝑁𝐶𝑗𝑘 (2)

Here, we assume that there are 𝑛 projects, and the maximum
number of development activities a user can engage in across these 𝑛
projects is 𝑚. 𝑃𝐶𝑗𝑘 and 𝑁𝐶𝑗𝑘 represent the credit score accrued and
deducted, respectively, for the 𝑘th development activity in the 𝑗th
project.

A user’s initial credit score is set at 100. If it falls below 60, the
user is barred from further project participation. 𝑃𝑓𝑖𝑛𝑎𝑙 denotes the
final contribution points the user can get, 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 represents the initial
contribution points through project owners’ voting, and 𝑃 signifies

For Resea
𝑐𝑟𝑒𝑑𝑖𝑡

8
the user’s current CS. The final contribution points is calculated as
follows:

𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ⋅
𝑃𝑐𝑟𝑒𝑑𝑖𝑡
100

(

𝑃𝑐𝑟𝑒𝑑𝑖𝑡 ≥ 60
)

(3)

Eq. (3) shows that the contribution points the user finally receives are
directly proportional to the credit score.

𝐵𝑓𝑖𝑛𝑎𝑙 represents the final reward that the user can obtain in the
project, 𝐵𝑠𝑢𝑚 represents the total income of the project, and 𝑃𝑠𝑢𝑚
represents the total contribution points in the project. The final incentive
allocation calculation is as follows:

𝐵𝑓𝑖𝑛𝑎𝑙 = 𝐵𝑠𝑢𝑚 ⋅
𝑃𝑓𝑖𝑛𝑎𝑙

𝑃𝑠𝑢𝑚
(4)

It is worth mentioning that contribution points and incentive allo-
cations in different projects are independent of each other and not
interchangeable.

The growth of a user’s CS (𝑆) is determined by two factors: the
number of successful contributions (𝑥) and the duration of continuous
contributions (𝑡), as shown below:
𝑆 = 𝑒−𝑒

−(𝑡−365)
+ 𝑒−𝑒

−(𝑥−200)
(0 ≤ 𝑡, 0 ≤ 𝑥 ≤ 105) (5)

We encourage users to contribute frequently and consistently,
thereby enhancing the sustainability of our project. While it may be
challenging for part-time developers to contribute consistently, they
can still accrue CS through successful contributions. Users who main-
tain a high frequency of contributions and contribute over an extended
period will experience a faster CS growth. Notably, the contribution
count 𝑥 is capped at 100,000, beyond which additional contribu-
tions will not increase the CS. However, the duration of continuous
contribution 𝑡 is not capped.

Comparing the deposit mechanism and the CS mechanism for copy-
right protection, the former is designed to counteract early-stage code
leakage and provide monetary compensation to project owners in case
of code leakage during the deposit period. At the same time, it imposes
high penalties for leakers and prompt rewards for informers. Different
from the deposit mechanism, the CS mechanism aims to reduce the
likelihood of malicious behavior in the long run and encourage users to
contribute consistently and frequently to enhance their CS. This fosters
a transparent and secure environment for collaborative software devel-
opment. Collectively, these two mechanisms complement each other,
bolstering the security of our platform and minimizing the potential
for malicious behavior.

In addition to this, in response to advanced fraud and denial-
of-service (DoS) attacks in blockchain environments, BlockSOP also
incorporates following strategies to enhance system robustness. First,
BlockSOP adopts a separate architecture of mainchain and sidechain,
where high-risk or high-load operations are offloaded to the sidechain
while the mainchain is reserved for low-risk, lightweight tasks. This
separation significantly reduces the mainchain’s exposure to advanced
fraud attacks. Second, by employing consensus mechanisms such as
Proof of Stake (PoS), BlockSOP limits attackers’ ability to create fake
identities or nodes, thereby mitigating the risk of DoS attacks. Addition-
ally, BlockSOP leverages the credit score to encourage honest behavior
among participants. Malicious actions are penalized through deductions
in reputation scores or contribution points, creating a robust deterrent
against adversarial behaviors.

6. Analysis and evaluation

We implemented the smart contracts related to BlockSOP using
Solidity 0.4.25 and tested them on the Ethereum test network. The
experiments were conducted on a Lenovo R7000p laptop equipped with
an AMD 3.00 GHz 8-Core CPU and 16 GB RAM.

Initially, we sought to assess the security of our platform, aiming to
address the following key research question:

ch Only

S. Zhang et al. The Journal of Systems & Software 230 (2025) 112477
Table 2
Benefits and Costs Associated with the Roles of the Potential Pirate 𝑃 and the Pirate Customers Depicted within the Game Tree Presented
in Fig. 11.
Decision (Response, Situation) Description Benefits of 𝑃 Longterm Cost of 𝑃 Customer Profits

𝐷1 (𝑅1, 𝑠1) No Piracy 𝑛𝑟𝑐 - –
(𝑅2, 𝑠2) Piracy is reported during 𝑡 𝑛𝑐′ − 𝑚 Further Lose Credits and Contributions 𝑚

𝐷2 (𝑅3, 𝑠3) Piracy is reported after 𝑡 𝑛𝑐′ Further Lose Credits and Contributions –
(𝑅4, 𝑠4) Piracy has never been reported 𝑛𝑐′ Further Lose Credits and Contributions –

𝐷3

(𝑅2, 𝑠5) Piracy is reported during 𝑡 𝑛𝑐′ + 𝑚′ − 𝑚 Further Lose Credits and Contributions 𝑚 − 𝑚′

(𝑅5, 𝑠6) Piracy is reported between 𝑡 and 𝑡′ 𝑛𝑐′ + 𝑚′ Further Lose Credits and Contributions −𝑚′

(𝑅6, 𝑠7) Piracy is reported after 𝑡′ 𝑛𝑐′ Further Lose Credits and Contributions –
(𝑅4, 𝑠8) Piracy has never been reported 𝑛𝑐′ Further Lose Credits and Contributions –

r

RQ1 How effective are the security mechanisms employed by Block-
SOP in reducing the risk of software project information leak-
age?

Given the myriad attack scenarios, obtaining empirical answers to
this research question about security proves challenging. As an alterna-
tive, we employed Game Theory to analyze the underlying mechanisms
and draw conclusions accordingly. Furthermore, we conducted a series
of experiments designed to answer additional pertinent research ques-
tions related to the effectiveness and efficiency of BlockSOP, as listed
below:

RQ2 To what extent does BlockSOP enhance the motivation for soft-
ware development?

RQ3 Does BlockSOP facilitate a more expedited completion in software
development?

RQ4 What is the magnitude of the blockchain overhead associated
with the BlockSOP?

6.1. RQ1: Analysis combining game theory

Game Theory is an interdisciplinary field, blending elements of
mathematics and economics to systematically analyze and model strate-
gic interactions between rational agents across various contexts (Wang
et al., 2024; Ge et al., 2024; Liu et al., 2024). In this study, we employ
Game Theory to examine the potential instances of software information
leakage by users in BlockSOP.

We collectively refer to malicious users who profit from software
code leakage as pirates. We assume that all users are rational, mo-
tivated by profit maximization, and make decisions independently of
one another. By constructing a game-theoretic model of the software
codes leakage process in BlockSOP, we aim to establish the following
proposition: For any user who purchases software codes in BlockSOP, the
profits gained from software codes leakage or piracy do not exceed the
profits derived from non-leakage, irrespective of whether the user has a
confidentiality agreement with the individual to whom the information is
disclosed.

Our analysis commences with a user, denoted as 𝑃 , who acquires
software from the BlockSOP platform. The blockchain mechanism re-
quires 𝑃 to submit a deposit with a maintenance duration of 𝑡 and an
amount of 𝑚 to deter piracy, alongside the cost of the licensed software,
𝑐. Furthermore, each authentic user will generate a bonus for 𝑃 in the
amount of 𝑟𝑐, where 𝑟 signifies 𝑃 ’s contribution ratio to the overall
contribution of the software. Concurrently, 𝑟 dictates the proportion
of software information accessible to 𝑃 , which is also the portion of
software information 𝑃 may disclose. Piracy becomes viable only when
𝑟 is not very small, indicating that the volume of information leaked by
𝑃 is valuable for pirate purchasers.

Fig. 11 portrays a game tree that illustrates the decision-making
process of a potential software pirate, referred to as 𝑃 , when all con-
ditions conducive to piracy are met. 𝑃 confronts three distinct options:
𝐷1, abstaining from both leaking and pirating software information;
𝐷 , divulging software information without entering a confidential

For Resea
2

9
Fig. 11. The game tree depicting the decision-making process for a potential pirate 𝑃 .

agreement with buyers of pirated products; and 𝐷3, disclosing software
information while signing a confidential agreement. The confidentiality
agreement necessitates each pirate buyer to submit a deposit of 𝑚′ to
maintain the secrecy of 𝑃 ’s piracy for a maintenance period 𝑡′ that
exceeds 𝑡, guaranteeing that 𝑃 can reclaim his deposit 𝑚. Since the
price of a licensed copy surpasses the price of a pirated copy, few pirate
buyers are willing to provide a larger deposit than a licensed copy.
Consequently, 𝑚′ is set to be less than 𝑚.

