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Improving Graph Learning-Based Fault Localization with

Tailored Semi-supervised Learning

Due to advancements in graph neural networks, graph learning-based fault localization (GBFL) methods have
achieved promising results. However, as these methods are supervised learning paradigms and deep learning is
typically data-hungry, they can only be trained on fully labeled large-scale datasets. This is impractical because
labeling failed tests is similar to manual fault localization, which is time-consuming and labor-intensive, leading
to only a small portion of failed tests that can be labeled within limited budgets. These data labeling limitations
would lead to the sub-optimal effectiveness of supervised GBFL techniques. Semi-supervised learning (SSL)
provides an effective means of leveraging unlabeled data to improve a model’s performance and address data
labeling limitations. However, as these methods are not specifically designed for fault localization, directly
utilizing them might lead to sub-optimal effectiveness. In response, we propose a novel semi-supervised
GBFL framework, Legato. Legato first leverages the attention mechanism to identify and augment likely
fault-unrelated sub-graphs in unlabeled graphs and then quantifies the suspiciousness distribution of unlabeled
graphs to estimate pseudo-labels. Through training the model on augmented unlabeled graphs and pseudo-
labels, Legato can utilize the unlabeled data to improve the effectiveness of fault localization and address the
restrictions in data labeling. By extensive evaluations against 3 baselines SSL methods, Legato demonstrates

CHUN LI, Nanjing University, China
HUI LI, Samsung Electronics (China) R&D Centre, China
ZHONG LI, Nanjing University, China
MINXUE PAN

∗
, Nanjing University, China

XUANDONG LI, Nanjing University, China

superior performance by outperforming all the methods in comparison.
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1 Introduction

Locating software faults is the critical first step in the debugging process. Manual fault localization
is often a time-consuming and labor-intensive process [7, 37]. Hence, extensive research has been
conducted on automated fault localization techniques [9, 20, 24, 28–30, 62, 63, 67] to fully automate
the process of diagnose fault program entities (i.e., files or methods) and facilitate the software
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debugging process. To date, researchers have proposed various fault localization techniques, and
learning-based fault localization (LBFL) has been intensively studied in the literature due to its
effectiveness and recent advances in machine/deep learning [20, 24, 26, 28, 30, 31, 40, 65, 67, 69, 76].
LBFL leverages learning techniques to train models to calculate the suspiciousness scores of program
entities and rank them.

In LBFL techniques, methods based on graph neural networks (GNNs) have evolved significantly
and shown promising results [22, 30, 38–40, 59, 64]. Graph learning-based fault localization (GBFL)
represents the program semantics during the testing by graphs. For example, GRACE [30] uses the
nodes in the abstract syntax tree (AST) of the source code and test cases as nodes, and represents
the coverage information as edges between test nodes and statement nodes to construct graphs.
Current GBFL methods are typically based on the paradigm of supervised learning, which implies
that existing methods require training on a fully labeled dataset. Given that deep networks are
typically data-hungry [16, 47, 61], using GBFL methods necessitates significant time and cost to
label sufficient data. However, this is impractical for two reasons. First, in fault localization, labeling
the fault entities in failed tests is similar to manual fault localization. As mentioned before, manual
fault localization is a time-consuming and labor-intensive process, making it challenging to label
sufficient data. Second, software typically undergoes extensive testing before being released to
users. Thus, a large number of unlabeled failed tests are generated. However, given limited budgets,
engineers may only be able to label a small portion of them. These restrictions would lead to the
sub-optimal effectiveness of supervised GBFL techniques in real-world contexts.
To tackle the restrictions in data labeling, researchers extend supervised learning to semi-

supervised learning (SSL) to leverage unlabeled samples and enhance model training [21, 49].
Currently, cutting-edge research in SSL [6, 8, 47, 55] can be viewed as first producing a pseudo-
label for unlabeled samples [17, 21], then training the model to predict the pseudo-label when fed
augmented versions of the same input [4, 43]. However, these methods are challenging to adopt in
graph learning-based fault localization. The main challenges stem from the following two aspects.
First, since fault localization requires the model to identify suspicious program entities based on the
fault context, preserving the fault context as much as possible during the augmentation is crucial.
Existing graph augmentation techniques [75] primarily rely on the degree of nodes to calculate the
importance of edges and drop those edges deemed less important. However, the degree of nodes
cannot indicate its relevance to faults, leading to potential disruption of the fault context and sub-
optimal effectiveness. Second, SSL methods typically rely on thresholds to select high-confidence
outputs as pseudo-labels. However, it is non-trivial as a lower threshold might introduce incorrect
or noisy labels, and a higher threshold might lead to overfitting [21]. Furthermore, the possibility
of multiple fault entities in fault localization makes the selection more difficult. Existing dynamic
threshold methods adjust thresholds across various classes by estimating the learning state of the
model for each class [55, 68]. However, these methods are unsuitable for fault localization, as fault
localization involves ranking rather than classification.

In this paper, we propose Legato (semi-supervised LEarninG-bAsed faulT lOcalization), a novel
semi-supervised graph learning-based fault localization framework specifically designed for only
a small portion of failed tests are labeled. Specifically, the key insight of Legato to address the
aforementioned limitations is two-fold.

First, we propose to leverage the attention mechanism to guide us in identifying and augmenting
fault-unrelated sub-graphs in unlabeled graphs. The intuition is that the attention mechanism
reflects the degree of focus the model places on different nodes and edges during the decision-
making process [32, 50]. Therefore, when we train an attention-based GNN to classify the failed
graphs, the model’s attention will be decreased on sub-graphs in the failed graphs that almost
exclusively appear in passed graphs, which are more likely fault-unrelated. As such, based on
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the attention mechanism, we can identify sub-graphs likely to be fault-unrelated and augment
them while minimizing the impact on fault context. Furthermore, training the model to generate
consistent predictions before and after augmentation enables it to concentrate on invariant features
likely related to faults, thereby enhancing fault localization.

Second, we introduce a threshold-free pseudo-label estimation method that quantifies the distri-
bution of suspiciousness scores (i.e., confidence) output by the model for all fault entities. Then,
if some program entities have significantly higher suspiciousness scores than others, we select
them as pseudo-labels. The basic idea is that the suspiciousness scores of all target program entities
form a distribution that sums to one. When the model assigns high suspiciousness scores to certain
program entities, the scores for the remaining entities tend to be lower. Thus, by quantifying the
distribution of suspiciousness scores across all target program entities, we can identify program
entities with significantly high scores compared to others and select them as pseudo-labels without
depending on specific thresholds or considering the number of faulty entities in unlabeled graphs.

Our evaluation of Legato’s performance in a large-scale dataset contains 7,500 passed and 7,500
failed tests, of which only 8% failed tests have been labeled. This dataset comes from the testing
of eleven software projects written in C/C++, each exceeding one million lines of code, supplied
by our industrial partner which is a global corporation. We benchmarked Legato against three
baseline SSL methods based on the same supervised GBFL, demonstrating its exceptional efficacy
by significantly outperforming all compared methods, including a remarkable 18.05% and 38.82%
method level improvement over the top-performing method in within-project and cross-project
scenarios respectively.

The main contributions of this paper are as follows:

• We propose Legato, a novel semi-supervised graph learning-based fault localization frame-
work, which trains the model both on unlabeled and labeled graphs to tackle the restrictions
in data labeling.
• We develop attention-guided graph augmentation and pseudo-label estimation to train the
model on the augmented version of unlabeled graphs and pseudo-labels to utilize the unlabeled
graphs and improve the performance of fault localization.
• We conduct extensive evaluations of Legato within a semi-supervised context on a large-
scale dataset, and the results demonstrate that Legato effectively utilizes unlabeled graphs
for fault localization and outperforms baseline SSL methods in comparison.

2 Methodology

In this section, we first define our problem. Then, we discuss the primary challenges faced when uti-
lizing SSL for fault localization tasks and introduce our idea of Legato to solve the aforementioned
challenges.

