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Due toddvancements in graph neural networks, graph learning-based fault localization (GBFL) methods have
achiéved promising results. However, as these methods are supervised learning paradigms and deep learning is
typicallyidata-hungry, they can only be trained on fully labeled large-scale datasets. This is impractical because
labeling féiled tests is similar to manual fault localization, which is time-consuming and labor-intensive, leading
to only a smallfportion of failed tests that can be labeled within limited budgets. These data labeling limitations
would lead to thé sub®eptimal effectiveness of supervised GBFL techniques. Semi-supervised learning (SSL)
provides an effective means of leveraging unlabeled data to improve a model’s performance and address data
labeling limitations. However, as these methods are not specifically designed for fault localization, directly
utilizing them might lead togub-optimal effectiveness. In response, we propose a novel semi-supervised
GBFL framework, LEGATOf LEgATO first leverages the attention mechanism to identify and augment likely
fault-unrelated sub-graphs in nlabeled graphs and then quantifies the suspiciousness distribution of unlabeled
graphs to estimate pseudo-label§. Through training the model on augmented unlabeled graphs and pseudo-
labels, LEGATO can utilize the unlabeled d@ta,to improve the effectiveness of fault localization and address the
restrictions in data labeling. By extensive evaluations against 3 baselines SSL methods, LEGATO demonstrates
superior performance by outperforming all the®fethods in comparison.
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1 Introduction

Locating software faults is the critical first step in the debugging process. Manual fault localization
is often a time-consuming and labor-intensive process [7, 37]. Hence, extensive research has been
conducted on automated fault localization techniques [9, 20, 24, 28-30, 62, 63,67] to fully automate
the process of diagnose fault program entities (i.e., files or methods) afid fagilitdte the software

“Corresponding author.

Authors’ Contact Information: Chun Li, Nanjing University, State Key Laboratory for Novel Software Technology, Nanjing,
China, chunli@smail.nju.edu.cn; Hui Li, Samsung Electronics (China) R&D Centre, Nanjing, China, huili@safnsungsom;
Zhong Li, Nanjing University, State Key Laboratory for Novel Software Technology, Nanjing, China, lizhong@siju.edu.cn;
Minxue Pan, Nanjing University, State Key Laboratory for Novel Software Technology, Nanjing, China, mxp@nju.edu.cn;
Xuandong Li, Nanjing University, State Key Laboratory for Novel Software Technology, Nanjing, China, Ixd@nju.edu.cn.

@0¢e0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2994-970X/2025/7-ARTFSE069

https://doi.org/10.1145/3715788

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE069. Publication date: July 2025.



FSE069:2 Chun Li, Hui Li, Zhong Li, Minxue Pan, and Xuandong Li

debugging process. To date, researchers have proposed various fault localization techniques, and
learning-based fault localization (LBFL) has been intensively studied in the literature due to its
effectiveness and recent advances in machine/deep learning [20, 24, 26, 28, 30, 31, 40, 65, 67, 69, 76].
LBFL leverages learning techniques to train models to calculate the suspiciousness scores of program
entities and rank them.

In LBFL techniques, methods based on graph neural networks (GNNs) have evolved significantly
and shown promising results [22, 30, 38-40, 59, 64]. Graph learning-based fault localization (GBFL)
represents the program semantics during the testing by graphs. For example, GRACE [30] uses the
nodes in the abstract syntax tree (AST) of the source code and test cases as nodes, and represents
the coyfrage information as edges between test nodes and statement nodes to construct graphs.
Cumént GBFL methods are typically based on the paradigm of supervised learning, which implies
tHat existing methods require training on a fully labeled dataset. Given that deep networks are
typically datachungry [16, 47, 61], using GBFL methods necessitates significant time and cost to
label sufficiefit data. However, this is impractical for two reasons. First, in fault localization, labeling
the fault entitiés 1n failed tests is similar to manual fault localization. As mentioned before, manual
fault localization is a time-consuming and labor-intensive process, making it challenging to label
sufficient data. Second, softare typically undergoes extensive testing before being released to
users. Thus, a large numbér of unlabeled failed tests are generated. However, given limited budgets,
engineers may only bé ablg¢ 10 label a small portion of them. These restrictions would lead to the
sub-optimal effectiveness®f stipervised GBFL techniques in real-world contexts.

To tackle the restrictions in dataglabeling, researchers extend supervised learning to semi-
supervised learning (SSL) to leverage unlabeled samples and enhance model training [21, 49].
Currently, cutting-edge researchtn SSL {78, 47, 55] can be viewed as first producing a pseudo-
label for unlabeled samples [17, 21], thén thaitiing the model to predict the pseudo-label when fed
augmented versions of the same input [4543]. However, these methods are challenging to adopt in
graph learning-based fault localization. The{mains€hallenges stem from the following two aspects.
First, since fault localization requires the modelifo idéntifiz suspicious program entities based on the
fault context, preserving the fault context as much as possible during the augmentation is crucial.
Existing graph augmentation techniques [75] primarily #ely on thesegree of nodes to calculate the
importance of edges and drop those edges deemed less\importdnt. However, the degree of nodes
cannot indicate its relevance to faults, leading to potential diSruption of the fault context and sub-
optimal effectiveness. Second, SSL methods typically rely on thfesholds to select high-confidence
outputs as pseudo-labels. However, it is non-trivial as a lower threshold migh#introduce incorrect
or noisy labels, and a higher threshold might lead to overfitting [21]. Fuftherniore, the possibility
of multiple fault entities in fault localization makes the selection more difficilt Existing dynamic
threshold methods adjust thresholds across various classes by estimating thedearning state of the
model for each class [55, 68]. However, these methods are unsuitable for fault logalizationyas fault
localization involves ranking rather than classification.

In this paper, we propose LEGATO (semi-supervised LEarninG-bAsed faulT 10calization), a novel
semi-supervised graph learning-based fault localization framework specifically designed fow®nly
a small portion of failed tests are labeled. Specifically, the key insight of LEGATO tosdddress the
aforementioned limitations is two-fold.

First, we propose to leverage the attention mechanism to guide us in identifying and augmenting
fault-unrelated sub-graphs in unlabeled graphs. The intuition is that the attention mechanism
reflects the degree of focus the model places on different nodes and edges during the decision-
making process [32, 50]. Therefore, when we train an attention-based GNN to classify the failed
graphs, the model’s attention will be decreased on sub-graphs in the failed graphs that almost
exclusively appear in passed graphs, which are more likely fault-unrelated. As such, based on
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the attention mechanism, we can identify sub-graphs likely to be fault-unrelated and augment
them while minimizing the impact on fault context. Furthermore, training the model to generate
consistent predictions before and after augmentation enables it to concentrate on invariant features
likely related to faults, thereby enhancing fault localization.

Second, we introduce a threshold-free pseudo-label estimation method that quantifies the distri-
bution of suspiciousness scores (i.e., confidence) output by the model for all fault entities. Then,
if some program entities have significantly higher suspiciousness scores than others, we select
them as pseudo-labels. The basic idea is that the suspiciousness scores of all target program entities
form a distribution that sums to one. When the model assigns high suspiciousness scores to certain
prograifilentities, the scores for the remaining entities tend to be lower. Thus, by quantifying the
distributior’of suspiciousness scores across all target program entities, we can identify program
efitities with significantly high scores compared to others and select them as pseudo-labels without
dependifig onspecific thresholds or considering the number of faulty entities in unlabeled graphs.

