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ABSTRACT
Timing analysis of scenario-based specifications (SBS) such as mes-
sage sequence charts and UML interaction models plays an essential
role in the design phase of real-time system development. However,
it is time-consuming and labor-intensive to conduct analysis on the
satisfiability of the timing constraints. In this article, we propose a
novel SAT and linear programming (LP) collaborative timing anal-
ysis approach named TASSAT for SBS. Instead of using depth-first
traversal algorithms, TASSAT encodes the structures of the SBS into
propositional formulas and use the SAT solver to find candidate
paths. The timing analysis of candidate paths is then reduced to LP
problems, where irreducible infeasible set of the infeasible path can
be used to prune unnecessary search space of the SAT solver. The
experimental results show that TASSAT is effective and offers better
performance than existing tools in terms of both time consumption
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and memory footprint.
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1 INTRODUCTION
Real-time software plays a crucial role in many advanced embed-
ded and cyber-physical systems such as avionics, automobile, and
medical equipment. It has become the main driver and facilitator
for innovation [16]. However, the development of real-time soft-
ware is a non-trivial task: developers need to focus on not only
the functional properties but also the timing requirements, as any
timing violation may become a source of serious faults leading to
the failure of the whole system. Timing constraints need to be iden-
tified and analyzed as soon as possible in the software development
process, particularly in the design phase [23, 33].

Complex embedded and cyber-physical systems are made of
several interacting components [11]. During the design phase, an
intuitive way of specifying the desired interacting behaviors is
by scenarios. Scenarios can help developers control the system
complexity by decomposing the design into multiple fragments
and focus on the crucial interactions. The language of Message
Sequence Charts (MSCs) and its extensions are often used to express
scenarios of such interactions. MSCs are especially useful for the
end-users because of their clarity and graphical content [12], and are
standardized by the ITU (International Telecommunication Union)
[18]. To support the description of real-time systems, time concepts
are introduced into MSC with a precise meaning of the sequence
of events in time [18]. Various timing constraints, such as time
points, measurements, and intervals can be specified to constrain
the time at which events may occur. Because of the popularity
and expressiveness of MSCs, in this paper, we choose timed MSCs
as scenario-based specifications and study their timing analysis
problems.

In an MSC specification, the system is often specified in a hi-
erarchical fashion: simple scenarios are modelled by basic MSCs
(bMSCs), and complex behavior is typically described using mes-
sage sequence graphs (MSGs) [4]. An MSG is a finite directed graph
with nodes labelled by bMSCs, and is the most basic form of a
High-level Message Sequence Chart (HMSC) [18]. It describes the
compositional relations of bMSCs. The composition of bMSCs can
either be synchronous or asynchronous. Synchronous composition
requires that one bMSC should only be started execution after all
its precedent bMSCs have completed, on the contrary the asynchro-
nous composition has no such restriction. Therefore, the later is
more flexible and powerful in expressiveness and is recommended
by ITU. However, this flexibility is gained at the cost of decidability:
the model checking problem for asynchronous MSC specifications
is very difficult; even for the untimed ones, it is undecidable [4].
This situation is aggravated when time is involved. Previous work
[22, 26] shows that it requires more complex timing constraints
than simple time intervals to specify real-time software’s timing
requirements. It is very often that one needs to specify the rela-
tions of multiple time intervals, such as one time interval is half of
another. As is well known that to specify the relations of multiple
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time intervals is equivalent to compare multiple clocks in timed
automata, which is also an undecidable problem [1].

Nevertheless, in order to ensure the design’s timing correct-
ness, verifying MSC specification is a challenge that should not be
avoided. Therefore, bounded model checking, which is a technique
often used when an entire model checking is infeasible because
of high complexity or even undecidability, is employed to analyze
MSC specifications [9]. Specifically, first, the MSG is traversed in
a depth-first manner to get an unchecked path within the given
bound. Then the path through the graph forms a new bMSC by
concatenating the bMSCs visited along the path, and is transformed
to a set of linear constraints to be checked for timing analysis prob-
lems by linear programming (LP). The checking process terminates
either a counterexample is witnessed, or all paths within the bound
have been checked. Based on this checking algorithm, a tool named
TASS is developed and released. However, its performance could
be a problem when the bound is very large, because large path
bounds cause a huge number of candidate paths that need to be
checked. As shown in our experiments, for the MSC specifications
containing 17 bMSCs, the tool consumes 187 seconds to complete
a simple reachability analysis when the bound is set to 20 on a
modern computer. This could discourage developers from using
formal methods to check the timing correctness of designs. Clearly,
a more effective checking approach is very much needed.

In this paper, we propose a novel SAT and LP collaborative
bounded timing analysis approach for MSC specifications. Instead
of using depth-first traversal to find paths, the transition relations
in the graph structure of an MSG is encoded as a propositional
formula set, which is fed to an SAT solver to get a truth assign-
ment. Then, the truth assignment is decoded and mapped back to
a path in the MSG. With the facilitation of state-of-the-art SAT
solvers, this approach is more efficient compared with the existing
approaches, especially when the bound is large. Furthermore, we
exploit LP to accelerate the SAT-based path searching. We noticed
that the existing approach only uses LP to decide whether a set of
constraints are infeasible, whereas ignores the information about
exactly which constraints cause the whole set infeasible. This infor-
mation is crucial to the performance, as it can prune many paths
containing the same infeasible constraints. In our approach, the
infeasible constraints are mapped to path segments, then these seg-
ments are encoded as SAT expressions to guide the SAT-based path
searching. This tightly integrated SAT and LP collaborative analysis
approach has significant performance improvement and is our first
and main contribution. We implemented our approach as a tool
called TASSAT. It can check MSC specifications for bounded reach-
ability analysis and also supports parsing graphical models, which
forms our second contribution. Experiments on two practical
scaled cases confirmed TASSAT’s effectiveness and efficiency.

The rest of the paper is organized as follows: Section 2 introduces
the MSC specifications. An example is employed for illustration,
which is also used in the experiments. Section 3 presents the main
contribution of this work: the SAT and LP collaborative bounded
timing analysis approach of MSC specifications. Section 4 discusses
the experimental evaluation. Section 5 compares related work, and
the conclusion is drawn in Section 6.
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Figure 1: The MSC specification of the ATM example

2 MSC SPECIFICATIONS
In MSC specifications, simple scenarios are depicted by bMSCs,
whereas multiple scenarios and complete system specifications
are depicted by an MSG. An MSG provides a portable means to
graphically define how a set of bMSCs can be combined to describe
potentially iterating and branching system behaviors [31]. Figure 1
shows the MSC specifications of an automatic teller machine (ATM)
system example [22].

