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Logic bugs are bugs that can cause database management systems (DBMSs) to silently produce incorrect
results for given queries. Such bugs are severe, because they can easily be overlooked by both developers
and users, and can cause applications that rely on the DBMSs to malfunction. In this work, we propose
Constant-Optimization-Driven Database Testing (CODDTest) as a novel approach for detecting logic bugs in
DBMSs. This method draws inspiration from two well-known optimizations in compilers: constant folding
and constant propagation. Our key insight is that for a certain database state and query containing a predicate,
we can apply constant folding on the predicate by replacing an expression in the predicate with a constant,
anticipating that the results of this predicate remain unchanged; any discrepancy indicates a bug in the
DBMS. We evaluated CODDTest on five mature and extensively-tested DBMSs–SQLite, MySQL, CockroachDB,
DuckDB, and TiDB–and found 45 unique, previously unknown bugs in them. Out of these, 24 are unique logic
bugs. Our manual analysis of the state-of-the-art approaches indicates that 11 logic bugs are detectable only
by CODDTest. We believe that CODDTest is easy to implement, and can be widely adopted in practice.

CCS Concepts: • Information systems→ Database query processing; • Software and its engineering
→ Software testing and debugging.
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1 Introduction
Database management systems (DBMSs) store data for numerous essential software systems. Similar
to other software systems, DBMSs are susceptible to a range of bugs, including logic bugs. Logic
bugs can be critical as they can cause the DBMSs to silently produce incorrect results for a given
query and might be overlooked by both developers and users.

In recent years, various approaches have been proposed to find logic bugs in DBMSs. The state-
of-the-art approaches are NoREC [30], TLP [31], PQS [32], DQE [35], and TQS [37]. NoREC and
DQE assume that the same predicate should, for a given row, consistently evaluate to the same
value, regardless of which clause it is used in. NoREC applies this to WHERE clauses in SELECT ,
while DQE applies this to WHERE clauses in UPDATE and DELETE . TLP decomposes a query into three
partitioning queries, each retrieving rows based on predicates p, NOT p, and p IS NULL, respectively.
All these approaches are black-box techniques, as they apply on the SQL level, not on the DBMSs’
source code. Because of this, and since automated testing approaches typically lack guarantees, it is
difficult to precisely characterize what bugs they find and which ones they miss. For one, none of
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24:2 Chi Zhang and Manuel Rigger

these approaches support testing subqueries, an important feature that allows query nesting, and it
is not obvious how these approaches could be extended to support it. For another, as the results of
this paper show, these approaches overlook various bugs due to their inherent limitations.

To tackle logic bugs in DBMSs, we propose a novel testing methodology that tests DBMSs through
the lens of constant folding and constant propagation, two optimizations that were originally
proposed for compilers. Specifically, we propose Constant-Optimization-Driven Database Testing
(CODDTest),1 which is a black-box approach that, for a given database state and query, applies
constant folding and propagation to expressions in the query. The test oracle, that is, the mechanism
for validating the behavior of the DBMS for a given input, relies on validating that the transformed
query produces the same result as the original query.
Constant folding is a well-known compiler optimization that evaluates constant expressions

at compile time, rather than computing them at run time [27]. For example, it evaluates the
statement i = 1 + 2 + 3; to i = 6; at compile time. Constant folding extends beyond numeric
literal expressions by leveraging constant propagation. Constant propagation, through reachability
analysis [11], determines constant values for variables by assessing their reachability at specific
program points. By employing constant propagation in conjunction with constant folding, more
intricate programs can be optimized. For example, the statement sequence a = 1; i = a + 2 + 3;

can be optimized to i = 6;.
In the context of DBMSs, the result of an expression in a query is deterministic for any given

row under a specific database state. While, as an optimization, applying constant folding and
propagation assuming a constant database state would be ineffective, since the state typically
frequently changes, we can leverage these optimizations for a test oracle. Listing 1 illustrates this
by using a bug-inducing test case that enabled us to find a subquery-related bug in SQLite.2 We
start from an initial database state, which includes a table t0 with index i0, as well as a view v0.
The query O , which corresponds to the original query, uses a subquery in the WHERE clause, which
we want to constant-fold. We can do so by extracting the subquery, using an auxiliary query, as
shown in query A , and executing it using the DBMS under test, which returns 0. We derive the
folded query as shown in query F , by, in query O , replacing the subquery with its result obtained
in query A . Unexpectedly, SQLite returned a different result for the original and folded queries;
for query O , SQLite returned 1, while it returned 0 for query F . This discrepancy indicates a bug
in the DBMS. We received feedback from the developers of SQLite, stating that this bug was caused
by a query planner optimization, and an aggregate subquery is a necessary condition to trigger this
bug. We found this bug, since our folded query (i.e., query F ) no longer met this requirement. Our
approach is akin to a combination of constant folding and constant propagation. In this example,
using the DBMS to evaluate the expression under a certain database state can be seen as constant
folding (i.e., in query A ), while the substitution of the entire expression with its result can be
viewed as constant propagation (i.e., replacing the subquery in query O with the constant 0).

Our approach is effective in detecting logic bugs, because it can directly transform a predicate,
resulting in the execution of different code within DBMSs, while the folded query should produce
the same results as the original one. Any discrepancy between the queries indicates a bug in DBMSs.
Our approach is capable of identifying bugs that occur simultaneously in all three SELECT , UPDATE ,
and DELETE statements, which will be missed by NoREC and DQE. Our approach can detect bugs
where boolean predicates consistently evaluate to an opposite value, which would be missed by
TLP. Our transformation-based oracle can handle complex queries, whereas PQS is limited by
the ability of the self-implemented interpreter. Overall, we believe that CODDTest complements

1This name pays homage to Edgar Frank Codd [12], who proposed the relational model for database management.
2https://sqlite.org/forum/info/a68313d0545273c8
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Constant Optimization Driven Database System Testing 24:3

Listing 1. An illustrative example, which triggered a bug in SQLite. The expression in the original query
subject to constant folding and propagation, along with the corresponding constant in the folded query, are
highlighted in red.
CREATE TABLE t0 (c0);
INSERT INTO t0(c0) VALUES (1);
CREATE INDEX i0 ON t0(c0 > 0);
CREATE VIEW v0(c0) AS SELECT AVG(t0.c0) FROM t0 GROUP BY 1 > t0.c0;
O SELECT COUNT (*) FROM t0 INDEXED BY i0 WHERE (SELECT COUNT (*) FROM v0 WHERE v0.c0

BETWEEN 0 AND 0); -- 1
A SELECT COUNT (*) FROM v0 WHERE v0.c0 BETWEEN 0 AND 0; -- 0
F SELECT COUNT (*) FROM t0 INDEXED BY i0 WHERE 0; -- 0

Listing 2. A correlated subquery example.
CREATE TABLE t0(ID INT , score INT , classID INT);
INSERT INTO t0 VALUES (0, 90, 1), (1, 80, 1), (2, 83, 2);
O SELECT x.ID FROM t0 AS x WHERE x.score >

(SELECT AVG(y.score) FROM t0 AS y WHERE x.classID = y.classID );
A SELECT x.classID ,

(SELECT AVG(y.score) FROM t0 AS y WHERE x.classID = y.classID) FROM t0 AS x;
F SELECT x.ID FROM t0 AS x WHERE x.score >

(CASE WHEN x.classID = 1 THEN 85
WHEN x.classID = 1 THEN 85
WHEN x.classID = 2 THEN 83 END);

existing testing approaches for DBMSs, and provides a new conceptual angle on using compiler
optimizations for DBMS testing.

We implemented CODDTest based on SQLancer, a widely-used tool for testing DBMSs, in which
also other state-of-the-art oracles have been integrated, and tested five mature DBMSs with it, all
of which have been extensively tested by a number of state-of-the-art testing approaches. The
results were surprisingly positive. We found 45 previously unknown, unique bugs. Of these, 12
were confirmed, 33 were fixed. 24 out of these were previously unknown unique logic bugs, which
we aimed to find. Of these logic bugs, 5 were confirmed, and 19 were fixed. In summary, we make
the following contributions:
• We propose the novel idea of testing DBMSs through the lens of constant propagation and
constant folding.
• We provide a realization of this idea by, given an original query, deriving a folded query, in
which an expression has been constant-folded based on the result of an auxiliary query to
validate whether the DBMS computes a consistent result for the original and folded queries.
• We implemented the approach and evaluated it on five well-tested and mature DBMSs, un-
covering 24 unique, previously unknown logic bugs. Furthermore, we provide a comparative
analysis with the state-of-the-art approaches, as well as a performance comparison.

2 Background
Predicates. In SQL, a predicate is a boolean expression that evaluates to TRUE, FALSE , or NULL when

applied to given values or rows. Predicates are used in various clauses of SQL, such as the WHERE

clauses of SELECT , UPDATE , and DELETE , as well as the JOIN ON, HAVING , GROUP BY, and ORDER BY

clauses of SELECT .