2.1 Problem Statement

In this work, we target GBFL methods that utilize GNNs to learn program semantics and localize
faults within software. Formally, let 𝐷 = {(𝐺𝑖 , 𝒀 𝑖 )𝑛𝑖=1} denote the training dataset, where 𝐺𝑖 is the
graph constructed from a test suite contains at least one failed test case, and 𝒀 𝑖 is the label matrix.
Take the graph in GRACE [30] as an example, the nodes consist of the AST of the source code and
test cases, while the edges are constructed based on coverage information. LetV denote the node
set of𝐺 and the node 𝑣𝑖 ∈ V represents the program entity involved in the test suite. If node 𝑣𝑖 is a
fault entity, the label 𝑦𝑖 ∈ 𝒀 of it is set to 1, and otherwise, 𝑦𝑖 is set to 0. Then, based on the training
dataset 𝐷 , a GNN F is learned via minimizing the listwise loss function L = −∑𝑡

𝑖=1 𝑦𝑖 log(𝑝 (𝑣𝑖 )),
where 𝑡 is the number of target nodes (such as method or statement nodes) inV , and 𝑝 (𝑣𝑖 ) is the
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suspiciousness score of the target node 𝑣𝑖 output by the model. After training, the target nodes will
be ranked based on their suspiciousness scores 𝑝 (𝑣𝑖 ) output by the GNN F .
As shown, the effectiveness of GBFL methods heavily depends on the quality of the training

datasets 𝐷 . However, labeling fault entities in failed tests is a challenging task that requires sig-
nificant manual effort by experts, particularly when test volumes are high and resources are
constrained [7, 40]. Consequently, the graphs in the training dataset 𝐷 are generally only par-
tially labeled in real-world scenarios [52, 58]. That is, the dataset 𝐷 can be viewed as 𝐷𝑙 ∪ 𝐷𝑢 ,
where 𝐷𝑙 = {(𝐺𝑖 , 𝑌𝑖 )𝑚𝑖=1} denotes the labeled dataset, 𝐷𝑢 = {𝐺𝑖 }𝑘𝑖=1 denote the unlabeled dataset,
and |𝐷𝑙 | << |𝐷𝑢 |. Training GNN models on such a dataset 𝐷 would result in sub-optimal GBFL
methods due to the limited supervision provided by the dataset [24, 47]. Thus, the problem we
want to address in this paper is: Given a dataset containing labeled and unlabeled graphs, how can
we effectively and efficiently learn a fault localization model when only a small portion of graphs are
labeled?
Semi-supervised learning (SSL) [49] provides a promising solution for this problem. The key

spirit of SSL is to generate pseudo-labels for the unlabeled samples and train the model to predict
the pseudo-labels for augmented versions of unlabeled samples. Although the effectiveness of SSL
techniques has been demonstrated in many domains, such as image recognition [6, 47, 68], natural
language processing [13, 45], and object detection [33, 54], they still encounter several challenges
when applying for training GBFL models.
• Challenge I: How to perform graph augmentation on unlabeled graphs with less im-

pact on fault context. A key requirement of SSL is to generate effective augmentations for
unlabeled samples. However, directly augmenting the graph (e.g., deleting several edges) without
any guidance might disrupt the fault context, leading to noisy augmented views and sub-optimal
effectiveness [70, 71, 75]. Therefore, it is critical to identify fault-unrelated sub-graphs and perform
augmentations only on these, in order to minimize the impact on the fault context. Unfortunately,
the information available from test results is insufficient for effectively detecting fault-unrelated sub-
graphs. Specifically, all program entities involved in a failed test might be fault entities. Although
passed tests provide some coverage information, coverage alone struggles to capture the complex
program semantics in the graph, such as code syntax structure. Hence, an effective graph augmen-
tation mechanism that can identify and perform augmentations on fault-unrelated sub-graphs is
desirable for applying SSL to GBFL methods.
• Challenge II: How to select optimal threshold for pseudo-labeling to unlabeled graphs.

Existing pseudo-labeling methods typically employ a threshold to determine the high-confidence
outputs as pseudo-labels. However, setting an optimal threshold for pseudo-labeling in fault local-
ization is challenging due to the uncertainty in the number of faulty entities in failed tests. When the
threshold is too low, noisy labels may be introduced in unlabeled graphs with fewer faulty entities.
Conversely, if the threshold is too high, some true faulty entities may be missed in unlabeled
graphs, limiting the information that can be learned. Recently, several approaches [55, 68] have
been developed to adaptively select thresholds for pseudo-labeling. However, most of these adaptive
threshold methods are tailored for classification problems, which involve assessing the model’s
learning status for each class. This makes it challenging to apply adaptive threshold methods to
GBFL methods because GBFL formulates fault localization as a ranking task. Transitively, we are
required to evaluate the learning status of each program entity to set the adaptive thresholds, re-
sulting in significant computational overhead. Therefore, it is important to develop a threshold-free
pseudo-labeling approach to generate effective pseudo-labels when applying SSL to GBFL methods.

2.2 Our Approach

In this section, we introduce our idea to solve the aforementioned challenges.
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Identifying likely fault-unrelated sub-graphs by attention mechanism and performing

augmentation on them. To perform graph augmentation on the likely fault-unrelated sub-graphs,
we propose to train the attention-based GNN to classify the passed and failed graphs and utilize
the attention matrix to identify the likely fault-unrelated sub-graphs. The key insight is that,
to achieve more effective classification, the attention mechanism is trained to capture distinct
sub-graphs, and thus, the attention matrix can be used to evaluate the model’s focus on different
sub-graphs [32, 50, 51]. More specifically, when learning to classify failed graphs, the model will
focus more on sub-graphs that appear only in failed graphs, which are more likely to be fault-
related, and assign them higher attention weights. Conversely, the sub-graphs within the failed
graphs that also frequently appear in passed graphs, which are more likely fault-unrelated, will
receive lower attention. Therefore, we can input failed graphs into an attention-based GNN to
evaluate the attention weights of different sub-graphs and identify those with the lowest weights
as fault-unrelated sub-graphs. As such, by performing graph augmentation on these fault-unrelated
sub-graphs, we can minimize the impact on the fault context. Furthermore, when we require the
model to maintain consistent outputs before and after augmentation, the model will learn and
focus more on the invariant features that are more likely fault-related, thereby enhancing fault
localization by SSL. We will present details about how Legato identifies fault-unrelated sub-graphs
and performs graph augmentation on them based on the attention mechanism in Section 3.2.
Estimating pseudo-labels by quantifying the distribution of suspiciousness scores among

all program entities. For GBFL methods, we observe that the suspiciousness scores output
by the models generally form a probability distribution that sums to one. As such, if a model
is confident about specific program entities (i.e., likely to be faulty), the suspiciousness scores
of these program entities would be remarkably higher than those of other entities. Otherwise,
all program entities would have uniform suspiciousness scores, indicating that the model lacks
confidence in predicting fault entities. Accordingly, we can quantify the suspiciousness scores of
all program entities to determine whether some entities have significantly higher scores and select
those with the high scores (i.e., high confidence) as pseudo-labels. To achieve this, we employ the
Gaussian Mixture Model (GMM) [36] to quantify the suspiciousness scores. Specifically, GMM
models variable distributions by decomposing them into several Gaussian distributions. Thus, when
a one-component GMM fits the distribution of suspiciousness scores better, it suggests that no
particular program entities have significantly higher or lower scores. This indicates that the model
lacks strong confidence in any specific entities, making it unsuitable to assign pseudo-labels. In
contrast, when a two-component GMM better fits the distribution, it indicates that a subset of
program entities has significantly higher suspiciousness scores than the others, allowing us to
assign pseudo-labels to those entities with high scores. To determine whether the one-component
or two-component GMM better fits the suspiciousness scores, we adopt the Bayesian Information
Criterion (BIC) [48], which is widely used to evaluate the performance of GMMs [2, 15, 25]. Based
on the BIC, if the two-component GMM is considered more appropriate, we select the program
entities from the component with the higher mean suspiciousness scores as pseudo-labels for
SSL; Otherwise, we omit pseudo-labeling to avoid introducing noisy pseudo-labels. By utilizing
GMM and BIC, we achieve pseudo-labeling without relying on thresholds, while also addressing
the challenge of identifying multiple faulty entities in fault localization. Further details on the
implementation of our pseudo-labeling mechanism will de discussed in Section 3.3.