Figure 1 (b) shows the bMSC referred by the node DispenseCash
in Figure 1 (a). In a bMSC, the vertical lines in the chart correspond
to instances, and messages exchanged between those instances
are represented by arrows. The sending and receiving of messages
are corresponding to events respectively. There are two special
events 𝜖 and 𝜛 which represent the start and the end of each bMSC,
respectively. For specifying real-time software systems, we adopt a
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general form of timing constraints [22] that can specify the relation
ofmultiple time intervals, such as one time interval is half of another.
We use event names to represent event occurrence time, and linear
inequalities on event names to represent the timing constraints. A
timing constraint is of the form 𝑎 ⩽ 𝑐0 (𝑒0 − 𝑒 ′0) + 𝑐1 (𝑒1 − 𝑒

′
1) + · · · +

𝑐𝑛 (𝑒𝑛 −𝑒 ′𝑛) ⩽ 𝑏, where 𝑒𝑖 and 𝑒 ′𝑖 (0 ⩽ 𝑖 ⩽ 𝑛) are event names which
represent the occurrence time of 𝑒𝑖 and 𝑒 ′𝑖 . Among the expressions,
𝑎, 𝑏 and 𝑐0, 𝑐1, . . . , 𝑐𝑛 are real numbers (𝑏 may be∞). For example,
the timing constraint 0 ⩽ ( 𝑗5 − 𝑗2) − 2(𝜛 𝑗 − 𝑗8) in Figure 1(b)
specifies that the time that the ATM takes for the printing and
book-keeping (𝜛 𝑗 − 𝑗8) should not be greater than half of the time
that the ATM gives the money ( 𝑗5 − 𝑗2), in case that a customer
may lose patience after having received the money.

The semantics of a bMSC essentially consist of the sequences
(traces) of the message sending and receiving events. The order of
events (i.e. message sending or receiving) in a trace is deduced from
the visual partial order determined by the flow of control within
each instance in the bMSCs, along with a causal dependency be-
tween the events of sending and receiving a message. In accordance
with [21, 28], without losing generality, we assume that for a pair
of events 𝑒 and 𝑒 ′ in a bMSC, 𝑒 precedes 𝑒 ′ (denoted by 𝑒 ≺ 𝑒 ′) in
the following cases:

• Causality: A sending event 𝑒 and its corresponding receiv-
ing event 𝑒 ′.
• Controllability: The event 𝑒 appears above the event 𝑒 ′ on
the same instance axis, and 𝑒 ′ is a sending event.
• FIFO Order: The receiving event 𝑒 appears above the receiv-
ing event 𝑒 ′ on the same instance axis, and the corresponding
sending events 𝑒1 and 𝑒 ′1 appear on a mutual instance axis
where 𝑒1 is above 𝑒 ′1.

Definition 2.1 (Basic Message Sequence Chart). A basic MSC is a
tuple 𝐵 = (𝐼 , 𝐸,𝑀, 𝐿,𝑉 ,𝐶) where

• 𝐼 is a finite set of instances.
• 𝐸 is a finite set of events corresponding to sending a message
and receiving a message. There are two special events 𝜖 and
𝜛 in 𝐸 which represent the start and end of 𝐵 respectively.
• 𝑀 is a finite set of messages whose elements are a pair (𝑒, 𝑒 ′)
where 𝑒, 𝑒 ′ ∈ 𝐸 are corresponding to the sending and the
receiving for a message respectively.
• 𝐿 : 𝐸 → 𝐼 is a labeling function which maps each event 𝑒 ∈ 𝐸
to an instance 𝐿(𝑒) ∈ 𝐼 which is the sender (receiver) while
𝑒 corresponds to sending (receiving) a message.
• 𝑉 is a finite set whose elements are a pair (𝑒, 𝑒 ′) (𝑒, 𝑒 ′ ∈ 𝐸)
such that 𝑒 ≺ 𝑒 ′.
• 𝐶 is a finite set of timing constraints.

We use timed event sequences to represent the behavior of bMSCs.
A timed event sequence is of the form 𝜎 = (𝑒0, 𝑡0) → (𝑒1, 𝑡1) →
· · · → (𝑒𝑖 , 𝑡𝑖 ) → · · · → (𝑒𝑚, 𝑡𝑚) where 𝑒𝑖 is an event and 𝑡𝑖 is a
nonnegative real numbers for any 𝑖 (0 ⩽ 𝑖 ⩽ 𝑚). The timed event
sequence describes that 𝑒1 takes place 𝑡1 time units after 𝑒0 takes
place, then 𝑒2 takes place 𝑡2 time units after 𝑒1 takes place, so on
and so forth. At last 𝑒𝑚 = 𝜛 takes place 𝑡𝑚 time units after 𝑒𝑚−1
takes place. It follows that for any 𝑖 (0 ⩽ 𝑖 ⩽ 𝑚), the occurrence
time of 𝑒𝑖 is

∑𝑖
𝑗=0 𝑡 𝑗 .

The behavior of a bMSC is formally defined in 2.2 according to
preceding definition. We adopt 𝑋 .𝑌 to denote the element 𝑌 of a
tuple 𝑋 .

Definition 2.2 (Timed Event Sequence of bMSC). Let 𝐵 be a bMSC,
a timed event sequence (𝑒0, 𝑡0) → (𝑒1, 𝑡1) → · · · → (𝑒𝑚, 𝑡𝑚) is a
behavior of 𝐵 if and only if the following conditions hold:
• 𝑒0 = 𝜖 and 𝑒𝑚 = 𝜛.
• 𝑒0, 𝑒1, . . . , 𝑒𝑚 is a permutation of all the events of 𝐵.𝐸.
• 𝑒0, 𝑒1, . . . , 𝑒𝑚 satisfies the visual partial order of 𝐵.𝑉 , i.e., for
any 𝑒𝑖 and 𝑒 𝑗 , if 𝑒𝑖 ≺ 𝑒 𝑗 , then 0 ⩽ 𝑖 < 𝑗 ⩽ 𝑚.
• 𝑡0, 𝑡1, . . . , 𝑡𝑚 satisfy all the timing constraints of 𝐵, i.e. for
any timing constraint 𝑎 ⩽

∑𝑛
𝑖=0 𝑐𝑖 (𝑓𝑖 − 𝑓 ′

𝑖
) ⩽ 𝑏 in 𝐵.𝐶 , 𝑎 ⩽

𝑐0𝛿0 + 𝑐1𝛿1 + · · · + 𝑐𝑛𝛿𝑛 ⩽ 𝑏 where for each 𝑖 (0 ⩽ 𝑖 ⩽ 𝑛), if
𝑓𝑖 = 𝑒 𝑗 and 𝑓 ′

𝑖
= 𝑒𝑘 , then

𝛿𝑖 =

{
𝑡𝑘+1 + 𝑡𝑘+2 + · · · + 𝑡 𝑗 if 𝑗 > 𝑘

−(𝑡 𝑗+1 + 𝑡 𝑗+2 + · · · + 𝑡𝑘 ) if 𝑗 < 𝑘
.

