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Abstract—Control-CPSs are usually safety or mission critical,
hence they demand thorough debugging. As nowadays control-
CPSs reaching millions of lines of source code, traditional human-
flesh debugging is no longer sufficient. We need automated
software fault localization (SFL) to assist the debugging. In
automated SFL, automatically generated test cases are fed
to the control-CPS (or the simulator of the control-CPS), to
generate thousands of cyber-subsystem code traces and physical-
subsystem trajectories. Next, another automated program, aka
oracle, is needed to label the correctness of these physical-
subsystem trajectories (and hence cyber-subsystem code traces),
even without knowing if there is a bug in the cyber-subsystem.
Control-CPS oracle design is a known hard problem. To our
best knowledge, AR-SI oracle (denoted as AO in the following) is
the most widely adopted control-CPS oracle so far. On the other
hand, recently, transformer emerges as a major game changer in
the domain of time series prediction. As AO is also time series
prediction based, people naturally wonder if transformers can
also be used as control-CPS oracles; and if so, can it outperform
AO. In this paper, we answer this question by comparing AO with
an intuitive design of transformer control-CPS oracle (simplified
as TO in the following). Our comparison results show that in
terms of SFL accuracy and latency, the TO does not significantly
outperform the AO; in terms of false positive rate, the AO
performs significantly better; and in terms of false negative rate,
the TO performs significantly better.

Index Terms—Software Fault Localization, control-CPS, trans-
former, Oracle

I. INTRODUCTION

Control-CPS refers to those software systems that interact
with the physical world [1]. With the development of In-
dustry 4.0, control-CPS is increasingly common in our life
[2]. Typical control-CPSs include smart grids, autonomous
automobile systems, medical monitoring, industrial control
systems, robotics systems, etc [3]. The wide application of
these control-CPS in everyday life may lead to some safety
concerns. For example, an out-of-control autonomous auto-
mobile is likely to pose a safety threat to pedestrians on
the road. Therefore, developers should conduct comprehensive
debugging for these systems to ensure there are no safety or
other severe problems [4].

Fig. 1. Typical work flow of (program spectrum, statistics, etc) bug localiza-
tion (aka software fault localization, simplified as “SFL”) tools (quoted from
[8])

As nowadays control-CPSs reaching millions of lines of
source code, traditional human-flesh debugging is no longer
sufficient. We need automated debugging tools. One major
category of such tools is those for software fault localization
(SFL), i.e. the tools to locate suspicious buggy lines in the
source code. The SFL tools can be further categorized into
various families [5]. Two of the main stream families are the
program spectrum analysis SFL [6] and statistical analysis SFL
[7]. Both families use the big data idea. A typical working
flow of SFL and oracle is in Fig. 1, quoted from [8]. First
we generate a large number (i.e. big data) of code traces
(files contain blocks that program pass through; The blocks
are usually in form of line numbers or function names, etc).
Then, we examine these large number of code traces: if a
program block often appears in the buggy code traces, but
rarely appears in the correct code traces, then the program
block is suspected to be buggy. A natural question then is,
how to determine a code trace is buggy or correct. The tools
to make such decisions is called oracles [9].

Oracle design difficulty is heavily application dependent.
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Fig. 2. Oracle of control-CPS output

For some applications (such as sorting), oracles are very
easy to design. But for most other applications, oracles are
extremely difficult to design (this is the well known oracle
problem [9]). Control-CPS oracle designs, unfortunately, usu-
ally belong to the latter. For example, for a control-CPS to fly
a drone from point A to point B, the output of the control-CPS
is the trajectory of the drone (see Fig. 2). The oracle needs
to judge merely from this trajectory, the correctness of the
control-CPS execution (note there could be many ways to fly
from A to B, and not every buggy execution leads to drone
crash).

So far, control-CPS oracle design is still mostly an open
problem space. To our best knowledge, auto-regressive system-
identification (AR-SI) oracle [10] is the most widely adopted
control-CPS oracle (another alternative is to use human to label
the correctness of control-CPS code traces but this is infeasible
in the context of big data based automated SFL).

