

Technical Report 20

Yiyu Zhang,Tianyi Liu,Zewen Sun,Zhe Chen,Xuandong Li,Zhiqiang Z

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2023-IC-005

uo

23

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

Catamaran: Low-Overhead Memory Safety Enforcement via

2023-IC-005

Parallel Acceleration

Catamaran: Low-Overhead Memory Safety Enforcement via
Parallel Acceleration

Yiyu Zhang∗

Nanjing University, China
zhangyy0721@smail.nju.edu.cn

Tianyi Liu∗

Nanjing University, China
tyi.liu@smail.nju.edu.cn

Zewen Sun∗

Nanjing University, China
sunzew@smail.nju.edu.cn

Zhe Chen
Nanjing University of Aeronautics

and Astronautics, China
zhechen@nuaa.edu.cn

Xuandong Li∗

Nanjing University, China
lxd@nju.edu.cn

ABSTRACT

Memory safety issues are the intrinsic diseases of C/C++ programs.

Dynamic memory safety enforcement as the dominant approach

has an advantage in high e�ectiveness, yet su�ers from prohib-

itively high runtime overhead. Existing attempts to reduce the

overhead are either labor-intensive, tightly dependent on speci�c

Zhiqiang Zuo∗†

Nanjing University, China
zqzuo@nju.edu.cn

hardware/compiler support, or poorly e�ective.

In this paper, we propose a novel technique to reduce time over-

head by executing the dynamic checking code in parallel. We lever-

age static dependence analysis and dynamic pro�t analysis to iden-

tify and dispatch the potential code to separate threads running

simultaneously. We implemented a tool called Catamaran and eval-

uated it over a rich set of benchmarks. The experimental results

validate that Catamaran is able to signi�cantly reduce the run-

time overhead of the existing dynamic tools, without sacri�cing

capability of memory safety enforcement.

CCS CONCEPTS

• Software and its engineering→ Software performance; Soft-

ware testing and debugging; •Theory of computation→ Program

analysis.

KEYWORDS

memory safety, program analysis, parallel acceleration, compiler

optimization

ACM Reference Format:

Yiyu Zhang, Tianyi Liu, Zewen Sun, Zhe Chen, Xuandong Li, and Zhiqiang

Zuo. 2023. Catamaran: Low-Overhead Memory Safety Enforcement via

Parallel Acceleration. In Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA ’23), July 17–21, 2023,

Seattle, WA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3597926.3598098

∗Also with State Key Laboratory for Novel Software Technology at Nanjing University.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598098

1 INTRODUCTION

The C/C++ languages are widely used for implementing a rich

spectrum of systems software thanks to their high performance

and low-level control of system resources (e.g., memory). However,

due to the focus on performance and �exibility, memory safety

is not guaranteed at the language level to ensure that program-

mers manipulate memory correctly and safely. As such, memory

safety violation is prevalent in C/C++ programs, which always

leads to not only various subtle bugs (e.g., silent memory corrup-

tion, di�cult-to-diagnose crashes, and invalid outputs), but also

security vulnerabilities (e.g., bu�er over�ow, use-after-free). The

report from MSRC reveals that about 70% of the annual Microsoft

patches are for memory security vulnerabilities since 2004 [28].

Google researchers also conducted a study showing that around

70% of the security vulnerabilities marked as "high" or "severe" in

the Chromium project are memory safety problems [17].

To ensure memory safety, one dominant and e�ective class of

approaches [3, 9, 31, 40] is to dynamically check the validity of

memory accesses at runtime. For this purpose, the additional code

snippets (a.k.a., meta-operations) are embedded into the original

program so as to record, update and check against the meta-data

(e.g., boundary information) of each memory region allocated. For

ease of presentation, we use the term “dynamic checking code” in

the rest of the paper to represent all these additional code snippets

inserted. On the one hand, these approaches are e�ective since all

the memory accesses are dynamically checked against the precisely

tracked meta-data of memory regions. On the other hand, the in-

tensive dynamic checking code results in prohibitively high time

overhead, which severely undermines their practicability.