3 Design

In this section, we first provide an overview of Legato workflow. Then, we elaborate on the
technical details of each stage in Legato.
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Fig. 1. The workflow of Legato.
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Fig. 2. The workflow of attention-guided graph augmentation.

3.1 Overview

Figure 1 presents the workflow of Legato. Legato consists of two main components: attention-
guided graph augmentation and pseudo label estimation. The two components work as follows. In the
attention-guided graph augmentation step, Legato utilizes the attention matrix from a pre-trained
attention-based GNN designed to classify passed and failed graphs to guide graph augmentation on
unlabeled graph 𝐺𝑢 . Specifically, we follow our intuition outlined in Section 2.2 to select the edges
with the lowest attention weights (i.e., those likely unrelated to faults) and then drop these edges to
augment the graph, thereby obtaining the augmented unlabeled graph𝐺 ′𝑢 . Then, in the pseudo-label
estimation step, Legato quantifies the distribution of suspiciousness scores of 𝐺𝑢 to estimate the
pseudo-labels. Specifically, for each 𝐺𝑢 , Legato utilizes the fault localization GNN F to obtain the
suspiciousness score distribution. Then, as discussed in Section 2.2, we leverage one-component
and two-component GMMs to respectively fit the suspiciousness score distributions and determine
which GMM better quantifies the distribution using the BIC. When the two-component GMM
provides a better quantification, we select the program entities belonging to the component with
the higher mean suspiciousness scores as pseudo-labels. Otherwise, we do not select pseudo-labels.
After pseudo-labeling the unlabeled graph 𝐺𝑢 , Legato follows the standard SSL paradigm to learn
the GBFL methods. More specifically, we train the model by combing the supervised loss 𝑙𝑜𝑠𝑠𝑙 on
the labeled data and the unsupervised loss 𝑙𝑜𝑠𝑠𝑢 on the pseudo-labeled data. Particularly, the loss
𝑙𝑜𝑠𝑠𝑙 is defined as 𝑙𝑜𝑠𝑠𝑙 = L(F ,𝐺𝑙 , 𝒀 𝑙 ) and the loss 𝑙𝑜𝑠𝑠𝑢 is defined as 𝑙𝑜𝑠𝑠𝑢 = L(F ,𝐺 ′𝑢, 𝒀𝑢), where
L represent the listwise loss function which is commonly used in the GBFL methods [30, 40], 𝒀 𝑙

is the label matrix of 𝐺𝑙 , and 𝒀𝑢 is the label matrix generated from pseudo-labels of 𝐺𝑢 . Next, we
describe each component in detail.
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3.2 Attention-Guided Graph Augmentation

In the attention-guided graph augmentation step, Legato inputs the unlabeled graph 𝐺𝑢 into the
pre-trained attention-based GNN to obtain the attention matrix. Then, guided by the attention
matrix, Legato identifies and augments sub-graphs that are more likely fault-unrelated in 𝐺𝑢 for
graph augmentation. The intuition here is that, after training the attention-based GNN to classify
passed and failed graphs, the attention mechanism will reflect the importance of each edge and
node during the classification process [32, 50]. In the case of classifying failed graphs, the weights
from the attention matrix will increase on sub-graphs that appear exclusively in failed graphs and
decrease on sub-graphs that also appear in passed graphs for more effective classification. Thus, the
sub-graphs within the failed graphs with lower attention weights are more likely fault-unrelated,
and we can perform graph augmentation on them. Furthermore, by training the model to produce
similar outputs before and after augmentation, we can make the model focus more on unchanged
likely fault-related information and utilize unlabeled data to improve fault localization.
Figure 2 presents the overall pipeline of our proposed attention-guided graph augmentation

method. For an unlabeled failed test case present in the unlabeled graph, we first extract its failed
sub-graph, consisting of all nodes and edges related to the failed test case. Then, we input the failed
sub-graph to a pre-trained attention-based GNN and obtain the corresponding attention matrix.
Finally, we utilize the attention matrix to identify the edges with the lowest weights and drop them
from the unlabeled graph to produce the augmented unlabeled graph. Note that since we make
predictions on the nodes representing program entities, we only augment the edges and not the
nodes. In the following, we elaborate on each step in detail.
Attention-based GNN Learning. To identify fault-unrelated sub-graphs for augmentation, we
leverage the attention matrix obtained from an attention-based GNN that is designed to classify
passed and failed graphs. The insight here is that, for effective graph classification, the attention-
based GNN tends to reduce its focus on edges that frequently appear in the passed graphs and
are likely fault-free. Transitively, the attention matrix obtained from the GNN provides valuable
guidance for identifying sub-graphs unrelated to faults.

The first step in building the attention-based GNN is to construct a training dataset that includes
both passed and failed graphs. To achieve this, we iterate through the test cases associated with
each graph in the dataset, extracting the relevant nodes and edges to form a new graph. Specifically,
if the test case is a passed test case, the extracted graph is labeled as a passed graph; otherwise, it is
labeled as a failed graph. Note that we do not need to manually label these graphs as passed or
failed because once the test is finished, we can automatically get the result of the test as pass or fail.
After constructing the training dataset, we train the attention-based GNN using the Graph

Attention Network (GAT) [51] as our model architecture. The reason why we select GAT is that
it has been widely used in various engineering tasks [10, 73] and enables a balance between
performance and training time on large-scale dataset [60]. More specifically, letH denote the GAT.
We trainH to classify passed and failed graphs using binary cross-entropy (BCE) to achieve our
goal. The loss function is as shown in Eq. 1

L𝐵𝐶𝐸 = 𝑦𝑖 logH(𝐺) + (1 − 𝑦𝑖 ) log(1 −H(𝐺)), (1)

where 𝐺 is a graph, 𝑦𝑖 is its label, andH(𝐺) is the probability that 𝐺 is failed graph. The labels of
passed and failed graphs are 0 and 1, respectively.
Graph Augmentation. With the attention-based GNN, we then use the attention mechanism of
the model to rank and augment edges that are more likely to be fault-unrelated. By making the
model output consistently before and after such augmentation, we encourage the model to focus
on the features that remain invariant, likely related to faults, to improve the effectiveness of fault
localization. Specifically, given a failed test case involved in an unlabeled graph, we first obtain
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Fig. 3. The workflow of pseudo-label estimation of Legato.

all nodes and edges corresponding to the failed test case to construct a failed sub-graph. We only
input the failed sub-graph because it is aligned with the training data format, as the attention-based
GNN is trained on passed and failed graphs Then, we input the failed sub-graph into the model to
obtain the attention matrix, retaining only the weights associated with the edges. Since we need to
make predictions based on program entities (i.e., nodes), we enhance only the edges, not the nodes.
Then, We rank all the edges in the graph in ascending order based on their attention weights and
select the top 𝑝 edges to drop.

Formally, let 𝐺𝑢 = {V𝑢, E𝑢} represent the unlabeled graph, and let 𝐺 𝑓 𝑢 = {V𝑓 𝑢, E𝑓 𝑢} represent
the failed sub-graph corresponding to the failed test case in 𝐺𝑢 , whereV and E denote the sets of
nodes and edges, respectively. The attention matrix extracted fromH is denoted by 𝑨 ∈ R | E𝑓 𝑢 |∗1
and each row in 𝑨 represent the weight of one edge in E𝑓 𝑢 . Then, we rank the edges in E𝑓 𝑢 based
on 𝑨 to obtain the ascending edge sequence 𝐸𝑟 . Next, we select the top 𝑝 edges from 𝐸𝑟 to form the
deletion set E𝑑 . Finally, we can obtain the augmented unlabeled graph 𝐺 ′𝑢 by 𝐺 ′𝑢 = {V𝑢, E𝑢\E𝑑 }.