The AR-SI oracle believes that a buggy control-CPS will
generate jitters in the outputted physical-subsystem trajectories
(simplified as “trajectories” in the following). The method
uses AR-SI to identify the math model of the control-CPS.
Then, it uses the identified model to predict the future trajec-
tory. If the difference between the actual trajectory and the
predicted trajectory is smaller than a preset threshold, then
the trajectory (and the corresponding code trace) is marked
correct; otherwise, marked buggy.

AR-SI plays the function of time series prediction in the
oracle approach mentioned above. Time series prediction,
however, is also a focus application of AI. Recently, trans-
former [11] emerges as a game changer in the domain of AI
based time series prediction [12]. Naturally, people wonder if
transformers can be used to build control-CPS oracles, and
how well they can perform compared to the AR-SI control-
CPS oracles.

This paper aims to make an initial attempt to answer the
above concerns.

We propose a transformer control-CPS oracle (simplified as
TO in the following), and compare it with the AR-SI control-
CPS oracle (simplified as AO in the following). Specifically,
our TO assumes the existence of an earlier well-debugged
version of the control-CPS. We use this well-debugged version
to train a transformer based trajectory time series predictor. We
use this predictor to predict the trajectories of a new version of
the control-CPS (the to-be-debugged version). If the predicted

Fig. 3. Control-CPS Model

trajectory is significantly different from the actual trajectory,
the corresponding actual trajectory (and the corresponding
code trace) is labeled buggy; otherwise, correct.

We tested the TO, and compared its performance with the
AO. The results show that: i) in terms of SFL accuracy and
latency, the TO and the AO are similar; ii) in terms of false
positive rate, the AO performs significantly better; and iii)
in terms of false negative rate, the TO performs significantly
better.

The rest of the paper is structured as follows: Section II
specifies the control-CPS context; Section III presents our
TO solution; Section IV compares TO with AO; Section V
discusses related work; and Section VI concludes the paper.

II. PROBLEM CONTEXT

A. Control-CPS Model

In this paper, we focus on a control-CPS as shown in Fig. 3.
We can instrument the source code in the cyber-subsystem
of the control-CPS (specifically, add logging instructions to
record the code traces), but we do not understand the source
code, at least not before the automated SFL gives us a list of
suspected buggy source code blocks.

Users send operation instructions to control-CPS. Receiving
the operation instructions, the cyber-subsystem senses and ac-
tuates the physical-subsystem (or the simulator of the physical-
subsystem). During operation, users are able to get the status
information of control-CPS.

We regard the operation instructions given by the user as
system input U(t), t ∈ [0,+∞). User operation instructions
are recorded before sending to the control-CPS, with a time
interval of T . We denote Uh as the hth sampled U(t).
U(t) stays unchanged during [hT, (h + 1)T ). In other word,
user send an operation instruction to control-CPS every time
interval T.
Y (t) is the physical trajectory generated by the system. We

sample it periodically, and use Yi to represent the ith sampled
Y (t). The time interval is ∆.

B. Assumptions

Assumption 1: With output Y (t) frequency domain upper
bound Fmax < ∞(Hz), Y (t) can be considered as continuous
and differentiable. Corresponding to Assumption 1, control-
CPS design has the following empirical rule on how to set ∆
[10].
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Assumption 2: The cyber system has to sample quickly
enough (∆ ≤ 1/(20Fmax)) for the physical system to treat
it like a continuous signal processor.

To repeat the experiment, we created a software (named
“monkey”) that would automatically send commands to the
control-CPS to move to the target position every T time period.
The “monkey” will also log the trajectory of the control-CPS
at a time t while operating. To make the experiment easy to
repeat, we make the control-CPS running in simulator. After
each execution, related code trace and associated physical
trajectory will be recorded. We need to oracle the correctness
of the physical trajectory. Labeling the correctness of physical
trajectories leads to the control-CPS oracle problem discussed
in Section I.

III. SOLUTION

A. Heuristics

A typical control-CPS model is Fig. 3. The input is Uh and
output is Yi. We can apply a sliding window with the size
of p to Yi since they are dispersed trajectories dots sampled
from continuous trajectory Y (t). As illustrated in Section II,
Y (t) represents trajectory and U(t) represents user input. In
our experiment, U(t) is the target state (aka reference state)
that users want the physical-subsystem to reach at time t. U(t)
hence is also called the reference trajectory.