Subqueries. Subqueries are an important language feature in SQL, and can be used in predicates.
Subqueries can be classified as correlated or non-correlated based on whether the subquery ref-
erences columns from the outer query. Correlated subqueries are SELECT queries nested within
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Listing 3. A CASE expression example.
CREATE TABLE grade (score INT);
INSERT INTO grade(score) VALUES (100), (80), (60);
SELECT score , CASE WHEN score = 100 THEN "A"

WHEN score >= 80 AND score < 100 THEN "B"
ELSE "C" END FROM grade;

outer queries, referencing columns from the outer queries to construct their predicate. A correlated
subquery will be executed once for each row passed from the outer query. Consider the query O
depicted in Listing 2, where a correlated subquery is used to identify students (i.e., represented by
ID) whose scores exceed the average score in the class. The subquery calculates the average score
of the class, whose classID is passed from the outer query. Therefore, for each student in t0, the
subquery will be executed once to derive the average score in the class of that particular student. In
contrast, non-correlated subqueries do not reference columns in the outer query and are evaluated
once in execution. Various optimizations have been developed to enhance the performance of
subqueries, such as subquery unnesting [6, 9] or correlated subquery decorrelation [33]. Like other
language features, subquery support in DBMSs is susceptible to logic bugs.

SQL CASE expression. The CASE expression is a feature of SQL to process if/then logic. Listing 3
illustrates an example using the CASE expression. The predicate following the WHEN keyword
determines whether the value after the THEN keyword should be returned. If all predicates evaluate
to false, the result of this CASE expression is the value specified in the ELSE clause, or NULL if there is
no ELSE clause. In our approach, we use the CASE expression to map each row of a table to constant
values, corresponding to constant folding on a per-row basis.

Metamorphic testing. Metamorphic testing [10] is an automated testing methodology, which
generates a new input for the program under test, based on an existing input and its corresponding
output, with the expectation that the outcome of this new input can be predicted. Formally, given
an input 𝐼 and 𝑃 (𝐼 ) = 𝑂 , where 𝑃 is the program under test, a follow-up input 𝐼 ′ is derived, so
that a known relationship between 𝑂 and 𝑃 (𝐼 ′) = 𝑂 ′ is validated. Metamorphic testing has been
applied in testing numerous critical systems, such as compilers [22], SMT solvers [38], and DBMSs.
NoREC [30], TLP [31], and DQE [35] are all metamorphic testing approaches for detecting logic
bugs in DBMSs. The core challenge of realizing a metamorphic testing approach is to identify a
so-called metamorphic relation that derives the follow-up input 𝐼 ′ and relates the outputs𝑂 and𝑂 ′
so that bugs in the system under test can be revealed.

3 Approach
We propose CODDTest as an approach to finding logic bugs in DBMSs through the lens of constant
folding and propagation. Our key insight is that within an SQL query, by assuming a constant
database state and given query, we can apply constant folding and constant propagation to a specific
expression in a predicate, assuming that the query’s result remains unchanged. More precisely, our
approach for testing DBMSs generates two equivalent queries: the original query, which includes the
randomly generated predicate, and the folded query, which is derived by substituting the predicate
in the original query with the corresponding constant-folded predicate. Any discrepancy in the
results of these two queries indicates a potential bug.

Metamorphic relation. CODDTest is a metamorphic testing approach, where the folded query 𝐹

is derived from the original query 𝑂 , and the results of these two queries with DBMS engine 𝐸 are
expected to be identical. More formally, for the potential database state space denoted by S, we
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Randomly generate an expression .

SELECT t0.c0, t0.c1, 
    c0 + c1 > 0 FROM t0;

Apply constant folding to get the
results of expression .

Generate a random query, which take 
as a sub-expression.
SELECT COUNT(*) FROM t0 WHERE  AND ;  -- 2

SELECT COUNT(*) FROM t0 WHERE 
     CASE WHEN t0.c0=-1 AND t0.c1=1 THEN 0 
     WHEN t0.c0=1 AND t0.c1=2 THEN 1 END 
     AND ;  -- 1

c0
-1

t0 c1
1

1 2

c0
-1

c1
1

1 2
0
1

① Initialize database .

Apply constant propagation to replace
the expression  with constants. ≠

SELECT LENGTH("abc") > 5; SELECT COUNT(*) FROM t0 WHERE 0 AND ;  -- 0

Dependent expression 

Independent expression 

0

②

③

④

⑤

Fig. 1. Overview of approach. CODDTest generates pairs of equivalent queries by applying constant folding
and propagation to the expression 𝜙 . The application of constant propagation and folding differs for indepen-
dent and dependent expressions.

can establish the metamorphic relationship below. Any violation indicates a bug in 𝐸.

∀𝑠 ∈ S 𝐸𝑠 (𝑂) = 𝐸𝑠 (𝐹 )
where 𝐸𝑠 (𝑂) denotes the outcome of executing a query 𝑂 with the DBMS engine 𝐸 under the state
𝑠 , while 𝐸𝑠 (𝐹 ) represents the result of 𝐹 .

The generation of 𝐹 involves applying constant folding and constant propagation to a randomly
selected expression 𝜙 within the predicate of 𝑂 , represented as 𝐹 = 𝑂 [𝜙/𝑅𝜙 ], which includes
substituting 𝜙 with the expression 𝑅𝜙 within the same query location in the query 𝑂 . 𝑅𝜙 is the
evaluated result of 𝜙 , and this process referred to as constant propagation. 𝑅𝜙 can be obtained
through constant folding, which entails evaluating 𝜙 under the database 𝑠 , denoted by 𝑅𝜙 =

𝐸𝑠 (𝐴[𝜙]). Here, 𝐴[𝜙] represents an auxiliary query 𝐴 designed to obtain the evaluation result of 𝜙 .
Finally, the above metamorphic relation can be elaborated as follows:

∀𝑠 ∈ S 𝑅𝜙 = 𝐸𝑠 (𝐴[𝜙])
𝐸𝑠 (𝑂) = 𝐸𝑠 (𝐹 ) = 𝐸𝑠 (𝑂 [𝜙/𝑅𝜙 ])

Approach overview. Figure 1 illustrates our approach. In step 1 , we initialize the database and
create non-empty tables. We do this randomly by using rule-based generators, such as also done by
other testing works [1, 30]. Non-empty tables ensure that at least one row is available for us to
apply constant folding. Here, we generate a table t0 with two rows. Subsequently, we enter a loop
from step 2 to step 5 to thoroughly test the generated database state. Each iteration is designed
to test the DBMS once. Step 2 generates a random expression 𝜙 , which will undergo constant
folding. In step 3 , we introduce the auxiliary query to retrieve the corresponding constants of 𝜙
with respect to the database state—we see this step as constant folding. In step 4 , we generate the
original query, using 𝜙 as part of a predicate. We execute the original query using the DBMS under
test and obtain its results (i.e., 2). In step 5 , we apply constant propagation to 𝜙 by replacing it with
the corresponding constants to obtain the folded query. If the folded query produces a different
result than the original query, we have found a bug-inducing test case.
Applying constant folding (i.e., step 3 ) and constant propagation (i.e., step 5 ) differs based on

whether the expression 𝜙 is a so-called independent expression or dependent expression. Independent
expressions yield constant results irrespective of the outer context, allowing us to perform constant
folding and propagation on the expression 𝜙 by replacing it with a constant or a constant list. For
example, the independent expression 𝜙 shown in Figure 1, LENGTH("abc") > 5, does not reference
any columns and evaluates to FALSE, regardless of the database state and the clauses it is used in.
Similarly, the constant-folded expression (i.e., query A ) in Listing 1 is an independent expression, as

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 24. Publication date: February 2025.

For Research Only
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Algorithm 1: Algorithm of CODDTest
1 function TestOracleGen(𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑆𝑡𝑎𝑡𝑒 𝑠)

// Randomly generate an expression 𝜙, which will undergo constant folding and constant
propagation. We extract the set of the referenced columns {𝑐𝑖 } in 𝜙, which come from
outer context, along with the tables set {𝑡𝑖 } to which these columns 𝑐𝑖 are associated.

2 𝜙, {𝑐𝑖 }, {𝑡𝑖 } ← GenExpr(𝑠)

// Constant folding of 𝜙 under 𝑠, this step differs based on 𝜙 is dependent or
independent expressions. Specifically, 𝜙 is considered an independent expression when
{𝑐𝑖 } is empty; otherwise, 𝜙 is classified as a dependent expression.