3.3 Pseudo-Label Estimation

As discussed in Section 2.1, the uncertain number of fault entities and their varying suspiciousness
scores pose a specific challenge in selecting high-confidence pseudo-labels in fault localization. To
address this challenge, in the pseudo-label estimation step, we quantify the distribution of suspi-
ciousness scores of all program entities to assess whether some program entities have significantly
higher scores than others. If so, we can select those entities with significantly high suspiciousness
scores as pseudo-labels. The key insight of this step is that the suspiciousness scores (i.e., the
confidence) of all program entities usually form a probability distribution that sums to one. When
some entities have high suspiciousness scores, others will have lower scores. Thus, We can address
the challenge by quantifying the distribution of suspiciousness scores across all program entities
to select the high-confidence entities without relying on specific thresholds or considering the
number of faulty entities.
Figure 3 overviews the pseudo-labeling process. For the unlabeled graph, we first input it into

the fault localization GNN to obtain the suspiciousness scores distribution. Then, we quantify the
distribution by fitting it into one-component and two-component GMM. Next, we utilize the BIC
to evaluate which GMM better quantifies the distribution and whether to select pseudo labels. In
the following, we elaborate on each step in detail.
Remark. We conduct pseudo-label estimation on original unlabeled graphs rather than their
augmented versions. The reason is that when the training begins, the model has not yet been
exposed to augmented versions but has seen the original labeled graphs in supervised learning.
Thus, directly estimating pseudo-labels on the model’s output on these augmented versions might
introduce noisy pseudo-labels, leading to sub-optimal effectiveness.
Suspiciousness Scores Extracting. To quantify suspiciousness scores and select pseudo-labels,
we first need to extract the corresponding suspiciousness scores for the unlabeled graphs. This
process is aligned with the inference process of the fault localization model. Typically, after a graph
is input into a fault localization GNN, the model outputs a logit value for each node. These logits are
then normalized using a softmax function to obtain the suspiciousness scores for each node [30, 40].
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The suspiciousness scores represent the likelihood of program entities being faulty (i.e., confidence).
Specifically, let F denote the fault localization GNN. Given an unlabeled graph 𝐺𝑢 , letV𝑡 denote
the target node set for a failed test case involved in 𝐺𝑢 . Next, the logits value of each target node
will be normalized by the softmax function as follows:

𝑝 (𝑣𝑖 ) =
exp {𝑧𝑖 }∑ |V𝑡 |

𝑗=1 exp {𝑧 𝑗 }
(2)

The 𝑝 (𝑣𝑖 ) is the suspiciousness score of the node 𝑣𝑖 . Finally, the suspiciousness scores of all target
nodes are denoted as S = {𝑝 (𝑣𝑖 ) |𝑣𝑖 ∈ V𝑡 }.
Distribution Quantification. After extracting the suspiciousness scores for all target nodes,
we quantify the distribution of these scores to determine whether some program entities have
significantly higher suspiciousness scores compared to others, which would indicate the need
for pseudo-label selection. The intuition here is that the suspiciousness scores form a probability
distribution that sums to one. When some program entities have higher suspiciousness scores (i.e.,
higher confidence), the suspiciousness scores of the remaining nodes will be relatively lower. Thus,
by quantifying the distribution of suspiciousness scores, we can determine whether significantly
high suspiciousness program entities exist and select them as pseudo-labels to utilize the unlabeled
failed tests, thereby improving fault localization.

Specifically, we use GMM [36] to quantify the distribution and employ the BIC [48] to determine
whether to select pseudo labels. GMM is an efficient method for quantifying model output distri-
butions [36]. By specifying different numbers of components, GMM can effectively decompose
the distribution and is widely used in various tasks [23, 56]. The BIC is a widely used method for
GMM model selection and is better than other criteria for identifying the true model among a
set of candidates1 [2, 15, 25]. The basic idea here is that if the suspiciousness scores of a portion
of nodes are significantly higher than those of another portion, using a two-component GMM
to decompose the distribution into two distinct distributions will provide a better quantification.
Otherwise, a one-component GMM is sufficient to quantify the distribution. We use the BIC to
determine whether the one-component or two-component GMM better quantifies the distribution,
thereby guiding the decision on whether to select pseudo-labels.
More specifically, we fit the one/two-component GMM on S to maximize the log-likelihood

value by

𝑚𝑎𝑥

|S |∑︁
𝑖=1

log

(
𝑐∑︁
𝑗=1

𝜙 𝑗P(𝑠𝑖 |𝑢 𝑗 , 𝜎 𝑗 )
)

(3)

where 𝑠𝑖 is the suspiciousness score of 𝑖-th node, 𝑐 is the number of component, 𝑢 𝑗 and 𝜎 𝑗 are
the mean and variance of the 𝑗-th component, and 𝜙 𝑗 denotes the weight of the 𝑗-th component
and

∑𝑐
𝑗=1 𝜙 𝑗 = 1. When 𝑐 = 1, fit a one-component GMM, and when 𝑐 = 2, fit a two-component

GMM. Once the two GMMs are trained, we utilize the BIC to determine which GMM model better
quantifies the distribution by

𝐵𝐼𝐶 = −2 log(𝐿̂) + log( |S|)𝑑 (4)
where 𝐿̂ is the maximum likelihood of the model and 𝑑 is the number of parameters. We only select
pseudo-labels and conduct SSL when two-component GMM has the higher BIC score and better
fits the distribution. Next, we detailed how we select pseudo-labels.
Pseudo-Label Selection. When the two-component model better fits the distribution, we select
the nodes (i.e., program entities) belonging to the component with a higher mean suspiciousness
score as our pseudo-labels. Specifically, let 𝑢1 and 𝑢2 be the mean of the two components in the
1https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_selection.html
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GMM and satisfy 𝑢1 > 𝑢2. Then, we select a node 𝑣𝑖 as a pseudo-label (i.e., fault entity) if and
only if P(𝑠𝑖 |𝑢1, 𝜎1) > P(𝑠𝑖 |𝑢2, 𝜎2), where P(𝑠𝑖 |𝑢 𝑗 , 𝜎 𝑗 ) is the probability that the node 𝑣𝑖 belong to the
𝑗-th component in the GMM. That is to say, 𝑣𝑖 is selected as a pseudo-label when it belongs to a
component with a larger mean suspiciousness score, indicating that the model has a relatively high
confidence in it. As such, we can obtain a pseudo-labels set 𝑷𝑢 = {𝑣𝑖 |P(𝑠𝑖 |𝑢1, 𝜎1) > P(𝑠𝑖 |𝑢2, 𝜎2)∧𝑣𝑖 ∈
V𝑡 } for unlabeled graph 𝐺𝑢 . After obtaining pseudo-labels for a given unlabeled failed test case
in 𝐺𝑢 , we combine them with the augmented unlabeled failed graph for same failed test case and
employ listwise loss function to train the model.