For any Y (t), there must be a relevant U(t). By concate-
nating Y (t) and U(t), we will get Y ′(t)

def
= (Y (t), U(t)).

Suppose the window size is p, then we can define a small
part of trajectory containing waypoint information:

Tq
def
= {Y ′

q−p+1, Y
′
q−p+2, ..., Y

′
q}, Y ′ ∈ Rd, p ≥ q (1)

Tq here represents the qth sliding window of trajectory
(together with waypoint information). A transformer fθ :
Rn×d → Rn×d “transforms” a collection of n objects in
Rd to another collection of n objects in Rd [13]. We built
a transformer to predict the next sliding window of trajectory
using the previous one

T̂q+1 = fθ(Tq) (2)

T̂q+1
def
= {Ŷ ′

q−p+2, Ŷ
′
q−p+2, ..., Ŷ

′
q+1}, Y ′ ∈ Rd, p ≥ q (3)

In (3), T̂q+1 represents the predicted sliding window, Ŷ ′

represents the predicted items in the sliding window. Ŷq+1

represents the predicted trajectory combing with the relevant
waypoint. Taking our the first few dimensions of Ŷ ′, we
will get Yq+1, which represents the predicted trajectory point.
When Yq+1 is available, we know the

transformer prediction error : eq+1
def
= Ŷq+1−Yq+1 (4)

Heuristics 1: F actual
max stands for the actual maximal frequency

component of the continuous output of control-CPS. Normally,
a control-CPS’s output should have F actual

max ≤ Fmax

10 , or
equivalently 10

Fmax
≤ 1

Factual
max

[10]. For instance, despite the

fact that an engine may shake at a maximum frequency of
100Hz, a typical design would not permit such high shaking
(under controlled sounds). The design must keep the shaking
to under 10Hz.

Heuristics 2: When F actual
max < ∞(HZ), Y (t) can be con-

sidered as linearizable in small enough sliding time window
(p∆ ≤ 1/(20F actual

max )(sec)) [14] [5]. After training, the
transformer model will predict a reasonable state value based
on the training set. the transformer prediction error magnitude
(when p∆ ≤ 1/(20F actual

max )) should be small; a magnitude
outlier suggests that something unusual—and hence probably
buggy is taking place. The transformer prediction error can
serve as an oracle in this regard.

Now let us discuss the setting of p. With Heuristics 1,
Heuristics 2, and Assumption 2, we have if p = 10, then
p∆ ≤ 10/(20Fmax) ≤ 1/(20F actual

max ). In this way, the
prerequisite for Heuristics 2 holds. Hence, by setting p to
10, we can apply Heuristics 2 to the oracle for control-CPS
SFL.

B. transformer Oracle: solution

Based on the heuristics of Section III-A, we proposed the
oracle and code trace preparation methodology (following the
overall design of the AR-SI oracle approach proposed in [10]).
Our new approach is called “transformer Oracle Solution”, as
shown in Fig. 4.

Step1 Task1: Simulate the control-CPS using the simula-
tion platform of Fig. 3. Log the physical trajectory
{Yi}, user input trace {Uh}, and code trace θ.
Task2: Run the pre-trained transformer model in
parallel with the control-CPS simulate. For each
new physical trajectory sample Yi+1 from the
simulation, calculate the transformer prediction
error ei+1 via Exp. 4 and log it.

Step2 When the simulation ends, check if the trans-
former prediction error trace {ei} contains
outlier(s) [15] [16]. If so, label θ as “incorrect”;
otherwise label θ as “correct”.

Step3 If enough code traces are collected, terminate;
otherwise go to Step1.

Fig. 4. transformer Oracle Solution

Another classic automatic oracle for control-CPS is “AR-
SI oracle approach” [10]. The only difference is replacing
transformer in Step1-Task2 with AR-SI, as shown in Fig. 5.

IV. EVALUATION

Ardupilot is a very popular test-bed in the CPS field. It
has more than 300,000 lines of code and is a very compli-
cated open-source CPS [17]. Applicable devices for Ardupilot
include Multirotor drones, Helicopters, Rovers, Boats, etc.
ArduCopter is the multirotor drone part of Ardupilot. In this
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Step1 Task1: Same as Fig. 4-Step1-Task1
Task2: Run AR-SI in parallel with the control-
CPS simulation. For each new physical trajectory
sample Yi+1 from the simulation, calculate the
AR-SI prediction error ei+1 via Exp. 4 and log
it.