3 if Size({𝑐𝑖 }) == 0 then
// Construct the auxiliary query for independent expression

4 𝐴← "SELECT " + 𝜙

5 𝐸𝑠 (𝐴) ← ExecQuery(𝐴, 𝑠)

// Transform the constant result of 𝜙 as a constant expression 𝑅𝜙

6 𝑅𝜙 ← 𝐸𝑠 (𝐴)
7 else

// Dependent expression has different result for each row of {𝑐𝑖 }
8 𝐴← "SELECT " + ({𝑐𝑖 }, 𝜙 ) + "FROM " + {𝑡𝑖 }
9 𝐸𝑠 (𝐴) ← ExecQuery(𝐴, 𝑠)

// Map the results of 𝜙 to each row of {𝑐𝑖 } as an expression 𝑅𝜙

10 𝑅𝜙 ← Map(𝐸𝑠 (𝐴))
// Generate the original query based on the current database state, using 𝜙 as a

sub-expression in predicate

11 𝑂 ← QueryGenerate(𝑠, 𝜙, {𝑡𝑖 })
12 𝐸𝑠 (𝑂 ) ← ExecQuery(𝑂, 𝑠)

// Generate the folded query by replacing 𝜙 with 𝑅𝜙

13 𝐹 ← ReplaceExpr(𝜙, 𝑅𝜙, 𝑂)

14 𝐸𝑠 (𝐹 ) ← ExecQuery(𝐹, 𝑠)

// A bug is identified if there is a discrepancy between the results of the original

query and the folded query

15 if 𝐸𝑠 (𝑂 )! = 𝐸𝑠 (𝐹 ) then
16 ReportBug(𝑂, 𝐹, 𝐴)

the non-correlated subquery can be executed independently and yields constant results regardless of
the outer query. We categorize expressions as dependent expressions if they reference columns from
an outer context and cannot be executed independently. For example, the dependent expression
c0 + c1 > 0 shown in Figure 1 references columns c0 and c1 from the FROM clause; the original
query shown in Listing 2 is also a dependent expression, as the correlated subquery depends on
the value of x.classID from the outer query. For dependent expressions, we must consider that 𝜙
might evaluate to a different value for every row, which is why we represent the folded constant as
a mapping from a row value to the constant.

Algorithmic sketch. We use Algorithm 1 to demonstrate the process of generating a test oracle.
The function TestOracleGen corresponds to step 2 to step 5 in Figure 1, taking the randomly
generated database state 𝑠 as its input.

For step 2 , we randomly generate the expression 𝜙 with function GenExpr, based on the current
database state 𝑠 , as outlined in line 2. 𝜙 then undergoes constant folding and constant propagation.
GenExpr returns two sets: {𝑐𝑖 }, which consists of referenced columns from the outer context and
is utilized to determine if 𝜙 is an independent expression, and {𝑡𝑖 }, which denotes the tables to
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which 𝑐𝑖 belong. For example, for the independent expression LENGTH("abc") > 5, GenExpr yields
two empty sets for {𝑐𝑖 } and {𝑡𝑖 } as results, due to the absence of any referenced columns in this
expression. Conversely, for the dependent expression c0 + c1 > 0 shown in Figure 1, GenExpr
returns {𝑐0, 𝑐1}, and {𝑡0}.

The logic for constant folding (i.e., step 3 ) spans from line 3 to line 10. When the size of {𝑐𝑖 } is
zero, 𝜙 does not reference any columns from the outer context, leading to 𝜙 producing constant
results regardless of the outer context. Therefore, 𝜙 is considered an independent expression. The
value of an independent expression can be obtained through an auxiliary query consisting solely
of the SELECT keyword followed by 𝜙 , as shown in line 4. Moreover, this SELECT keyword can
be omitted when 𝜙 is a non-correlated subquery. The outcome of an independent expression is
either a constant (the empty result can be considered as NULL) or a constant list. Once we ascertain
the result of the auxiliary query (i.e., line 5), we can directly convert this result into a constant
expression in line 6. For a dependent expression, which produces different outcomes for various
rows of {𝑐𝑖 }, we must construct 𝑅𝜙 to reflect this variability. In line 8, by placing {𝑐𝑖 } and 𝜙 together
following the SELECT keyword, we obtain the result of 𝜙 , as well as the values of {𝑐𝑖 } that lead to
the result of 𝜙 . To ensure syntactic correctness, we also need to append the list of tables {𝑡𝑖 } after
the FROM keyword. Finally, we construct 𝑅𝜙 as a mapping from the value of each row in {𝑐𝑖 } to the
corresponding result of 𝜙 , as shown in line 10. In the subsequent two subsections, we elaborate
and further illustrate how we handle both independent and dependent expressions.

Step 4 is accomplished in line 11 through the QueryGenerate function, a random query generator
that takes the current database state 𝑠 , the expression 𝜙 , and the table set {𝑡𝑖 } as input. 𝜙 is then
randomly incorporated into a predicate of the generated query. It is imperative to include the table
set {𝑡𝑖 } as an input. This requirement arises from the need for auxiliary queries to replicate the
original query’s JOIN clauses, with the sole exception being instances where 𝜙 functions as the
predicate within a JOIN clause. The set {𝑡𝑖 } records the information of the JOIN clauses associated
with each table. For a deeper understanding of the reason, we provide the explanation in Section 3.2,
in which we discuss how to perform constant folding on dependent expressions.

Constant propagation (i.e., step 5 ) is applied in line 13 using the ReplaceExpr function, which
replaces the expression 𝜙 with the expression 𝑅𝜙—representing the result of 𝜙 , in the corresponding
location within query 𝑂 . After obtaining the result of the original query 𝑂 in line 12 and the result
of the folded query in line 14, we can identify the presence of a bug if any discrepancies exist
between these two results (i.e., line 15 to line 16).

3.1 Folding Independent Expressions
Independent expressions can be executed without surrounding contexts and can have two possible
shapes. First, if the expression 𝜙 has no column references, it is a constant expression that always
yields a constant value. In such cases, in the auxiliary query, we can evaluate the expression
using a SELECT statement. For example, the independent expression LENGTH("abc") > 5 shown
in Figure 1 is used in a SELECT statement to derive its results. Second, the expression 𝜙 can be a
non-correlated subquery, which computes a constant result assuming a fixed database state. For
example, in Listing 1, the subquery of query O returns the same result regardless of the outer
query’s result. Therefore, in the auxiliary query A , we can directly execute the extracted subquery.
For both shapes, we create the folded query by replacing the expression with its evaluated result.
For example, in Listing 1, A evaluates to 0, which is why we replace the subquery with 0 in F .

3.2 Folding Dependent Expressions
We conceptualize a dependent expression as a function 𝑅𝜙 = 𝐹 (𝜃 ), 𝜃 = {𝑐1, 𝑐2, ..., 𝑐𝑖 }, where the
dependent expression can be seen as a mapping from its arguments 𝑐1, 𝑐2, ..., 𝑐𝑖 to its results 𝑅𝜙 .
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Listing 4. JOIN can affect the values of 𝜙 for a given row.
CREATE TABLE t0 (c0 INT);
CREATE TABLE t1 (c0 INT);
INSERT INTO t0 VALUES (0);
INSERT INTO t1 VALUES (1);
O SELECT * FROM t0 LEFT JOIN t1 ON t0.c0 = t1.c0 WHERE t1.c0 IS NULL; -- 0|NULL
A SELECT t1.c0, t1.c0 IS NULL FROM t0 LEFT JOIN t1 ON t0.c0 = t1.c0; --NULL|1
F SELECT * FROM t0 LEFT JOIN t1 ON t0.c0 = t1.c0 WHERE

CASE WHEN t1.c0 is NULL THEN 1 END; --0|NULL

Each argument 𝑐𝑖 is referenced in 𝜙 and represents a column from the outer context, and its domain
consists of the rows within that column of the table. During constant folding and propagation, we
must consider that 𝜙 might evaluate to a different value for every table row. We first obtain the
results of the expression on each row (i.e., step 3 for dependent expression) and then represent
them using a mapping (i.e., step 5 for dependent expression).

Constant folding. To construct the auxiliary query in step 3 for dependent expressions, we first
identify 𝜃 , which serves as the keys of the mapping, by collecting all the columns that appear in 𝜙

and reference the outer context. We include these columns in the fetch clause. Additionally, we
include 𝜙 itself in the fetch clause to obtain its results for each row, which corresponds to 𝑅𝜙 . Each
row of the auxiliary query’s result contains the values of 𝜃 , as well as the values of 𝑅𝜙 , which are
the results of 𝜙 . Therefore, each row of the results represents a map entry, where the values of
𝜃 serve as keys and the values of 𝑅𝜙 as corresponding map values. For example, the dependent
expression c0 + c1 > 0 shown in Figure 1 references two columns: c0 and c1. These two columns
as well as the expression itself are included in the fetch clause of the auxiliary query. The auxiliary
query’s results consist of two rows, each representing the result of 𝜙 for the corresponding row of
the table. As another example, Listing 2 shows how we create the auxiliary query for correlated
subqueries. To obtain the results of the subquery of query O on all rows passed from the outer
query, we include the subquery in the fetch clause as shown in query A . While the subquery
references two columns x.classID and y.classID in the predicate, only x.classID is from the
outer context. Thus, in query A , 𝜃 contains only x.classID .