Our eyaludtiontef LEGATO’s performance in a large-scale dataset contains 7,500 passed and 7,500
failed tests, offwhiclronly 8% failed tests have been labeled. This dataset comes from the testing
of eleven software projects written in C/C++, each exceeding one million lines of code, supplied
by our industrial partner wiiigh is a global corporation. We benchmarked LEGATO against three
baseline SSL methods bagéd on'the same supervised GBFL, demonstrating its exceptional efficacy
by significantly outpefforming all compared methods, including a remarkable 18.05% and 38.82%
method level improvement ofer the top-performing method in within-project and cross-project
scenarios respectively.

The main contributions of thispaper are as follows:

e We propose LEGATO, a novel SefnjSupetvised graph learning-based fault localization frame-
work, which trains the model both on%nlabeled and labeled graphs to tackle the restrictions
in data labeling.

e We develop attention-guided graph augmeéntatibn and pseudo-label estimation to train the
model on the augmented version of unlabeledgraphsiand pseudo-labels to utilize the unlabeled
graphs and improve the performance of fault localizétion.

e We conduct extensive evaluations of LEGAaTO within a‘sendi-supervised context on a large-
scale dataset, and the results demonstrate that LEGaro gffectively utilizes unlabeled graphs
for fault localization and outperforms baseline SSL nethodé in comparison.

2 Methodology

In this section, we first define our problem. Then, we discuss the primary challefiges faced when uti-
lizing SSL for fault localization tasks and introduce our idea of LEGaTO towselvedlietaforementioned
challenges.

2.1 Problem Statement

In this work, we target GBFL methods that utilize GNNs to learn program semantics ané loeatize
faults within software. Formally, let D = {(G;,Y;)[L, } denote the training dataset, whet€ G; is the
graph constructed from a test suite contains at least one failed test case, and Y; is the label matrix.
Take the graph in GRACE [30] as an example, the nodes consist of the AST of the source code and
test cases, while the edges are constructed based on coverage information. Let V denote the node
set of G and the node v; € V represents the program entity involved in the test suite. If node v; is a
fault entity, the label y; € Y of it is set to 1, and otherwise, y; is set to 0. Then, based on the training
dataset D, a GNN ¥ is learned via minimizing the listwise loss function £ = — Y!_, y; log(p(v;)),
where t is the number of target nodes (such as method or statement nodes) in V, and p(v;) is the
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suspiciousness score of the target node v; output by the model. After training, the target nodes will
be ranked based on their suspiciousness scores p(v;) output by the GNN .

As shown, the effectiveness of GBFL methods heavily depends on the quality of the training
datasets D. However, labeling fault entities in failed tests is a challenging task that requires sig-
nificant manual effort by experts, particularly when test volumes are high and resources are
constrained [7, 40]. Consequently, the graphs in the training dataset D are generally only par-
tially labeled in real-world scenarios [52, 58]. That is, the dataset D can be viewed as D; U D,,
where D; = {(G;, Y;)[”,} denotes the labeled dataset, D, = {Gi}f:1 denote the unlabeled dataset,
and |Dj| << |D,|. Training GNN models on such a dataset D would result in sub-optimal GBFL
methodsidue to the limited supervision provided by the dataset [24, 47]. Thus, the problem we
wanf to address in this paper is: Given a dataset containing labeled and unlabeled graphs, how can
we effectively and efficiently learn a fault localization model when only a small portion of graphs are
labeled?

Semissupérviséd learning (SSL) [49] provides a promising solution for this problem. The key
spirit of SSL is'to generate pseudo-labels for the unlabeled samples and train the model to predict
the pseudo-labels for augmented versions of unlabeled samples. Although the effectiveness of SSL
techniques has been demongfrated in many domains, such as image recognition [6, 47, 68], natural
language processing [13445], and object detection [33, 54], they still encounter several challenges
when applying for traifiing GBFL models.

e Challenge I: How to perform graph augmentation on unlabeled graphs with less im-
pact on fault context. A key réquirement of SSL is to generate effective augmentations for
unlabeled samples. However, directlypaugmenting the graph (e.g., deleting several edges) without
any guidance might disrupt the fault fontext, leading to noisy augmented views and sub-optimal
effectiveness [70, 71, 75]. Therefore, it ig critical to identify fault-unrelated sub-graphs and perform
augmentations only on these, in order touminimizéthe impact on the fault context. Unfortunately,
the information available from test results is insuffi¢ient for effectively detecting fault-unrelated sub-
graphs. Specifically, all program entities involved infa failed test might be fault entities. Although
passed tests provide some coverage information, €overage alone struggles to capture the complex
program semantics in the graph, such as code syntax staficturg. Henmce, an effective graph augmen-
tation mechanism that can identify and perform augmentatiop§-en fault-unrelated sub-graphs is
desirable for applying SSL to GBFL methods.

e Challenge II: How to select optimal threshold for pseudé-labeling to unlabeled graphs.
Existing pseudo-labeling methods typically employ a threshold to determinesthe high-confidence
outputs as pseudo-labels. However, setting an optimal threshold for psesido-labeling in fault local-
ization is challenging due to the uncertainty in the number of faulty entities infailed tests. When the
threshold is too low, noisy labels may be introduced in unlabeled graphs withdewes faulty entities.
Conversely, if the threshold is too high, some true faulty entities may be misSed in unlabeled
graphs, limiting the information that can be learned. Recently, several approacheg [55, 68] have
been developed to adaptively select thresholds for pseudo-labeling. However, most of these/adaptive
threshold methods are tailored for classification problems, which involve assessing the med@el’s
learning status for each class. This makes it challenging to apply adaptive thresholdsfriethods to
GBFL methods because GBFL formulates fault localization as a ranking task. Transitively, we are
required to evaluate the learning status of each program entity to set the adaptive thresholds, re-
sulting in significant computational overhead. Therefore, it is important to develop a threshold-free
pseudo-labeling approach to generate effective pseudo-labels when applying SSL to GBFL methods.

2.2 Our Approach

In this section, we introduce our idea to solve the aforementioned challenges.
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Identifying likely fault-unrelated sub-graphs by attention mechanism and performing
augmentation on them. To perform graph augmentation on the likely fault-unrelated sub-graphs,
we propose to train the attention-based GNN to classify the passed and failed graphs and utilize
the attention matrix to identify the likely fault-unrelated sub-graphs. The key insight is that,
to achieve more effective classification, the attention mechanism is trained to capture distinct
sub-graphs, and thus, the attention matrix can be used to evaluate the model’s focus on different
sub-graphs [32, 50, 51]. More specifically, when learning to classify failed graphs, the model will
focus more on sub-graphs that appear only in failed graphs, which are more likely to be fault-
related, and assign them higher attention weights. Conversely, the sub-graphs within the failed
graphssthat also frequently appear in passed graphs, which are more likely fault-unrelated, will
receive lower attention. Therefore, we can input failed graphs into an attention-based GNN to
evaluatethe attention weights of different sub-graphs and identify those with the lowest weights
as fault-#nrelated sub-graphs. As such, by performing graph augmentation on these fault-unrelated
sub-graphswe ¢dn minimize the impact on the fault context. Furthermore, when we require the
model to maixifain eonsistent outputs before and after augmentation, the model will learn and
focus more on the invariant features that are more likely fault-related, thereby enhancing fault
localization by SSL. We willgtesent details about how Legato identifies fault-unrelated sub-graphs
and performs graph augpientation on them based on the attention mechanism in Section 3.2.
Estimating pseudo-ldbels by quantifying the distribution of suspiciousness scores among
all program entities. For GBFL methods, we observe that the suspiciousness scores output
by the models generally form a‘probability distribution that sums to one. As such, if a model
is confident about specific prograni entities (i.e., likely to be faulty), the suspiciousness scores
of these program entities would be réemarkably higher than those of other entities. Otherwise,
all program entities would have unifofm suspiciousness scores, indicating that the model lacks
confidence in predicting fault entities. Aeeordingly, we can quantify the suspiciousness scores of
all program entities to determine whether sdme eutities have significantly higher scores and select
those with the high scores (i.e., high confidencg) asiseudo-labels. To achieve this, we employ the
Gaussian Mixture Model (GMM) [36] to quantifyy the suspiciousness scores. Specifically, GMM
models variable distributions by decomposing them intogeveral Gamssian distributions. Thus, when
a one-component GMM fits the distribution of suspicipusness'scores better, it suggests that no
particular program entities have significantly higher or lowes'scorgs. This indicates that the model
lacks strong confidence in any specific entities, making it unsuitable to assign pseudo-labels. In
contrast, when a two-component GMM better fits the distribution, it indieates that a subset of
program entities has significantly higher suspiciousness scores than the others, allowing us to
assign pseudo-labels to those entities with high scores. To determine whethef the one-component
or two-component GMM better fits the suspiciousness scores, we adopt the Bayesian Information
Criterion (BIC) [48], which is widely used to evaluate the performance of GMMsf[2, 15¢25]. Based
on the BIC, if the two-component GMM is considered more appropriate, we'seleef the program
entities from the component with the higher mean suspiciousness scores as pseudo-labels for
SSL; Otherwise, we omit pseudo-labeling to avoid introducing noisy pseudo-labels. By utilizing
GMM and BIC, we achieve pseudo-labeling without relying on thresholds, while alsefaddressing
the challenge of identifying multiple faulty entities in fault localization. Further details on the
implementation of our pseudo-labeling mechanism will de discussed in Section 3.3.