State of the Art. To lower the high time overhead, numerous

studies have been presented to reduce or accelerate the execution of

dynamic checking code inserted. The existing work can be roughly

classi�ed into three categories. The �rst category reduces redundant

checking code by automatically analyzing or manually annotating

the source code [13, 47, 48]. Unfortunately, they are limited by either

the imprecision and incompleteness of program analyses, or the

intensive manual e�ort of annotations. The second is the hardware-

based approach which manipulates speci�c hardware to accelerate

the execution of dynamic checking code [30, 42, 45]. However, these

approaches can hardly be general since 1) they rely on the speci�c

compiler to support the extended ISA; and 2) they cannot support

all types of memory safety errors. The third category is to decouple

the execution of dynamic analysis from the original execution, and

816

For Research Only

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3597926.3598098
https://doi.org/10.1145/3597926.3598098
https://doi.org/10.1145/3597926.3598098
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598098&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yiyu Zhang, Tianyi Liu, Zewen Sun, Zhe Chen, Xuandong Li, and Zhiqiang Zuo

o�oad it on other cores/processes [8, 24, 33, 36]. However, these

approaches either require manual intervention to specify the code

decoupled a priori [24], or need frequent expensive replay [33], or

su�er from heavy communication cost due to intensive data/log

passing [8, 43].

Insight & Our Approach. Di�erent from all the existing work,

we propose a novel approach to reduce the runtime overhead by

executing dynamic checking code in parallel.

We observed that not all the code snippets in the original pro-

gram and the dynamic checking code are dependent on each other.

In fact, it is very likely that there exists no dependence at all between

dynamic checking code and original code or among dynamic check-

ing code themselves. Therefore, there is a large potential bene�t

for making certain code snippets of the original code and dynamic

checking code run in parallel. Additionally, as the multi-core CPUs

are prevalent in commodity PC, CPU cores can be rarely 100% uti-

lized over a long period of time [6, 26]. In the general computing

scenario, we have reasons to believe that the host machine would

have extra CPU resources to be exploited.

Based on the above insights, we propose to accelerate the dy-

namic checking code via �ne-grained thread-level parallelism, thus

lowering the time overhead. In brief, our approach treats each small

fragment of dynamic checking code as a potential parallel task,

automatically identi�es all the potential tasks to be parallelized,

and produces an optimized schedule with correctness guarantee by

leveraging rigorous and sound static analysis (i.e., def-use analysis,

happens-before analysis, and alias analysis). Moreover, it adopts

thread-level parallelism to enable in-memory information sharing

among parallel tasks, thus avoiding heavy communication cost.

Parallel

Executable

Parallel Task

Dispatch

1

Transformer

3

Parallel Task

Optimization

2

Memory Safety

Enforced Program

Thread-safe

Runtime Library

Figure 1: Work�ow of Catamaran.

We implement our approach as a tool called Catamaran, whose

work�ow is illustrated by Figure 1. Given a memory safety enforced

C/C++ program where the intensive dynamic checking code is in-

serted, Catamaran �rstly conducts the parallel task dispatch (cf. ①).

We leverage a rigorous def/use analysis to achieve the dependen-

cies between each piece of dynamic checking code and the original

code. Based on the dependencies, Catamaran dispatches each piece

of dynamic checking code which can run in parallel as a parallel

task executed by a separate thread. However, the above naive task

dispatching could instantiate too many tiny tasks, which severely

undermines the overall performance gain. To this end, Catamaran

exploits a pro�t analysis-based optimization (cf. ②). We introduce

a cost model for pro�t analysis to measure the approximate cost

of each parallel task. Based on this model, we seek the maximum

pro�t by performing the appropriate parallel task management, e.g.,

merging small tasks, rescheduling certain tasks without violating

the dependence restriction. Finally, based on the optimized parallel

tasks, Catamaran transforms the source code into multi-threaded

executables leveraging the thread pool mechanism (cf. ③). We also

implement a thread-safe version of meta-operation runtime library,

which can safely access and manipulate meta-data in a parallel way.

Each step of Catamaran will be discussed in details shortly.

Results & Contributions. We have implemented Catamaran on

top of the LLVM compiler infrastructure [23]. We selected three rep-

resentative memory safety enforcement tools, namely SoftBound-

CETS [31], MoveC [9], and AddressSanitizer [40] as the candidates

to be accelerated, and conducted the experiments over a set of

benchmarks including SPEC CPU 2006, SPEC CPU 2017, MoveC-

MSBench and 8 CVEs. The experimental results show that Cata-

maran with 4 threads reduces runtime overhead by 46% to 224%

on average with negligible memory overhead. Moreover, Catama-

ran does not diminish the capability of detecting memory errors

compared to the baseline memory enforcement tool.

In summary, we make the following contributions.

• We propose a novel approach that accelerates the dynamic

checking code via multi-threading parallelism.