3.4 Training with Legato

Algorithm 1: Semi-Supervised Learning Algorithm with Legato
Input: Labeled Graph set G𝑙 , Unlabeled Graph set G𝑢 , Learning Epoch 𝐸, GNN-based Fault Localization TechniqueM, drop rate 𝑝 ,

Scalar hyperparameter 𝜆𝑢
Output: Fault Localization Model F

1 F ← InitModel ();
2 𝑒 ← 0;
3 H ← AttentionLearning (G𝑙 , G𝑢 ) // Train the attention-based GNN on all extracted passed and failed graphs
4 while e < E do

5 𝑙𝑜𝑠𝑠𝑙 ← M(F, G𝑙 ) ;
6 𝑙𝑜𝑠𝑠𝑢 ← 0 ;
7 for each𝐺𝑢 ∈ G𝑢 do

8 for each failed test case 𝑐 involved in𝐺𝑢 do

/* Attention-guided graph augmentation */
9 Extract the failed sub-graph𝐺𝑓 𝑢 corresponding to 𝑐 ;

10 Obtain the attention weight matrix 𝑨 from H when classify𝐺𝑓 𝑢 ;
11 Rank the edges in𝐺𝑓 𝑢 based on 𝑨 to get the ascending edge sequence 𝐸𝑟 ;
12 Select top 𝑝 edges in 𝐸𝑟 and drop them from𝐺𝑢 to obtain𝐺 ′𝑢 ;

/* Pseudo-label estimation */
13 Obtain suspiciousness scores S via Eq. 2 for all target nodes in 𝑐 ;
14 Fit S into two GMMs via Eq. 3 and obtain the best model𝐺 by BIC via Eq. 4 ;
15 if G is two-component GMM then

16 Select the nodes from the component with higher mean suspiciousness scores as pseudo-labels 𝑷𝑢 ;
17 Construct label matrix 𝒀𝑢 from pseudo-labels 𝑷𝑢 ;
18 Add the listwise loss value on𝐺 ′𝑢 and 𝒀𝑢 to 𝑙𝑜𝑠𝑠𝑢 ;
19 end

20 end

21 end

22 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑙 + 𝜆𝑢𝑙𝑜𝑠𝑠𝑢 ;
23 Update parameter of model F by backpropagation on 𝑙𝑜𝑠𝑠 ;
24 end

25 return F

After describing the two steps of Legato, we further demonstrate how Legato integrates with
the GBFL for SSL through Algorithm 1. In this algorithm, we first train the attention-based GNN to
classify passed and failed graphs for attention-guided graph augmentation (Line 3). Then, during the
training process (Lines 4-24), we first obtain the supervised loss 𝑙𝑜𝑠𝑠𝑙 from the GBFL techniqueM
(Line 5). After that, Legato iterates through each unlabeled graph𝐺𝑢 ∈ G𝑢 and each failed test case
𝑐 in𝐺𝑢 (Lines 7-21) to perform attention-guided graph augmentation (Lines 9-12) and pseudo-label
estimation (Lines 13-19). Specifically, we first obtain the failed sub-graph 𝐺 𝑓 𝑢 corresponding to 𝑐
and input it intoH to obtain the attention matrix 𝑨 (Lines 9-10). Next, we rank the edges from𝐺 𝑓 𝑢

guided by weights from 𝑨 in ascending order and obtain the ascending edge sequence 𝐸𝑟 (Line
11). finally, we get the augmented unlabeled graph 𝐺 ′𝑢 for failed test case 𝑐 by selecting the top 𝑝

edges in 𝐸𝑟 and dropping them from 𝐺𝑢 (Line 12). After augmentation, we conduct pseudo-label
estimation (Lines 13-19). We first obtain the suspiciousness scores S of all target nodes of 𝑐 via
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Table 1. Statistics about the dataset.

Attribute Value Attribute Value Attribute Value

Failed #Tests 7500 Labeled Failed #Tests 600 Unlabeled Failed #Tests 6900
Passed #Tests 7500 Average #Files 367.27 Average #Methods 1085.28

Eq. 2 (Line 13). Then, we fit the scores into one/two-component GMMs and obtain the best model
by BIC via Eq. 3 and Eq. 4 (Line 14). If the best model is a two-component GMM, we further select
the nodes from the higher mean suspiciousness scores as pseudo-labels 𝑷𝑢 (Lines 15-16). Otherwise,
we do not select the pseudo-labels and do not calculate unsupervised loss 𝑙𝑜𝑠𝑠𝑢 on it. Then, let
𝒀𝑢 = {0, 1} |V𝑢 |×1 denote the label matrix of 𝐺𝑢 , the label 𝑦𝑖 ∈ 𝒀𝑢 of node 𝑣𝑖 is set to 1 if 𝑣𝑖 ∈ 𝑷𝑢
and otherwise, set to 0 (Line 17). Next, we calculate the loss value on 𝐺 ′𝑢 and 𝒀𝑢 from the listwise
loss function denoted by L𝑙𝑖𝑠𝑡 = −

∑𝑛
𝑖=1 𝑦𝑖 log(𝑝 (𝑣𝑖 )), where 𝑝 (𝑣𝑖 ) denotes the suspiciousness score

of node 𝑣𝑖 and 𝑛 is the number of target nodes (Line 18). Finally, the loss minimized by Legato
is 𝑙𝑜𝑠𝑠𝑙 + 𝜆𝑢𝑙𝑜𝑠𝑠𝑢 , where 𝜆𝑢 is a fixed scalar hyper-parameter denoting the relative weight of the
unlabeled loss [47] (Lines 22-23).

4 Evaluation

We evaluate Legato on the following research questions:
• RQ1: How does Legato’s effectiveness compare to that of state-of-the-art SSL techniques on
fault localization?
• RQ2: How does Legato perform in the cross-project prediction scenario?
• RQ3: How do different components within Legato affect its overall effectiveness?
• RQ4: What is the quantity and quality of pseudo-labels we generated?
• RQ5: How does the training efficiency of Legato compare to that of SSL techniques?

4.1 Evaluation Setup

Benchmark. To answer the RQs, we collaborated with our industrial partner which operates
multiple digital product lines worldwide. They provided us with tests generated during system
testing of eleven software that cover diverse product lines and platforms. Each software written
by C/C++ exceeds one million lines of code, averaging hundreds of packages, thousands of files,
and tens of thousands of methods. Table 1 reports key statistics about the dataset. We have a total
of 15,000 tests, with 7,500 failed tests and 7,500 passed tests. Following the commonly used SSL
setup [6, 47, 55], engineers from our industrial partner randomly label 8% of the failed tests, with
each labeled test involving multiple fault entities. Note that when calculating the percentage of
labeled data, we only consider failed tests, as passed tests inherently do not require labeling. We did
not evaluate Legato on defects4j (v2.0.0) because the dataset contains only a small number of failed
tests (1,486). Under the semi-supervised setup with 8% labeled samples, we had only 118 labeled
samples, with an average of 8.48 labeled samples per project. There are too few tests available for
learning a meaningful model [24, 47]. Meanwhile, SSL is highly compatible with industrial settings,
as software typically undergoes extensive testing before release, generating many unlabeled failed
tests. Thus, given limited resources, engineers can only label a small portion of failed tests, making
SSL a suitable approach. When the number of tests is small, we can directly label them all and
perform supervised learning rather then SSL.
Baselines. To the best of our knowledge, we are the first to attempt SSL for fault localization,
whereas SSL is typically evaluated on image classification [4, 21, 47]. Consequently, we selected

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE069. Publication date: July 2025.