3 Design
In this section, we first provide an overview of LEcaTto workflow. Then, we elaborate on the

technical details of each stage in LEGaTO.
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Fig. 1. The workflow of LEGATO.
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Fig. 2. The workflew of attention-guided graph augmentation.

3.1 Overview

Figure 1 presents the workflow of LEGATO. LEGATO consists of two main components: attention-
guided graph augmentation and pseudo label estimation. THe twe components work as follows. In the
attention-guided graph augmentation step, LEGATO utilizes the atfention matrix from a pre-trained
attention-based GNN designed to classify passed and failed grdphs to guide graph augmentation on
unlabeled graph G,,. Specifically, we follow our intuition outlined’in Section 2.2 to select the edges
with the lowest attention weights (i.e., those likely unrelated to faults) and then drop these edges to
augment the graph, thereby obtaining the augmented unlabeled graph G,;¢#Then, in the pseudo-label
estimation step, LEGATO quantifies the distribution of suspiciousness s¢ores gf G, to estimate the
pseudo-labels. Specifically, for each G, LEGATo utilizes the fault localizatién GNNY to obtain the
suspiciousness score distribution. Then, as discussed in Section 2.2, we levieragefone-gbimponent
and two-component GMMs to respectively fit the suspiciousness score distributions afid determine
which GMM better quantifies the distribution using the BIC. When the two-cdmponent GMM
provides a better quantification, we select the program entities belonging to the compofientwith
the higher mean suspiciousness scores as pseudo-labels. Otherwise, we do not select pséudo-labels.
After pseudo-labeling the unlabeled graph G,, LEGaTo follows the standard SSL paradigm to learn
the GBFL methods. More specifically, we train the model by combing the supervised loss loss; on
the labeled data and the unsupervised loss loss, on the pseudo-labeled data. Particularly, the loss
lossy is defined as loss; = L(F, G, Y) and the loss loss, is defined as loss, = L(F,G,,Y,), where
L represent the listwise loss function which is commonly used in the GBFL methods [30, 40], Y;
is the label matrix of G;, and Y, is the label matrix generated from pseudo-labels of G,,. Next, we
describe each component in detail.
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3.2 Attention-Guided Graph Augmentation

In the attention-guided graph augmentation step, LEGATO inputs the unlabeled graph G, into the
pre-trained attention-based GNN to obtain the attention matrix. Then, guided by the attention
matrix, LEGATO identifies and augments sub-graphs that are more likely fault-unrelated in G,, for
graph augmentation. The intuition here is that, after training the attention-based GNN to classify
passed and failed graphs, the attention mechanism will reflect the importance of each edge and
node during the classification process [32, 50]. In the case of classifying failed graphs, the weights
from the attention matrix will increase on sub-graphs that appear exclusively in failed graphs and
decrease on sub-graphs that also appear in passed graphs for more effective classification. Thus, the
sub-graphis within the failed graphs with lower attention weights are more likely fault-unrelated,
and’we can perform graph augmentation on them. Furthermore, by training the model to produce
similar outputs before and after augmentation, we can make the model focus more on unchanged
likely fault-related information and utilize unlabeled data to improve fault localization.

Figure2¢presénts the overall pipeline of our proposed attention-guided graph augmentation

method. For afi'unlabeled failed test case present in the unlabeled graph, we first extract its failed
sub-graph, consisting of all nodes and edges related to the failed test case. Then, we input the failed
sub-graph to a pre-traineddittention-based GNN and obtain the corresponding attention matrix.
Finally, we utilize the atténtiongnatrix to identify the edges with the lowest weights and drop them
from the unlabeled graph fo preduce the augmented unlabeled graph. Note that since we make
predictions on the nodes repfesenting program entities, we only augment the edges and not the
nodes. In the following, we elaboratg’on each step in detail.
Attention-based GNN Learning. To identify fault-unrelated sub-graphs for augmentation, we
leverage the attention matrix obtained ffonm'an attention-based GNN that is designed to classify
passed and failed graphs. The insight Here‘igithat, for effective graph classification, the attention-
based GNN tends to reduce its focus on"€dges, that frequently appear in the passed graphs and
are likely fault-free. Transitively, the attention niatrixobtained from the GNN provides valuable
guidance for identifying sub-graphs unrelated %o failts.

The first step in building the attention-based GNN is togemstruct a training dataset that includes
both passed and failed graphs. To achieve this, we iterate thtough the test cases associated with
each graph in the dataset, extracting the relevant nodes andiedgéste form a new graph. Specifically,
if the test case is a passed test case, the extracted graph is labled aé a passed graph; otherwise, it is
labeled as a failed graph. Note that we do not need to manually label these graphs as passed or
failed because once the test is finished, we can automatically get the result of the test as pass or fail.

After constructing the training dataset, we train the attention-bagéd GNN using the Graph
Attention Network (GAT) [51] as our model architecture. The reason‘WwhysWwe@elect GAT is that
it has been widely used in various engineering tasks [10, 73] and enable§ a balance,between
performance and training time on large-scale dataset [60]. More specifically, let #{ denéte the GAT.
We train H to classify passed and failed graphs using binary cross-entropy (BCE)#o achieve our
goal. The loss function is as shown in Eq. 1

Lpce = yilog H(G) + (1 - y;) log(1 — H(G)), (1)

where G is a graph, y; is its label, and H(G) is the probability that G is failed graph. The labels of
passed and failed graphs are 0 and 1, respectively.