• We implement a prototype of Catamaran that enables us

to reduce the runtime overhead of the existing dynamic

memory safety enforcement tools.

• We conduct the comprehensive evaluations which validate

that Catamaran signi�cantly reduces the time overhead of

memory safety enforcement tools, without sacri�cing en-

forcement capability.

Outline. The rest of the paper is organized as follows. §2 gives

the necessary background of dynamic memory safety enforcement

and overview of Catamaran. §3 formalizes the problem we have

to solve and §4 describes the approach we proposed, followed by

the implementation of Catamaran in §5. We present the empirical

evaluations in §6. Certain issues are discussed in §7. We talk about

the related work in §8. Finally, §9 concludes.

2 BACKGROUND & OVERVIEW

2.1 Background

Dynamic approaches enforce memory safety by dynamically check-

ing the validity of memory accesses at runtime. They follow the

same basic schema which inserts the pre-de�ned meta-operations

into each memory access point of the subject program. Table 1

lists the three meta-operations used for recording, updating, and

checking the meta-data of memory regions allocated.

Table 1: Three basic meta-operations used.

Operation Input Output Description

_update key, meta-data void
update the key and its

associated meta-data

_lookup key meta-data
�nd and return meta-data

associated with key

_check ptr, meta-data void
validate the memory access

against meta-data

Without loss of generality, we take the approaches preventing

spatial and temporal memory errors (e.g., bu�er over�ow, use-after-

free) as an example to explain how they work. For each pointer ptr

referring to a memory region allocated in a program, we maintain

its respective boundary and temporal status meta-data which can

be represented as a tuple ⟨BC0AC, 4=3, BC0CDB⟩. All the information

817

For Research Only

Catamaran: Low-Overhead Memory Safety Enforcement via Parallel Acceleration ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

of all memory regions involved can be stored in a lookup table

where the key corresponds to the address of pointer (i.e., &?CA),

and the value is the respective meta-data. The _update function

is responsible for storing/updating the meta-data associated with

a particular key in the table. The _lookup function takes the key

as input and returns the respective meta-data associated with the

key. The _check function takes the meta-data and the current value

of the pointer as input, and checks if the pointer goes beyond the

valid boundary of the memory region to which the pointer refers

and whether the pointer’s status is legal.

Q

P

O

N

M

L

J

I

H

G

E

F

K

C

B

A

D

}

];sum += p[i

_check(p+i, md4);

md4 = _lookup(&p);

for (int i = 0; i < N; i++) {

_update(&p, md3);

md3 = _lookup(r);

p = *r;

_check(r, md2);

md2 = _lookup(&r);

);_update(&r, mdq

mdq = _lookup(&q);

r = q;

_update(&r, Null);

int** r;

_update(&p, Null);

int* p;

int sum;

has been previously recorded */

q is a pointer whose metadata /*

(a) enhanced code

N

P

O

M

L

J

I

H

G

E

C

Q

K

F

D

B

A

(b) intra

P

O

M

L

J

I

H

G

EC

Q

N

K

F

D

B

A

(c) inter

N

P

O

M

L

J

I

H

G

E

C

Q

N

K

F

D

B

A

(d) optimized

Figure 2: An example showing how Catamaran works; the

solid line indicates the main thread, whereas dotted lines in-

dicate parallel threads forked; the blue and red dots indicate

the fork and join points, respectively.

Example. Figure 2a illustrates a piece of memory safety enforced

code where the instructions with black and red colors indicate the

original code and the dynamic checking code inserted, respectively.

Assume that @ is a pointer variable whose meta-data has been

recorded beforehand. For each pointer variable de�ned (? or A), a

meta-operation _D?30C4 (Line � or �) is inserted accordingly to

record the meta-data for each memory region they point to. As they

are uninitialized, the meta-data is Null. For an assignment A = @ at

Line � , a _;>>:D? is inserted to �rstly retrieve the meta-data of @,

followed by an _D?30C4 which updates the meta-data of A as that

of @. Given a memory load statement ? = ∗A (Line), as there is

a dereference to the pointer A , we �rst need to guarantee that A

is accessed legally. To this end, a _lookup (Line �) followed by a

_check (Line �) is inserted. The _lookup gets the meta-data (i.e.,md2)

of the memory region to which A points by retrieving the value

associated with the address of r (i.e., &r) in the table. Then, the

_check validates if the current value of A resides in the legal range

and status represented by the meta-data. If failed, a runtime error

will be reported. Since ? is re-assigned as ∗A , its meta-data should

be updated as the same meta-data of ∗A accordingly. To this end, the

_lookup (Line !) uses the address of ∗r (i.e., &(*r), for simplicity, we

directly use r) to obtain the meta-data (i.e., md3). The subsequent

_update (Line") updates the meta-data of ? as md3. Finally, for a

unary dereference at Line& , a _;>>:D? �rst acquires the meta-data

of ? , followed by a _2ℎ42: that is utilized to check the validity of

accessing ? .