Supporting JOINs involves two considerations. First, the auxiliary queries must use the same JOIN

clauses as the original query, except in cases where 𝜙 serves as the predicate within the JOIN clause.
Listing 4 shows an example where we assign 𝜙 the concrete expression t1.c0 IS NULL. The original
query fetches a single row whose t1.c0 column holds a NULL value. This is because the predicate
of the LEFT JOIN evaluates to false. Then, the expression t1.c0 IS NULL is evaluated to be true. As
a result, the mapping assigns only one row in t1.c0 to the result of t1.c0 IS NULL: from NULL to
TRUE. To construct this mapping in the auxiliary query, the same JOIN as the original query must
be used, ensuring that the only row in t1.c0 has a NULL value. Therefore, in the case of dependent
expressions, we need to determine in advance whether to use the JOIN clause in the original query
during the generation of 𝜙 . This corresponds to line 2 in Algorithm 1. Subsequently, this information
will be stored within the set {𝑡𝑖 }. Conversely, if the folded expression 𝜙 is used as the predicate of
JOIN clause, there is no need for a JOIN clause in the auxiliary query, as the expression 𝜙 would be
evaluated with the row values before the JOIN operation. Second, although we generate non-empty
tables, an empty result can still occur, for example, when using an INNER JOIN with a false predicate.
In such scenarios, we discard the test.

Constant propagation. To represent the mapping obtained by the auxiliary query, we use a CASE

expression in the folded query, as shown in red in step 5 of Figure 1. This mapping shows that 𝜙
generates 0 for the first row and 1 for the second row of the table. In Listing 2, the query F also
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Listing 5. The subquery, when used as the fetch keyword in a SELECT , must return only one column and one
row.
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 INT);
INSERT INTO t0 VALUES (1);
INSERT INTO t0 VALUES (2), (3);
SELECT t0.c0, (SELECT t1.c0 FROM t1 WHERE t1.c0 > t0.c0) FROM t0;

-- Error: Subquery returns more than 1 row
SELECT t0.c0, (SELECT t1.c0, t1.c0 FROM t1 WHERE t1.c0=2) FROM t0;

-- Error: Operand should contain 1 column(s)

Listing 6. A bug found in TiDB caused by a predicate generating an incorrect result in INSERT .
CREATE TABLE t0(c0 BIGINT NOT NULL);
INSERT INTO t0(c0) VALUES (1);
CREATE TABLE ot0 (c0 BIGINT );
INSERT INTO ot0 SELECT t0.c0 AS c0 FROM t0 WHERE VERSION () >= t0.c0;
O SELECT * FROM ot0; -- empty result
A SELECT t0.c0 AS c0 FROM t0 WHERE VERSION () >= t0.c0; -- 1
F SELECT * FROM (SELECT 1) AS ft0; -- 1

uses the CASE expression to represent the mapping for the correlated subquery. The CASE pattern
resembles a well-known optimization for dynamically-typed languages, known as a polymorphic
inline cache [15].

3.3 Construction of the OriginalQuery
The expression 𝜙 generated in step 2 can be used in a predicate, which, in turn, can be used in any
clause requiring a predicate to construct the original query in step 4 . In Algorithm 1, the function
QueryGenerate, called in line 11, generates the original query.

Predicate construction. We randomly generate predicates that contain or correspond to 𝜙 . While
we use an existing random generation approach implemented in SQLancer [30, 32], subqueries
require additional attention, as they were not supported by existing approaches. Subqueries can
evaluate to three different result types: (1) a scalar value, which is a single value; (2) a row value,
which is an ordered list of two or more scalar values; (3) multiple row values. When using a
subquery in the fetch clause of a SELECT statement, DBMSs typically allow the subquery only to
return a scalar, as illustrated for MySQL in Listing 5. This restriction applies to auxiliary queries
for dependent expressions generated in step 3 . To this end, for correlated subqueries, we either
use an aggregate function without using a GROUP BY clause, or use a LIMIT clause. Both ensure that
a scalar value is returned. For both non-correlated and correlated subqueries, we can use one of the
multiple subquery operators, which apply for subqueries returning any of the result types. Such
operators include EXISTS , IN, ANY, and ALL.

Query construction. The generated predicate can be used in any SQL statement where a predicate
is required. Our approach supports placing these predicates not only in the WHERE, JOIN, HAVING ,
GROUP BY, and ORDER BY clauses of SELECT , but also in other statements that require predicates,
such as CREATE INDEX, CREATE VIEW, UPDATE , INSERT , and DELETE .

Implementation details. Some DBMSs follow strict data type rules when using binary operators,
for example, DuckDB and CockroachDB. Before constructing the predicate, it is necessary to
query the return type of the expressions. DuckDB provides the typeof () function for this purpose,
whereas CockroachDB provides pg_typeof (). Additionally, DBMSs such as CockroachDB lack
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Listing 7. A bug found in CockroachDB caused by a false predicate being always evaluated to true.
CREATE TABLE t1 (v VARBIT );
INSERT INTO t1 VALUES (B'11');
O WITH t2 AS (SELECT NULL AS b) SELECT t1.v FROM t1, t2 WHERE t1.v NOT BETWEEN

t1.v AND (CASE WHEN NULL THEN t2.b ELSE t1.v END); -- empty result
A SELECT NULL AS b; -- NULL
CREATE TABLE t2 (b BIT);
INSERT INTO t2 VALUES (NULL);
F SELECT t1.v FROM t1, t2 WHERE t1.v NOT BETWEEN t1.v AND

(CASE WHEN NULL THEN t2.b ELSE t1.v END); -- '11'

automatic implicit casts for converting predicates from any type to boolean. Therefore, we must
generate a boolean expression explicitly as the predicate. Some DBMSs, such as SQLite and MySQL,
can automatically convert the data type of expressions used as operands of operators. This allows
us the freedom to choose operators for the expression 𝜙 when testing these DBMSs.
The ALL and ANY operators are not supported in SQLite and DuckDB, and they disallow a

value list as an argument in MySQL and TiDB. To overcome this limitation in MySQL and
TiDB, we use the UNION operator. For example, we can represent a set of values [1, 2, 3] as
SELECT 1 UNION SELECT 2 UNION SELECT 3.

3.4 Language Features Beyond Predicates
Our approach is applicable not only to constant-folding predicate expressions, but also to contexts
that expect a relation (e.g., a table or a view reference). A subquery computing a non-empty result
can be used as the source of values for tables, allowing us to test other language features such as
INSERT , common table expressions, and derived tables. In step 4 , we construct the original query by
referencing an original relation, whose values are obtained from a subquery. In step 5 , we change
the reference of the original relation in the original query to a folded relation to construct the folded
query, whose values are sourced from a table value constructor. A table value constructor in SQL is
a constant list, typically represented by VALUES (...) . Similar to the process of testing predicates,
this approach also applies constant folding and constant propagation to subqueries. As before, the
folded query should yield identical results to the original query.
CODDTest introduces three approaches to constructing original (i.e., step 4 ) and folded (i.e.,

step 5 ) relations. We randomly select one of them to construct the original relation and another
one for the folded relation. The first approach creates a table based on the structure of the subquery
results and then uses the subquery in an INSERT statement to add values to the table. For example,
the query O shown in Listing 6 references the original relation ot0, whose value originates from
the subquery in the INSERT statement. The second one is a derived table, which is used in the FROM

clause of SELECT . The query F shown in Listing 6 references the folded relation ft0, which is
sourced from a constant. We use a subquery as the operand of AS, as the left operand of AS can only
be a subquery. The third one is common table expression (CTE) [8], which was introduced in the
SQL Standard of 1999. It is a component of a SELECT query that allows creating a temporary table
inside the query and retrieving values from subqueries or table value constructors. The query O ,
shown in Listing 7, demonstrates the application of the CTE in our approach. The bug-inducing
test case shown in Listing 6 uses INSERT statement and derived table,3 while the bug-inducing test
case shown in Listing 7 uses INSERT statement and CTE.4 We consider this as an extension of our
original approach, because the folded table is not necessarily a constant.

3https://github.com/pingcap/tidb/issues/43373
4https://github.com/cockroachdb/cockroach/issues/102110
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4 EVALUATION
We implemented CODDTest, and evaluated three important aspects. First, we evaluated CODDTest’s
effectiveness by studying how many unique, unknown bugs our approach could find in widely-used
DBMSs that have been extensively tested by the state-of-the-art approaches. Second, we sought
to determine whether existing approaches would indeed be unable to find the bugs we reported.
Third, we compared CODDTest’s performance with the state-of-the-art approaches.