As depicted in Fig. 11, when 𝑃 makes a decision 𝐷1, 𝐷2, or 𝐷3,
potential pirate buyers are able to react in six distinct ways (𝑅1 −𝑅6),
culminating in eight unique scenarios (𝑠1 − 𝑠8). Table 2 details the
associated benefits and costs of 𝑃 and potential pirate buyers in each
response and situation. In this context, 𝑅1 is the sole response for the
decision when 𝑃 selects 𝐷1, which prevents the pirate and disclosure of
software information. Consequently, potential buyers who adopt the 𝑅1
response have no alternative but to purchase the legitimate software,
yielding a revenue of 𝑛×𝑟𝑐 for 𝑃 , where 𝑛 denotes the number of buyers,
𝑟 indicates the proportion of 𝑃 ’s contribution relative to the overall
contribution of the software, and 𝑐 represents the cost of the genuine
software.

Upon choosing to pirate the software with decision 𝐷2 without
a confidentiality agreement, pirate customers can opt for responses
𝑅2, 𝑅3, or 𝑅4, leading to scenarios 𝑠2, 𝑠3, or 𝑠4, respectively. These
customers will select the response that maximizes profits, which, as
demonstrated in Table 2, is 𝑅2. In this scenario, customers receive the
deposit 𝑚 as a reward for reporting piracy during the maintenance
period 𝑡. Concurrently, 𝑃 forfeits his deposit 𝑚 and earns piracy revenue
𝑛 × 𝑐′ at the expense of losing the legitimate share 𝑛 × 𝑟𝑐, where 𝑐′
denotes the piracy price. Moreover, 𝑃 ’s long-term relationship with
BlockSOP suffers, leading to a decrease in his credit and contribution
points. Regardless of whether the piracy is reported or not, BlockSOP
can identify the leaked software version using watermarking techniques
and ultimately impose penalties on 𝑃 ’s credits and contributions.

Similarly, when 𝑃 decides to pirate the software with decision 𝐷2
while entering a confidentiality agreement, pirate customers have their
options to respond with 𝑅2, 𝑅5, 𝑅6 or 𝑅4, resulting in scenarios 𝑠5, 𝑠6, 𝑠7
or 𝑠8, respectively. The maximum-profit scenario for a pirate customer
remains 𝑅2, involving reporting the piracy during the maintenance
period 𝑡. In this scenario, the customer obtains the deposit 𝑚 but loses
𝑚′. As 𝑚′ < 𝑚, the customer is still profitable. Concurrently, 𝑃 also

ch Only

S. Zhang et al.

The Journal of Systems & Software 230 (2025) 112477

r

forfeits the deposit 𝑚 but obtains the customer’s deposit 𝑚′ via the
confidentiality agreement, earning piracy revenue 𝑛 × 𝑐′ at the cost of
losing the legitimate share 𝑛×𝑟𝑐. In the long run, 𝑃 will still be detected
by BlockSOP and lose his credits and contributions.

Based on the analysis in Table 2, for piracy on our platform to be
profitable even in the short term, 𝑃 must ensure that 𝑛𝑟𝑐 < 𝑛𝑐′−𝑚+𝑚′.
However, this is challenging to satisfy under the constraints of piracy
demand, as the pirate price 𝑐′ must be significantly smaller than 𝑐,
𝑟 cannot be too small for the leaked information be complete and
valuable, and 𝑚′ < 𝑚 since pirate buyers will not place a larger
deposit than for a licensed copy. It is important to emphasize that 𝑃 ’s
long-term losses are even more substantial. A decline in credits and
contribution points results in 𝑃 losing considerable long-term revenue on
the platform and precludes future piracy opportunities. Consequently,
the optimal choice for 𝑃 on our platform is to refrain from engaging in
piracy.

Answer to RQ1: BlockSOP serves as a potent solution in mitigating
the risks associated with software information leakage and unau-
thorized distribution by strategically integrating security, credibility,
and contribution mechanisms.

6.2. RQ2: Motivation enhancement

To address Research Question 2 (RQ2), we conducted a comparative
analysis of ask completion rates between the BlockSOP and Boun-
tySource platforms, both of which provide financial incentives for the
successful completion of specified tasks. As Gitcoin’s financial data is
not accessible, we only compare its on-chain data later in Section 6.4.

For BountySource, we followed the methodology of Zhou et al.
(2021) to collect 669 reports documenting the status of bounty tasks
from January 1, 2019, to December 31, 2022. It is worth mentioning
that after that, the BountySource platform was temporarily closed. A
task was designated as completed if the bounty hunter successfully
fulfilled the task and received the reward. Conversely, a task was
labeled as failed if it was undertaken by a bounty hunter but remained
unfinished for an extended period, surpassing the task’s time limit.
Finally, tasks that were never taken up by any bounty hunter before
expiration were categorized as underappreciated.

To explore the characteristics of BlockSOP further, we invited soft-
ware professionals to participate in project development on the Block-
SOP platform by sending emails and inviting them to fill out an online
survey upon completion of the development. In total, we sent out
1634 emails, invited 186 professional developers to work on BlockSOP,
collected 482 task reports and 128 valid surveys2 on BlockSOP from
January 1, 2019, to December 31, 2022. A task was deemed completed if
the project owner released a completed task and the developer received
the corresponding contribution points. If a developer took on a task but
failed to complete it, the task was marked as failed. Tasks that were
not noticed by any developer before their expiration were considered
underappreciated.

Developers were informed in advance about the purpose of our
research and agreed to use the development results and surveys for
research purposes. To expand the scope of the study, we invited partici-
pation from various companies globally. To recruit a sufficient number
of developers from diverse backgrounds, we employed the following
strategies to recruit developers:

2 The survey is available at https://docs.google.com/forms/d/e/
1FAIpQLSfa7h83sOoFsmU5Xyi2xxStHB6Y9Ai_yvkKdQlQGNw-aqjHWg/
viewform

For Resea
10
Table 3
Demographics of invited developers on BlockSOP.
 Demographics Statistics %
 Age
 <18 5 3.9%
 18–24 12 9.4%
 25–34 84 65.6%
 35–44 24 18.8%
 > 45 3 2.3%
 Gender
 Female 24 18.8%
 Male 100 78.1%
 Prefer not to say 4 3.1%
 Job Role
 Front-end development 30 23.4%
 Back-end development 43 33.6%
 Full-stack development 36 28.2%
 Testing 16 12.5%
 Other 3 2.3%
 Professional Experience
 0-1 years 3 2.3%
 1-3 years 19 14.8%
 3-5 years 40 31.3%
 5-10 years 53 41.4%
 >= 10 years 13 10.2%
 Experience in OSS Development
 Yes 110 85.9%
 No 18 14.1%

• We contacted professionals from around the world and asked
them to help disseminate our survey within their organizations.
We sent emails to contacts at companies such as Google, Mi-
crosoft, Alibaba, Baidu, Tencent, ByteDance, Lenovo, and oth-
ers, encouraging them to spread our survey among their col-
leagues. Through this strategy, we aimed to recruit developers
from different organizations within the industry.

• Additionally, we also emailed contributors to 30 popular open-
source repositories on GitHub, inviting them to participate in
project development on the BlockSOP platform. Our goal was to
recruit experienced contributors in open-source software develop-
ment and professionals working in the industry.

The developers we invited to come from 7 different countries, as
shown in Fig. 12. The top three countries where developers reside are
China, the United States, and Russia.

As shown in Table 3, the developers we invited differ in age, gender,
job roles, professional experience, and OSS development experience.

Since specific information about bounty hunters is not available
on BountySource, we are unable to analyze their details. However,
for better comparative analysis, in Table 4, we classified the types
of issues/tasks on BountySource and BlockSOP to ensure that their
distribution proportions across different types and difficulty are similar.
We divided the types of issue reports into 6 categories, namely Feature,
Improvement, Documentation, Bug, Design, and Code Review.

Fig. 13 presents a comparative analysis of task completion rates
between the two platforms, BlockSOP and BountySource. The financial
incentives provided by BountySource culminate in 20% of bounty tasks
being successfully completed, while 67.3% are attempted but ulti-
mately failed. Notably, 12.7% of bounty tasks remain underappreciated
by developers until they expire. It is pertinent to highlight that over
half of these underappreciated bounty tasks possess an expiration date
exceeding one year, indicating a protracted period of inattention. In
contrast, BlockSOP exhibits a 32.4% success rate in task completion,
with 56.8% of tasks being unsuccessful and a mere 10.8% remaining
underappreciated. This evidence underscores the enhanced efficacy of
BlockSOP’s incentive structure in motivating developers compared to
BountySource.

ch Only

https://docs.google.com/forms/d/e/1FAIpQLSfa7h83sOoFsmU5Xyi2xxStHB6Y9Ai_yvkKdQlQGNw-aqjHWg/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfa7h83sOoFsmU5Xyi2xxStHB6Y9Ai_yvkKdQlQGNw-aqjHWg/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfa7h83sOoFsmU5Xyi2xxStHB6Y9Ai_yvkKdQlQGNw-aqjHWg/viewform

S. Zhang et al. The Journal of Systems & Software 230 (2025) 112477
Fig. 12. Countries in which survey respondents reside. The darker the color is, the more respondents reside in that country.