Note that di�erent approaches [9, 12, 31] may be di�erent con-

cerning the implementation details, i.e., the content and data struc-

ture of meta-data, the implementation of meta-operations, or the

representation of programs. However, there is no doubt that all

these dynamic approaches need to heavily store, search, and update

the additional meta-data at runtime, which inevitably results in pro-

hibitively high overhead. In this paper, we would like to lower the

overhead by running certain meta-operations inserted in parallel.

2.2 Overview of Catamaran

Catamaran takes as input a programwith a series ofmeta-operations

instrumented, identi�es the potential meta-operations which can be

run in parallel, �nally generates a parallel program whose overhead

is greatly reduced while without sacri�cing any safety guarantee.

Having the memory safety code, Catamaran �rst automatically

discovers the potential parallelism within each memory access

point. Considering the code shown as Figure 2a, there are in total

�ve memory access points including Lines �,� , � , , and& . For the

pointer de�nition points (i.e., Lines � and�), their subsequent meta-

operations _D?30C4 cannot be executed in parallel due to the data

dependence restriction with them. For the assignment point (Line

�), as both _;>>:D? (Line�) and _D?30C4 (Line �) are data/control

independent of Line � , Lines � and � can be executed in parallel

with � . Similarly, for Line , all the meta-operations before (i.e.,

Lines � and �) it and after (i.e., Lines ! and ") it can be run in

parallel. The same handling works for Line & as well. After the

above processing, the execution �ow of the memory safety code

can be demonstrated in Figure 2b, where the solid and dotted lines

indicate the main thread and forked thread, respectively. The blue

dot indicates the fork point, whereas the red dot corresponds to a

join point. Note that the execution of instructions after a join point

must wait for the end of the execution of all previous instructions.

Only the intra-point parallelism (i.e., the parallel executionwithin

a single memory access point) is insu�cient. The meta-operations

across di�erent memory access points (i.e., inter-point) are also

possible to be run in parallel. As a result, Catamaran next performs

a static dependence analysis (a.k.a., def-use analysis) to realize more

parallelism across multiple memory access points on the base of

the intra-point parallel tasks (i.e., Figure 2b). For instance, Line� is

independent of all the code (i.e., Lines �-�) before ! in Figure 2b.

Hence, the join point for� can be pushed forward to the point right

before !. As no dependence exists between ! and � , the execution

of ! does not need to wait for the execution end of � . But there

is a dependence between � and � , � has to join right before � . As

shown in Figure 2c, the join point of � remains unchanged. On the

contrary, the joint point following � and � can be moved down to

the end of the loop (i.e., Lines # -&) as the execution of the loop is

independent of Lines � and � , i.e., � and � can be executed in parallel

with the loop. We will give the rigorous descriptions of both intra-

and inter-point task dispatch shortly in §4.

After both intra- and inter-point parallel task dispatching, a �ne-

grained parallel version of thememory safety code can be generated.

However, too many tiny tasks could be introduced. O�oading a

tiny task to a separate thread may not get any performance bene�t

especially when the time cost introduced by parallelism implemen-

tation is beyond the execution time of the tiny task. To this end,

818

For Research Only

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yiyu Zhang, Tianyi Liu, Zewen Sun, Zhe Chen, Xuandong Li, and Zhiqiang Zuo

Catamaran exploits a pro�t analysis-based optimization to seek

more performance gains by merging, rescheduling tasks, and han-

dling loops, etc. For example, as shown by Figure 2d, � can be

merged together with � . Meanwhile,� , � , � , and � can be uni�ed

as a single task. Moreover, instead of creating a separate thread

executing $ and % within each loop iteration, Catamaran divides

all the meta-operations as a separate loop and instantiates a single

thread for the loop. More details about parallel task optimization

will be presented in §4.3.

3 PROBLEM FORMULATION

To prevent any in�uence on the correctness of the original pro-

gram’s logic, Catamaran mainly focuses on parallel acceleration of

dynamic checking code and keeps the original code unchanged.