Let L(𝐵) denotes the set of timed event sequences representing
behaviors of 𝐵.

Figure 1(a) shows an exemplary MSG. There are three types of
nodes in an MSG: the start node notated as an inverted triangle, the
end node notated as a triangle, and the intermediate nodes notated
with rectangles. Each intermediate node refers to a bMSC, and
some of the intermediate nodes can refer to the same bMSC for
scenario reuse, such as nodes GetPin, RefusePin, and EndTrans.
MSGs also support the declaration of global timing constraints. A
global timing constraint of the MSG is in the form of 𝑎 ⩽ 𝑒 − 𝑒 ′ ⩽ 𝑏

where 𝑒 and 𝑒 ′ occur in different bMSCs referred by intermediate
nodes and 0 ⩽ 𝑎 ⩽ 𝑏 (𝑏 may be∞). Global timing constraints are
used to describe the timed relation between two events in different
bMSCs.

Definition 2.3 (Message Sequence Graph). An MSG𝑀 is a tuple
𝑀 = (𝑁,𝑛𝑆 , 𝑁𝐸 , 𝜆, 𝑅, 𝜙), where
• 𝑁 is the node set of the graph.
• 𝑛𝑆 is the start node of the graph.
• 𝑁𝐸 is the end node set of the graph, ∀𝑛𝐸 ∈ 𝑁𝐸 , 𝑛𝐸 is a legal
end node of the graph.
• 𝜆 is a mapping function which maps each intermediate node
to a bMSC, i.e., ∀𝑛 ∈ (𝑁 − 𝑛𝑆 − 𝑛𝐸 ), 𝜆(𝑛) is a bMSC.
• 𝑅 is the relation set of the graph whose elements are of the
form (𝑛𝑖 , 𝑛 𝑗 ), where 𝑛𝑖 , 𝑛 𝑗 ∈ 𝑁 and 𝑛𝑖 ≺ 𝑛 𝑗 .
• Φ is a set of timing constraints of the form 𝑎 ⩽ 𝑒 − 𝑒 ′ ⩽ 𝑏.

A path of an MSG is a node sequence formally defined by Defi-
nition 2.4.

Definition 2.4 (Path of MSG). Let𝑀 be an MSG, a node sequence
𝑛𝑆 → 𝑛1 → · · · → 𝑛𝑖 → 𝑛 𝑗 → · · · → 𝑛𝑘 → 𝑛𝐸 is a path of 𝑀 if
and only if the following conditions hold:
• 𝑛𝑆 and 𝑛𝐸 are the start node and the end node of𝑀 respec-
tively.
• For any adjacent nodes 𝑛𝑖 and 𝑛 𝑗 in the path, then (𝑛𝑖 , 𝑛 𝑗 ) ∈
𝑅.

Let 𝑃 be a path, the length of the path |𝑝 | is the number of nodes in
the path.
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We interpret the timing constraints in MSG by local semantics:
select one path at one time and analyze its timing requirements, in-
dependently of other paths that may branch out of the selected one.
The timing constraints of a path is formally defined in Definition
2.5.

Definition 2.5 (Timing Constraint of MSG). Let 𝑝 = 𝑛𝑆 → · · · →
𝑛 𝑗 → · · · → 𝑛𝑘 → · · · → 𝑛𝐸 be a path of the MSG𝑀 ,𝜓 is a timing
constraint of 𝑝 if one of the following conditions hold:
• for any 𝑛𝑖 in 𝑝 such that 𝑛𝑖 ! = 𝑛𝑆 and 𝑛𝑖 ! = 𝑛𝐸 ,𝜓 ∈ 𝜆(𝑛𝑖 ).𝐶 .
• for any 𝜙 = 𝑎 ≤ 𝑒 − 𝑒 ′ ≤ 𝑏 ∈ 𝑀.Φ such that 𝑒 ′ ∈ 𝜆(𝑛 𝑗 ).𝐸
and 𝑒 ∈ 𝜆(𝑛𝑘 ).𝐸 ( 𝑗 < 𝑘),𝜓 = 𝜙 .

Let Ψ denotes the set of timing constraints of the path 𝑝 .

As advocated by the ITU Recommendation Z.120 [18], the con-
catenation of bMSCs is interpreted by asynchronous semantics. The
asynchronous concatenation of two bMSCs corresponds to con-
catenating two bMSCs instance by instance, which produces a new
bMSC. In this way, each path in an MSG corresponds to a bMSC.
Additionally, the set of timing constraints of the new bMSC is equiv-
alent to the set of timing constraints of the path. The behavior of an
MSG can thus interpreted by the behaviors of bMSCs corresponding
to its paths, which are defined by Definition 2.2.

3 SAT AND LP COLLABORATIVE BOUNDED
TIMING ANALYSIS

3.1 Approach Overview
This section presents a SAT and LP collaborative bounded timing
analysis approach for reachability analysis of MSC specifications.
Reachability analysis is an important problemwhich a large number
of timing consistent problems can be converted to. It is to check:
(1) if a given target node of an MSG is in a path, i.e., given a node
𝑛𝑇 and a path 𝑃 , there exists a node 𝑛𝑖 ∈ 𝑃 such that 𝑛𝑖 = 𝑛𝑇 ,
and (2) all the timing constraints related to the path and all the
bMSC timing constraints in the path are consistent. Since all the
timing constraints are linear equalities or linear inequalities, the
timing analysis problems can be reduced to linear programming
problems. Theoretically, to perform reachability analysis for a given
node, all the paths in the MSG should be enumerated and checked.
Due to loops on the graph, there could be infinite number of paths;
so it is necessary to set a bound to limit the length of path |𝑃 |.
When the path bound is large, the enumeration of paths with depth-
first graph traversal algorithm could be slow, which also generates
many candidate paths need to be checked. To address the problem
mentioned above, we propose the SAT [25] and LP [30] collaborative
approach, to accelerate the path enumeration process and prune
unnecessary paths.