For Research Only



FSE069:12 Chun Li, Hui Li, Zhong Li, Minxue Pan, and Xuandong Li

three representative state-of-the-art SSL techniques that could be adapted to GBFL as baselines,
which are:
•Π-Model [41] uses data augmentation and dropout mechanisms to perturb unlabeled samples and
trains the model by ensuring consistent model outputs for these perturbations.
•Pseudo-Labeling [21] selects the highest confidence predictions from the model’s outputs on
unlabeled samples as pseudo-labels and uses these for further training the model.
•FixMatch [47] initially obtains pseudo-labels using weak augmented data and a fixed threshold
and then trains the model on strong augmented data and these pseudo-labels to conduct SSL.
Base GBFL techniques. SSL extends an existing supervised learning algorithm to utilize both
labeled and unlabeled data. In our evaluation, we consider the highly representative and state-of-the-
art techniques GRACE [30] and DepGraph [40] as the base supervised learning algorithm. Unless
specifically stated, the experiments were conducted using GRACE as a base GBFL. Specifically, we
follow the same approach as theirs to construct the graph. We can only connect the test node with
the root node of the AST of the covered method since obtaining line coverage information through
instrumentation has a significant impact on testing efficiency in the context of testing of large-scale
software, which typically involves thousands of methods.
Evaluation Metric. Following previous work [24, 30, 40], we adopt Recall at Top-N (N=1,3,5),
MFR (Mean First Rank), and MAR (Mean Average Rank) as our evaluation metrics. Recall at Top-N
measures the proportion of all failed tests in which at least one faulty entity is ranked within the
top N positions.MFR measures the mean rank of the first faulty element across all failed tests. MAR
is the mean of the average ranking of all the faulty entities of all failed tests. Higher Recall at Top-N
and lower MFR and MAR suggest that the faulty entities are located closer to the top of the ranked
list, indicating better localization performance. We use the worst ranking for the tied elements that
have the same suspiciousness scores.
Localization Level. We only perform fault localization at the file and method levels because we
cannot obtain the line coverage information as discussed above. For a method, the suspiciousness
score is obtained by applying the softmax function to normalize the logit value output by the model
for that method (cf. Eq. 2), consistent with [30, 40]. For a file, we select the highest suspiciousness
score among all methods within the file to represent the file’s suspiciousness score, consistent
with [46].
Within-project and Cross-Project Setting. We explore Legato’s performance in within-project
and cross-project settings in RQ1 and RQ2, respectively. In the within-project scenario, the data
coming from the same project populates both training and testing sets. Due to the large volume
of data and the cost of model training, we employed ten-fold cross-validation in within-project
settings instead of the leave-one-out validation method used in previous work [24, 30]. In practice,
a project might not have enough historical data to conduct model training. Hence, we further
investigate the effectiveness of different techniques in cross-project settings. Consistent with
existing literature [28], we perform fault localization on each failed test in a project while training
a model on the tests from all the remaining projects and repeat the process for each project.
Implementation.We build Legato based on PyTorch Geometric [12] and Scikit-learn [35]. We
utilize the tree-sitter [1] to obtain the AST of methods. For the parameters in Legato, We employed
grid search to determine the optimal parameter combination. Furthermore, all experiments are
conducted with a fixed random seed to reduce variations across the experiments.

For the baselines, we directly adopt their open-source implementations and empirically tune the
hyper-parameters by grid search because the original hyper-parameters haven’t been tested on our
task. Note that both Π-Model and FixMatch involve data augmentation, originally applied to image
data in their papers, which differs from the graph data we use. Therefore, we adopted a widely
used edge centrality-based graph augmentation [75] for them, which identifies important edges via
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Table 2. Comparison with state-of-the-art at file and method levels using GRACE as base GBFL.

Techniques

Method Level File Level

Top-1 (↑) Top-3 (↑) Top-5 (↑) MFR (↓) MAR (↓) Top-1 (↑) Top-3 (↑) Top-5 (↑) MFR (↓) MAR (↓)

GRACE 40.46 49.32 54.02 52.08 77.78 52.88 61.13 66.09 21.52 33.72
Π-Model 44.61 53.88 61.05 49.46 66.85 56.84 67.42 76.45 12.79 22.97

Pseudo-Labeling 51.02 60.97 66.27 32.91 52.43 58.06 70.03 85.48 8.46 11.74
FixMatch 58.37 66.28 70.35 22.05 35.56 64.35 73.42 80.43 6.11 9.90
Legato 68.91 77.69 79.66 11.74 17.49 79.03 83.71 90.32 2.37 4.32

Table 3. Comparison with state-of-the-art at file and method levels using DepGraph as base GBFL.

Techniques

Method Level File Level

Top-1 (↑) Top-3 (↑) Top-5 (↑) MFR (↓) MAR (↓) Top-1 (↑) Top-3 (↑) Top-5 (↑) MFR (↓) MAR (↓)

DepGraph 43.32 50.16 59.33 50.12 68.33 57.63 64.88 71.24 18.34 25.67
Π-Model 47.82 58.28 65.19 44.25 60.12 59.44 69.17 78.32 10.91 18.33

Pseudo-Labeling 55.89 62.87 69.45 26.29 40.60 61.82 72.88 86.81 8.11 11.42
FixMatch 61.52 67.35 72.61 20.18 32.47 68.39 74.02 82.92 5.74 9.42
Legato 70.33 78.44 83.53 10.22 16.87 82.26 85.44 90.77 2.16 4.09

node centrality measures (i.e., the node degree). Then, it adaptively drops edges by giving large
removal probabilities to unimportant edges to highlight important connective structures.
Due to the spatial constraints, all hyper-parameters and detailed configuration of Legato and

baselines have been included on our project website. All experiments are conducted on aworkstation
with AMD Ryzen 9 3900XT, 32GB memory, and two RTX 4090 GPUs, running Ubuntu 20.04.

4.2 RQ1: Effectiveness of Legato

The primary objective of this RQ is to evaluate the effectiveness of Legato in semi-supervised fault
localization with only a small subset of failed tests labeled (8%). We conduct a comparative analysis
of Legato against three SSL baselines outlined in Section 4.1 on two different representative base
GBFL, examining performance at both method and file levels. Results are detailed in Table 2 and
Table 3. Furthermore, we also compared the effectiveness of different methods at the file level when
there were fewer failed labeled tests. In this experiment, we randomly take a portion of the labeled
samples to keep and discard the labels in the remaining labeled samples, treating them as unlabeled.
The comparison results are shown in Figure 4. Figure 4 demonstrates the effectiveness of different
methods when only 1% to 8% of failed samples are labeled. The x-axis represents the percentage of
available labeled samples, and the y-axis shows various metrics.
Overall Effectiveness. From the Table 2 and Table 3, we have the following observations. Firstly,
Legato can effectively leverage unsupervised samples to enhance the performance of existing GBFL
methods when only a small portion of labeled samples is available. Notably, when applied to GRACE
and DepGraph as the base GBFL models, Legato achieved Top-1 accuracy of 68.91% and 70.33% at
the method level, representing significant improvements of 70.32% and 62.35%, respectively, over
using GRACE and DepGraph alone. Furthermore, the MFR and MAR metrics exhibit substantial
improvement, with Legato yielding an average improvement of 78.53% in MFR and 76.41% in
MAR at the method level compared to GRACE and DepGraph, respectively. Similar trends are
observed at the file level. Specifically, at the file level, Legato achieved average improvements
of 46.10%, 34.31%, 32.03%, 88.61%, and 85.63% over the two base GBFL models in terms of Top-1,
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Fig. 4. Comparison with state-of-the-art at file level under different labeling rates.

Top-3, Top-5 accuracy, MFR, and MAR, respectively. These results demonstrate that Legato can
effectively enhance the performance of existing GBFL methods and remains stable across various
GBFL approaches.

Second, from Table 2 and Table 3, we can observe that Legato consistently outperforms studied
SSL baselines across all five metrics at both method and file levels on different GBFL methods.
Specifically, the method level improvements of Legato over all the SSL baselines on GRACE and
DepGraph are remarkable, ranging from 14.36% to 54.47% on Top-1, ranging from 16.47% to 44.19%
on Top-3, ranging from 13.23% to 30.48% on Top-5, from 46.76% to 76.90% on MFR, and from 48.04%
to 73.83% on MAR. Similar trends are observed at the file level, underscoring Legato’s effectiveness
compared to other studied SSL baselines across different localization level and GBFL methods.