Informally, the essential problem Catamaran needs to address

can be described as follows: given an enforced program, how

do we generate a parallel program by scheduling the meta-

operations such that they can be executed in parallel as much

as possible while strictly preserving the happens-before rela-

tion among the code having data/control dependence? Cata-

maran adopts task-level parallelism. The execution of one or more

meta-operations corresponds to one parallel task, which can be

assigned to a thread for execution.

Definition 1 (Parallel Task). A parallel task) is a triple

) = (<̂, ;BC0AC , ;4=3) where:

• <̂ is a sequence of meta-operations which are executed sequen-

tially by a thread.

• ;BC0AC is the position (instruction point) in the program where

this task can start.

• ;4=3 is the end position where this task must �nish.

Definition 2 (Parallel Task Graph). Given a memory

safety enforced program % = ⟨O, "⟩ where O and " denote the

original code and the dynamic checking code, respectively. A parallel

task graph G = ⟨O,Ψ⟩ is the control �ow graph of O augmented with

a set of parallel tasks Ψ = {)1,)2, ...,)8 , ...,)=} such that the following

conditions hold.

• ∀1 ≤ 8 < 9 ≤ =,)8 .<̂ ∩)9 .<̂ = ∅;

•
=⋃
8=1
)8 .<̂ = " ;

Informally, given a control �ow graph of O and a set of parallel

tasks, the parallel task graph can be directly generated by embed-

ding each parallel task into the respective position based on its start

and end points. For example, Figure 2b shows a parallel task graph

of the memory safety program in Figure 2a. The meta-operations of

di�erent parallel tasks are non-overlapped. While the union equals

to all the meta-operations in Figure 2a. Now the problem can be

formulated as follows.

Definition 3 (Problem Statement). Given a memory safety

enforced program % = ⟨O, "⟩ where O = {>1, >2, ..., >8 , ..., >? } de-

notes the original code and" = {<1,<2, ...,<8 , ...,<@} denotes the

meta-operations inserted, the problem is equivalent to constructing

a parallel task graph G = ⟨O,Ψ⟩ such that the following conditions

hold, where Ψ = {)1,)2, ...,)8 , ...,)=} represents a set of parallel tasks,

and ≼ indicates the happens-before relation between two control/data

dependent instructions.

• ∀8, 9, 8 ∈ [1, ?], 9 ∈ [1, @], if >8 ≼ < 9 , then >8 ≼): where

< 9 ∈): .<̂;

• ∀8, 9, 1 ≤ 8 < 9 ≤ @, if <8 ≼ < 9 , then)G ≼)~ where

<8 ∈)G .<̂ and< 9 ∈)~ .<̂;

• pro�t (Ψ) = �>BC (%) −�>BC (G) is as large as possible, where

�>BC indicates the program’s execution time.

Example. Having the example program shown as Figure 2a, the

problem is essential to generate a parallel task graph shown as

Figure 2d such that the pro�t from parallelism is as large as pos-

sible, while preserving the happens-before relation between two

control/data dependent instructions.

4 APPROACH

In fact, the above optimization problem is NP-Hard meaning that it

is impractical to verify whether a given parallel task graph gains

the maximum pro�t in polynomial time. To simplify the problem,

Catamaran considers each function one by one, and generates an

intra-procedural parallel task graph for each function separately.

Algorithm 1: Parallel task generation

Input: A memory safety enforced program P

Output: A parallel task graph G8 for each function �8 of P

1 foreach �8 of P do

2 G8 ← IntraTaskDispatch(�8)

3 InterTaskDispatch(G8 , �8)

4 TaskOptimization(G8)

Algorithm 1 gives the pseudocode of our approach. Catamaran

processes each function �8 of % separately. For a given function �8 ,

Catamaran �rst performs the intra-point parallel task dispatch that

identi�es the potential parallel tasks within each memory access

point so as to produce an intra-point parallel task graph G8 (Line

2). Next, Catamaran further enlarges at most the potential range of

each parallel task speci�ed earlier without violating the happens-

before visibility guarantee on the basis of a sound data/control

dependence analysis (Line 3). Finally, Catamaran optimizes inter-

point parallel tasks by re-scheduling certain tasks so as to pursue

as much parallel pro�t as possible (Line 4). All the three core steps

are elaborated in the following.