Graph Augmentation. With the attention-based GNN, we then use the attention mechanism of
the model to rank and augment edges that are more likely to be fault-unrelated. By making the
model output consistently before and after such augmentation, we encourage the model to focus
on the features that remain invariant, likely related to faults, to improve the effectiveness of fault
localization. Specifically, given a failed test case involved in an unlabeled graph, we first obtain
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Fig. 3. The workflow of pseudo-label estimation of LEGATO.

all nodes and edges corresponding to the failed test case to construct a failed sub-graph. We only
input the failed sub-graph because it is aligned with the training data format, as the attention-based
GNN isdrained on passed and failed graphs Then, we input the failed sub-graph into the model to
obtaifi the attention matrix, retaining only the weights associated with the edges. Since we need to
méke predictions based on program entities (i.e., nodes), we enhance only the edges, not the nodes.
Then, Wé'rank all the edges in the graph in ascending order based on their attention weights and
select the top p edges to drop.

Formally, let'&,, =%{V,,, E,} represent the unlabeled graph, and let Gr, = {Vf,, &y} represent
the failed sub-graph corresponding to the failed test case in G,, where V and & denote the sets of
nodes and edges, respectivelfs, The attention matrix extracted from 7 is denoted by A € RI€rul*1
and each row in A repres¢nt the weight of one edge in &,,. Then, we rank the edges in &, based
on A to obtain the ascefiding*€dge sequence E,. Next, we select the top p edges from E, to form the
deletion set &,. Finally, wg cafi obtain the augmented unlabeled graph G;, by G;, = {V,,, E,\Eq4}-

3.3 Pseudo-Label Estimation

As discussed in Section 2.1, the uneertainsumber of fault entities and their varying suspiciousness
scores pose a specific challenge in selecfing,high-confidence pseudo-labels in fault localization. To
address this challenge, in the pseudo-label estimation step, we quantify the distribution of suspi-
ciousness scores of all program entities to assess Whether some program entities have significantly
higher scores than others. If so, we can select those éntities with significantly high suspiciousness
scores as pseudo-labels. The key insight of this{step is that the suspiciousness scores (i.e., the
confidence) of all program entities usually form a probability distzibution that sums to one. When
some entities have high suspiciousness scores, others will have léwer scores. Thus, We can address
the challenge by quantifying the distribution of suspiciousnéss scores across all program entities
to select the high-confidence entities without relying on specific thresholds or considering the
number of faulty entities.

Figure 3 overviews the pseudo-labeling process. For the unlabeled graph, we first input it into
the fault localization GNN to obtain the suspiciousness scores distribufion. Then, we quantify the
distribution by fitting it into one-component and two-component GMM. Next, weiutilize the BIC
to evaluate which GMM better quantifies the distribution and whether to selectfpseudd labels. In
the following, we elaborate on each step in detail.

Remark. We conduct pseudo-label estimation on original unlabeled graphs rather than their
augmented versions. The reason is that when the training begins, the model has not yetdbeen
exposed to augmented versions but has seen the original labeled graphs in superviséd learning.
Thus, directly estimating pseudo-labels on the model’s output on these augmented versions might
introduce noisy pseudo-labels, leading to sub-optimal effectiveness.

Suspiciousness Scores Extracting. To quantify suspiciousness scores and select pseudo-labels,
we first need to extract the corresponding suspiciousness scores for the unlabeled graphs. This
process is aligned with the inference process of the fault localization model. Typically, after a graph
is input into a fault localization GNN, the model outputs a logit value for each node. These logits are
then normalized using a softmax function to obtain the suspiciousness scores for each node [30, 40].
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The suspiciousness scores represent the likelihood of program entities being faulty (i.e., confidence).
Specifically, let ¥ denote the fault localization GNN. Given an unlabeled graph G,, let V; denote
the target node set for a failed test case involved in G,,. Next, the logits value of each target node
will be normalized by the softmax function as follows:
p(oi) = ;j?ji
Z j=1 exp {Z J }
The p(v;) is the suspiciousness score of the node v;. Finally, the suspiciousness scores of all target
nodes are denoted as S = {p(v;)|v; € V;}.
Distribution Quantification. After extracting the suspiciousness scores for all target nodes,
we dquantify the distribution of these scores to determine whether some program entities have
significantly, higher suspiciousness scores compared to others, which would indicate the need
for pseutlo-label selection. The intuition here is that the suspiciousness scores form a probability
distributiondhatéums to one. When some program entities have higher suspiciousness scores (i.e.,
higher confidefice), the suspiciousness scores of the remaining nodes will be relatively lower. Thus,
by quantifying the distribution of suspiciousness scores, we can determine whether significantly
high suspiciousness progrand éntities exist and select them as pseudo-labels to utilize the unlabeled
failed tests, thereby impybying fault localization.

Specifically, we use GMM [36].to quantify the distribution and employ the BIC [48] to determine
whether to select pseudo labélsy, GMM is an efficient method for quantifying model output distri-
butions [36]. By specifying differentmmumbers of components, GMM can effectively decompose
the distribution and is widely used inmvarious tasks [23, 56]. The BIC is a widely used method for
GMM model selection and is better tham"other criteria for identifying the true model among a
set of candidates’ [2, 15, 25]. The basi¢ idéa Jiere is that if the suspiciousness scores of a portion
of nodes are significantly higher than these of another portion, using a two-component GMM
to decompose the distribution into two distinct distributions will provide a better quantification.
Otherwise, a one-component GMM is sufficiefit tofquantify the distribution. We use the BIC to
determine whether the one-component or two-cofitponent&MM better quantifies the distribution,
thereby guiding the decision on whether to select pseudlo-labels.

More specifically, we fit the one/two-component GMM onéS«to maximize the log-likelihood
value by

@)

|S]

max Z log

1

c
( ¢;P(siluj, Uj)) 3)
j=1
where s; is the suspiciousness score of i-th node, ¢ is the number of{compbnént, u; and o; are
the mean and variance of the j-th component, and ¢; denotes the weight of'the jsth component
and 25:1 $; = 1. When ¢ = 1, fit a one-component GMM, and when ¢ = 2, fit &' two-€omponent
GMM. Once the two GMMs are trained, we utilize the BIC to determine which GMM model better
quantifies the distribution by

BIC = —2log(L) + log(|S|)d (4)

where L is the maximum likelihood of the model and d is the number of parameters. We only select
pseudo-labels and conduct SSL when two-component GMM has the higher BIC score and better
fits the distribution. Next, we detailed how we select pseudo-labels.

Pseudo-Label Selection. When the two-component model better fits the distribution, we select
the nodes (i.e., program entities) belonging to the component with a higher mean suspiciousness
score as our pseudo-labels. Specifically, let u; and u, be the mean of the two components in the

https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_selection.html
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GMM and satisfy u; > u,. Then, we select a node v; as a pseudo-label (i.e., fault entity) if and
only if P(s;|u1, 01) > P(si|uz, 02), where P(s;|u;, 0;) is the probability that the node v; belong to the
j-th component in the GMM. That is to say, v; is selected as a pseudo-label when it belongs to a
component with a larger mean suspiciousness score, indicating that the model has a relatively high
confidence in it. As such, we can obtain a pseudo-labels set P,, = {v;|P(s;|u, 01) > P(si|uz, 02) Av; €
“V;} for unlabeled graph G,,. After obtaining pseudo-labels for a given unlabeled failed test case
in G,, we combine them with the augmented unlabeled failed graph for same failed test case and
employ listwise loss function to train the model.