Implementation. We implemented CODDTest in SQLancer, a popular tool for DBMS testing,
which supports multiple state-of-the-art test oracles for finding logic bugs, including NoREC, PQS,
and TLP. SQLancer provides manually-written, rule-based generators specific to the DBMS under
test, which can be used to generate statements and expressions. CODDTest initializes the database
states using SQLancer’s random generation method, which generates random statements to create
tables, views, indexes, and insert values into tables. For generating the original query, we adopted
the logic used in NoREC, and added support for generating subqueries. For generating auxiliary
queries, we implemented an additional generator. For folded queries, we replaced the expression in
the original query with the constant by replacing child nodes in the Abstract Syntax Tree (AST)
that SQLancer provides. CODDTest is easy to understand and implement, so we could have chosen
alternative database and query generators that we could similarly extend to realize our approach.

Tested DBMSs. We selected five DBMSs as our test targets: SQLite,5 MySQL,6 CockroachDB [36],
DuckDB [29], and TiDB [16]. We chose these specific DBMSs for several reasons. Firstly, these
DBMSs are widely used, popular, and considered mature. MySQL and SQLite are long-established
DBMSs and thus rank highly in rankings such as the DB-Engines ranking.7 CockroachDB, DuckDB,
and TiDB are relatively recent DBMSs, which are highly popular on GitHub, with star counts of
27.2K, 10.5K, and 34.2K respectively. Secondly, these DBMSs represent various types of DBMSs.
SQLite and DuckDB are embedded DBMSs that run in the same process as the application that
uses them. MySQL is a traditional, relational, and client-server DBMS. Both CockroachDB and
TiDB are distributed relational DBMSs, designed to handle large-scale deployments and ensure
high availability and scalability in a distributed environment [28]. Finally, all five DBMSs have
been extensively tested by various methods such as NoREC [30], TLP [31], PQS [32], and DQE [35],
suggesting that any newly found bugs might have been overlooked by these existing approaches.

DBMSs versions. We tested the latest development versions of the aforementioned DBMSs. We
downloaded SQLite from its source code repository, and downloaded the other DBMSs from
GitHub. For SQLite, we tested version c1f2a1d5 and later trunk versions. For MySQL, we tested
commit version ea7087d. For CockroachDB, we tested commit version 07c7d4b and later versions.
For DuckDB, we tested commit version b8cf6a9 and later versions. For TiDB, we tested version
c233969 and later commit versions.

Baselines. We selected NoREC [30], TLP [31], DQE [35], and EET [17] as baselines for evaluation.
NoREC, TLP, PQS [32], TQS [37], DQE, and EET are the state-of-the-art approaches for automatically
testing DBMSs. NoREC and DQE assume that the same predicate always accesses the same row of
a table, regardless of which clause it is used in. TLP decomposes a query into three partitioning
queries, which retrieve rows based on predicates p, NOT p, and p IS NULL, respectively. EET is
a concurrent work with CODDTest, which has proposed the first expression-level manipulation
approach, known as Equivalent Expression Transformation (EET), which introduces tautologies

5https://sqlite.org/index.html
6https://www.mysql.com/
7https://db-engines.com/en/ranking
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Table 1. CODDTest found 45 unique bugs in five mature DBMSs.

DBMS Bug type Bug status
Logic bug Internal error Crash Hang Fixed Verified

SQLite 6 1 0 0 7 0
MySQL 1 1 0 0 0 2
CockroachDB 7 4 0 2 11 2
DuckDB 5 2 2 3 12 0
TiDB 5 6 0 0 3 8

Total 24 14 2 5 33 12

and contradictions to construct equivalent queries. PQS generates a SELECT query to retrieve a pivot
row, and checks whether the DBMS fetches it as expected. PQS requires a high implementation
effort, as operations of the DBMS must be implemented also in the testing tool. For this reason,
it is no longer actively maintained in the SQLancer project, and currently triggers false alarms.8
TQS was proposed to find bugs in join optimizations; however, it is not publicly available. Thus, we
omitted both PQS and TQS from the comparison.

4.1 Effectiveness
Methodology. We evaluated the effectiveness of CODDTest by testing the five aforementioned

DBMSs. We intermittently ran CODDTest for a period of four months, during which we also imple-
mented it. This is a standard methodology used to evaluate the effectiveness of automated testing
tools [23, 26, 30]. Before reporting bugs, we manually reduced the bug-inducing test cases [39].
To avoid reporting duplicate issues, for multiple reports that we suspected to affect the same
component, we reported the subsequent bug only after the previously reported one was fixed.
For some DBMSs (e.g., TiDB), we refrained from reporting more bugs, due to the large number of
unfixed bugs.

Results. Table 1 shows the number of bugs found by CODDTest, as well as the status of the bugs.
CODDTest found a total of 45 previously unknown bugs. Out of these, 24 were logic bugs, 14 were
internal errors, 2 were crashes, and 5 were hang-related issues. Out of all 45 bugs, 33 were fixed,
and 12 were verified. Out of the 24 logic bugs, 19 were fixed, and 5 were verified. These results are
highly encouraging, considering that these DBMSs have been the focus of many testing works as
mentioned above.

Logic bugs causes. We analyzed the queries that triggered the bugs and identified that 12 bugs
were triggered by folded queries—the queries generated and executed in step 5 — and 12 by original
queries. Out of the bug-inducing folded queries, 11 queries used folded constants that were derived
from non-correlated subqueries. Of the bugs caused by them, 6 were triggered by replacing a
constant, and the remaining 5 bugs were triggered by a value list, all of which were related to
the IN operator. Only one query used a constant that was derived from the query with a simple
expression. Out of the remaining 12 bugs triggered by original queries, all of them used queries
containing non-correlated subqueries. Feedback from the developers indicated that 3 bugs were
bugs in subquery processing, while 5 bugs were unrelated to subqueries. For the 4 remaining
bugs, we are unclear about the root cause due to limited developer feedback. Overall, we detected
most of the bugs through non-correlated subqueries or folded queries derived from non-correlated

8https://github.com/sqlancer/sqlancer/issues/527
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subqueries. This is primarily because non-correlated subqueries were our initial test focus, as they
can be executed independently and are straightforward to implement. Additionally, half of all the
bugs were triggered by the folded queries. We believe that applying CODDTest to basic expressions
or constant expressions could also have been used to detect some of these bugs. For example, for
the bug-inducing test case shown in Listing 8, using a constant expression 1 - 1 as 𝜙 could have
detected this bug.

Other bugs. CODDTest found a total of 21 other bugs in five DBMSs, including crashes, internal
errors, and hangs. Out of the 21 bugs, 14 have been fixed, and 7 have been verified. We found two
crashes in DuckDB, both of which caused our tool to terminate unexpectedly, and the test cases
resulted in segmentation faults when using DuckDB’s command line interface. These two crashes
were introduced in the IEJoin optimization [20]. One crash was caused by an index out-of-bounds
error, while the other was due to a type mismatch. These two crashes have been fixed. We found
14 internal errors in these five DBMSs, 6 have been fixed, and the others were verified. All 5
hang-related bugs found in DuckDB and CockroachDB have been fixed. We believe these crashes,
internal errors, and hangs could be detected by other automated testing approaches [13, 40].

Bug importance. Although anecdotal, developer feedback is an important indicator of an ap-
proach’s effectiveness and the found bugs’ importance. Two DBMS companies reached out to us
about our testing efforts; both were interested in how we found the bugs, and one invited us to
present the approach to the development team. Furthermore, we received positive feedback on the
public bug trackers. For example, a developer of CockroachDB commented in one of our reports
“we really appreciate your work!”9 Three bugs in CockroackDB were assigned the “S-0” or “S-2” label,
indicating high-impact bugs that were difficult to resolve. Three bug reports in TiDB were labeled
as “Major”, which represents the highest bug severity.

False alarms. While realizing our approach, we identified corner cases that resulted in false
alarms in our initial implementation. First, applying constant folding with floating-point numbers
can result in false alarms. We avoid these in practice by eschewing test cases with small or large
float-point values. Second, SQLite’s relaxed type system allows, in some context, values of different
types to be returned. We avoid this through explicit casts to the data type we expect. We have not
observed any false alarms after addressing these issues.

Discussion. Although we intermittently ran CODDTest over a period of four months, during
which we also implemented it, most of the bugs were found at the beginning of CODDTest’s
execution. As shown in the evaluation in Section 4.2, CODDTest identified 25 unique bugs in
an older version of SQLite within 24 hours, with 13 of those bugs found in the first hour. Since
CODDTest is a black-box method, it is an ongoing research challenge to determine whether a
system has been sufficiently tested [25].

4.2 Test Oracle Comparison
A testing approach is valuable if it finds bugs that were overlooked by existing approaches. Thus,
we sought to confirm whether the state-of-the-art test oracles are indeed ineffective in finding the
bugs found by CODDTest, as well as to identify the types of bugs that CODDTest can not detect.