Fo
r

Table 4
Types of Issues/Tasks.
 Type Difficulty Description BountySource(%) BlockSOP(%)
 Feature General Creating new features 42.4% 41.9%
 Improvement General Improving existing features 16.8% 17.6%
 Documentation Easy Creating documentation 7.4% 7.6%
 Bug General Fixing bug 21.3% 20.9%
 Design Hard Designing system 10.8% 10.3%
 Code Review Easy Reviewing code 1.3% 1.7%

 Re

s
r

Fig. 13. Completeness status for tasks on BlockSOP and BountySource.

A thorough examination of the platform reveals several factors
contributing to the superior motivational capacity of BlockSOP. Firstly,
BlockSOP employs a contribution point-based mechanism that allocates
revenue in accordance with each developer’s input, a feature absent
in BountySource. As opposed to BountySource, which solely rewards
the successful bounty hunter, this equitable distribution mechanism
fosters increased engagement from developers on BlockSOP, ultimately
resulting in higher task completion rates. The disparity in completion
rates between BlockSOP (32.4%) and BountySource (20%) serves as a
testament to this effect.

Moreover, BlockSOP supplements financial incentives with techni-
cal incentives. For a subset of open-source developers who prioritize
technical aspects over monetary rewards, the platform’s progressively

ea

11
increasing access model provides further motivation. By granting devel-
opers access to more technical details and high-quality projects as they
complete tasks, BlockSOP appeals to this group’s intrinsic motivation.
Such an approach is less effective on a bounty-driven platform like
BountySource, where financial incentives remain the sole focus.

It is also worth mentioning that for bounty tasks valued under
$100 on BountySource, no funds are returned to the task originator,
even if the task is incomplete or expired. As a result, BountySource
sponsors are more thoughtful and cautious in posting tasks compared
to those on BlockSOP. Despite this consideration, BountySource still
exhibits a higher rate of failed tasks, which can be attributed to its
inferior capacity for fostering multi-developer collaboration relative to
BlockSOP. It is essential to recognize that numerous software tasks are
complex, necessitating the collaboration of multiple developers who
may not have prior familiarity with one another in order to effectively
contribute their expertise. The single bounty hunter reward mechanism
employed by BountySource is ill-suited for such situations. In contrast,
the blockchain-based management system employed by BlockSOP capi-
talizes on the benefits of multi-developer open collaboration, effectively
addressing this challenge and significantly reducing the task failure
rate.

Additionally, we conducted a comparative analysis of the propor-
tion of projects receiving sponsorship or investment on OpenCollective
and BlockSOP in Fig. 14. Using the OpenCollective API, we collected
donation data from 838 collectives on the OpenCollective platform
from January 1, 2019, to December 31, 2022. We define projects that
successfully received donations on OpenCollective as successful and
those that did not as failed. Similarly, we define projects on BlockSOP
that successfully received investment as successful and those that did
not as failed. Our analysis reveal that the proportion of projects re-
ceiving investment on BlockSOP (35.9%) is slightly higher than that
on OpenCollective (25.5%). This difference may be attributed to Block-
SOP’s investment incentive mechanism, which allows investors to di-
rectly benefit from their investments. Additionally, its blockchain-based

ch Only

S. Zhang et al. The Journal of Systems & Software 230 (2025) 112477
Fig. 14. Comparison of sponsorship or investment ratio between OpenCollective and BlockSOP.
F
Fig. 15. Proportion of survey results.

or Resear

decentralized design provides high transparency and traceability, ef-
fectively reducing investment risks and enhancing the credibility of
projects, thus increasing investor trust in the platform. In contrast,
OpenCollective lacks a similar financial return mechanism, with donors
primarily motivated by altruistic purposes, making it less attractive to
institutional investors. Furthermore, OpenCollective faces transparency
issues regarding the use of funds, particularly for complex or long-term
projects, which may undermine donor trust.

According to the results of 128 valid surveys3 in Fig. 15, 76.6%
of participants strongly agree or agree that BlockSOP can reduce the
risk of software information leakage; 79.7% of participants strongly
agree or agree that BlockSOP can enhance the motivation for software
development; 78.1% of participants strongly agree or agree that stable
incentives can be achieved on BlockSOP; 72.6% of participants strongly
agree or agree that BlockSOP increases trust on development Process.
The survey results of BlockSOP users demonstrate the effectiveness
of BlockSOP in reducing the risk of software information leakage,
achieving stable incentives, and increasing trust in the development
process.

3 The survey results are available at https://github.com/Shuoxiaozhang/
BlockSOP
12
Answer to RQ2: BlockSOP integrates a multi-developer open collab-
oration mechanism and a multi-tiered incentive system, significantly
boosting the enthusiasm for software development and providing de-
velopers with stable incentives. At the same time, BlockSOP’s security
mechanisms also enhance trust during the development process.

6.3. RQ3: Response speed of development

We compare the entire interval between a sponsor posting an is-
sue on BountySource, proposing a bounty, and a user finally solving
the issue and successfully receiving a bounty. The entire interval be-
tween the issue is published on BlockSOP, and the user successfully
contributes to obtaining contribution points. From Fig. 16, We can
see that in terms of first response time, the first response time of
both BountySource(77.3%) and BlockSOP(81.5%) is concentrated in the
0–10 interval, but the percentage of BlockSOP in this interval is 4.2%
higher than that of BountySource, while in terms of full response time,
BlockSOP’s full response time(34.6%) is mainly concentrated in the
0–10 interval, while the whole response time of Bountysource(26.1%)
is mainly in the range of 0–10, and the full response time is significantly
longer than that of BlockSOP. There are two main reasons for this
difference. Firstly, sponsors do not add bounties immediately after
raising a problem on BountySource, and they may wait a while to
see if the issue is resolved without a bounty. After an interval of
waiting, if their problem is not solved, sponsors will start to offer
bounties, and this waiting process will consume more time. At the

ch Only

https://github.com/Shuoxiaozhang/BlockSOP
https://github.com/Shuoxiaozhang/BlockSOP

S. Zhang et al. The Journal of Systems & Software 230 (2025) 112477
Fig. 16. Comparison of BountySource and BlockSOP first response time and full response time.
F
o
Fig. 17. Analysis of Blockchain performance for BlockSOP and GitCoin platform contracts under workload conditions ranging from 1 to 200 input transactions per second.

r Resear

same time, BlockSOP does not have such a waiting process, and users
will solve the issue without BountySource’s waiting time. Second, there
are some difficult issues on BountySource with large bounty amounts.
Since BountySource only supports one person in getting the bounty, it
takes a long time for a single bounty hunter to solve difficult issues.
In contrast, the BlockSOP mechanism can solve such difficult issues
through cooperative development by multiple users.

Answer to RQ3: Compared to BountySource, BlockSOP’s first issue
response time and full response time are shorter, increasing develop-
ers’ motivation and shortening issue resolution cycles.

6.4. RQ4: Blockchain overhead

Our BlockSOP platform is designed utilizing blockchain-based tech-
niques to ensure transparency and trustworthiness. The overhead in-
troduced by smart contracts on the blockchain is a crucial factor that
inevitably constrains the platform’s scalability. As a result, we have
meticulously implemented our platform using Ethereum, a mainstream
blockchain technology that boasts a capacity of approximately 40 trans-
actions per second (tps) and a block time of around 15 s. In comparison
to other prominent blockchain technologies, such as Bitcoin, which
just supports around 7 transactions per second (tps) and features a
block time of approximately 10 min, Ethereum demonstrates distinct
advantages.
13
In order to rigorously evaluate the effectiveness of our proposed
techniques, we utilized Hyperledger Caliper (Choi and Hong, 2021), a
widely-recognized, industrial-grade performance assessment tool
specifically designed for blockchain systems. We conducted a compara-
tive analysis of the obtained results with blockchain data sourced from
Gitcoin4, a trailblazing platform that leverages blockchain technology
to facilitate open-source software development (Patrickson, 2021), and
the version of Gitcoin we use is 1.0.

Our investigation encompassed an examination of the throughput
and latency associated with various blockchain operations. As illus-
trated in Fig. 17, these operations included both read operations,
such as data queries and write operations, such as data updates. We
submitted transactions to the smart contracts of both platforms at rates
ranging from 10 to 200 transactions per second. Subsequently, we gath-
ered data on the latency and the number of transactions completed per
second using the Hyperledger Caliper tool to measure the performance
of the two systems.