3.4 Training with LEGATO

Algorithmm1: Semi-Supervised Learning Algorithm with LEGaTO

Input: Labeled Graph set Gy, Unlabeled Graph set G,,, Learning Epoch E, GNN-based Fault Localization Technique M, drop rate p,
Scalardiyperparameter A,
Output: Fault Lodalization Model ¥

1 F « InitModél ();

2 e«—0;

3 H « AttentionLearning (G, G, )@hTrain the attention-based GNN on all extracted passed and failed graphs
4 while e <E do

5 loss; — M(TF, Gi) ;

6 loss, <« 0;

7 for each G, € G, do

8 for each failed test case c involved in G, do

/* Attention-guided geaph atgméiitation */

9 Extract the failed sub-graph Gy \cortésponding to c;

10 Obtain the attention weightimatrix A from H when classify G Fu s

11 Rank the edges in G, based oA tofget theascending edge sequence E; ;
12 Select top p edges in E, and drop them froni G,, to obtain G ;

/* Pseudo-label estimation */

13 Obtain suspiciousness scores S via Eq. 2 fofrall targét nodes in c;

14 Fit S into two GMMs via Eq. 3 and obtain the best model'G by BIC via Eq. 4 ;
15 if G is two-component GMM then

16 Select the nodes from the component with higher mean suspiciousness scores as pseudo-labels P,;
17 Construct label matrix Y, from pseudo-labels P, ;

18 Add the listwise loss value on G;, and Y4, to lossy, ;

19 end

20 end
21 end
22 loss = loss; + Aylossy;
23 Update parameter of model ¥ by backpropagation on loss;
24 end

25 return ¥

After describing the two steps of LEGATO, we further demonstrate how LEGATO intefrates with
the GBFL for SSL through Algorithm 1. In this algorithm, we first train the attention<based GNN to
classify passed and failed graphs for attention-guided graph augmentation (Line 3). Then, diring the
training process (Lines 4-24), we first obtain the supervised loss loss; from the GBFL technigué M
(Line 5). After that, LEGATO iterates through each unlabeled graph G, € G, and each failed test case
c in G, (Lines 7-21) to perform attention-guided graph augmentation (Lines 9-12) and pseudo-label
estimation (Lines 13-19). Specifically, we first obtain the failed sub-graph Gy, corresponding to ¢
and input it into H to obtain the attention matrix A (Lines 9-10). Next, we rank the edges from G,
guided by weights from A in ascending order and obtain the ascending edge sequence E, (Line
11). finally, we get the augmented unlabeled graph G;, for failed test case c by selecting the top p
edges in E, and dropping them from G, (Line 12). After augmentation, we conduct pseudo-label
estimation (Lines 13-19). We first obtain the suspiciousness scores S of all target nodes of c via
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Table 1. Statistics about the dataset.

Attribute Value Attribute Value Attribute Value

Failed #Tests 7500  Labeled Failed #Tests 600  Unlabeled Failed #Tests 6900
Passed #Tests 7500 Average #Files 367.27 Average #Methods 1085.28

Eq. 2 (Line 13). Then, we fit the scores into one/two-component GMMs and obtain the best model
by BIC via Eq. 3 and Eq. 4 (Line 14). If the best model is a two-component GMM, we further select
the nodesifrom the higher mean suspiciousness scores as pseudo-labels P, (Lines 15-16). Otherwise,
wegddaynot select the pseudo-labels and do not calculate unsupervised loss loss, on it. Then, let
Yy = {0714%/X1 denote the label matrix of G,,, the label y; € Y, of node v; is set to 1 if v; € P,
and othérwise, set to 0 (Line 17). Next, we calculate the loss value on G, and Y, from the listwise
loss funetied dendted by L, = — 21, yi log(p(v;)), where p(v;) denotes the suspiciousness score
of node v; and n is the number of target nodes (Line 18). Finally, the loss minimized by LEcaTo
is loss; + Ayloss,, where A, is a fixed scalar hyper-parameter denoting the relative weight of the
unlabeled loss [47] (Lines 22-23).

4 Evaluation
We evaluate LEGaTo on the following research questions:

e RQ1: How does LEGATO’s effectivenegs compare to that of state-of-the-art SSL techniques on
fault localization?

e RQ2: How does LEGATO perform in the‘eross-project prediction scenario?

e RQ3: How do different components withinn LE@aTo affect its overall effectiveness?

e RQ4: What is the quantity and quality of psetidg-labels we generated?

e RQ5: How does the training efficiency of LE@ATO £ompare to that of SSL techniques?

4.1 Evaluation Setup

Benchmark. To answer the RQs, we collaborated with our ifidustrial partner which operates
multiple digital product lines worldwide. They provided usfwith/fests generated during system
testing of eleven software that cover diverse product lines andgplatforms. Each software written
by C/C++ exceeds one million lines of code, averaging hundreds of packages, thousands of files,
and tens of thousands of methods. Table 1 reports key statistics about th€ dataset. We have a total
of 15,000 tests, with 7,500 failed tests and 7,500 passed tests. Following the£ommonly used SSL
setup [6, 47, 55], engineers from our industrial partner randomly label 8% of#he failed tests, with
each labeled test involving multiple fault entities. Note that when calculating tlie pertentage of
labeled data, we only consider failed tests, as passed tests inherently do not require labeling, We did
not evaluate LEGATO on defects4j (v2.0.0) because the dataset contains only a smallfaumbey/of failed
tests (1,486). Under the semi-supervised setup with 8% labeled samples, we had only 118 labéled
samples, with an average of 8.48 labeled samples per project. There are too few tests-aailable for
learning a meaningful model [24, 47]. Meanwhile, SSL is highly compatible with industrial settings,
as software typically undergoes extensive testing before release, generating many unlabeled failed
tests. Thus, given limited resources, engineers can only label a small portion of failed tests, making
SSL a suitable approach. When the number of tests is small, we can directly label them all and
perform supervised learning rather then SSL.

Baselines. To the best of our knowledge, we are the first to attempt SSL for fault localization,
whereas SSL is typically evaluated on image classification [4, 21, 47]. Consequently, we selected
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three representative state-of-the-art SSL techniques that could be adapted to GBFL as baselines,
which are:

oII-Model [41] uses data augmentation and dropout mechanisms to perturb unlabeled samples and
trains the model by ensuring consistent model outputs for these perturbations.
ePseudo-Labeling [21] selects the highest confidence predictions from the model’s outputs on
unlabeled samples as pseudo-labels and uses these for further training the model.

eFixMatch [47] initially obtains pseudo-labels using weak augmented data and a fixed threshold
and then trains the model on strong augmented data and these pseudo-labels to conduct SSL.
Base GBFL techniques. SSL extends an existing supervised learning algorithm to utilize both
labeleddéind unlabeled data. In our evaluation, we consider the highly representative and state-of-the-
art téchniques GRACE [30] and DepGraph [40] as the base supervised learning algorithm. Unless
specifically stated, the experiments were conducted using GRACE as a base GBFL. Specifically, we
follow the samie approach as theirs to construct the graph. We can only connect the test node with
the rootinodé of the AST of the covered method since obtaining line coverage information through
instrumentatigh has'a significant impact on testing efficiency in the context of testing of large-scale
software, which typically involves thousands of methods.

Evaluation Metric. Following previous work [24, 30, 40], we adopt Recall at Top-N (N=1,3,5),
MFR (Mean First Rank), afid MAR (Mean Average Rank) as our evaluation metrics. Recall at Top-N
measures the proportién of all failed tests in which at least one faulty entity is ranked within the
top N positions. MFR measure$ the mean rank of the first faulty element across all failed tests. MAR
is the mean of the average ranking'ofall the faulty entities of all failed tests. Higher Recall at Top-N
and lower MFR and MAR suggest that the faulty entities are located closer to the top of the ranked
list, indicating better localization performariee. We use the worst ranking for the tied elements that
have the same suspiciousness scores.

Localization Level. We only perform fault localization at the file and method levels because we
cannot obtain the line coverage informatior as digcussed above. For a method, the suspiciousness
score is obtained by applying the softmax function teformalize the logit value output by the model
for that method (cf. Eq. 2), consistent with [30, 40]. For a file, we select the highest suspiciousness
score among all methods within the file to represent fhe fil¢’s smspiciousness score, consistent
with [46].