Figure 2 depicts the overview of our approach. The input of
the approach is MSC specifications consisting of an MSG and a
set of bMSCs. To find a path to check, firstly, the MSG with the
bound is encoded to a propositional formula set in the conjunctive
normal form (CNF) [10, 19, 29, 34], which is a conjunction of one
or more disjunctive clauses. Then the formula set is fed to a SAT
solver to find a solution that is the encoding of a feasible path in the
MSG. If the formula set is unsatisfiable, then the analysis process
concludes that there the target node is not reachable; otherwise,
the SAT solution is decoded to a path. Secondly, the path-related

constraints are fed to the off-the-shelf LP optimizer to check if
there exists feasible region. If so, then TASSAT returns the analysis
result, otherwise TASSAT computes the irreducible infeasible set
(IIS) [27, 32], which is transformed into an infeasible path segment.
Finally, the infeasible path segment is encoded to the negative SAT
expression and combined with the original propositional formula
set, and the approach goes back to the first step to find another
path to be checked. After repeating this process until no more
paths within the bound need to be checked, TASSAT gives the final
analysis result.

3.2 SAT and LP Collaborative Algorithm
Algorithm 1 outlines how the SAT and LP collaborative approach
performs the reachability analysis for scenario-based specifications.
The algorithm takes the bound 𝑘 , the MSG 𝑀 , the target nodes
𝑛𝑇 , and the bMSC set 𝑁 as inputs, then outputs the reachability of
the target nodes on the MSG. In this algorithm, the MSG structure,
the bound, and the target node are encoded to SAT expression and
stored into a local variable 𝐵𝑀𝐾 (Line 1), the detailed process of
encoding will be illustrated in Section 3.3. Next, it judges if there
exist a satisfiable truth assignment for the given expression (Line
3-4). If there is not such a satisfiable assignment, the algorithm
returns 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (Line 5). Else, a candidate path decoded from
the truth assignment is bounden to the variable 𝜌 (Line 7). The path-
related constraints are chosen from the whole timing constraint
set (Line8). Next, if the path-related timing constraints are feasible,
the algorithm returns 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (Line 10-11). Else, the algorithm
calculates IIS of the infeasible constraints and maps the constraints
to the path segment of the infeasible path 𝜌 (Line 13-14). The path
segments are encoded to negative CNF clauses and combined with
the original SAT expression 𝐵𝑀𝑘 (Line 15), then the algorithm goes
back to line 3 until the reachability analysis terminates. The detail
of LP function will be illustrated in Section 3.4.

3.3 SAT Encoding
Boolean satisfiability problem (SAT) is the problem of determining
if there exists an interpretation that satisfies the given boolean for-
mula set. Most SAT solvers accept formulas in conjunctive normal
formal (CNF) which means the entire formula is a conjunction of
the clauses, with each clause being a disjunction of variables. In
our approach, we translate the path traversal problem of MSGs to
SAT, which is why we can exploit the IIS information to assist the
SAT solver in the subsequent process.

In this paper, we denote the propositional logic terminologies in
the following way:
• ∧, ∨, and ¬ are used to represent Conjunction, Disjunction,
and Negation respectively, and→ denotes Implication.
• Boolean variables and boolean expressions connected by
logical connectives are boolean formulas, CNF is a special
kind of boolean expressions which are friendly to modern
SAT solvers.
• Implications are eliminated in this way, let𝑥 and𝑦 be boolean
formulas, 𝑥 → 𝑦 can be converted to ¬𝑥 ∨ 𝑦 according to
the truth table.

To perform reachability analysis for the given MSC specifica-
tions, it is necessary to find a candidate path which contains the
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Figure 2: Overview of the SAT and LP Collaborative approach

Algorithm 1 SAT and LP Collaborative Reachability Analysis
Input:

𝑀 : MSG;
𝑘 : bound that limits the length of paths on the MSG;
𝑛𝑇 : target nodes;
𝑁 : bMSC set whose elements are related to the MSG;

Output:
reachability of the target nodes on the MSG

1: 𝐵𝑀𝑘 ← encode(𝑀,𝑘, 𝑛𝑇 )
2: while true do
3: 𝜍 ← SAT(𝐵𝑀𝑘 )
4: if 𝜍 = 𝑁𝑈𝐿𝐿 then
5: return 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒

6: else
7: 𝜌 ← decode(𝜍 )
8: 𝑐 ← findConstraints(𝜌,𝑀, 𝑁 )
9: 𝑖𝑠𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ← LP(𝑐)
10: if 𝑖𝑠𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 then
11: return 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒

12: else
13: 𝛿 ← IIS(𝑐)
14: 𝜎 ← map(𝛿)
15: 𝐵𝑀𝑘 ← 𝐵𝑀𝑘∧ ¬ encode(𝜎)
16: end if
17: end if
18: end while
19:
20: encode(𝑀,𝑘, 𝑛𝑇 ) ⊲ Return SAT expressions of the given

bounded graph structure or paths.
21: SAT(𝐵𝑀𝑘 ) ⊲ Given the SAT expression, return the truth

assignment if there exists.
22: decode(𝜍 ) ⊲ Given a truth assignment of SAT, return the path.
23: findConstraints(𝜌,𝑀, 𝑁 ) ⊲ Return the constraints related to

the path.
24: LP(𝑐) ⊲ Return true if and only if the linear constraints are

feasible.
25: IIS(𝑐) ⊲ Return IIS of the given infeasible path.
26: map(𝛿) ⊲ Return the path segment related to given constraints.

start node, the target nodes, and the end node. TASSAT constructs
five formulas–𝑆𝑇𝐴𝑅𝑇 , 𝐸𝑁𝐷 ,𝐶𝑂𝑁 (Connection), 𝐼𝐷 (Identity), and
𝑇𝐴𝑅𝐺𝐸𝑇–to depict the structure of theMSG. Intuitively, the 𝑆𝑇𝐴𝑅𝑇

and 𝐸𝑁𝐷 formulas regulate the first nodes and the last nodes of
candidate paths, respectively. The 𝐶𝑂𝑁 formulas constrain that,
a node jumps to another node if and only if there exists an edge
connects the two nodes in the MSG. In addition, the 𝐼𝐷 formulas
ensure that only one node can appear in the same position at the
same time. Finally, the 𝑇𝐴𝑅𝐺𝐸𝑇 formulas require that the target
nodes are included in the candidate paths. Equations 1 ∼ 5 are in-
ferred from the Definition 2.3 and Definition 2.4. In these equations,
the function 𝛼 converts the given node and the bound index to a
boolean variable; e.g., 𝛼 (𝑛𝑆 , 0) = 𝑛0

𝑆
, the subscript 𝑆 of the node

is the name of the node, and the superscript 0 is the index of the
node int the path. In addition, for a boolean formula like𝐶𝑂𝑁𝑘 , the
superscript 𝑘 is the path bound. Given an MSG with bound 𝑘 , the
boolean formula 𝐵𝑀𝑘 defines how to combine five formulas, which
represents the structural constraints and transition conditions of
the MSG.