In Fig. 17, it can be observed that the performance of blockchain
operations on BlockSOP marginally surpasses that of Gitcoin. Under
the same environmental configuration and input parameters, BlockSOP
executes, on average, 8.21 additional read transactions and 5.27 addi-
tional write transactions per second compared to Gitcoin. Furthermore,

4 Gitcoin blockchain contracts are collected from https://github.com/
gitcoinco/smart_contracts

ch Only

https://github.com/gitcoinco/smart_contracts
https://github.com/gitcoinco/smart_contracts

S. Zhang et al. The Journal of Systems & Software 230 (2025) 112477
Table 5
Performance analysis of BlockSOP under high workloads.
 Workloads Read throughput(TPS) Write throughput(TPS) Read latency(ms) Write latency(ms)
 500 487.23 493.68 38.12 48.56
 600 573.45 578.92 43.23 53.78
 700 660.89 668.27 49.56 58.91
 800 738.12 746.84 54.68 66.79
 900 818.64 826.09 59.12 77.23
 1000 896.47 905.73 64.45 88.34

r

Table 6
Blockchain cost of transactions on BlockSOP.
 Transaction Gas ETH USDollar
 Get contribution points 1 731077 0.021 61.43
 Contribution points usage 421985 0.005 14.98
 Arbitration 786942 0.009 27.93
 Software trading 639083 0.008 22.68
 Fraud reporting 823471 0.010 29.22

the blockchain confirmation latency on BlockSOP is 0.21 s shorter
for read transactions and 3.33 s shorter for write transactions. This
improved performance can be attributed to the allocation processes
in BlockSOP, which utilize the contribution point mechanism. This
mechanism simplifies the corresponding processes, thereby allowing for
slightly superior optimization.

In addition to the aforementioned observations, several other note-
worthy points emerge from the analysis: Firstly, the blockchain
throughput gradually reaches a peak at approximately 160 input trans-
actions per second for read operations and 90 input transactions per
second for write operations. This observation implies that blockchain-
based applications, including BlockSOP and Gitcoin, may encounter
congestion if the workload becomes overwhelming, thereby limiting
their scalability. To address this issue, our platform employs a buffering
mechanism for transactions in cases where a significant number of users
simultaneously submit operations. Furthermore, we plan to explore ad-
vanced blockchain techniques to accommodate large-scale transactions.
Secondly, it is worth noting that the blockchain latency exhibits a linear
relationship with the workload. This trend is considered acceptable in
the long term. Given that the write latency is moderately elevated at
around tens of seconds, we strive to optimize it by consolidating more
write operations within a limited number of blocks.

BlockSOP is designed to balance security and load efficiency. The se-
curity of the Ethereum main chain is relatively higher than that of side
chains, making it more suitable for performing low-load operations.
Under high-load conditions, its operations place a significant burden
on the Ethereum main chain, prompting migration to the Ethereum
sidechain, Polygon, for handling high-load tasks. The data in Table 5
show that as the load increases, the read throughput and write through-
put of the BlockSOP sidechain rises rapidly while read latency and
write latency gradually increases. Write operations experience slightly
higher latency than read operations. This reflects that, under high-
load conditions, the sidechain’s performance is somewhat impacted by
resource bottlenecks, network congestion, and other factors. However,
despite the slight increase in latency, the sidechain maintains a high
read throughput and write throughput, and the system is still able to
handle high concurrency, ensuring the normal operation of BlockSOP
under high workloads.

In addition, we have assessed the gas cost of operations on the
BlockSOP platform. Table 6 presents the average Ethereum gas con-
sumption requisite for the execution of various types of transactions.
We have also calculated the corresponding monetary value in US
Dollars, considering the current market price of Ethereum, which stands
at 2957.22 US Dollars per ether and the gas price is 12Gwei in April
2024. We can observe that the financial cost of using smart contracts on
the Ethereum network is relatively low. The cost is generally associated
with the computational and storage complexity of the functions. For

For Resea

14
Table 7
User experience of working on BlockSOP.
 Dimension Excellent Good Average Below average Poor
 Interactivity 22.2% 33.3% 27.8% 11.1% 5.6%
 Usability 33.3% 27.8% 22.2% 11.1% 5.6%
 Functionality Adaptation 27.8% 22.2% 33.3% 5.6% 11.1%
 Collaboration Efficiency 38.9% 33.3% 11.1% 11.1% 5.6%

Table 8
Cost comparison of Ethereum, Polygon, and Solana.
 Metric(Average) Ethereum Polygon Solana
 Transaction Fee $20 $0.001 $0.0001
 Development Cost Moderate Low High
 Operating Cost Moderate Low High
 Safety High Moderate Low

instance, the Get Contribution Points function, due to its relatively
complex workflow, consumes more gas compared to other functions.
In addition, the volatility of Ethereum prices and the congestion level
of the network also have an impact on the deployment cost of smart
contracts. Therefore, our data is only specific to the current period’s
Ethereum prices and network conditions.

We also conduct a comparative cost analysis of Ethereum, Polygon,
and Solana to assist projects with different budgets in selecting the most
suitable solution. From the comparison data in Table 8 we observe that
although Ethereum has a higher average transaction cost compared
to Polygon and Solana, it offers the highest level of security, making
it suitable for projects with high security requirements and sufficient
budgets. For projects with moderate security needs and tighter bud-
gets, Polygon is the ideal choice, as it provides lower transaction,
development, and operating costs while maintaining moderate secu-
rity. Although Solana has extremely low transaction costs, its higher
development and operating costs, coupled with lower security, make it
more suitable for smaller projects with less stringent security needs.
Given that BlockSOP has high security requirements, and Ethereum,
as a mature and widely used blockchain platform, can offer superior
security to effectively mitigate potential attacks and vulnerabilities, it
is the preferred choice for the platform.

Answer to RQ4: Compared to the state-of-the-art platform Gitcoin,
the optimized contribution points mechanism of BlockSOP demon-
strates better performance in terms of throughput and latency while
maintaining reasonable costs.

6.5. User experience and feedback

In this section, we conduct a qualitative study on the user experi-
ence and feedback of BlockSOP. We interviewed 18 experienced users
of the BlockSOP platform to gather insights into their work experiences
and collect their feedback on the system. Based on the characteris-
tics of the BlockSOP platform and the requirements of collaborative
development, we selected the following key metrics to evaluate user
experience:

Interactivity : Measures the overall user experience in interacting
with the system on the platform.

ch Only

S. Zhang et al. The Journal of Systems & Software 230 (2025) 112477
Table 9
Feedback of BlockSOP from Users.
 Weakness Percentage Strength Percentage
 1: Lack of help and guidance 22.2% 1: Fair process for allocating contribution points 27.8%
 2: Need optimize user interface 16.6% 2: Reduce malicious behaviors 22.2%
 3: Lack of expanded integration functions 27.8% 3: Effective copyright protection mechanism 16.6%
 4: Need Improve platform performance 22.2% 4: Improve transparency of software projects 11.2%
 5: Need Enhance security protection 5.6% 5: Improve efficiency of collaborative development 16.6%
 6: Other 5.6% 6: Other 5.6%

r

Usability : Assesses the intuitiveness of the platform interface and the
convenience of its operations.

Functionality Adaptation: Examines the platform’s ability to meet
diverse user needs.

Collaboration Efficiency : Evaluates the platform’s capability to en-
hance efficiency in multi-user collaborative development.

Table 7 presents user evaluation data on the BlockSOP platform’s
user experience, revealing the following patterns: collaboration effi-
ciency received the highest ratings, with 38.9% of users rating it as
excellent and 33.3% as good, and only a small proportion rating it
as average or below. This highlights the platform’s outstanding per-
formance in supporting multi-user collaborative development, demon-
strating a clear advantage. Usability also scored relatively high, with
33.3% of users rating it as excellent and 27.8% as good, though 22.2%
rated it as average, indicating that while the platform’s interface and
operational convenience are adequate, there is room for improvement.
The ratings for interactivity and functionality adaptation were more
dispersed, with 22.2% and 27.8% of users rating them as excellent,
respectively, but a significant proportion rated them as average (27.8%
and 33.3%). Moreover, 16.7% of users rated these aspects as below
average or poor, suggesting that while the platform generally meets
user needs for interactivity and functionality, further optimization is
required. Functionality adaptation received the highest proportion of
poor ratings (11.1%), indicating that the demand for more diverse
functionality has not been fully met, and the platform needs to expand
its feature set in the future.

Table 9 summarizes user feedback on the strengths and weak-
nesses of BlockSOP. Among the strengths, the most highly recognized
feature is the fair process for allocating contribution points (27.8%),
highlighting the platform’s outstanding performance in incentive mech-
anisms and fairness. This is followed by its ability to reduce malicious
behaviors (22.2%) and its effective copyright protection mechanism
(16.6%), demonstrating the platform’s strong competitiveness in secu-
rity and contribution copyright protection. Additionally, improving the
efficiency of collaborative development (16.6%) and improving trans-
parency of software projects (11.2%) have gained user recognition,
reflecting the platform’s positive impact on collaborative development
and transparency. On the weaknesses side, the most significant is-
sue identified by users is the lack of expanded integration functions
(27.8%), which reveals the platform’s limitations in addressing diverse
needs. Lack of help and guidance (22.2%) and the need to improve plat-
form performance (22.2%) further indicate user demands for enhanced
technical support and platform optimization. Additionally, the feedback
proportions for user interface optimization (16.6%) and enhanced se-
curity protection (5.6%) suggest there is still room for improvement in
user experience and security features.