Within-project and Cross-Project Setting. We explore LE6ATO’S performance in within-project
and cross-project settings in RQ1 and RQ2, respectively. In thefwithin-project scenario, the data
coming from the same project populates both training and testing sets. Duesto the large volume
of data and the cost of model training, we employed ten-fold cross-validatioft in within-project
settings instead of the leave-one-out validation method used in previous work [24, 30]. In practice,
a project might not have enough historical data to conduct model training: Hence, we further
investigate the effectiveness of different techniques in cross-project settings¢Congistent with
existing literature [28], we perform fault localization on each failed test in a projectdvhile training
a model on the tests from all the remaining projects and repeat the process for ea¢h projéct.
Implementation. We build LEgaTO based on PyTorch Geometric [12] and Scikit-learn [35]FWe
utilize the tree-sitter [1] to obtain the AST of methods. For the parameters in LEcaTo, We employed
grid search to determine the optimal parameter combination. Furthermore, all experiments are
conducted with a fixed random seed to reduce variations across the experiments.

For the baselines, we directly adopt their open-source implementations and empirically tune the
hyper-parameters by grid search because the original hyper-parameters haven’t been tested on our
task. Note that both II-Model and FixMatch involve data augmentation, originally applied to image
data in their papers, which differs from the graph data we use. Therefore, we adopted a widely
used edge centrality-based graph augmentation [75] for them, which identifies important edges via
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Table 2. Comparison with state-of-the-art at file and method levels using GRACE as base GBFL.

T . | Method Level || File Level
echniques
[Top-1 (1) Top-3 (1) Top-5 (1) MFR (1) MAR (4)||Top-1 (1) Top-3 (1) Top-5 (1) MFR (1) MAR (})
GRACE 40.46 49.32 54.02 52.08 77.78 52.88 61.13 66.09 21.52 33.72
I1-Model 44.61 53.88 61.05 49.46 66.85 56.84 67.42 76.45 12.79 22.97
Pseudo-Labeling| 51.02 60.97 66.27 32.91 52.43 58.06 70.03 85.48 8.46 11.74
FixMatch 58.37 66.28 70.35 22.05 35.56 64.35 73.42 80.43 6.11 9.90
Legato 68.91 77.69 79.66 11.74 17.49 79.03 83.71 90.32 2.37 4.32

Jable 3. ‘Comparison with state-of-the-art at file and method levels using DepGraph as base GBFL.

Method Level || File Level

Techniques |
[76p=1,(1) Top-3 () Top-5 () MFR (1) MAR ({)||Top-1 (1) Top-3 (1) Top-5 () MFR (1) MAR ({)

DepGraph 43.32 50.16 59.33 50.12 68.33 57.63 64.88 71.24 18.34 25.67
IT-Model 47.82 58.28 65.19 44.25 60.12 59.44 69.17 78.32 10.91 18.33
Pseudo-Labeling| 55.89 6287 69.45 26.29 40.60 61.82 72.88 86.81 8.11 11.42
FixMatch 61.52 6735 72.61 20.18 32.47 68.39 74.02 82.92 5.74 9.42
Legato 70.33 78.44 83.53 10.22 16.87 82.26 85.44 90.77 2.16 4.09

node centrality measures (i.e., the node/degree). Then, it adaptively drops edges by giving large
removal probabilities to unimportant @dgessto highlight important connective structures.

Due to the spatial constraints, all hypemparameters and detailed configuration of LEGATO and
baselines have been included on our projeet,websitéyAll experiments are conducted on a workstation
with AMD Ryzen 9 3900XT, 32GB memory,@andtwo RTX 4090 GPUs, running Ubuntu 20.04.

4.2 RQ1: Effectiveness of LEGATO

The primary objective of this RQ is to evaluate the effectiveness of LEGATO in semi-supervised fault
localization with only a small subset of failed tests labeled (8%). e conduct a comparative analysis
of LEGATO against three SSL baselines outlined in Section 4 4%on two different representative base
GBFL, examining performance at both method and file levels. Results are detailed in Table 2 and
Table 3. Furthermore, we also compared the effectiveness of different methodswat the file level when
there were fewer failed labeled tests. In this experiment, we randomly take a portion of the labeled
samples to keep and discard the labels in the remaining labeled samples| treatifig them as unlabeled.
The comparison results are shown in Figure 4. Figure 4 demonstrates the effeétiveness of different
methods when only 1% to 8% of failed samples are labeled. The x-axis representsdhe pefeentage of
available labeled samples, and the y-axis shows various metrics.

Overall Effectiveness. From the Table 2 and Table 3, we have the following obsé€tvations. Firstly,
LEGATO can effectively leverage unsupervised samples to enhance the performance of existing8BFL
methods when only a small portion of labeled samples is available. Notably, when applied'to GRACE
and DepGraph as the base GBFL models, LEGaTo achieved Top-1 accuracy of 68.91% and 70.33% at
the method level, representing significant improvements of 70.32% and 62.35%, respectively, over
using GRACE and DepGraph alone. Furthermore, the MFR and MAR metrics exhibit substantial
improvement, with LEGATO yielding an average improvement of 78.53% in MFR and 76.41% in
MAR at the method level compared to GRACE and DepGraph, respectively. Similar trends are
observed at the file level. Specifically, at the file level, LEGaTo achieved average improvements
of 46.10%, 34.31%, 32.03%, 88.61%, and 85.63% over the two base GBFL models in terms of Top-1,
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Fig. 4. Comparison with state-of-the-art at file level under different labeling rates.

Top-3{ Tops5 accuracy, MFR, and MAR, respectively. These results demonstrate that LEGATO can
efféctively enhance the performance of existing GBFL methods and remains stable across various
GBFL apptoathes.

Second, froin Table 2 and Table 3, we can observe that LEGATO consistently outperforms studied
SSL baselities atreoss all five metrics at both method and file levels on different GBFL methods.
Specifically, €hie method level improvements of LEGATO over all the SSL baselines on GRACE and
DepGraph are remarkable, ranging from 14.36% to 54.47% on Top-1, ranging from 16.47% to 44.19%
on Top-3, ranging from 13£3% te 30.48% on Top-5, from 46.76% to 76.90% on MFR, and from 48.04%
to 73.83% on MAR. Similar thens are observed at the file level, underscoring LEGATO’s effectiveness
compared to other studied SSlebaselines across different localization level and GBFL methods.

Third, the comparison betweemIEcaTo and FixMatch—both of which leverage pseudo-labels and

augmentation techniques—reveals that Licato markedly outperforms FixMatch at both localization
levels and on different base GBFL, Although the edge centrality-based graph augmentation used
by FixMatch is widely applied in variou$ graph learning scenarios, the centrality measures do not
effectively capture fault information in, the'testsgraphs. In contrast, LEGATO trains an attention
network using passed and failed test graphsfallewing the attention mechanism to identify edges
in the failed graph that are more likely to begitrelefant to faults. This makes the model focus
more on fault-related features unchanged during afigmentation, which enhances fault localization.
The improvement also suggests that our pseudo-label esfimation is more effective than the fixed
threshold employed by FixMatch. The estimation step in LEGATO allows us to select all program
entities with significantly high suspiciousness scores a§"psé¢udo-labels, avoiding the threshold
selection and addressing the issue of multiple fault entities:
Different percentage of labeled data. From the figure 4, We can observe that as the number
of available labeled samples increases, the performance of all methods iiproves across different
metrics. Specifically, LEGATO achieves the best effectiveness across all percefitages. In scenarios
with very few labeled data, the effectiveness of models trained by all metheds sigriificantly declines.
It is reasonable that when the amount of labeled data is extremely limited, the sup€rvise@hlearning
component within semi-supervised learning may be unable to train the model ondabeled data,
making fault localization challenging. When the model performs poorly, its outputs for usilabeled
samples may be incorrect, significantly impacting the effectiveness of all SSL methods. Howeyer,
LegarTo still manages to achieve 59.8% Top-3 accuracy with only 2% of labeled samples, which
is a 24.5% improvement over the best performance baseline. This indicates that LEGATO is better
adapted and more robust to an environment with minimal labeled data, further underscoring its
effectiveness.