𝑆𝑇𝐴𝑅𝑇 :=𝑛0
𝑆
∧

∧
𝑛∈𝑁∧𝑛≠𝑛𝑆

¬𝛼 (𝑛, 0) (1)

𝐸𝑁𝐷𝑘 :=𝑛𝑘𝐸 ∧
∧

𝑛∈𝑁∧𝑛≠𝑛𝐸
¬𝛼 (𝑛, 𝑘) (2)

𝐶𝑂𝑁𝑘 :=
∧

0⩽𝑖⩽𝑘−1

(∧
𝑛∈𝑁(

𝛼 (𝑛, 𝑖) →
∨

(𝑛,𝑛′) ∈𝑅
𝛼 (𝑛′, 𝑖 + 1)

)) (3)

𝐼𝐷𝑘 :=
∧

1⩽𝑖⩽𝑘−1

( ∧
𝑛∈𝑁∧𝑛≠𝑛𝑆 ,𝑛𝐸(

𝛼 (𝑛, 𝑖) →
∧

𝑛′∈𝑁∧𝑛′≠𝑛
¬𝛼 (𝑛′, 𝑖)

)) (4)

𝑇𝐴𝑅𝐺𝐸𝑇𝑘 :=
∧
𝑛∈𝑇

( ∨
1≤𝑖≤𝑘−1

𝛼 (𝑛, 𝑖)
)

(5)

𝐵𝑀𝑘 :=𝑆𝑇𝐴𝑅𝑇 ∧ 𝐸𝑁𝐷𝑘 ∧𝐶𝑂𝑁𝑘 ∧ 𝐼𝐷𝑘 ∧𝑇𝐴𝑅𝐺𝐸𝑇𝑘 (6)

To illustrate the SAT encoding process in detail, we use a frag-
ment of theATMcontaining the start node, the end node, StartTrans,
GetPin, and EndTrans as an example. Table 1 lists 𝑆𝑇𝐴𝑅𝑇 , 𝐸𝑁𝐷 ,
𝐶𝑂𝑁 , 𝐼𝐷 , and 𝑇𝐴𝑅𝐺𝐸𝑇 boolean formulas of the ATM MSG frag-
ment subject to the path bound 1. In Table 1, 𝑛𝑆𝑇 , 𝑛𝐺𝑃 , and 𝑛𝐸𝑇
represents StartTrans, GetPin, and EndTrans respectively, and
𝑛𝑆 and 𝑛𝐸 represent the start node and the the end node of the
ATM MSG. In this scenario, we choose GetPin as the target node.
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Table 1: SAT encoding of the MSG with bound 1

Formula CNF

START 𝑛0
𝑆
∧ ¬𝑛0

𝑆𝑇
∧ ¬𝑛0

𝐺𝑃
∧ ¬𝑛0

𝐸𝑇
∧ ¬𝑛0

𝐸

END 𝑛1
𝐸
∧ ¬𝑛1

𝑆
∧ ¬𝑛1

𝑆𝑇
∧ ¬𝑛1

𝐺𝑃
∧ ¬𝑛1

𝐸𝑇

CON

(
𝑛0
𝑆
→ 𝑛1𝑆𝑇

)
∧
(
𝑛0
𝑆𝑇
→ 𝑛1𝐺𝑃

)
∧
(
𝑛0
𝐺𝑃
→ 𝑛1𝐸𝑇

)
∧
(
𝑛0
𝐸𝑇
→ 𝑛1𝑆𝑇 ∨ 𝑛

1
𝐸

)

ID

(
𝑛1𝑆 →

(
¬𝑛1𝑆𝑇 ∧ ¬𝑛

1
𝐺𝑃 ∧ ¬𝑛

1
𝐸𝑇 ∧ ¬𝑛

1
𝐸

))
∧
(
𝑛1𝑆𝑇 →

(
¬𝑛1𝑆 ∧ ¬𝑛

1
𝐺𝑃 ∧ ¬𝑛

1
𝐸𝑇 ∧ ¬𝑛

1
𝐸

))
∧
(
𝑛1𝐺𝑃 →

(
¬𝑛1𝑆 ∧ ¬𝑛

1
𝑆𝑇 ∧ ¬𝑛

1
𝐸𝑇 ∧ ¬𝑛

1
𝐸

))
∧
(
𝑛1𝐸𝑇 →

(
¬𝑛1𝑆 ∧ ¬𝑛

1
𝑆𝑇 ∧ ¬𝑛

1
𝐺𝑃 ∧ ¬𝑛

1
𝐸

))
∧
(
𝑛1𝐸 →

(
¬𝑛1𝑆 ∧ ¬𝑛

1
𝑆𝑇 ∧ ¬𝑛

1
𝐺𝑃 ∧ ¬𝑛

1
𝐸𝑇

))
TARGET 𝑛0

𝐺𝑃
∨ 𝑛1

𝐺𝑃

According to the Equation 6, 𝐵𝑀𝑘 can be constructed by combining
all the formulas in Table 1 with conjunction operators. A truth
assignment which is generated by solving the boolean formula set
𝐵𝑀𝑘 , indicates that if there exist a potential path. Those variables
whose value is true in the truth assignment, can be mapped to a
path of the MSG. For example, if the path bound is set to 4 and
variables 𝑛0

𝑆
, 𝑛1
𝑆𝑇

, 𝑛2
𝐺𝑃

, 𝑛3
𝐸𝑇

and 𝑛4
𝐸
are true, then we know that

there exists a path 𝑛𝑆 → StartTrans→ GetPin→ EndTrans→
𝑛𝐸 . In this way, a candidate path which can be used in the further
analysis is generated.