In conclusion, user feedback indicates that BlockSOP demonstrates
significant strengths in incentive mechanisms and security. However,
further improvements are necessary in functional extensibility, user
support, and platform optimization to better meet user demands and
enhance the overall user experience.

6.6. Threats to validity

Despite the numerous significant advantages of smart contracts,
they are still vulnerable to risks. The execution of a smart contract

For Resea

15
strictly depends on its code logic, and if there are flaws or design
defects in the contract code, they could be exploited by attackers,
potentially resulting in financial loss or unfair outcomes. For example,
the infamous DAO Attack occurred due to a vulnerability in the contract
code that was maliciously exploited by hackers.

The BlockSOP ensures data authenticity and integrity through se-
curity mechanisms such as smart contracts and code watermarking.
However, scalability challenges may arise under high-load conditions.
Smart contracts automatically execute protocols to ensure transparency
and immutability, but scalability bottlenecks can occur during large-
scale deployments. As the number of network nodes and transaction
frequency increases, the execution time and resource consumption
of smart contracts grow rapidly, resulting in higher Gas fees and
longer transaction confirmation times, which limit system scalability.
This issue is particularly evident in malicious behavior detection and
voting processes, where smart contracts frequently perform high-load
computations, placing a significant strain on the blockchain network.
Similarly, code watermarking technology faces related challenges. As
the project scales, the computational and storage burden for watermark
generation and verification increases, especially when large-scale code
updates are required, placing a substantial load on the platform.

In the game-theoretic proof, the object of our proof is the users who
purchase software codes. The malicious behavior is mainly about code
information leakage because these investors often have access to a large
amount of software project information, so they need to be focused
on prevention; for other users who do not make software investment
purchases, they do not trigger the transaction contract and deposit
contract, so they are not in the scope of our proof.

In addition, in comparing the response interval of issue solving,
we consider all the cases where the user successfully gets the bounty
in BountySource and do not consider the successful problem-solving
reports in which the bounty is not received in the end.

Finally, in the test performance, the Ethereum test network may
have network fluctuations, which will have an impact on the test
results. For this reason, we have conducted multiple sets of tests and
have taken the average value as the result.

7. Related work

As a typical virtual group development community, open-source
software projects come from different countries and backgrounds. De-
velopers collaborate with other developers by joining the commu-
nity. Prominent open source communities include GitHub and Source-
Forge (Joo et al., 2012; Tamburri et al., 2020; Robinson and Vlas,
2015). Unlike traditional software projects, the development of open-
source software projects has many advantages, such as low barriers and
freedom of participation. However, there are undeniably some draw-
backs and shortcomings regarding quality and sustainability (Alami,
2020; Yin et al., 2022; Gamalielsson and Lundell, 2012; Yin et al.,
2021). The most significant one is the need for sustainability mech-
anisms. For example, prolonged interruptions or withdrawals of core
developers leading to project suspension (Foucault et al., 2015; Zanetti,
2012; Miller et al., 2019) or the lack of effective incentives leading
to unsustainable projects prevent open source projects from forming
a virtuous cycle of effective feedback and continuous operation (Xu
and Wan, 2008). The key to the sustainable development of open-
source projects is to have a considerable number of active submitters

ch Only

S. Zhang et al.

The Journal of Systems & Software 230 (2025) 112477

r

and users (Iaffaldano et al., 2019a) and to have a reliable manage-
ment mechanism to balance the rights, responsibilities, and interests
of multiple participants (Silva et al., 2017; Valiev et al., 2018b).

Donation and crowdfunding models are becoming increasingly pop-
ular in open source fields (Homscheid and Schaarschmidt, 2016). In
May 2019, GitHub launched GitHub Sponsors (Zhang et al., 2023), a
service that allows open-source software developers to accept donations
directly from other GitHub users. While most open-source software
donation services in the past have been project-specific, GitHub Spon-
sors is unique in allowing users to donate to individual open-source
software developers. Even though the program has been live for over
three years, some developers still complain that they need to get the
sponsorship they expected. Open Collective is a transparent community
management platform. Open Collective (Panigrahi et al., 2022) creates
contribution levels that offer different benefits based on how much is
donated and how consistently it is donated. It can set budget goals,
manage community expenses online, provide open and transparent
accounts, and other features.

Compared to traditional blockchain-based software management
technologies, BlockSOP has pioneered a new direction in guiding contri-
butions and ensuring fair incentive distribution. Traditional blockchain-
based software management platforms, like Gitcoin, mainly record
project information such as financial transactions and personnel details.
In contrast, BlockSOP not only includes these functionalities but also
defines clear criteria for earning contribution points through blockchain
and smart contract mechanisms, encouraging user participation. The
incentive distribution process is automated and transparent, eliminat-
ing intermediaries and ensuring that rewards are allocated fairly and
promptly. Additionally, BlockSOP allows for flexible platform expan-
sion and project customization, enabling the system to respond quickly
to changes in the market and technological environment, thus meeting
the personalized needs of developers.

8. Conclusion and future work

This paper presents a trustworthy software management platform
based on blockchain (BlockSOP) to enhance user motivation in open
collaborative development. We innovatively introduce the concept of
shares into software collaboration, distributing project earnings fairly
based on users’ contribution percentages while ensuring users’ due ben-
efits through blockchain. To address potential malicious behavior and
code leakage during the development process, we propose a security
mechanism based on deposit and credit scores. Using game theory, we
simulate user profits under different decision scenarios and conduct
user surveys to demonstrate the reliability of the security mechanism
and the trustworthiness of the entire development process.

Furthermore, to examine BlockSOP’s performance in enhancing user
development motivation and response speed, we compared data from
the BountySource platform with data from the BlockSOP platform. We
found that the task completion rate on the BlockSOP platform was
12.5% higher than on BountySource. Additionally, the first response
time and complete response time in short intervals were lower by
4.2% and 8.5%, respectively, compared to BountySource. This indicates
that BlockSOP significantly improves user development motivation and
response speed compared to BountySource.

Finally, we tested the performance and overhead of BlockSOP and
compared it with the Gitcoin platform. The results indicate that Block-
SOP outperforms Gitcoin slightly in terms of throughput and latency,
and the overhead is also within a reasonable range.

Currently, BlockSOP simplifies user interaction by shielding most of
the system’s complex mechanisms through an intuitive and straightfor-
ward interface, allowing users to focus on core functions and operations
without needing to understand the technical implementation in detail.
For instance, the contribution evaluation and voting processes are
designed with user-friendly interfaces where users can complete tasks
with simple clicks and selections. Additionally, we provide guidelines

For Resea

16
for using BlockSOP to help users quickly familiarize themselves with the
platform’s workflow and highlight key considerations during usage. The
platform also offers detailed technical documentation, example code,
and tutorials to assist developers in swiftly mastering the workflow
and encouraging active participation. Given that operations such as
contribution point review submissions and reporting malicious behav-
ior impose a significant load on the platform, the system provides
reminders to users during these actions, discouraging frequent submis-
sions in a short period to prevent excessive resource consumption. In
the future, we plan to further optimize BlockSOP’s user interface and
architecture, lowering the technical barrier for average developers and
enhancing the overall user experience.

We also plan to extend BlockSOP to the field of intellectual property,
where its adaptability is reflected in its blockchain-based copyright
protection mechanism, effectively safeguarding creators’ intellectual
property. The platform can record and verify the copyright of creators’
original works and automatically execute the distribution and trans-
action of intellectual property through smart contracts. For example,
creators can register their works on the platform and set corresponding
authorization terms through smart contracts, ensuring that their rights
are protected during use or transfer. This decentralized management
approach not only enhances the efficiency of intellectual property pro-
tection but also reduces the costs and risks associated with traditional
intermediary institutions.

In addition, we will continue to optimize the performance of smart
contracts and blockchain platforms to meet the demands of large-scale
transaction scenarios.

CRediT authorship contribution statement

Shuoxiao Zhang: Writing – review & editing, Writing – origi-
nal draft, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Formal analysis, Data curation, Conceptualization. Enyi Tang:
Writing – review & editing, Supervision, Software, Methodology, Inves-
tigation, Formal analysis, Conceptualization. Haoliang Cheng: Writ-
ing – review & editing, Validation, Software, Resources, Data cura-
tion. Xinyu Gao: Supervision, Software, Resources, Project administra-
tion. An Guo: Supervision, Methodology, Investigation. Jianhua Zhao:
Supervision, Software, Resources, Project administration, Methodol-
ogy. Xin Chen: Supervision, Software, Resources, Conceptualization.
Linzhang Wang: Supervision, Software, Investigation, Conceptualiza-
tion. Na Meng: Supervision, Software, Methodology, Conceptualiza-
tion. Xuandong Li: Supervision, Software, Resources, Project admin-
istration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to thank the anonymous reviewers for
insightful comments. This research is supported by National Natural
Science Foundation of China (Grant No. 62172210 and 62172211).