4.1 Intra-Point Parallel Task Dispatch

To ensure memory safety, state-of-the-art dynamic approaches

usually instrument a series of dynamic checking code to track

and verify memory related meta-data at the speci�c vulnerable

memory access points. There are six types of basic pointer accesses,

including pointer de�nition, assignment, allocation, deallocation,

load, and store. For each access point, the pattern of where and

what meta-operations are instrumented is �xed. Given a memory

safety enforced program, at the �rst place, Catamaran analyzes it

and automatically realizes the parallel task (the meta-operations

and the corresponding start and end points) within each memory

access point.

Figure 3 lists the code example, the sequential task representa-

tion, and the corresponding intra-point parallel task representation

for each of the six basic pointer operations. The black circle rep-

resents an original pointer operation. Each red square indicates a

819

For Research Only

Catamaran: Low-Overhead Memory Safety Enforcement via Parallel Acceleration ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

(a) Pointer Definition

U

S S

U

S: int* p;

U: _update(&p, Null);

(a) pointer de�nition

L

S

U

S L

U

(b) Pointer Assignment

S: r = q;

L: md = _lookup(&q);

U: _update(&r, md);

(b) pointer assignment

U

S S

U

S: p = (int*)malloc(n);

U: _update(&p, md+);

(c) pointer allocation

U

S
S US: free(p);

U: _update(&p, Null);

(d) pointer deallocation

L

S

U

L

C

LS

U

L

C

L: md1 = _lookup(&q);

C: _check(q, md1);

S: p = *q;

L: md2 = _lookup(q);

U: _update(&p, md2);

(e) pointer load

L

S

U

L

C

LS

U

L

C

(f) Pointer Store

L: md1 = _lookup(&p);

C: _check(p, md1);

S: *p = q;

L: md2 = _lookup(&q);

U: _update(p, md2);

(f) pointer store

Figure 3: Intra parallel tasks for six types of operations.

meta-operation inserted, where U, L, and C denote _update, _lookup,

and _check, respectively. For example, in Figure 3f, ! and � do not

have happens-before data dependency with (, as well as the sub-

sequent meta-operations ! and * . Note that although � and *

take the same variable ? as parameter, both of them only read ? . *

updates the meta-data mapped by ? instead of updating the value

of ? . Therefore, there is no data dependency between them. As

such, ! and� can be dispatched as an intra-point parallel task to be

executed in parallel with (and the subsequent ! and* . The sub-

sequent meta-operations ! and* are dispatched as an intra-point

parallel task for a similar reason.

As can be seen, most of the meta-operations within each access

point can be scheduled as a separate task running in parallel with

the main thread. Given an enforced program, the intra-point task

dispatch divides all the meta-operations into multiple parallel tasks

whose start and end points are set locally as shown in Figure 3, and

produces the intra-point parallel task graph.

4.2 Inter-Point Parallel Task Dispatch

As for a parallel task, it is crucial to determine where to set its start

and end points. If the pair is positioned narrowly, there is not much

parallelism among tasks. In fact, the larger the range is, the more

parallelism can be achieved. Although intra-point task dispatch

identi�es many potential parallel tasks, the start and end points

for each parallel task are set conservatively. In other words, it only

discovers the parallelism locally within a single access point and

ignores the potential parallelism across di�erent points.

To further explore the parallelism, we would like to enlarge

the start-end range for each parallel task across multiple points.

However, to guarantee the correctness, the happens-before rela-

tions among all the operations on the shared variables have to be

preserved. As a result, Catamaran leverages a static data/control de-

pendence analysis to determine the largest start-end range allowed

for each parallel task, while avoiding any data race. Algorithm

2 illustrates that how Catamaran dispatches parallel tasks across

multiple points for a function � . Given a parallel task graph G of

function � , each node in G is traversed in topological order (Line

1). For a node E , if E is a parallel task (Line 2), then we check all its

direct and indirect successors E ′ to see if E and E ′ satisfy certain

dependence relation. If so, E ′ is inserted into a set ((Line 5). After

the traversal, if (is empty, the end point of E is directly set as

the function � end point (Line 6); otherwise, we �nd the farthest

common dominator of E ′s in (to E , and set it as the end point of E

(Line 7).