3.4 Linear Programming and IIS
Linear programming (LP) is a method to calculate the optimal out-
come in a mathematical model whose requirements are represented
by linear equalities or linear inequalities. In Section 3.3, we have
demonstrated that a candidate path can be achieved by solving the
boolean formula set 𝐵𝑀𝑘 . Obviously, all the timing constraints of
a path according to Definition 2.5, such as 3 ⩽ 𝑗𝑏 − 𝑗8 ⩽ 5, are
linear relationships, therefore LP techniques are adopted to check
if the candidate path subjects to the timing constraints. Because
there exist loops in the MSG, such as StartTrans, GetPin, and
EndTrans loop in Figure 1 (a), loops are unfolded to generate a
path whose length equals to the bound. Consequently, duplicate
nodes may exist on the candidate paths. However, synonymous
constraints related to the duplicate nodes are different actually. If
these synonymous constraints are combined together directly, it
would cause conflicts when performing LP optimization. To address
this problem, synonymous constraints are renamed according to
the sequence number of the bMSC in the path.

For a linear programming problem, an irreducible infeasible set
(IIS) is an infeasible subset of linear constraints, and the whole
linear constraints will become feasible if any single constraint in
the subset is removed [27]. IIS is used by TASSAT to accelerate

searching for candidate feasible paths. If the constraints fed to the
LP solver are infeasible, TASSAT calculates the IIS of constraints
related to the path. Because a set linear constraints and nodes cor-
respond to each other, the IIS of the infeasible path can be mapped
to a group of unordered nodes, all of which are included in the
former infeasible path. By enumerating the nodes of the original
path, then the first and the last nodes identify the infeasible path
segment. Then TASSAT encodes the infeasible path segment into
SAT expressions in the way defined in Equation 7. In Equation 7, 𝐼
is the infeasible node set, and 𝑖𝑛𝑑𝑒𝑥 is a function which computes
the index of the given node in the infeasible path. In each iteration
of checking a candidate path, the 𝐸𝑋𝐶𝐿𝐷 (Exclude) formula will
be combined with the original CNF 𝐵𝑀𝑘 in the way of Equation
8 to assist the SAT solver to prune unnecessary paths containing
infeasible path segments.

𝐸𝑋𝐶𝐿𝐷𝑘 :=
∧

0≤𝑖≤𝑘−|𝐼 |+1

(
¬
∧
𝑛∈𝐼

𝛼 (𝑛, 𝑖 + 𝑖𝑛𝑑𝑒𝑥 (𝑛))
)

(7)

𝐹𝐵𝑀𝑘 :=𝐵𝑀𝑘 ∧ 𝐸𝑋𝐶𝐿𝐷𝑘 (8)

3.5 Tool Implementation
We have implemented the approach described above into a tool
named TASSAT in Java. We extend the UMLet [6, 7] to support the
timing constraints and MSC specifications described in Section 2, so
that the model which needs to be verified can be depicted through
a friendly graphical interface. TASSAT employs SAT4j [15] to solve
boolean satisfiability problems. SAT4j is a full featured boolean
reasoning library, and it is intensively optimized to bring state-of-
the-art SAT technology to Java ecosystem. The LP tool CPLEX [20]
developed by IBM assembles powerful linear optimization modules
and provides user-friendly interface to C++, C#, Python, and Java
languages, so TASSAT employs CPLEX to solve linear programming
problems.

4 EXPERIMENTS
4.1 Subjects
In the real industrial scenarios, in order to verify correctness of
scenario-based specifications, it is conventional to choose an illegal
node as the target node. So that if the target is unreachable, it
means that the specifications are correct on the given path bound
condition. Otherwise, it means that the verified system will enter
the wrong state following the feasible path of TASSAT. Verifying
specifications on more different bound conditions, the developers of
the system are more confident of that the specifications are correct.

When evaluating performance of TASSAT, we chose ATM and
GSM as subjects to evaluate the performance and efficiency of
the TASSAT. Figure 1 (a) shows the MSG of ATM containing 12
different scenarios which are described in the form of bMSCs. GSM
is the abbreviation of Global System for Mobile Communications,
which is a typical real-time software system. Both of these cases
are originated from the real-world scenarios and can be used to
demonstrate interactions within different components.
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Table 2: Part of experimental settings

Case
Constant Variables

𝑊 𝐵1 𝐵2 𝑇1 𝑇2 𝐷𝐸𝐹𝑇

ATM 1 4 0 ∞ 0.5 2 0

ATM 2 6 1 2 0.5 2 0

GSM 1 5 0 ∞ 0.5 0.5 0.5

GSM 2 5 10 12 0.5 0.5 0.5

4.2 Comparative Technique
We compared TASSAT with TASS [22], which performs bounded
model checking on the scenario-based specifications based on the
graph traversal algorithm and linear programming techniques. We
noticed that most related work only verifies scenario-based specifi-
cations for time consistency, which is a basic property. However,
TASS is designed to perform reachability analysis like TASSAT,
therefore we re-implement TASS in Java and compare it with TAS-
SAT on time consumption and memory usage.

Satisfiability Modulo Theories (SMT) refers to the problem of
determining whether a first-order formula is satisfiable with respect
to some logical theory [24]. In the past decade, SMT solvers have
attracted increased attention due to technological advances and
industrial applications [14]. Solvers based on SMT are used as back-
end engines in model-checking applications such as bounded model
checking [8]. The SMT encoding approach can also solve the reach-
ability analysis of MSC specifications, so we implemented an SMT
encoding approach named TASSAT-SMT based on Z3 solver [13] in
Java and compared it with TASSAT. The SMT encoding consists of
two parts, MSG specification encoding and bMSC specification en-
coding. The MSG specification encoding is similar to SAT encoding
described in the section 3.3, however, each location variable in SMT
formulas is a string type variable other than a boolean variable.
Encoding MSG specifications by string type variables is straight-
forward, and this method uses fewer variables than SAT encoding.
There are a number of ways to encode MSG specifications to SMT
formulas, we leave the research of performance of different encod-
ing in the future work. On the other hand, due to Z3 supports real
type theories, TASSAT-SMT encodes all time constraints together
with MSG specification formulas, and the whole SMT expressions
are solved by the solvers.