Data availability

Data will be made available on request.

ch Only

S. Zhang et al.

The Journal of Systems & Software 230 (2025) 112477

r

References

Alami, A., 2020. The sustainability of quality in free and open source software. In:
Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering: Companion Proceedings. ICSE ’20, Association for Computing Machinery,
New York, NY, USA, pp. 222–225.

Alzoubi, Y.I., Al-Ahmad, A., Kahtan, H., 2022. Blockchain technology as a fog
computing security and privacy solution: An overview. Comput. Commun. 182,
129–152.

Assavakamhaenghan, N., Tanaphantaruk, W., Suwanworaboon, P., Choetkiertikul, M.,
Tuarob, S., 2022. Quantifying effectiveness of team recommendation for
collaborative software development. Autom. Softw. Eng. 29 (2), 51.

Barcomb, A., Kaufmann, A., Riehle, D., Stol, K.-J., Fitzgerald, B., 2020. Uncovering
the periphery: A qualitative survey of episodic volunteering in free/libre and open
source software communities. IEEE Trans. Softw. Eng. 46 (9), 962–980.

Barcomb, A., Stol, K.-J., Fitzgerald, B., Riehle, D., 2022. Managing episodic volunteers
in free/libre/open source software communities. IEEE Trans. Softw. Eng. 48 (1),
260–277.

Bonaccorsi, A., Rossi, C., 2003. Why open source software can succeed. Res. Policy 32
(7), 1243–1258, Open source software development.

Butler, S., Gamalielsson, J., Lundell, B., Brax, C., Sjöberg, J., Mattsson, A., Gustavs-
son, T., Feist, J., Lönroth, E., 2021. On company contributions to community open
source software projects. IEEE Trans. Softw. Eng. 47 (7), 1381–1401.

Casadesus-Masanell, R., Llanes, G., 2015. Investment incentives in open-source and
proprietary two-sided platforms. J. Econ. Manag. Strat. 24 (2), 306–324.

Choetkiertikul, M., Puengmongkolchaikit, A., Chandra, P., Ragkhitwetsagul, C., Maipra-
dit, R., Hata, H., Sunetnanta, T., Matsumoto, K., 2023. Studying the association
between Gitcoin’s issues and resolving outcomes. J. Syst. Softw. 206, 111835.

Choi, W., Hong, J.W.-K., 2021. Performance evaluation of ethereum private and testnet
networks using hyperledger caliper. In: 2021 22nd Asia-Pacific Network Operations
and Management Symposium. APNOMS, IEEE, pp. 325–329.

Coelho, J., Valente, M.T., 2017. Why modern open source projects fail. In: Proceed-
ings of the 2017 11th Joint Meeting on Foundations of Software Engineering.
Association for Computing Machinery, New York, NY, USA, pp. 186–196.

Constantino, K., Souza, M., Zhou, S., Figueiredo, E., Kästner, C., 2023. Perceptions of
open-source software developers on collaborations: An interview and survey study.
J. Softw.: Evol. Process. 35 (5), e2393.

Curto-Millet, D., Jiménez, A.C., 2023. The sustainability of open source commons. Eur.
J. Inf. Syst. 32 (5), 763–781.

Dijkers, J., Sincic, R., Wasankhasit, N., Jansen, S., 2018. Exploring the effect of software
ecosystem health on the financial performance of the open source companies. In:
Proceedings of the 1st International Workshop on Software Health. SoHeal ’18,
Association for Computing Machinery, New York, NY, USA, pp. 48–55.

Fan, Y., Xiao, T., Hata, H., Treude, C., Matsumoto, K., 2024a. ‘‘My GitHub sponsors
profile is live!’’ investigating the impact of Twitter/X mentions on GitHub sponsors.
In: Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering. ICSE ’24, Association for Computing Machinery, New York, NY, USA.

Fan, Y., Xiao, T., Hata, H., Treude, C., Matsumoto, K., 2024b. ‘‘My GitHub spon-
sors profile is live!’’ investigating the impact of Twitter/X mentions on GitHub
sponsors. In: Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, ICSE 2024, Lisbon, Portugal, April 14–20, 2024. ACM, pp.
191:1–191:12.

Foucault, M., Palyart, M., Blanc, X., Murphy, G.C., Falleri, J.-R., 2015. Impact of
developer turnover on quality in open-source software. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ACM, Bergamo Italy,
pp. 829–841.

Gamalielsson, J., Lundell, B., 2012. Long-term sustainability of open source software
communities beyond a fork: A case study of LibreOffice. In: Hammouda, I.,
Lundell, B., Mikkonen, T., Scacchi, W. (Eds.), Open Source Systems: Long-Term
Sustainability. In: IFIP Advances in Information and Communication Technology,
Springer, Berlin, Heidelberg, pp. 29–47.

Ge, H., Zhao, L., Yue, D., Xie, X., Xie, L., Gorbachev, S., Korovin, I., Ge, Y., 2024. A
game theory based optimal allocation strategy for defense resources of smart grid
under cyber-attack. Inf. Sci. 652, 119759.

Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S., 2016. On
the security and performance of proof of work blockchains. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. CCS
’16, Association for Computing Machinery, New York, NY, USA, pp. 3–16.

Hann, I.-H., Roberts, J.A., Slaughter, S.A., 2013. All are not equal: An examination of
the economic returns to different forms of participation in open source software
communities. Inf. Syst. Res. 24 (3), 520–538.

Ho, S.Y., Richardson, A., 2013. Trust and distrust in open source software development.
J. Comput. Inf. Syst. 54 (1), 84–93.

Homscheid, D., Schaarschmidt, M., 2016. Between organization and community:
investigating turnover intention factors of firm-sponsored open source software
developers. In: Proceedings of the 8th ACM Conference on Web Science, WebSci
2016, Hannover, Germany, May 22–25, 2016. ACM, pp. 336–337.

Howison, J., Herbsleb, J.D., 2013. Incentives and integration in scientific software
production. In: Proceedings of the 2013 Conference on Computer Supported
Cooperative Work. CSCW ’13, Association for Computing Machinery, New York,
NY, USA, pp. 459–470.

For Resea
17
Hu, K., Zhu, J., Ding, Y., Bai, X., Huang, J., 2020. Smart contract engineering.
Electronics 9 (12), 2042.

Iaffaldano, G., Steinmacher, I., Calefato, F., Gerosa, M., Lanubile, F., 2019a. Why do
developers take breaks from contributing to OSS projects? A preliminary analysis.
In: Proceedings of the 2nd International Workshop on Software Health. Montreal,
Quebec, Canada, pp. 9–16.

Iaffaldano, G., Steinmacher, I., Calefato, F., Gerosa, M., Lanubile, F., 2019b. Why do
developers take breaks from contributing to OSS projects? A preliminary analysis.
In: Proceedings of the 2nd International Workshop on Software Health. SoHeal ’19,
IEEE Press, pp. 9–16.

Jahn, L., Engelbutzeder, P., Randall, D., Bollmann, Y., Ntouros, V., Michel, L.K.,
Wulf, V., 2024. In between users and developers: Serendipitous connections and
intermediaries in volunteer-driven open-source software development. In: Proceed-
ings of the CHI Conference on Human Factors in Computing Systems. CHI ’24,
Association for Computing Machinery, New York, NY, USA.

Jamieson, J., Yamashita, N., Foong, E., 2024. Predicting open source contributor
turnover from value-related discussions: An analysis of GitHub issues. In: Proceed-
ings of the IEEE/ACM 46th International Conference on Software Engineering. ICSE
’24, Association for Computing Machinery, New York, NY, USA.

Joo, C., Kang, H., Lee, H., 2012. Anatomy of open source software projects: Evolving
dynamics of innovation landscape in open source software ecology. In: The
5th International Conference on Communications, Computers and Applications,
MIC-CCA2012. pp. 96–100.

Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I., Goldstein, T., 2023. A
watermark for large language models. In: International Conference on Machine
Learning. PMLR, pp. 17061–17084.

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico, E.,
Dominguez Del Angel, V., Van De Sandt, S., Ison, J., Martinez, P.A., et al., 2020.
Towards FAIR principles for research software. Data Sci. 3 (1), 37–59.

Lazear, E.P., Rosen, S., 1981. Rank-Order Tournaments as Optimum Labor Contracts.
J. Political Econ. 89 (5), 841–864.

Leblang, D., Smith, M.D., Wesselbaum, D., 2022. The effect of trust on economic
performance and financial access. Econom. Lett. 220, 110884.

Li, X., 2021. An anti-tampering model of sensitive data in link network based on
blockchain technology. Web Intell. 19 (3), 227–237.

Li, Z., Wang, C., Wang, S., Gao, C., 2023. Protecting intellectual property of large
language model-based code generation APIs via watermarks. In: Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security. CCS
’23, Association for Computing Machinery, New York, NY, USA, pp. 2336–2350.

Li, Z., Yu, Y., Wang, T., Yin, G., Li, S., Wang, H., 2022. Are you still working on this?
An empirical study on pull request abandonment. IEEE Trans. Softw. Eng. 48 (6),
2173–2188.

Liao, Z., Song, S., Zhu, H., Luo, X., He, Z., Jiang, R., Chen, T., Chen, J., Zhang, T.,
Zhang, X., 2023. Large-scale empirical study of inline assembly on 7.6 million
ethereum smart contracts. IEEE Trans. Softw. Eng. 49 (2), 777–801.