Methodology. To address these two questions, we designed three experiments. First, we ran
CODDTest on the release version 3.30.0 of SQLite, in which NoREC and TLP detected 31 bugs, to
determine how many of these bugs CODDTest could identify over 24 hours with 10 threads. The
developers of SQLite were proactive in fixing bugs, which allowed us to determine whether two
9https://github.com/cockroachdb/cockroach/issues/104319

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 24. Publication date: February 2025.

For Research Only

https://github.com/cockroachdb/cockroach/issues/104319


24:14 Chi Zhang and Manuel Rigger

Table 2. The number of detectable bugs by test oracles.

Oracles NoREC TLP DQE Only by CODDTest

Num 11 12 4 11

bug reports trigger the same bug by applying the bug-fixed commit to SQLite and checking if the
bug could still be triggered. We selected NoREC, TLP, and EET for this comparison, because DQE is
conceptually similar to NoREC. Additionally, the test cases generated by DQE are incomplete and
cannot be automatically analyzed. Second, we analyzed the earliest versions of DBMSs where logic
bugs identified by CODDTest can be triggered, to determine whether these bugs were introduced
before the state-of-the-art approaches were published, suggesting that the existing approaches
missed the bugs that CODDTest subsequently found. This methodology was also used in the EET
work [17]. Third, we implemented a best-effort comparison by manually inspecting and analyzing
the bug-inducing test cases and bugs found by CODDTest and analyzing whether the state-of-the-
art test oracles could have found them. We selected NoREC, TLP, and DQE for this comparison,
because EET’s transformations explore an extensive search space, making it difficult to conduct the
transformations and check their results manually. For every analyzed bug, we include an analysis
in the supplementary materials including the test cases constructed by the test oracles, allowing
scrutinization of the results.

Results of oracles on an older version of SQLite. During a 24-hour period, NoREC, TLP, EET and
CODDTest generated 97,003, 103,103, 16, and 6,990 bug reports, respectively, with 27, 27, 6, and 25
of the bugs being unique. Additionally, NoREC, TLP, EET, and CODDTest reported 3, 2, 3, and 4
bugs that were found by that oracle alone. Although the significant overlap might be surprising,
we believe it is reasonable—a testing approach is useful if it can find new bugs overlooked by other
approaches. Note that we conducted this experiment on a single and stable version of SQLite and
that in other, especially older versions of SQLite, likely more unique bugs could be detected.

As all of these three oracles are black-box testing methods, it is challenging to determine which
types of bugs will be overlooked in general. However, we noticed that CODDTest overlooked 14
bugs, 4 of which were related to indexing. Therefore, we speculate that CODDTest cannot effectively
test indexing functionality.
Although it is an established methodology to run testing approaches for 24 hours [21], we

noticed that it might be insufficient for some bugs to be consistently found. By running the 24-hour
experiments, we found that 9, 13, and 16 bugs found by NoREC, TLP, and CODDTest, respectively,
had fewer than 10 reports. Therefore, generating certain corner cases might require a substantial
amount of time. This motivated us to conduct the manual comparison study, whose results are
detailed next.

Results on bugs introduction times. CODDTest can detect long-latent bugs in DBMSs that have
been overlooked by state-of-the-art approaches. NoREC supports SQLite and MySQL. CODDTest
found 7 logic bugs in these two systems, and 1 bug was introduced before NoREC was published. All
DBMSs supported by CODDTest are also supported by TLP; 6 out of the 24 bugs found by CODDTest
were introduced before TLP was published. DQE supports SQLite, MySQL, CockroachDB, and
TiDB, and 15 out of 19 bugs found in these DBMSs were introduced before DQE was published. EET
supports MySQL, SQLite, and TiDB, and the 12 bugs found in these DBMSs were all introduced
prior to EET’s first bug report, indicating that EET may have missed these bugs. Out of the 24 logic
bugs found by CODDTest, 6 were introduced before 2020, and 20 were introduced before 2023.
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Listing 8. A bug found in SQLite related to JOIN .
CREATE TABLE vt0(c2);
CREATE TABLE t1(c0 TEXT);
INSERT INTO t1(c0) VALUES (1);
INSERT INTO vt0(c2) VALUES (-1);
CREATE VIEW v0(c0) AS SELECT 0 FROM t1;
O SELECT vt0.c2 AS c1 FROM t1 CROSS JOIN v0 ON (

EXISTS (SELECT v0.c0 FROM v0 WHERE false)) FULL OUTER JOIN vt0 ON 1; -- -1
A SELECT v0.c0 FROM v0 WHERE false;-- empty result
F SELECT vt0.c2 AS c1 FROM t1 CROSS JOIN v0 ON (0) FULL OUTER JOIN vt0 ON 1;

-- empty result

The bug with the longest latency—14 years—was found in MySQL. This result demonstrates that
CODDTest can effectively identify long-latent bugs.

Results of manual comparison. As shown in the manual-analysis results in Table 2, out of 24 bugs
detected by CODDTest, 11 can be detected by NoREC, 12 can be detected by TLP, 4 can be detected
by DQE, and 11 can only be detected by CODDTest. We found that these 11 bugs were in language
features that were not supported by existing test oracles, including subqueries, ON clauses, CASE
and ANY expressions, the AVG function, and INSERT statements.

Subqueries. Three bugs related to subqueries, which are out-of-scope for the three test oracles.
Listing 1 shows such a bug-inducing test case for SQLite. The SQLite developers communicated
that reproducing it requires five conditions: (1) the query must contain an aggregate subquery;
(2) the aggregate subquery must have a GROUP BY clause; (3) the GROUP BY clause must reference
terms that are not included in the result set of the query; (4) the query planner must choose to
implement the GROUP BY clause by doing a sort operation; (5) the outer query that contains the
aggregate subquery must make use of indexed expressions. Under these conditions, SQLite assigned
an incorrect value to a variable in the SQL AST associated with the subquery. The transformations
performed by existing test oracles are incapable of generating queries that violate these conditions,
preventing them from detecting this bug. We found the second subquery-related bug in DuckDB,
which was caused by incorrect processing of the return type of a subquery. CODDTest executed the
auxiliary query to obtain the subquery’s results with the correct data type, which were then used
in the folded query. The folded query subsequently generated the correct results. However, due to
the incorrect handling of the subquery’s return type, the original query produced incorrect results.
The third one was found in TiDB and caused by the incorrect recognition of columns with identical
names, resulting in the misinterpretation of a non-correlated subquery as a correlated one.

ON clause. The ON clause of JOIN remained untested by NoREC, TLP, and DQE. Since these three
test oracles rely on the direct mapping relationship between predicates and corresponding rows,
which cannot be directly determined for the JOIN ON clause, they are unable to effectively test
the clause. Two bugs in SQLite found by CODDTest were missed by these three test oracles for
this reason. Listing 8 shows one of the bugs that was triggered when replacing a predicate in the
JOIN ON clause with a constant.10 The original query that embedded the subquery generated the
correct results and provided an opportunity to find this bug.

CASE and ANY expressions. Listing 7 shows a bug found in CockroachDB, where a bug in processing
the CASE caused the expression to be incorrectly evaluated to TRUE, regardless of in which clause
the predicate was placed. Consequently, NoREC, TLP, and DQE were unable to detect this bug.

10https://sqlite.org/forum/forumpost/96cd4a7e9e
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Listing 9. A bug found in CockroachDB related to IN operator.
CREATE TABLE t (c INT4);
INSERT INTO t (c) VALUES (0);
F SELECT c FROM t WHERE c IN (0, 862827606027206657:: INT8); -- empty result

Listing 10. A bug found in TiDB related to IN operator.
CREATE TABLE t0(c0 BOOL);
INSERT INTO t0 VALUES (true);
F SELECT t0.c0 FROM t0 WHERE ((CASE ((CASE t0.c0 WHEN 6 THEN 0.03 ELSE t0.c0 END )

LIKE (t0.c0)) WHEN t0.c0 THEN 1 END) AND (t0.c0 IN (1))); -- empty result

We observed two bugs related to CASE expressions and one bug related to ANY expressions, which
consistently evaluated to an incorrect result.

AVG function. A bug in CockroachDB related to AVG function, which produced inconsistent results
when the argument order was altered. The original and folded queries produced results with
different orders, enabling us to find this bug.

Language features beyond queries. Listing 6 shows a bug found in TiDB, specifically in an INSERT

statement, whose argument was a non-correlated subquery. The inner query may return a non-
empty result, but it fails to produce a non-empty result within the INSERT statement. None of the
existing test oracles support testing INSERT statements, as INSERT does not directly use predicates.
The extension of our method described in Section 3.4, can find bugs in INSERT statements even
when the bug cannot be reproduced using other statements.