4.3 Experimental Protocol
In experimental cases, both ATM and GSM specifications contain
constant variables𝑊 , 𝐵1, 𝐵2, 𝑇1, 𝑇2, and 𝐷𝐸𝐹𝑇 (Default) of timing
constraints. For example, a timing constraint 0 ⩽ 𝑗4 − ℎ5 ⩽𝑊 in
ATM contains the constant variable𝑊 . In additional, the 𝐷𝐸𝐹𝑇
variable indicates the minimum communication time between two
instance on a bMSC, which is not specified explicitly on the each
bMSC. Table 2 lists four groups of variable settings in the experi-
ments. In both ATM cases, DispenseCash was chosen as the target
node; and in GSM cases, Handover was chosen as the target node.
The corresponding results of experimental settings are given in the

form of tables. Table 3 ∼ Table 6 list results of experimental setting
in Table 2 respectively.

We carried out the experiments on aWindows 10 PCwith an Intel
i5 9400F CPU (2.9 GHz) and 16 GB RAM, and set the maximum JVM
heap size to 8 GB. VisualVM is a widely used JVM monitor, thus we
employed VisualVM to monitor the memory usage of verification
software and recorded the maximum heap usage. However, the
Z3 solver with the Java interface used by TASSAT-SMT calls the
C++ version Z3 library by Java Native Interface (JNI), hence it is
difficult to restrict the TASSAT-SMT memory usage. To monitor
TASSAT-SMT run-time status, we used Windows Task Manager to
record the maximum memory usage. When TASSAT-SMT memory
exceeded 8 GB, we marked it as OOM (Out Of Memory).

On the other hand, log-print codes were instrumented on spe-
cific code points (before and after verification process), so that
time consumption of verification could be collected. In the experi-
ments, we limited the maximum running time to one hour (3600
seconds), and if a single verification lasted for more than an hour,
we terminated the verification and marked it as OOT (Out Of Time).
If the programs encountered StackOverFlowError on JVM, we
marked it as SOF (Stack Over Flow) in the result tables. We limited
the maximum path bound to 5000, because it consumes tremen-
dous memories and running time to finish the verification with too
large path bounds. According to the research [5], most constraints
inconsistent problems can be found out on the reasonable bounds.

4.4 Results
According to the experimental results, TASSAT overall consumes
significantly less time to complete scenario-based verification than
TASS and TASSAT-SMT. Tables 3, 4, 5, and 6 present the run-time
data of the three checking approaches under different constant
variable settings. The columns Path of these tables list the number
of candidate paths which are checked during the verification. The
asterisks (*) in the table represent that the run-time data failed to
be collected due to out of time or other exceptions. The hyphens (-)
in the table represent specific columns are meaningless for specific
approaches. For example, the columns Path of TASSAT-SMT in all
four tables are filled with hyphens, because the MSG structures and
linear constraints are encoded and solved together in the TASSAT-
SMT approach. The columns Time in these tables list the time
consumption of these software, and all the time is recorded in
seconds (s). As listed in Table 3 to Table 6, inmost cases, TASSAT cost
less time to verify MSC specifications than the other two software;
and TASSAT fails to complete the checking only in ATM case 2
when a very large bound of 5000 was adopted. Thanks to the IIS
analysis, TASSAT finished the verification within reasonable time
even on many large bounds, because most of infeasible paths are
pruned by 𝐸𝑋𝐶𝐿𝐷 formula.

While for TASS and TASSAT-SMT, as is listed in Table 3 and Table
5, as a result of a huge number of candidate paths in MSGs, time
consumption of TASS grows drastically with increase of bounds.
If the target node is unreachable, TASS exceeds time limitation
when the path bound is greater than 50. However, if the target
node is reachable, as is displayed in Table 4 and Table 6, TASS is
efficient even on large bounds, since once the target node is verified
to be reachable, the analysis process would stop. Similar to TASS,
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Table 3: Results of ATM Case 1

Bound TASS TASSAT-SMT TASSAT
Result Path Time Memory Result Path Time Memory Result Path Time Memory

10 no 9 0.051 ⩽60 no - 0.082 ⩽20 no 1 0.014 ⩽20
25 no 1,613,729 OOT ⩽2400 no - 1.089 ⩽110 no 1 0.022 ⩽35
50 * * OOT ⩽3000 no - 6.465 ⩽300 no 1 0.063 ⩽60
100 * * OOT ⩽3000 no - 82.688 ⩽1120 no 1 0.147 ⩽800
500 * * OOT ⩽4000 * - OOT OOM no 1 1.27 ⩽1000
1000 * * OOT ⩽4000 * - OOT OOM no 5 19.3 ⩽2600
2000 * * OOT ⩽4000 * - OOT OOM no 5 29 ⩽2500
5000 * * SOF SOF * - OOT OOM no 5 294 ⩽2400

Table 4: Results of ATM Case 2

Bound TASS TASSAT-SMT TASSAT
Result Path Time Memory Result Path Time Memory Result Path Time Memory

10 yes 1 0.007 ⩽50 yes - 0.085 ⩽40 yes 1 0.006 ⩽40
25 yes 1 0.011 ⩽60 yes - 0.26 ⩽100 yes 1 0.014 ⩽95
50 yes 1 0.014 ⩽70 yes - 0.636 ⩽120 yes 1 0.024 ⩽100
100 yes 1 0.031 ⩽75 yes - 1.76 ⩽160 yes 1 0.08 ⩽200
500 yes 1 0.984 ⩽550 yes - 45.915 ⩽810 yes 1 0.411 ⩽820
1000 yes 1 4.9 ⩽1500 yes - 231.824 ⩽1200 yes 1 20.79 ⩽2400
2000 yes 1 13.42 ⩽2500 yes - 1018.363 ⩽2300 yes 13 300.1 ⩽2500
5000 * * SOF SOF * - OOT OOM * * OOT ⩽4200

Table 5: Results of GSM Case 1

Bound TASS TASSAT-SMT TASSAT
Result Path Time Memory Result Path Time Memory Result Path Time Memory

10 no 0 0.001 ⩽60 no - 0.046 ⩽90 no 0 0.006 ⩽30
25 no 176 1.4 ⩽900 no - 0.414 ⩽110 no 1 0.042 ⩽50
50 no 304,236 OOT ⩽3000 no - 2.062 ⩽170 no 1 0.04 ⩽75
100 * * OOT ⩽3000 no - 8.844 ⩽400 no 1 0.09 ⩽80
500 * * OOT ⩽3000 no - 1515.271 OOM no 1 1.74 ⩽2000
1000 * * OOT ⩽4000 no - OOT OOM no 1 13.5 ⩽1450
2000 * * OOT ⩽4000 no - OOT OOM no 1 8.95 ⩽3500
5000 * * SOF SOF no - OOT OOM no 1 79.1 ⩽4200