Step2 Same as Fig. 4-Step2
Step3 Same as Fig. 4-Step3

Fig. 5. AR-SI Oracle Solution

section, we evaluate the proposed Transformer-based oracle
(TO) and up-to-date ARSI-based oracle (AO) on ArduCopter
with three SFL tools, Tarantula, Crosstab and Ochiai. All
oracles are implemented in Python. Guided by Table I, we de-
signed 27 bugs to inject into the ArduCopter cyber subsystem.
Totally, we generate 37 versions (i.e. 37 subjects) of buggy
ArduCopter systems. Each of 27 buggy subjects contains one
of the candidate artificial bugs and each of the rest 10 subjects
contains 3 candidate artificial bugs.

A. Evaluation Method

For each buggy subject, we generate 10000 code traces from
ArduCopter emulation platform. The traces will be labeled by
oracle, and then sent to three SFL tools, Tarantula, Crosstab
and Ochiai (TR, CR and OI). In later evaluation, for example,
TO-TR stands for Transformed-based oracle with Tarantula
for SFL, while AO-CR stands for ARSI-based oracle with
Crosstab for SFL.

We use box plot to show the experimental results clearly.
A box plot, also known as a box and whisker plot, is a
standardized way of displaying the dataset based on the five-
number summary: the minimum, the maximum, the sample
median, and the first and third quartiles [19]. We compare
TO and AO for the control-CPS testbed ArduCopter from the
following aspects.

Following the design evaluation matrix of [10], we choose
accuracy and latency as our evaluation matrix. SFL tools will
give the users a suspect list S = (s1, s2, · · · , sl), where si(i =
1, · · · , l) is the ith suspected (s1 is the most suspected) source

TABLE I
COMMON BUGS-IN-THE-FIELD [18]

Type Description
WPFV Wrong Variable used in Parameter of Function call
WVAV Wrong Value Assigned to Variable
MVAE Missing Variable Assignment using Expression
MFC Missing Function Call
MIA Missing IF construct Around statements
MVIV Missing Variable Initialization using a Value
MVAV Missing Variable Assignment using a Value
MIFS Missing IF construct plus Statements
MIEB Missing IF construct plus statements plus ELSE Before statements
MLC Missing a Logic Clause in branch condition
MLPA Missing small and Localized Part of the Algorithm
WAEP Wrong Arithmetic Expression in Parameter of function call

(a) 1-bug subjects’ trials (b) 3-bug subjects’ trials

Fig. 6. Accuracy (the higher the better)

(a) 1-bug subjects’ trials (b) 3-bug subjects’ trials

Fig. 7. Latency (the lower the better)

code block. Given that B is the set of truly buggy blocks.
Then accuracy refers to |{si|si ∈ B}|/l; latency refers to
min{i|si ∈ B}.
RQ1: SFL quality. How do TO and AO impact the quality
of SFL from the perspective of accuracy and latency?
RQ2: Raw oracle quality. How do TO and AO impact the
quality of raw oracle from the perspective of false positive rate
and false negative rate?
RQ3: Significant difference. What is the significant differ-
ence between TO and AO through T-test?

1) Study 1: SFL quality.: The results related to accuracy
and latency are plotted in Fig.6 and Fig.7 respectively. From
the perspective of accuracy, our results demonstrate that TO
and AO perform similarly in 1-bug subjects’ trials. In 3-bug
subjects’ trials, with TR and CR, AO seems to have a slightly
better performance, while with OI, TO is slightly better than
AO. From the perspective of latency in Fig.7, it is clear that TO
has a slightly better performance than AO. For 1-bug subjects’
trials, the range of TO and AO are all from 0 to 10. Besides,
the median of TO is smaller than AO in each of three SFL
tools, which indicates that TO can find bugs minutely faster
in some cases than AO. For 3-bug subjects’ trials, TO has a
little bit advantage over AO with CR and OI.

Answer to RQ1: AO and TO perform similarly in SFL
quality, but TO has a slightly better performance than AO
in terms of latency (not significant).