Variations in expression behavior across clauses. NoREC and DQE were designed to identify logic
bugs by assuming that a specific predicate evaluates to the same value irrespective of in which clause
it is used. However, we discovered that either DQE or NoREC failed to detect some of these bugs.
There are two bugs in this category. Listing 9 illustrates a bug in CockroachDB associated with the
IN operator.11 CockroachDB produced the correct results when the right operand was a subquery,
but yielded incorrect results when the right operand was a value list. This predicate produced
incorrect results in SELECT queries, while correctly functioning in UPDATE and DELETE statements.
As a result, NoREC failed to detect this bug, whereas DQE successfully found it. Listing 10 illustrates
a bug in TiDB that is also associated with the IN operator.12 Similar to the bug mentioned above,
it generated correct results when the right operand was a subquery, but yielded incorrect results
when the right operand was a value list. The difference, however, lies in the behavior exhibited
in WHERE clauses, where it consistently produced incorrect results, while correctly functioning
when used in the fetch clause of a SELECT . As a result, DQE failed to detect this bug, while NoREC
successfully found it.
Furthermore, four bug-inducing test cases triggered errors when other oracles were applied to

them, indicating that these logic bugs could not be found by them. Two of them triggered internal
errors when we applied NoREC to them, and two of them triggered semantic errors when we
applied DQE to them. We encountered scenarios where a predicate triggered a logic bug within
WHERE clauses, while simultaneously causing an internal error when used in a SELECT statement.
Listing 11 shows one of the two such bugs found by CODDTest.13 When we used the predicate
triggering the logic bug in the SELECT’s fetch clause, the query triggered an internal error. As a

11https://github.com/cockroachdb/cockroach/issues/102864
12https://github.com/pingcap/tidb/issues/43624
13https://github.com/duckdb/duckdb/issues/7094
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Listing 11. A bug found in DuckDB, which triggers an error when applying NoREC to it. The expressions
highlighted in blue illustrate the application of the NoREC oracle.
CREATE TABLE t0(c1 INT8);
INSERT INTO t0(c1) VALUES ((1));
O SELECT t0.c1 FROM t0 WHERE ((( -1314689763) + ( -1947665992)) <=

(EXISTS( SELECT t0.c1 FROM t0 WHERE false ))); -- empty result
A SELECT t0.c1 FROM t0 WHERE false;-- empty result
F SELECT t0.c1 FROM t0 WHERE ((( -1314689763) + ( -1947665992)) <= (false )); -- 1
SELECT (( -1314689763)+( -1947665992)) <= (EXISTS( SELECT t0.c1 FROM t0 WHERE false ))

FROM t0;
-- Out of Range Error: Overflow in addition of
-- INT32 ( -1314689763 + -1947665992)!

result, although NoREC cannot directly detect this logic bug, the internal error could have still been
found. However, when applying DQE to the logic bug we discovered in TiDB, we observed that
the predicate, which executed normally in SELECT , triggered a semantic error when used in UPDATE

and DELETE statements. Although the authors of DQE referenced a similar case found in MySQL in
their paper, they did not provide an explanation for the underlying reason. To investigate further,
we searched the MySQL bug list and uncovered the root cause.14 In MySQL, the SELECT statement
allows comparing values with different data types. However, it does not permit this in UPDATE and
DELETE statements. Therefore, DQE triggers a semantic error in this particular test case, and is
unable to detect this logic bug.

Summary. CODDTest can find bugs that are missed by the state-of-the-art approaches, such as in
subqueries, JOIN, operators, and functions. We believe that the existing state-of-the-art test oracles
cannot be extended to find these missed bugs in any obvious way. While query generators could
still generate the same queries, the existing test oracles would miss the logic bugs associated with
these language features. Additionally, CODDTest can test language features beyond predicates, as
discussed in Section 3.4. This includes common table expressions (CTE) and derived tables.

4.3 Efficiency Comparison
In this section, we compare the performance of CODDTest to the state-of-the-art approaches.

Methodology. NoREC, TLP, and DQE are all implemented based on SQLancer, which enables
a fair comparison of the approach, as we could use the same settings (e.g., the same number of
threads). Besides CODDTest, we also evaluated two other configurations to explore the impact of
testing different expression types on performance. Specifically, we explored the performance of
CODDTest when using only expressions with no subqueries (i.e., CODDTest & Expression) and
only subqueries (i.e., CODDTest & Subquery).

Metrics. We define six metrics for this evaluation. We measured test throughput by counting the
number of successful test cases executed. We recorded the number of queries that were successfully
executed (i.e., successful queries) and those that encountered expected errors (i.e., unsuccessful
queries). Expected errors either refer to queries triggering unfixed internal errors in the DBMS, or
cases where the query is semantically incorrect (e.g., errors like unexpected integer overflows are
difficult to avoid during construction). Oracles differ in how many queries they execute for each
test case. Note that this number is not static as, for example, generating a test might fail due to
an unsuccessful query. Thus, we compute the average number of queries for each successfully-
executed test, that is, the queries per test (QPT). We also evaluated the number of unique query
plans generated by each method. We collected only the query plan of the most complex query,
14https://bugs.mysql.com/bug.php?id=111483
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Table 3. The number of tests conducted by each approach.

Oracle # of tests # of successful
queries

# of unsuccessful
queries QPT # of unique

query plans
branch

coverage

NoREC 2,086,646k 4,207,286k 149,036k 2.05 172,808 63.18%
TLP 976,216k 2,180,736k 398,919k 2.23 137,743 63.63%
DQE 441,350k 7,502,402k 21,997k 17.00 486 46.71%
CODDTest 497,092k 1,655,518k 53,102k 3.33 2,577,603 63.06%
CODDTest &
Expression 1,423,068k 4,411,510k 326,849k 3.10 7,399 63.23%

CODDTest &
Subquery 423,310k 1,488,817k 47,141k 3.51 2,755,619 62.19%

which was the optimized query in NoREC, the partitioning query in TLP, the SELECT query in DQE,
and the original query in CODDTest. Lastly, we compare the branch coverage of each oracle at the
end of execution, as this provides a more rigorous assessment than statement coverage.15

Experimental setup. We conducted the performance evaluation on a server with a 64-Core AMD
EPYC 7763 Processor at 2.45GHz and 512GB of memory running Ubuntu 22.04. We selected SQLite
as our test target, and conducted this experiment with release version 3.42.0.0. We executed each
approach with 10 threads for a duration of 24 hours and recorded the number of tests conducted.
SQLancer provides a MaxDepth option, which controls the maximum depth of an expression. We
used the default configuration of SQLancer, where this option is set to 3. We conducted separate
experiments with the same configuration and times to collect statistics on unique query plans and
branch coverage, as querying these metrics requires additional time.

Results. Table 3 shows the results. On average, CODDTest has a lower test throughput compared to
NoREC and TLP, but a higher test throughput than DQE. Specifically, CODDTest was approximately
4.20× slower than NoREC, 1.96× slower than TLP, and 1.13× faster than DQE. Upon further
investigation, we have found two reasons why CODDTest is slower than NoREC and TLP. Firstly,
for each test, CODDTest required executing at least three queries to derive the test oracle, including
original query, folded query, and auxiliary query. When using subqueries to create relations, an
additional query is required to retrieve the types of the subquery’s result, which is used for table
creation. This explains why the QPT exceeded 3 for CODDTest and its configurations. Additionally,
for CODDTest, when applying a subquery in an INSERT statement, additional statements are needed
to create and drop tables to maintain the database state. In contrast, NoREC executed only about two
queries per test. For TLP, the average number of queries per test was 2.23; the number exceeds 2 as
the test oracle randomly either executes the partitioning queries as one query—using UNION ALL—or
executes three queries. For DQE, a test requires not only the three statements SELECT , UPDATE , and
DELETE , but also additional statements for two extra columns. These extra columns are used to
uniquely identify each row and to track whether a row has been modified. Secondly, the execution
of queries with subqueries is significantly slower compared to queries with expressions (i.e., 7.18×).
We found that, on average, queries with expressions alone required only 44.73 microseconds for
execution, whereas queries with subqueries required 321.19 microseconds. Although subqueries
require more execution time, they cover a significantly greater number of unique query plans,
resulting in CODDTest covering 14.92× (compared to NoREC) to 5303.71× (compared to DQE) more
unique query plans than other oracles. NoREC, TLP, and CODDTest have a similar result of branch

15https://www.sqlite.org/testing.html
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Fig. 2. The impact of expression complexity on query execution time and test throughput.
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Fig. 3. The impact of expression complexity on unique query plans.

coverage, as they use the same statement generator. DQE, however, has lower branch coverage,
because it cannot test certain language features, such as JOIN. However, branch coverage does not
effectively illustrate the oracle’s effectiveness, as SQLite already achieves 100% branch coverage
with its own test suites, yet still contains logic bugs. Recent research suggests that exercising
more unique query plans corresponds to uncovering more interesting and potentially erroneous
behaviors in the DBMS under test [2].