Table 6: Results of GSM Case 2

Bound TASS TASSAT-SMT TASSAT
Result Path Time Memory Result Path Time Memory Result Path Time Memory

10 no 0 0.001 ⩽50 no - 0.049 ⩽80 no 0 0.006 ⩽30
25 yes 1 0.012 ⩽80 yes - 0.454 ⩽130 yes 1 0.084 ⩽50
50 yes 1 0.021 ⩽250 yes - 1.528 190 yes 1 0.04 ⩽75
100 yes 1 0.036 ⩽300 yes - 5.376 ⩽400 yes 1 0.09 ⩽80
500 yes 1 0.619 ⩽600 yes - 275.591 ⩽1290 yes 1 2.6 ⩽2000
1000 yes 1 2.88 ⩽2800 yes - 1199.705 ⩽2210 yes 1 13.5 ⩽1450
2000 yes 1 20.86 ⩽2000 * - OOT ⩽4030 yes 1 7.07 ⩽3000
5000 * * SOF SOF * - OOT OOM yes 1 86.39 ⩽3500
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Figure 3: Average time consumption line chart
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Figure 4: Average memory usage line chart

TASSAT-SMT is more efficient when the target node is reachable.
However, since TASSAT-SMT needs to encode the entire model
while TASS only checks one path a time, the time consumption of
TASSAT-SMT grows rapidly due to the growth of SMT clauses [24].

To better compare the time cost, we depict the average time
consumption of ATM and GSM verification from the bound 100 to
the bound 2000 in Figure 3. If certain checks failed or exceeded one
hour, we counted them as 3600 seconds. As is shown in Figure 3
(a) and Figure 3 (b), TASSAT costs much less time than TASS and
TASSAT-SMT. Additionally, the time cost of TASSAT-SMT grows
quickly as the bound increases. This suggests that without the IIS,
a pure SMT approach is inferior than the path oriented approach
like TASS.

We also compare the memory consumption of the three ap-
proaches. The columns Memory of Table 3, 4, 5 and 6 list the mem-
ory consumption of different approaches. Due to the fact that the
memory usage varies constantly during each verification, we only
recorded the maximum memory usage. TASSAT consumes less
memory than TASS on average, because TASSAT checks much less
candidate paths. Due to depth-first traversal algorithm used by
TASS, the number of candidate paths increase exponentially with
the growth of path bound. Every time when the path bound is set
to 5000, TASS encounters StackOverFlowError and fails to finish
reachability analysis. TASSAT and TASSAT-SMT both utilize SAT
or SMT technology, therefore their clause numbers grow with in-
crease of bounds. However, TASSAT checks timing constraints and

searches candidate paths independently, so that the clause growth
of TASSAT is much slower than TASSAT-SMT’s and the growth of
the memory usage of TASSAT is slower.

Figure 4 shows the average memory usage of different veri-
fication software, and the memory consumption is recorded in
megabytes (MB). As is shown on Figure 4 (a), from the path bound
100 to 2000, TASSAT consumes less memory than TASS and TASSAT-
SMT on average. When the path bound is less than 400, TASSAT
consume no more than 1000 MB memories, which means TASSAT
is able to cover most verification scenes with lightweight memory
footprint. The growth curve of TASSAT’s memory usage is more
flattened than TASSAT-SMT’s; however, for GSM cases shown in
Figure 4 (b), there are no significant difference between TASS and
TASSAT on memory usage. We reasoned that more than 70 percent
of GSM cases are reachable, which is why TASS has better perfor-
mance on GSM than ATM. As mentioned earlier, due to the rapid
growth of SMT clauses, TASSAT-SMT has significant building-up
curves on both figures.

5 RELATEDWORK
A series of work has been done about the verification of message
sequence charts [2–4]. Alur et al. [3] proposed that the problem of
checking the basic MSCs with delay intervals for time consistency
can be reduced into computing negative cost cycles and the shortest
distance in a weighted directed graph. The subsequent work done
by Alur et al. in 1999 [4] indicates that model checking can be done

For Research Only



Internetware’20, May 12–14, 2021, Singapore, Singapore Longlong Lu, Wenhua Yang, Minxue Pan, and Tian Zhang

by constructing a suitable automaton for the linearization of the
partial order specified by the MSC. Alur et al. also proposed two
semantics synchronous and asynchronous of MSG, which means two
different interpretations of concatenation of two MSCs.

A timing analysis technique named TASS [22] focused on the
challenges in the verification of the scenario-based specifications
(SBS), which is also the main research area in this paper, therefore
we chose TASS as the comparative technique in the experiments.
Unlike TASSAT, TASS uses depth-first graph traversal algorithms
to enumerate the candidate feasible paths but ignores the precise
IIS information of infeasible timing constraints, therefore TASS
checks every candidate path until a feasible path is found. Besides
the limitations mentioned above, TASS introduced comprehensive
definitions of the scenario-based specifications and demonstrated
the properties of MSC specifications.

Xie et al. [35] proposed an approach to address the problem of
checking linear hybrid automata (LHA) using SAT encoding and
linear programming [17]. The bounded model checking for LHA is
a challenging problem, and most work tries to handle this problem
by encoding all the discrete and continuous behaviours with the
given bound into a set of SMT [8] formulas, so that they can be
solved by off-the-shelf SMT solvers [35]. However, when the system
scale is large, the SMT formulas could be complicate and difficult
to solve. Xie et al. achieved better results by using SAT encoding
and linear programming. TASSAT also uses SAT and LP techniques,
but MSC specifications are different than LHA, which requires a
new encoding and checking approach.

6 CONCLUSION
In this paper, we propose a SAT and LP collaborative technique
named TASSAT to accelerate the verification of the scenario-based
specifications. In addition, we calculate IIS of infeasible paths and
use the crucial information to prune paths containing the infeasible
path segments. According to the experimental results demonstrated
in Section 4, TASSAT outperforms state-of-the-art depth-first graph
traversal based timing analysis techniques and the SMT-based tech-
niques considering time consumption and memory usages.

In the future, we will collect more run-time statistics of TASSAT
and reduce the memory usage when the path bound is large. By
further improving the efficiency of TASSAT, we will be able to adopt
timing analysis technique on industrial cases.
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