To further confirm the observations above, we have followed previous works [24, 30] to perform
the Wilcoxon signed-rank test [57] with Bonferroni corrections [11] to investigate the statistical
significance between LEGATO and other baselines. The results show that LEGATO is significantly
better than all studied baselines at the significance level of 0.05.
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Table 4. Cross-project effectiveness at file and method levels.

T ) | Method Level || File Level
echniques
|Top-1 (1) Top-3 (1) Top-5 () MFR (1) MAR ({)||Top-1 (1) Top-3 () Top-5 (1) MFR () MAR ({)
GRACE 2506 3041 3477 11457 13325 || 33.82 3814 4278 4724 5598
I1-Model 2778 33.65 3874 9263 11037 || 3795 4539 5311 2634 3544
Pseudo-Labeling| 2632  31.22 3653  107.2 12364 || 37.12 4259 4982  27.11  39.88
FixMatch 3158 37.72 4405  87.74 10329 || 40.17 5297 5745 2266  25.67
Legato 43.84 4639  51.63 6495 79.32 || 52.68 57.64 60.27 1442 19.18

Table 5. The effectiveness of different variants at method level.

Variants Top-1(1) Top-3(1) Top-5(1) MFR({) MAR()

LEGATOPLE 49.27 56.94 64.82 46.33 60.91
LEGATOEA 57.31 64.41 73.58 30.24 42.55
LEGATOAA 52.28 55.83 61.44 44.7 67.91
LEgATOP], 55.97 62.33 70.44 24.62 37.17
LEGcATOGMM 60.49 70.58 71.27 19.85 31.83
LEGATO 68.91 77.69 79.66 11.74 17.49

4.3 RQ2: Cross-project Efféctiveness of LEGATO

In RQ2, we further evaluatethe miethed and file level effectiveness of LEGATO in a cross-project
scenario. Table 4 presents the camparison results between LEGATO and other baselines in the
cross-project scenario. From the tables ingwithin-project and cross-project scenarios, we observed
a certain degree of decline in the effectiveness of all methods. This decline is reasonable because
of the significant differences in fault contexts between the tested project and other projects in
cross-project scenarios, which can only be learnied from other projects and unlabeled data. Thus,
the cross-project scenario presents significant challéenges to how SSL methods utilize unlabeled
data, as they employ the same GNN-based FL m&thod. Despite the performance degradation of
LEGAToO, it still performs better than other baselines. Specifieallyy the improvements of LEGaTo
compared with the second-best baselines achieve 38.82%, 22.98%, 17.29%, 25.97%, and 23.20% in
terms of Top-1, Top-3, Top-5, MFR and MAR, respectively. Similas trends are observed at the file
level. Additionally, the performance drop of LEGATO in the crogs-project scenario is also smaller
than the baselines. For example, in terms of Top-1 accuracy, LEGATO deereased by 36.28% and
33.34% at the method and file level, which is less than the 41.61% and 37467% décrease experienced
by FixMatch. These results demonstrate the effectiveness of LEGATO inl the gfoss-project scenario
and suggest that LEGATO’s attention-based graph augmentation enables the niodel to better utilize
passed and failed graphs to identify potential fault entities in cross-project settisigs.

4.4 RQ3: Ablation Study

In this RQ, we conduct a series of ablation studies on different graph augmentation and ps¢udeslabel
estimation policies to further analyze the impact of each step in LEgaTo. Specifically, weeonsider the
following five variants of LEGATO: LEGATOp g only employs pseud-label estimation. LEGATOE4 re-
places the attention-guided graph augmentation to edge centrality-based graph augmentation [75],
which has been adapted in baselines and is widely used in graph learning. LEGATO44 only employs
attention-guided graph augmentation. LEGATOpy replaces the pseudo-labels estimation policies
with pseudo-labeling [21], which selects the entity with the highest confidence as pseudo-label.
LEGATOGMM removes the BIC and only employs the two-component GMM in pseudo-labels esti-
mation. Table 5 summarizes the study results, and we have the following observations.
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Table 6. The coverage and impurity at the end of the training of different methods involved pseudo-labels.

Techniques Coverage (1) Impurity (])

Pseudo-Labeling 56.47% 29.92%
FixMatch 80.25% 37.56%
LEGaTO 77.14% 21.06%

First, removing any component from LEGATO results in a noticeable decline in effectiveness.
LEGATOpr and LEGATO 44 are the least effective variants among all. Specifically, the Top-1 accuracy
of LEca®Ooprr and LEGATO44 decrease by 28.50% and 24.13% compared to LEGATO respectively
Thisdndicates that both our attention-guided graph augmentation and pseudo-label estimation
signifiéantly contribute to the effectiveness of LEGaTo. Additionally, this suggests that combin-
ing augndentation and pseudo-labels can achieve greater effectiveness in fault localization than
employing only one of them.

Second, durifig pseudo-label estimation, we found that choosing entities with the highest suspi-
ciousness scores as pseudo-labels (LEGATOpy) or using only a 2-component GMM (LEGATOG M)
resulted in sub-optimal effectiveness. In particular, the Top-5 accuracy of LEGATOp; and LEGATOG MM
decrease by 11.57% and 10.53% compared to LEGATO respectively. This indicates that directly se-
lecting program entitie$ withsliigh suspiciousness scores as pseudo-labels without quantifying the
entire distribution may mboreasily introduce noisy labels, leading to sub-optimal effectiveness.
By combining GMM with BIC, W¢ can dynamically determine during training if some program
entities’ suspiciousness scores'@re significantly higher than others, thus estimating pseudo-labels
without fixed thresholds and minimizing the introduction of noisy pseudo-labels.

Finally, in terms of graph augmentation, we observed a decrease in model effectiveness when
replacing attention-guided graph augmentation™with edge centrality-based graph augmentation.
Specifically, the Top-1 accuracy of LEGATO#s Was 16.83% lower than that of LEcaTo. This result
further demonstrates the effectiveness of our atf@ntion-guided graph augmentation. This is because
edge centrality-based graph augmentation method§ assess the importance of edges based solely on
the centrality of nodes. However, the node centrality dg€s not necessarily reflect its relevance to
faults, so the augmentation process may affect the fault context, ledding to sub-optimal effectiveness.
In contrast, our method uses an attention mechanism to targét augmentations on subgraphs that
are more likely to be irrelevant to faults, thereby enhancing thegerformance of LEgATO.