Expression complexity. We also evaluated the impact of expression complexity on the efficiency
of CODDTest. To isolate the effect of expression complexity, we conducted our evaluation on
CODDTest & Expression, excluding the influence of subqueries. We define the complexity of an
expression using MaxDepth. This experiment focuses on examining how complexity influences
the average execution time of each query (i.e., execution time per query), as well as the overall
throughput of CODDTest (# of tests). We conducted this evaluation using the same setup as before
(e.g., executing the experiment with 10 threads for 24 hours). The results, as depicted in Figure 2,
reveal how varying of MaxDepth influence these performance metrics. We can observe that, as
MaxDepth increases from 1 to 15, the average running time for each query increases by 9.91×,
and the throughput of our method decreases by 89.4%. Therefore, the complexity of expressions
significantly impacts the efficiency of our approach, as the DBMSs require more time to execute each
query. However, in our evaluation, we found that most of the bugs we found by the bug-inducing
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test cases use only shallow expressions after reduction. Therefore, during testing, there is no need
to generate expressions with great depth.

We also investigated the impact of expression complexity on the diversity of unique query plans
(# of unique query plans) generated when varyingMaxDepth. As shown in Figure 3, we find that the
complexity of the expression has a significant impact on the number of unique query plans, which
shows a decreasing trend similar to that of throughput. We can conclude that increasing expression
depth with language features other than subqueries does not significantly exercise additional logic
in DBMSs; the use of subqueries in expressions not only increases expression complexity, but also
effectively triggers more logic within DBMSs.

Summary. CODDTest generates more unique query plans than existing oracles, suggesting that it
exercises interesting functionality in the DBMSs. However, this results in slightly lower throughput.
Prior research [5] suggests that the resources required to find bugs increase exponentially—a
constant factor will not significantly decrease the bug-finding effectiveness.

5 Discussion
CODDTest scope. One potential concern is how CODDTest can be applied to features not consid-

ered in this work. First, we believe that any kind of expression can be supported by CODDTest
assuming that it is deterministically computing its result. One advanced feature we did not con-
sider are window functions, which can be supported by being used in subqueries. In addition, our
approach is not specifically designed to test functionality unrelated to expressions, such as clauses
(e.g., LIMIT). While we can apply constant folding and propagation to the predicates of clauses, it is
unclear how to replace the clauses themselves. Furthermore, like other logic bug detection methods,
our approach lacks support for expressions with non-deterministic functions or ambiguous queries.
Our approach primarily applies to the statement types Data Query Language (DQL) and Data

Manipulation Language (DML). It is inapplicable to most statements of Data Definition Language
(DDL), Transaction Control Language (TCL), Miscellaneous Language (ML), and Data Control
Language (DCL). DDL expressions produce results based on data that will be inserted into tables in
the future, making CODDTest inapplicable to constant folding and propagation based on the current
database state. DCL, TCL, and ML typically do not support the use of expressions as conditions.

The support of closed-source commercial DBMSs. In our evaluation, we considered only DBMSs
whose source code is publicly available. One concern could thus be whether our approach could
potentially also find bugs in closed-source commercial DBMSs. First, multiple of these open-source
DBMSs are developed by companies, such as Cockroach Labs for CockroachDB and PingCAP for
TiDB. Second, we attempted engaging with multiple closed-source commercial DBMS vendors in
the past, in whose systems we also found bugs. However, we did not receive a response to our bug
reports and any potential fixes would be reflected only in subsequent versions, making it difficult
to identify their root causes and avoid reporting duplicate bugs.

6 Related Work
Detecting logic bugs in DBMSs. Several approaches have been proposed to detect logic bugs in

DBMSs. RAGS [34] applies differential testing to find logic bugs by comparing the results of a
query on different DBMSs or different versions of the same system. A key challenge that limits its
applicability is that SQL dialects differ widely across DBMSs. Non-optimizing Reference Engine
(NoREC) [30] and Differential Query Execution (DQE) [35] place the same predicate in different
clauses, with the expectation that this predicate will retrieve the same rows. NoREC primarily
focuses on the WHERE clause of SELECT statements, while DQE expands its scope to the WHERE clauses
of SELECT , UPDATE , and DELETE statements. Ternary Logic Partitioning (TLP) [31] decomposes a
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query into three partitioning queries, each of which retrieves rows based on the predicates p, NOT p,
and IS NULL, respectively. TLP can test the predicate in WHERE , GROUP BY, HAVING clauses, as well as
aggregate functions, and DISTINCT queries. NoREC and DQE rely on predicates by assuming that
their results remain consistent regardless of the clause in which they are placed, and TLP leverages
that for any given row, exactly one of p, NOT p, and p IS NULL evaluates to true. These three
approaches are unable to detect logic bugs that affect the evaluation of expressions irrespective
of how they are used, making them overlook, for example, the bug shown in Listing 1. Pivoted
Query Synthesis (PQS) [32] generates queries that are guaranteed to retrieve a selected row, based
on a naive implementation of operators and functions to be tested, Transformed Query Synthesis
(TQS) [37] generates queries by decomposing a table into multiple sub-tables, to derive a test case
and ground truth for queries that join these tables. The synthesis methods used by PQS and TQS
ensure that the generated query matches a specific value or relationship. This is achieved using their
self-built evaluation engine. Therefore, their synthesis techniques have limited support for various
language features (i.e., TQS only supports equi-join as predicates), as it is challenging to compute
the expected results across all of them. This is also why we chose not to compare with PQS and TQS
(the latter which is also not publicly available); many language features we test would be difficult
to support by these approaches. A concurrent work called Equivalent Expression Transformation
(EET) [17] closely relates to our approach. Both CODDTest and EET operate on expressions and
aim to derive queries whose results are the same as the original queries, but the conceptual angle
on how they derive them is different. EET introduces tautologies and contradictions while ensuring
that the result remains equivalent to the original query. In contrast, CODDTest applies constant
folding and propagation on expressions to replace certain language features with constants, thereby
creating an equivalent, but simpler query. Both are black-box approaches, making it difficult to
conceptualize which bugs are overlooked by one of the two approaches, but not the other. However,
assuming a perfect query optimizer that can simplify any expressions, EET would be ineffective as
the unnecessarily complex expressions could be simplified. For CODDTest, this is not the case, as
the query optimizer cannot assume that the database’s contents remains the same across queries.

Random and targeted queries. Multiple works have improved query generation for DBMSs, which
is complementary to our contribution. Query Plan Guidance (QPG) [2] mutates the database state to
cause the DBMS to guide test case generation towards potentially unseen query plans for subsequent
queries. SQLRight [24] mutates the SQL statements based on code coverage feedback to cover more
code in DBMSs. Squirrel [40] mutates SQL queries based on an intermediate representation to ensure
syntax validity and uses coverage feedback for guidance. Griffin [13] proposes a grammar-free
mutation approach for testing DBMSs, using a metadata graph to ensure semantic correctness.

Random and targeted databases. Many approaches have been proposed to automate the generation
of databases. Gray et al. proposed approaches for generating billions of database records using
multiple techniques [14]. Data Generation Language (DGL) [7] is a domain-specific language
designed for generating data that exhibits complex intra- and inter-table correlations. QAGen [4] is
a query-aware database generator designed to produce database states by generating them based
on a specified parametric query and set of user-defined constraints, ensuring that the outcomes
of the query meet the user requirements. ADUSA [19] leverages a constraint solver to generate
database data and the corresponding expected results for a given query and database schema.

Testing other aspects of DBMSs. Besides logic bugs, testing approaches were proposed to find
performance issues. Cardinality Estimation Restriction Testing (CERT) [3] is designed to detect
performance issues through the lens of cardinality estimation. For a given query, CERT derives a
more restrictive query, for which the cardinality estimator is expected to predict that the query
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fetches fewer rows than the original query. APOLLO [18] detects performance regression issues in
DBMSs by analyzing multiple versions of a given DBMS, and employs a suite of validation checks
to minimize false positives.

7 Conclusion
In this paper, we have presented a black-box approach for detecting logic bugs in DBMSs, named
Constant-Optimization-Driven Database Testing (CODDTest). Our key insight is that, for a given query
and fixed database state, constant propagation and folding can be applied to specific expressions of
the query, assuming that the result remains unchanged. We believe that this idea is non-obvious, as
constant propagation and constant folding were originally proposed as compiler optimizations,
not for testing DBMSs. We have evaluated CODDTest on five mature and well-tested DBMSs, and
found a total of 45 bugs. Of these, 24 were logic bugs, and the remaining were internal errors,
crashes, and hang-related bugs. As indicated by our manual analysis, 11 logic bugs were missed by
the state-of-the-art approaches. CODDTest generates test cases that exercise more unique query
plans, suggesting that it can explore interesting functionality in the DBMS under test. Overall, we
believe that CODDTest is a practical, widely applicable DBMS testing approach that complements
existing test oracles for logic bugs.
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