Liu, L., Tang, C., Zhang, L., Liao, S., 2024. A generic approach for network defense
strategies generation based on evolutionary game theory. Inf. Sci. 677, 120875.

Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A., 2016. Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 254–269.

Miller, M., Doerr, G., Cox, I., 2004. Applying informed coding and embedding to design
a robust high-capacity watermark. IEEE Trans. Image Process. 13 (6), 792–807.

Miller, C., Widder, D.G., Kästner, C., Vasilescu, B., 2019. Why do people give up
FLOSSing? A study of contributor disengagement in open source. In: Open Source
Systems - 15th IFIP WG 2.13 International Conference, OSS 2019, Montreal, QC,
Canada, May 26–27, 2019, Proceedings. In: IFIP Advances in Information and
Communication Technology, vol. 556, Springer, pp. 116–129.

Moe, N.B., Šmite, D., 2008. Understanding a lack of trust in global software teams: a
multiple-case study. Softw. Process.: Improv. Pr. 13 (3), 217–231.

Monrat, A.A., Schelén, O., Andersson, K., 2019. A survey of blockchain from
the perspectives of applications, challenges, and opportunities. IEEE Access 7,
117134–117151.

Nakasai, K., Hata, H., Onoue, S., Matsumoto, K., 2017. Analysis of donations in
the eclipse project. In: 2017 8th International Workshop on Empirical Software
Engineering in Practice. IWESEP, pp. 18–22.

Nguyen, H.-L., Ignat, C.-L., Perrin, O., 2018. Trusternity: Auditing transparent log
server with blockchain. In: Companion Proceedings of the the Web Conference
2018. WWW ’18, International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, CHE, pp. 79–80.

Oláh, J., Hidayat, Y.A., Popp, J., Lakner, Z., Kovács, S., 2021. The effect of integrative
trust and innovation on financial performance in a disruptive era. Econ. Sociol. 14
(2), 111–136.

Overney, C., 2020. Hanging by the thread: an empirical study of donations in
open source. In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings. ICSE ’20, Association for Computing
Machinery, New York, NY, USA, pp. 131–133.

Overney, C., Meinicke, J., Kästner, C., Vasilescu, B., 2020. How to not get rich: an
empirical study of donations in open source. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. ICSE ’20, Association for
Computing Machinery, New York, NY, USA, pp. 1209–1221.

ch Only

http://refhub.elsevier.com/S0164-1212(25)00145-1/sb1
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb1
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb1
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb1
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb1
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb1
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb1
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb3
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb3
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb3
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb3
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb3
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb4
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb4
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb4
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb4
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb4
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb5
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb5
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb5
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb5
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb5
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb6
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb6
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb6
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb7
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb7
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb7
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb7
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb7
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb8
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb8
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb8
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb9
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb9
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb9
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb9
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb9
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb10
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb10
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb10
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb10
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb10
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb11
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb11
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb11
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb11
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb11
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb12
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb12
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb12
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb12
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb12
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb13
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb13
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb13
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb17
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb17
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb17
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb17
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb17
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb17
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb17
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb18
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb18
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb18
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb18
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb18
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb18
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb18
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb18
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb18
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb19
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb19
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb19
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb19
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb19
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb21
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb21
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb21
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb21
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb21
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb22
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb22
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb22
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb23
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb23
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb23
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb23
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb23
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb23
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb23
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb24
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb24
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb24
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb24
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb24
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb24
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb24
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb25
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb25
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb25
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb26
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb26
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb26
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb26
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb26
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb26
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb26
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb27
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb27
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb27
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb27
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb27
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb27
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb27
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb28
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb28
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb28
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb28
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb28
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb28
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb28
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb28
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb28
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb29
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb29
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb29
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb29
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb29
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb29
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb29
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb30
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb30
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb30
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb30
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb30
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb30
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb30
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb31
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb31
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb31
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb31
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb31
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb32
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb32
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb32
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb32
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb32
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb33
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb33
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb33
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb34
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb34
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb34
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb35
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb35
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb35
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb37
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb37
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb37
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb37
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb37
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb38
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb38
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb38
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb38
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb38
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb39
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb39
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb39
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb40
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb40
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb40
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb40
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb40
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb41
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb41
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb41
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb42
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb42
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb42
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb42
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb42
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb42
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb42
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb42
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb42
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb44
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb44
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb44
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb44
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb44
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb45
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb45
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb45
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb45
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb45
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb46
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb46
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb46
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb46
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb46
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb46
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb46
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb47
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb47
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb47
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb47
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb47
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb49
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb49
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb49
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb49
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb49
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb49
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb49

S. Zhang et al.

The Journal of Systems & Software 230 (2025) 112477

r

Pacheco, M., Oliva, G.A., Rajbahadur, G.K., Hassan, A.E., 2023. Is my transaction done
yet? An empirical study of transaction processing times in the ethereum blockchain
platform. ACM Trans. Softw. Eng. Methodol. 32 (3), 59:1–59:46.

Panigrahi, R., Kuanar, S.K., Kumar, L., 2022. Cross-project software refactoring pre-
diction using optimized deep learning neural network with the aid of attribute
selection. Int. J. Open Source Softw. Process. 13 (1), 1–31.

Patrickson, B., 2021. What do blockchain technologies imply for digital creative
industries? Creativity Innov. Manag. 30 (3), 585–595.

Pi, S.-M., Liao, H.-L., Chen, H.-M., 2012. Factors that affect consumers’ trust and
continuous adoption of online financial services. Int. J. Bus. Manag. 7 (9), 108.

Qiu, H.S., Li, Y.L., Padala, S., Sarma, A., Vasilescu, B., 2019a. The signals that
potential contributors look for when choosing open-source projects. Proc. ACM
Hum.- Comput. Interact. 3 (CSCW).

Qiu, H.S., Nolte, A., Brown, A., Serebrenik, A., Vasilescu, B., 2019b. Going farther
together: the impact of social capital on sustained participation in open source. In:
Proceedings of the 41st International Conference on Software Engineering. ICSE
’19, IEEE Press, pp. 688–699.

Ren, Y., Huang, D., Wang, W., Yu, X., 2023. BSMD:A blockchain-based secure storage
mechanism for big spatio-temporal data. Future Gener. Comput. Syst. 138, 328–338.

Robinson, W.N., Vlas, R.E., 2015. Requirements evolution and project success: An
analysis of SourceForge projects. In: 21st Americas Conference on Information Sys-
tems, AMCIS 2015, Puerto Rico, August 13–15, 2015. Association for Information
Systems.

Samuel, B.M., Bala, H., Daniel, S.L., Ramesh, V., 2022. Deconstructing the nature of
collaboration in organizations open source software development: The impact of
developer and task characteristics. IEEE Trans. Softw. Eng. 48 (10), 3969–3987.

Schmid, S., Shestakov, D., 2024. Invited paper: Blockchain governance and liquid
democracy - quantifying decentralization in gitcoin and internet computer. In:
Chatzigiannakis, I., Gramoli, V. (Eds.), Proceedings of the 2024 Workshop on
Advanced Tools, Programming Languages, and PLatforms for Implementing and
Evaluating Algorithms for Distributed Systems, ApPLIED 2024, Nantes, France, 17
June 2024. ACM, pp. 1–7.

Shimada, N., Xiao, T., Hata, H., Treude, C., Matsumoto, K., 2022. GitHub sponsors:
exploring a new way to contribute to open source. In: Proceedings of the
44th International Conference on Software Engineering. ICSE ’22, Association for
Computing Machinery, New York, NY, USA, pp. 1058–1069.

Silva, J.D.O., Wiese, I.S., German, D.M., Steinmacher, I.F., Gerosa, M.A., 2017. How
long and how much: What to expect from summer of code participants? In: 2017
IEEE International Conference on Software Maintenance and Evolution. ICSME, pp.
69–79.

Sun, Z., Du, X., Song, F., Li, L., 2023. CodeMark: Imperceptible watermarking for
code datasets against neural code completion models. In: Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. In: ESEC/FSE 2023, Association for
Computing Machinery, New York, NY, USA, pp. 1561–1572.

Tamburri, D.A., Blincoe, K., Palomba, F., Kazman, R., 2020. ‘‘The canary in the coal
mine...’’ A cautionary tale from the decline of SourceForge. Softw.: Pr. Exp. 50
(10), 1930–1951.

Tan, X., Zhou, M., Zhang, L., 2023. Understanding mentors’ engagement in OSS
communities via google summer of code. IEEE Trans. Softw. Eng. 49 (5),
3106–3130.

Tyler, K., Stanley, E., 2007. The role of trust in financial services business relationships.
J. Serv. Mark. 21 (5), 334–344.

Valiev, M., Vasilescu, B., Herbsleb, J., 2018a. Ecosystem-level determinants of sustained
activity in open-source projects: a case study of the PyPI ecosystem. In: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. In: ESEC/FSE 2018,
Association for Computing Machinery, New York, NY, USA, pp. 644–655.