4.5 RQ4: The Quantity and Quality of Pseudo-labels

To better understand the role of pseudo-labels in LEGaTO and baseline§, we génducted both quan-
titative and qualitative analyses of the generated method-level pseud&<labéls. Specifically, we
randomly selected 200 unlabeled failed tests from the dataset and had enginéers frdm ous ihdustrial
partner label these tests. Following previous work [47], we collected the pseudo-lab€ls generated
by different methods on these 200 unlabeled failed tests after training and compéred thein to the
ground truth labels. We define two additional metrics: the Coverage (the rate of true labels thatare
covered by the pseudo-labels) and Impurity (the rate of incorrect labels within the psefido-labels),
which are computed as follows:
N |P:iNL;] N |P\Li]

i=1 |L,| . Zl:l |Pl|
, Impurity = ————

)

where P; and L; represent the pseudo-labels and true labels for the i-th test, respectively, and N is
the number of unlabeled failed tests. Table 6 presents the coverage and impurity of all methods
involving pseudo-labels. From the table, we can observe that LEGATO achieves a better balance

Coverage =
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Table 7. Training time cost of studied SSL methods.

Techniques II-Model  Pseudo-Labeling FixMatch  LEGaTto

Training Time  2h51mins 2h10mins 3h7mins  4h41mins

between coverage and impurity. Notably, while achieving the lowest impurity, LEGATO’s coverage
is only 3.87% lower than that of FixMatch. This is because our pseudo-label estimation does not
rely on a specific threshold but instead makes the estimation based on the overall distribution of
suspiciousness scores across program entities. Thus, we can reduce the introduction of noisy labels
while efyering more true faulty entities. Although FixMatch achieves slightly higher coverage
thanfLEGATo, it has the worst impurity, as its reliance on a fixed threshold struggles to handle
uficertainty in the number of faulty entities and variations in their confidence. Pseudo-Labeling, on
the othesf'hand, has lower coverage because it always selects the label with the highest confidence
as the pseudg-label, which tends to introduce noisy labels when the confidence across all entities is
low, ultimately redueing the effectiveness of the model.

4.6 RQ5: Efficiency of LEgATO

This RQ empirically analgzes the efficiency of LEGaTo. Table 7 presents the time cost of training
a model using LEcaTofand the studied SSL approaches. As shown in this table, compared to the
studied baselines, LEGAT@ requires more time to train the model because LEGATO requires pre-
trained the attention-based GNN¥in graph augmentation and fit one/two-component GMM and
BIC to perform pseudo-label estimation. Nevertheless, it is important to emphasize that LEGATO
achieves significantly better perfosmancedmlocating faults than the baselines, as demonstrated in
Section 4.2. Therefore, we believe such‘a time cost of LEGATO is worthwhile for achieving better
models. Furthermore, considering that the,training process is offline, the training time of LEGAaTO
is also acceptable in practice.

5 Discussion

Threats to validity. The main threat to internal validity lie§)in the technical implementation of
LEGATO, the compared approaches, and experimental sctipts. Tofmitigate this threat, we developed
LEGATO based on widely used libraries and employed the original imiplementations of the compared
approaches. We have reviewed the source code of LEGATO and exferimental scripts thoroughly. The
main threat to external validity may be tied to the benchmark used in our study=To reduce this threat,
we perform experiments on an industrial dataset provided by our industrial partiner, which contains
7,500 passed and 7,500 failed tests (8% of failed tests are labeled) from 11 large*seale software, each
exceeding one million lines of code, and covering diverse product lines and platforms. Furthermore,
we compare LEGATO with 3 representative and state-of-the-art semi-supervised léarnin@ baselines
in our experiments. The main threat to construct validity lies in the parameters ifi LEGaTO and
metrics used in experiments. To mitigate this threat, we present the detailed parameter setfings on
our project site. To reduce the threat from metrics employed, we employed various metri¢s that'are
widely used in prior fault localization studies [24, 30].

Generalizability of LEGaTo. LEGATO has demonstrated remarkable effectiveness in learning fault
localization GNN when only a small portion of graphs are labeled. Nevertheless, we believe its key
insights can also be further generalized to other LBFL methods in the future. The generalizability
of LEGATO comes from two aspects. First, the key insight of augmentation in LEGATO is that the
attention mechanism can be trained to capture the likely fault-unrelated information. This idea
does not involve specific types of inputs and can be utilized in other LBFL methods by training the
attention mechanism on the features from passed and failed tests. Second, the key insight of our
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pseudo-label estimation is to select pseudo-labels by quantifying the relative magnitudes of suspi-
ciousness scores among different program entities. This method only relies on the suspiciousness
scores, which can be extracted from all LBFL methods and models. For future work, we plan to
extend LEGATO to various LBFL methods.

6 Related work

Learning-based fault localization. Deep learning technologies have found extensive application
in fault localization [20, 24, 26, 28, 30, 31, 40, 46, 65, 69, 72, 76]. Learning-based fault localization
approaches can be divided into two categories: one category improves feature representation from
the extraeted test data through learning methods. For instance, GRACE [30] represents coverage
using a graph structure and employs GGNN [27] for learning and calculating suspiciousness scores.
The other category combines features across different dimensions through learning methods. For
instancef FLUECS [46] utilizes suspiciousness values derived from 33 SBFL formulae, combined
with code agé, chifirn, and complexity, as diverse features for the Support Vector Machine to process.
Among the LBFL techiniques, the graph learning-based fault localization (GBFL) has been extensively
researched and achieved promising results recently [22, 30, 38-40, 59, 64]. These techniques model
source code or other featuresasing graphs, enabling the model to better learn how to represent or
combine these features fof improved fault localization. In this paper, we build LEcaTo based on the
GBFL techniques, aimihg t¢ €nhance their effectiveness within insufficient labeled data.
Semi-supervised Learning’ Senii-supervised learning (SSL) is a machine learning approach
that utilizes both labeled and unlabeled data to improve learning accuracy [49]. Semi-supervised
learning methods can broadly be,divided into three categories: wrapper methods, unsupervised
preprocessing, and intrinsically semi-super¥ised approaches. Wrapper methods extend supervised
learning to semi-supervised by utilizing labeled data to supervise the training of models and using
the model’s output on unlabeled samplessto further train the model. Representative techniques
include pseudo-labeling [3, 17, 21, 34, 66] dnd ceftraining [53, 74]. Unsupervised preprocessing
involves processing unlabeled samples in an unsupegfised manner and using the processed features
to enhance the training of supervised models. Notédble technigues include feature extraction [42, 44]
and cluster-then-label [5, 14]. Intrinsically semi-superyised metheds directly integrate unlabeled
samples into the loss function of supervised learning toextend ifto semi-supervised learning. The
most representative perturbation-based methods assume thatshe predictions for the augmented and
the original versions of the same inputs should be similar [4, 19,41, 43]. In recent years, combining
consistency regularization and pseudo-labeling has led to significant succegses,in semi-supervised
learning [8, 18, 47, 55]. These methods use the model’s outputs on unlabeled Samples as pseudo-
labels, then train the model on these pseudo-labeled and augmented unlabeled samples to achieve
semi-supervised learning. Our approach falls into this category.

7 Conclusion

In this paper, we propose LEGATO, a novel semi-supervised learning framework'for GNN-based
fault localization, designed to effectively locate faults within the context of insufficiefit lab€led
failed tests and a large number of unlabeled failed tests. LEGaTo adopts a two-step approach for
utilizing unlabeled failed tests. In the attention-guided graph augmentation, LEGATO leverages the
attention mechanism to identify and augment the more likely fault-unrelated edges and obtain
the augmented unlabeled graphs to conduct consistency regularization. Then, in the pseudo-label
estimation step, LEGATO employs GMM and BIC to determine the pseudo-labels of unlabeled graphs
to eliminate the optimal threshold selection and address the challenge arising from multi-fault
entities in pseudo-label estimation. The experimental results demonstrate the effectiveness of
LEGATO in fault localization within insufficient labeled failed tests.
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8 Data Availability
Our code and configuration are publicly available at https://github.com/pppppkun/Legato.
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