Third, the comparison between Legato and FixMatch—both of which leverage pseudo-labels and
augmentation techniques—reveals that Legato markedly outperforms FixMatch at both localization
levels and on different base GBFL. Although the edge centrality-based graph augmentation used
by FixMatch is widely applied in various graph learning scenarios, the centrality measures do not
effectively capture fault information in the test graphs. In contrast, Legato trains an attention
network using passed and failed test graphs, allowing the attention mechanism to identify edges
in the failed graph that are more likely to be irrelevant to faults. This makes the model focus
more on fault-related features unchanged during augmentation, which enhances fault localization.
The improvement also suggests that our pseudo-label estimation is more effective than the fixed
threshold employed by FixMatch. The estimation step in Legato allows us to select all program
entities with significantly high suspiciousness scores as pseudo-labels, avoiding the threshold
selection and addressing the issue of multiple fault entities.
Different percentage of labeled data. From the figure 4, we can observe that as the number
of available labeled samples increases, the performance of all methods improves across different
metrics. Specifically, Legato achieves the best effectiveness across all percentages. In scenarios
with very few labeled data, the effectiveness of models trained by all methods significantly declines.
It is reasonable that when the amount of labeled data is extremely limited, the supervised learning
component within semi-supervised learning may be unable to train the model on labeled data,
making fault localization challenging. When the model performs poorly, its outputs for unlabeled
samples may be incorrect, significantly impacting the effectiveness of all SSL methods. However,
Legato still manages to achieve 59.8% Top-3 accuracy with only 2% of labeled samples, which
is a 24.5% improvement over the best performance baseline. This indicates that Legato is better
adapted and more robust to an environment with minimal labeled data, further underscoring its
effectiveness.

To further confirm the observations above, we have followed previous works [24, 30] to perform
the Wilcoxon signed-rank test [57] with Bonferroni corrections [11] to investigate the statistical
significance between Legato and other baselines. The results show that Legato is significantly
better than all studied baselines at the significance level of 0.05.
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Table 4. Cross-project effectiveness at file and method levels.

Techniques

Method Level File Level

Top-1 (↑) Top-3 (↑) Top-5 (↑) MFR (↓) MAR (↓) Top-1 (↑) Top-3 (↑) Top-5 (↑) MFR (↓) MAR (↓)

GRACE 25.06 30.41 34.77 114.57 133.25 33.82 38.14 42.78 47.24 55.98
Π-Model 27.78 33.65 38.74 92.63 110.37 37.95 45.39 53.11 26.34 35.44

Pseudo-Labeling 26.32 31.22 36.53 107.2 123.64 37.12 42.59 49.82 27.11 39.88
FixMatch 31.58 37.72 44.05 87.74 103.29 40.17 52.97 57.45 22.66 25.67
Legato 43.84 46.39 51.63 64.95 79.32 52.68 57.64 60.27 14.42 19.18

Table 5. The effectiveness of different variants at method level.

Variants Top-1 (↑) Top-3 (↑) Top-5 (↑) MFR (↓) MAR (↓)

Legato𝑃𝐿𝐸 49.27 56.94 64.82 46.33 60.91
Legato𝐸𝐴 57.31 64.41 73.58 30.24 42.55
Legato𝐴𝐴 52.28 55.83 61.44 44.7 67.91
Legato𝑃𝐿 55.97 62.33 70.44 24.62 37.17

Legato𝐺𝑀𝑀 60.49 70.58 71.27 19.85 31.83
Legato 68.91 77.69 79.66 11.74 17.49

4.3 RQ2: Cross-project Effectiveness of Legato

In RQ2, we further evaluate the method and file level effectiveness of Legato in a cross-project
scenario. Table 4 presents the comparison results between Legato and other baselines in the
cross-project scenario. From the tables in within-project and cross-project scenarios, we observed
a certain degree of decline in the effectiveness of all methods. This decline is reasonable because
of the significant differences in fault contexts between the tested project and other projects in
cross-project scenarios, which can only be learned from other projects and unlabeled data. Thus,
the cross-project scenario presents significant challenges to how SSL methods utilize unlabeled
data, as they employ the same GNN-based FL method. Despite the performance degradation of
Legato, it still performs better than other baselines. Specifically, the improvements of Legato
compared with the second-best baselines achieve 38.82%, 22.98%, 17.29%, 25.97%, and 23.20% in
terms of Top-1, Top-3, Top-5, MFR and MAR, respectively. Similar trends are observed at the file
level. Additionally, the performance drop of Legato in the cross-project scenario is also smaller
than the baselines. For example, in terms of Top-1 accuracy, Legato decreased by 36.28% and
33.34% at the method and file level, which is less than the 41.61% and 37.57% decrease experienced
by FixMatch. These results demonstrate the effectiveness of Legato in the cross-project scenario
and suggest that Legato’s attention-based graph augmentation enables the model to better utilize
passed and failed graphs to identify potential fault entities in cross-project settings.

4.4 RQ3: Ablation Study

In this RQ, we conduct a series of ablation studies on different graph augmentation and pseudo-label
estimation policies to further analyze the impact of each step in Legato. Specifically, we consider the
following five variants of Legato: Legato𝑃𝐿𝐸 only employs pseud-label estimation. Legato𝐸𝐴 re-
places the attention-guided graph augmentation to edge centrality-based graph augmentation [75],
which has been adapted in baselines and is widely used in graph learning. Legato𝐴𝐴 only employs
attention-guided graph augmentation. Legato𝑃𝐿 replaces the pseudo-labels estimation policies
with pseudo-labeling [21], which selects the entity with the highest confidence as pseudo-label.
Legato𝐺𝑀𝑀 removes the BIC and only employs the two-component GMM in pseudo-labels esti-
mation. Table 5 summarizes the study results, and we have the following observations.
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Table 6. The coverage and impurity at the end of the training of different methods involved pseudo-labels.

Techniques Coverage (↑) Impurity (↓)

Pseudo-Labeling 56.47% 29.92%
FixMatch 80.25% 37.56%
Legato 77.14% 21.06%

First, removing any component from Legato results in a noticeable decline in effectiveness.
Legato𝑃𝐿𝐸 and Legato𝐴𝐴 are the least effective variants among all. Specifically, the Top-1 accuracy
of Legato𝑃𝐿𝐸 and Legato𝐴𝐴 decrease by 28.50% and 24.13% compared to Legato respectively
This indicates that both our attention-guided graph augmentation and pseudo-label estimation
significantly contribute to the effectiveness of Legato. Additionally, this suggests that combin-
ing augmentation and pseudo-labels can achieve greater effectiveness in fault localization than
employing only one of them.

Second, during pseudo-label estimation, we found that choosing entities with the highest suspi-
ciousness scores as pseudo-labels (Legato𝑃𝐿) or using only a 2-component GMM (Legato𝐺𝑀𝑀 )
resulted in sub-optimal effectiveness. In particular, the Top-5 accuracy of Legato𝑃𝐿 and Legato𝐺𝑀𝑀

decrease by 11.57% and 10.53% compared to Legato respectively. This indicates that directly se-
lecting program entities with high suspiciousness scores as pseudo-labels without quantifying the
entire distribution may more easily introduce noisy labels, leading to sub-optimal effectiveness.
By combining GMM with BIC, we can dynamically determine during training if some program
entities’ suspiciousness scores are significantly higher than others, thus estimating pseudo-labels
without fixed thresholds and minimizing the introduction of noisy pseudo-labels.

Finally, in terms of graph augmentation, we observed a decrease in model effectiveness when
replacing attention-guided graph augmentation with edge centrality-based graph augmentation.
Specifically, the Top-1 accuracy of Legato𝐸𝐴 was 16.83% lower than that of Legato. This result
further demonstrates the effectiveness of our attention-guided graph augmentation. This is because
edge centrality-based graph augmentation methods assess the importance of edges based solely on
the centrality of nodes. However, the node centrality does not necessarily reflect its relevance to
faults, so the augmentation process may affect the fault context, leading to sub-optimal effectiveness.
In contrast, our method uses an attention mechanism to target augmentations on subgraphs that
are more likely to be irrelevant to faults, thereby enhancing the performance of Legato.