Algorithm 2: Inter-point parallel task dispatch

Data: An intra-point parallel task graph G of function �

Result: An updated G

1 foreach node E ∈ G do /*traverse G in topological order*/

2 if E is a parallel task then

3 (← {}

4 foreach direct and indirect successor E′ of E in G do

5 if IsDependent(E, E′) then (← (∪ {E′ }

6 if (≡ ∅ then E.;4=3 ← the end point of �

7 else E.;4=3 ← FindFarthestCommonDominator(()

['.1]
<1 : _;>>:D? (:1) <2 : _D?30C4 (:2, ...) :1 ≡ :2

(<1,<2) ∈ �,�'

['.2]
<1 : _D?30C4 (:1, ...) <2 : _;>>:D? (:2) :1 ≡ :2

(<1,<2) ∈ �'�,

['.3]
<1 : _D?30C4 (:1, ...) <2 : _D?30C4 (:2, ...) :1 ≡ :2

(<1,<2) ∈ �,�,

['.4]
> : :1 = ... < : _;>>:D? (:2, ...) :1 ≡ :2

(>,<) ∈ �'�,

['.5]
> : :1 = ... < : _D?30C4 (:2, ...) :1 ≡ :2

(>,<) ∈ �,�,

['.6]
> : :1 = ... < : _2ℎ42: (:2, ...) :1 ≡ :2

(>,<) ∈ �'�,

At Line 5 of Algorithm 2, we need to check if E ′ is control depen-

dent of E or E and E ′ have the speci�c data dependence. Here we

consider three types of data dependence: namely Read-After-Write

(RAW), Write-After-Write (WAW), and Write-After-Read (WAR).

Given that E is a parallel task, E ′ can be either a parallel task or

an original code instruction. If E ′ is a parallel task, we need to

determine if there exist a meta-operation<′ ∈ E ′ .<̂ and another

meta-operation < ∈ E .<̂ such that <′ and < possess one of the

three relations (i.e., RAW, WAW, WAR). Similarly, if E ′ corresponds

to an original instruction > , we need to check if > and the meta-

operations in E .<̂ have one of the three data dependence relations.

We treat meta-operations as white-box for alias analysis. To im-

prove analysis e�ciency, we manually specify the alias model for

each meta-operation (_D?30C4 , _;>>:D? , and _2ℎ42:). The speci�c

rules for determining the three relations are shown as R.1-R.6 where

< indicates a meta-operation, > denotes an original code instruc-

tion, and :1 ≡ :2 means that :1 and :2 are the same variables or

aliases. For example, in the R.3 rule,<1 and<2 update themeta-data

mapped by :1 and :2 respectively. When :1 and :2 are the same

variables or aliases, they update the same meta-data. It is necessary

to keep the execution order of <1 and <2 to avoid inconsistent

meta-data results. Thus, there is a WAW data dependency between

<1 and<2, and the inter-point parallel tasks have to preserve the

happens-before relation between them to avoid any incorrectness.

We adopt a sound alias analysis [4] to resolve all the potential

aliases of pointer variables of interest.

820

For Research Only

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yiyu Zhang, Tianyi Liu, Zewen Sun, Zhe Chen, Xuandong Li, and Zhiqiang Zuo

4.3 Parallel Task Optimization

After the intra- and inter-point parallel task dispatch, a parallel

task graph with �ne-grained parallel task scheduling is produced.

Considering the speci�c amount and granularity of parallel tasks,

there is still room for improvement. On the one hand, too many

small parallel tasks introduce too frequent thread context switch-

ing, resulting in excessive overhead. On the other hand, too large

but few parallel tasks may not take full advantage of parallel re-

sources. To achieve more bene�ts, we propose to further optimize

the parallel task graph generated based on a quantitative pro�t

analysis. Catamaran manages the parallel tasks by grouping and

rescheduling them so as to obtain the largest pro�t for the entire

program. Catamaran adopts di�erent optimizations to the loops and

loop-free code, which will be discussed separately in the following.

Loop-Free Parallel Task Optimization. In the inter-point parallel

task graph generated, each parallel task limits the scope for its start

and end points. We can adjust each parallel task by moving its start

and end points within this scope. Speci�cally, for a given parallel

task) = (<̂, ;BC0AC , ;4=3), a series of variants)
′
= (<̂′, ; ′BC0AC , ;

′
4=3
)

can be enumerated where <̂′ ≡ <̂ and ;BC0AC ≤ ;
′
BC0AC < ;

′
4=3
≤ ;4=3 .

Moreover, two successive parallel tasks enumerated can be soundly

merged as one.