Valiev, M., Vasilescu, B., Herbsleb, J., 2018b. Ecosystem-level determinants of sustained
activity in open-source projects: A case study of the PyPI ecosystem. In: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. New York, NY, USA,
pp. 644–655.

Voong, C., Saebi, S., 2023. If you find yourself in lava, don’t panic. Go with the flow!
flowing between InnerSource and open source development. In: 1st IEEE/ACM
International Workshop on InnerSource Software Development, InnerSoft@ICSE
2023, Melbourne, Australia, May 20, 2023. IEEE, p. 1.

Wang, L., Fu, F., Chen, X., 2024. Mathematics of multi-agent learning systems at the
interface of game theory and artificial intelligence. Sci. China Inf. Sci. 67 (6).

For Resea
18
Wang, Y., Wang, L., Hu, H., Jiang, J., Kuang, H., Tao, X., 2022. The influence of spon-
sorship on open-source software developers’ activities on GitHub. In: Leong, H.V.,
Sarvestani, S.S., Teranishi, Y., Cuzzocrea, A., Kashiwazaki, H., Towey, D., Yang, J.,
Shahriar, H. (Eds.), 46th IEEE Annual Computers, Software, and Applications
Conferenc, COMPSAC 2022, Los Alamitos, CA, USA, June 27–July 1, 2022. IEEE,
pp. 924–933.

Wermke, D., Wöhler, N., Klemmer, J.H., Fourné, M., Acar, Y., Fahl, S., 2022. Committed
to trust: A qualitative study on security & trust in open source software projects.
In: 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA,
USA, May 22–26, 2022. IEEE, pp. 1880–1896.

Xu, H., Wan, J., 2008. Innovation in open source software with knowledge: Three chal-
lenges for open source competence centres. In: 2008 4th International Conference
on Wireless Communications, Networking and Mobile Computing. pp. 1–4.

Yin, L., Chakraborti, M., Yan, Y., Schweik, C., Frey, S., Filkov, V., 2022. Open
source software sustainability: Combining institutional analysis and socio-technical
networks. Proc. the ACM Human- Comput. Interact. 6 (CSCW2), 1–23.

Yin, L., Chen, Z., Xuan, Q., Filkov, V., 2021. Sustainability forecasting for apache
incubator projects. In: Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. In: ESEC/FSE 2021, Association for Computing Machinery, New York,
NY, USA, pp. 1056–1067.

Yu, Y., Benlian, A., Hess, T., 2012. An empirical study of volunteer members’ perceived
turnover in open source software projects. In: 2012 45th Hawaii International
Conference on System Sciences. IEEE, pp. 3396–3405.

Zahedi, M., Babar, M.A., Cooper, B., 2018. An empirical investigation of transferring
research to software technology innovation: a case of data-driven national secu-
rity software. In: Oivo, M., Fernández, D.M., Mockus, A. (Eds.), Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM 2018, Oulu, Finland, October 11–12, 2018. ACM, pp.
10:1–10:10.

Zanetti, M.S., 2012. The co-evolution of socio-technical structures in sustainable
software development: Lessons from the open source software communities. In:
2012 34th International Conference on Software Engineering. ICSE, pp. 1587–1590.

Zantalis, F., Koulouras, G.E., Karabetsos, S., 2024. Blockchain technology: A framework
for endless applications. IEEE Consum. Electron. Mag. 13 (2), 61–71.

Zhang, L., Choffnes, D., Levin, D., Dumitraş, T., Mislove, A., Schulman, A., Wilson, C.,
2014. Analysis of SSL certificate reissues and revocations in the wake of heartbleed.
In: Proceedings of the 2014 Conference on Internet Measurement Conference. pp.
489–502.

Zhang, Y., Qin, M., Stol, K.-J., Zhou, M., Liu, H., 2024. How are paid and volunteer
open source developers different? A study of the rust project. In: Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering. ICSE ’24,
Association for Computing Machinery, New York, NY, USA.

Zhang, X., Wang, T., Yu, Y., Zeng, Q., Li, Z., Wang, H., 2022. Who, what, why and how?
Towards the monetary incentive in crowd collaboration:A case study of github’s
sponsor mechanism. In: Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems. CHI ’22, Association for Computing Machinery, New York,
NY, USA, pp. 1–18.

Zhang, Z., Yang, Y., He, H., Chen, J., 2023. An empirical study on GitHub sponsor
mechanism. Int. J. Softw. Eng. Knowl. Eng. 33 (9), 1439–1465.

Zheng, Z., Xie, S., Dai, H.-N., Chen, W., Chen, X., Weng, J., Imran, M., 2020. An
overview on smart contracts: Challenges, advances and platforms. Future Gener.
Comput. Syst. 105, 475–491.

Zhou, L., Tang, C., Bao, Z., Liu, Y., Yu, X., 2024. A reputation-based blockchain scheme
for sustained carbon emission reduction. Sci. China Inf. Sci. 67 (5).

Zhou, J., Wang, S., Bezemer, C.-P., Zou, Y., Hassan, A.E., 2021. Studying the association
between bountysource bounties and the issue-addressing likelihood of GitHub issue
reports. IEEE Trans. Softw. Eng. 47 (12), 2919–2933.

Zhou, J., Wang, S., Kamei, Y., Hassan, A.E., Ubayashi, N., 2021a. Studying donations
and their expenses in open source projects: a case study of GitHub projects
collecting donations through open collectives. Empir. Softw. Eng. 27 (1), 24.

Zhou, J., Wang, S., Kamei, Y., Hassan, A.E., Ubayashi, N., 2022. Studying donations and
their expenses in open source projects: a case study of GitHub projects collecting
donations through open collectives. Empir. Softw. Eng. 27 (1), 24.

Zhou, J., Wang, S., Zhang, H., Chen, T.P., Hassan, A.E., 2021b. Studying backers and
hunters in bounty issue addressing process of open source projects. Empir. Softw.
Eng. 26 (4), 81.

Zou, W., Lo, D., Kochhar, P.S., Le, X.-B.D., Xia, X., Feng, Y., Chen, Z., Xu, B., 2021.
Smart contract development: Challenges and opportunities. IEEE Trans. Softw. Eng.
47 (10), 2084–2106.

ch Only

http://refhub.elsevier.com/S0164-1212(25)00145-1/sb50
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb50
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb50
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb50
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb50
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb51
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb51
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb51
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb51
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb51
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb52
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb52
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb52
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb53
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb53
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb53
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb54
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb54
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb54
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb54
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb54
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb55
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb55
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb55
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb55
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb55
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb55
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb55
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb56
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb56
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb56
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb57
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb57
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb57
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb57
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb57
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb57
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb57
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb58
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb58
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb58
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb58
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb58
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb60
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb60
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb60
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb60
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb60
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb60
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb60
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb61
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb61
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb61
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb61
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb61
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb61
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb61
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb63
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb63
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb63
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb63
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb63
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb64
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb64
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb64
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb64
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb64
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb65
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb65
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb65
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb66
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb66
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb66
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb66
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb66
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb66
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb66
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb66
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb66
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb67
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb67
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb67
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb67
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb67
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb67
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb67
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb67
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb67
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb68
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb68
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb68
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb68
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb68
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb68
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb68
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb69
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb69
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb69
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb70
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb70
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb70
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb70
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb70
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb70
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb70
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb70
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb70
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb70
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb70
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb71
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb71
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb71
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb71
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb71
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb71
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb71
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb72
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb72
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb72
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb72
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb72
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb73
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb73
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb73
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb73
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb73
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb74
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb74
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb74
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb74
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb74
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb74
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb74
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb74
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb74
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb75
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb75
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb75
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb75
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb75
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb76
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb76
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb76
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb76
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb76
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb76
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb76
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb76
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb76
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb76
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb76
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb77
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb77
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb77
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb77
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb77
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb78
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb78
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb78
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb79
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb79
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb79
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb79
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb79
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb79
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb79
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb80
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb80
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb80
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb80
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb80
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb80
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb80
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb81
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb81
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb81
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb81
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb81
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb81
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb81
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb81
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb81
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb82
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb82
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb82
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb83
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb83
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb83
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb83
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb83
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb84
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb84
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb84
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb85
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb85
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb85
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb85
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb85
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb86
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb86
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb86
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb86
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb86
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb87
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb87
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb87
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb87
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb87
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb88
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb88
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb88
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb88
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb88
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb89
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb89
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb89
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb89
http://refhub.elsevier.com/S0164-1212(25)00145-1/sb89

	BlockSOP: A blockchain-based software management platform for open collaborative development
	Introduction
	Progressive Opening Model
	Background
	Approach
	Main Workflow of BlockSOP
	Get Contribution Points Module
	Contribution Points Usage Module
	Arbitration Module

	Blockchain Security Mechanism
	Blockchain Watermark Traceability Module
	Credit Module

	Analysis and Evaluation
	RQ1: Analysis Combining Game Theory
	RQ2: Motivation Enhancement
	RQ3: Response Speed of Development
	RQ4: Blockchain Overhead
	User Experience and Feedback
	Threats to validity

	Related Work
	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