2) Study 2: Raw oracle quality.: The result related to the
false positive rate and the false negative rate is plotted in Fig.8.
The labels on X-axis represent the oracle and relative quality
metrics. FP: false positive rate. FN: false negative rate. For
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(a) 1-bug subjects’ trials (b) 3-bug subjects’ trials

Fig. 8. Oracle false positive rate and false negative rate

example, TO-FP stands for Transformer-based oracle and false
positive rate. It is obvious that AO has a lower false positive
rate and TO has a lower false negative rate, which implies that
TO is more willing to label the traces as buggy.

Answer to RQ2: AO has a lower false positive rate and
TO has a lower false negative rate.

3) Study 3: Significant difference.: The significance of TO
and AO are quantified by the p-values [20] [21] and effect
size (ES) values [22] in Table II. P-values can measure the
probability that an observed difference could have occurred
just by random chance. The lower the p-value, the greater
the statistical significance of the observed difference. Effect
size can compare the magnitude of differences. We calculate
by Cohen’s d [23], a measure relating the mean difference to
variability. We regard the absolute value of effect size over 0.4
as at least medium difference magnitude. As shown in Table
II, except for three cells in light gray, the p-values are mostly
above 5%, and except four cells in drak gray, the absolute
value of effect size are below 0.4, hence there is no significant
difference between TO and AO.

Answer to RQ3: There is no significant difference be-
tween AO and TO in terms of accuracy and latency.

TABLE II
QUALITY OF AO VS TO

1-bug subjects 3-bug subjectsMetric p-value ES p-value ES
TR 10.3% -0.15 67.8% 0.08
CR 18.5% -0.11 8.1% 0.21Accuracy
OI 32.7% -0.04 19.3% -0.21
TR 13.0% 0.14 83.2% -0.05
CR 23.1% 0.12 71.6% 0.08Latency
OI 27.5% 0.06 57.6% 0.14

FPR <0.1% -0.98 6.4% -0.86
FNR <0.1% 0.91 <0.1% 0.84

B. transformer Training

The structure of transformer basically the design of [11].
The only difference is, our transformer didn’t embed Ŷ ′

i

discussed in Section III-A. Instead, it treat Ŷ ′
i as attention

values directly. We generated 3000 trajectories using Ar-
duCopter3.6.10 (a release version). Each trajectory consists
of 240 Y ′

i , we can organize these data into 230 (Tq, Tq+1)
groups. In total, we got 690,000 pairs of training data. We
trained our transformer model with these data for 30 epoches.
We chose MSEloss [24] as our loss function. After 30 epoches
of training, the loss dropped from 58.96 at the beginning and
stabilized at around 0.2.

V. RELATED WORK

In this paper we focus on automatic oracle tools for control-
CPS. The key is to identify whether the output trajectory
of control-CPS is inline with user’s expect (user’s input).
Using AR-SI as the automatic oracle for control-CPS [10]
is a successful attempt, it uses AR-SI and sliding window to
predict trajectory and then check outlier. Another successful
trial is Mithra [17], using mature 3-step anomaly detection as
control-CPS oracle. The result shows it has better performance
than AR-SI approach. However, implementing Mithra requires
more complicated steps than AR-SI, AR-SI is more convenient
and thus more universal.

Metamorphic testing [25] is also very efficient as an oracle.
The main idea is using the metamorphic relationships (the
relationship between the software input change and output
change during multiple program executions) as the oracle.
Metamorphic testing was used in [26] to detect faults in
embedded software. It’s also an effective solution for oracle
problems.

VI. CONCLUSION

In this short paper, we proposed an automatic oracle method
based on transformer. We compared the transformer oracle
(TO) and AR-SI oracle (AO) on classic control-CPS test-beds
with SFL of injected bugs. The results show, TO and AO
perform similarly in SFL quality, but TO has a slightly better
performance than AO in terms of latency; AO has a lower false
positive rate and TO has a lower false negative rate. As for
overall performance, there is no significant difference between
TO and AO. AO can achieve good performance without pre-
training, and it is very convenient to use; In order for TO
to defeat AO, it may need better design or more training
data. New research opportunities may include combining the
physical laws with user input to make the transformer Oracle’s
judgments more accurate.
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