4.5 RQ4: TheQuantity andQuality of Pseudo-labels

To better understand the role of pseudo-labels in Legato and baselines, we conducted both quan-
titative and qualitative analyses of the generated method-level pseudo-labels. Specifically, we
randomly selected 200 unlabeled failed tests from the dataset and had engineers from our industrial
partner label these tests. Following previous work [47], we collected the pseudo-labels generated
by different methods on these 200 unlabeled failed tests after training and compared them to the
ground truth labels. We define two additional metrics: the Coverage (the rate of true labels that are
covered by the pseudo-labels) and Impurity (the rate of incorrect labels within the pseudo-labels),
which are computed as follows:

Coverage =

∑𝑁
𝑖=1
|𝑃𝑖∩𝐿𝑖 |
|𝐿𝑖 |

𝑁
, Impurity =

∑𝑁
𝑖=1
|𝑃𝑖\𝐿𝑖 |
|𝑃𝑖 |

𝑁
(5)

where 𝑃𝑖 and 𝐿𝑖 represent the pseudo-labels and true labels for the 𝑖-th test, respectively, and 𝑁 is
the number of unlabeled failed tests. Table 6 presents the coverage and impurity of all methods
involving pseudo-labels. From the table, we can observe that Legato achieves a better balance
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Table 7. Training time cost of studied SSL methods.

Techniques Π-Model Pseudo-Labeling FixMatch Legato

Training Time 2h51mins 2h10mins 3h7mins 4h41mins

between coverage and impurity. Notably, while achieving the lowest impurity, Legato’s coverage
is only 3.87% lower than that of FixMatch. This is because our pseudo-label estimation does not
rely on a specific threshold but instead makes the estimation based on the overall distribution of
suspiciousness scores across program entities. Thus, we can reduce the introduction of noisy labels
while covering more true faulty entities. Although FixMatch achieves slightly higher coverage
than Legato, it has the worst impurity, as its reliance on a fixed threshold struggles to handle
uncertainty in the number of faulty entities and variations in their confidence. Pseudo-Labeling, on
the other hand, has lower coverage because it always selects the label with the highest confidence
as the pseudo-label, which tends to introduce noisy labels when the confidence across all entities is
low, ultimately reducing the effectiveness of the model.

4.6 RQ5: Efficiency of Legato

This RQ empirically analyzes the efficiency of Legato. Table 7 presents the time cost of training
a model using Legato and the studied SSL approaches. As shown in this table, compared to the
studied baselines, Legato requires more time to train the model because Legato requires pre-
trained the attention-based GNN in graph augmentation and fit one/two-component GMM and
BIC to perform pseudo-label estimation. Nevertheless, it is important to emphasize that Legato
achieves significantly better performance in locating faults than the baselines, as demonstrated in
Section 4.2. Therefore, we believe such a time cost of Legato is worthwhile for achieving better
models. Furthermore, considering that the training process is offline, the training time of Legato
is also acceptable in practice.

5 Discussion

Threats to validity. The main threat to internal validity lies in the technical implementation of
Legato, the compared approaches, and experimental scripts. To mitigate this threat, we developed
Legato based on widely used libraries and employed the original implementations of the compared
approaches. We have reviewed the source code of Legato and experimental scripts thoroughly. The
main threat to external validity may be tied to the benchmark used in our study. To reduce this threat,
we perform experiments on an industrial dataset provided by our industrial partner, which contains
7,500 passed and 7,500 failed tests (8% of failed tests are labeled) from 11 large-scale software, each
exceeding one million lines of code, and covering diverse product lines and platforms. Furthermore,
we compare Legato with 3 representative and state-of-the-art semi-supervised learning baselines
in our experiments. The main threat to construct validity lies in the parameters in Legato and
metrics used in experiments. To mitigate this threat, we present the detailed parameter settings on
our project site. To reduce the threat from metrics employed, we employed various metrics that are
widely used in prior fault localization studies [24, 30].
Generalizability of Legato. Legato has demonstrated remarkable effectiveness in learning fault
localization GNN when only a small portion of graphs are labeled. Nevertheless, we believe its key
insights can also be further generalized to other LBFL methods in the future. The generalizability
of Legato comes from two aspects. First, the key insight of augmentation in Legato is that the
attention mechanism can be trained to capture the likely fault-unrelated information. This idea
does not involve specific types of inputs and can be utilized in other LBFL methods by training the
attention mechanism on the features from passed and failed tests. Second, the key insight of our
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pseudo-label estimation is to select pseudo-labels by quantifying the relative magnitudes of suspi-
ciousness scores among different program entities. This method only relies on the suspiciousness
scores, which can be extracted from all LBFL methods and models. For future work, we plan to
extend Legato to various LBFL methods.

6 Related work

Learning-based fault localization. Deep learning technologies have found extensive application
in fault localization [20, 24, 26, 28, 30, 31, 40, 46, 65, 69, 72, 76]. Learning-based fault localization
approaches can be divided into two categories: one category improves feature representation from
the extracted test data through learning methods. For instance, GRACE [30] represents coverage
using a graph structure and employs GGNN [27] for learning and calculating suspiciousness scores.
The other category combines features across different dimensions through learning methods. For
instance, FLUCCS [46] utilizes suspiciousness values derived from 33 SBFL formulae, combined
with code age, churn, and complexity, as diverse features for the Support Vector Machine to process.
Among the LBFL techniques, the graph learning-based fault localization (GBFL) has been extensively
researched and achieved promising results recently [22, 30, 38–40, 59, 64]. These techniques model
source code or other features using graphs, enabling the model to better learn how to represent or
combine these features for improved fault localization. In this paper, we build Legato based on the
GBFL techniques, aiming to enhance their effectiveness within insufficient labeled data.
Semi-supervised Learning. Semi-supervised learning (SSL) is a machine learning approach
that utilizes both labeled and unlabeled data to improve learning accuracy [49]. Semi-supervised
learning methods can broadly be divided into three categories: wrapper methods, unsupervised
preprocessing, and intrinsically semi-supervised approaches. Wrapper methods extend supervised
learning to semi-supervised by utilizing labeled data to supervise the training of models and using
the model’s output on unlabeled samples to further train the model. Representative techniques
include pseudo-labeling [3, 17, 21, 34, 66] and co-training [53, 74]. Unsupervised preprocessing
involves processing unlabeled samples in an unsupervised manner and using the processed features
to enhance the training of supervised models. Notable techniques include feature extraction [42, 44]
and cluster-then-label [5, 14]. Intrinsically semi-supervised methods directly integrate unlabeled
samples into the loss function of supervised learning to extend it to semi-supervised learning. The
most representative perturbation-based methods assume that the predictions for the augmented and
the original versions of the same inputs should be similar [4, 19, 41, 43]. In recent years, combining
consistency regularization and pseudo-labeling has led to significant successes in semi-supervised
learning [8, 18, 47, 55]. These methods use the model’s outputs on unlabeled samples as pseudo-
labels, then train the model on these pseudo-labeled and augmented unlabeled samples to achieve
semi-supervised learning. Our approach falls into this category.

7 Conclusion

In this paper, we propose Legato, a novel semi-supervised learning framework for GNN-based
fault localization, designed to effectively locate faults within the context of insufficient labeled
failed tests and a large number of unlabeled failed tests. Legato adopts a two-step approach for
utilizing unlabeled failed tests. In the attention-guided graph augmentation, Legato leverages the
attention mechanism to identify and augment the more likely fault-unrelated edges and obtain
the augmented unlabeled graphs to conduct consistency regularization. Then, in the pseudo-label
estimation step, Legato employs GMM and BIC to determine the pseudo-labels of unlabeled graphs
to eliminate the optimal threshold selection and address the challenge arising from multi-fault
entities in pseudo-label estimation. The experimental results demonstrate the effectiveness of
Legato in fault localization within insufficient labeled failed tests.
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8 Data Availability

Our code and configuration are publicly available at https://github.com/pppppkun/Legato.
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