Algorithm 3:Merging of inter-point parallel tasks

Data: Two inter-point parallel tasks)1 and)2, the original code of

)1 and)2 spanned O)1 and O)2
Result: One merged inter-point parallel task)

1 if GetSucc()1 .;4=3) ==)2 .;BC0AC then

2 if HasDependency()2 .<̂, O)1) then

3) .;BC0AC =)2 .;BC0AC

4 if HasDependency()1 .<̂, O)2) then return NULL

5 else) .;4=3 =)2 .;4=3

6 else

7) .;BC0AC =)1 .;BC0AC

8 if HasDependency()1 .<̂, O)2) then) .;4=3 =)1 .;4=3

9 else) .;4=3 =)2 .;4=3

10) .<̂ ←)1 .<̂ ∪)2 .<̂

11 return)

Given two potential parallel tasks enumerated, Algorithm 3 de-

termines if and how they can be merged as a single task. Two

parallel tasks)1 and)2 can be merged only when)2 .;BC0AC is the

successor of)1 .;4=3 (Line 1). To soundly decide the start and end

points of the merged task) , we �rstly check whether the meta-

operations of)2 and the original code of)1 spanned satisfy certain

dependence relation (Line 2). The HasDependency function deter-

mines if there is a dependence relation between meta-operations

and original code according to the rules R.4-R.6. If so,) .;BC0AC is

set as)2 .;BC0AC (Line 3), which means)2’s start point cannot be

safely hoisted up. Next, we check the dependency between)1 .<̂

and O)2 to determine the merged end point of) (Line 4). If so, there

is no need to merge two tasks. Otherwise,)1’s end point can be

safely moved down and) .;4=3 is set as)2 .;4=3 (Line 5). If there is no

dependency between)2 .<̂ and O)1 (Line 6),)2’s start point can be

lifted beyond)1’s start point.) .;BC0AC is thus set as)1 .;BC0AC (Line

7). Further, if there is a dependence relation between)1 .<̂ and O)2 ,

)1’s end point cannot be safely moved down, then) .;4=3 is set as

)1 .;4=3 (Line 8). If not,) ’s end point can be safely set as)2 .;4=3 (Line

9). Finally, we assign the union of)1 and)2’s meta-operations to

) .<̂ (Line 10) and return the merged parallel task) (Line 11).

By enumerating all the parallel tasks, a large number of valid

parallel task graphs can be generated, in the sense that all these

generated graphs satisfy the �rst two conditions speci�ed in the

problem statement (de�nition 3). What we should do next is to

select from all the valid task graphs one which owns the largest

pro�t. To this end, we quantitatively estimate the execution cost

of each given parallel task graph based on a cost model discussed

shortly. By computing and comparing the costs of all the valid

parallel task graphs, we can identify one from them which has the

smallest cost.

S1

S2

M1

M2

(a)

S1

S2

M1

M2

(b)

S1

M1

M2

(c)

M2

S2

S3

M1

S1

(d)

S3

M1

S2 M2

S1

(e)

Figure 4: Five basic patterns of parallel tasks.

A cost model for loop-free parallel tasks is introduced as follows

to estimate its execution cost.

Definition 4 (Cost Model). In a parallel task graph, there are

�ve basic parallel task patterns shown in Figure 4. For each pattern,

its time cost can be modeled as follows where C" indicates the cost

of meta-operations in a parallel task, C(indicates the cost of original

code, and C- represents the cost of thread implementation.

• C0 = max{C"1
+ C- , C(1 +max{C(2 , C"2

+ C- }}

• C1 = max{max{C"1
+ C- , C(1 } + C(2 , C"2

+ C- }

• C2 = max{C"1
+ C- , C(1 , C"2

+ C- }

• C3 = max{C"1
+ C- + C(3 , C(1 +max{C(2 + C(3 , C"2

+ CG }}

• C4 = max{C"1
+ CG , C(1 +max{C(2 , C"2

+ CG } + C(3 }

As the cost is needed statically, we leverage the static CPU cycles

to estimate the costs represented by each parameter in the above

model. To calculate the actual value of each parameter in the cost

model, we adopt both static CPU cycle-based and dynamic pro�ling-

based modeling. To estimate C" and C(, we directly utilize the static

analyzer supported by LLVM to get the sum of CPU cycles for

" and (. As for C- , a pro�ling method is applied. We randomly

select several intra-point parallel tasks with the meta-operations

" and original code (running in parallel with known CPU cycles

of C" and C(under a test suite. We record the actual execution

time of" ()�") and (()�() under serial execution, and the total

execution time ()�%) under parallel execution. Then, the actual

time cost for thread implementation)�- can be calculated by the

equation)�- =)�% −<0G{)�" ,)�(}. To get the stable results,

the)�- value is computed by taking the average value of ten runs

on each test. Having the actual value of)�- , we need to map its

actual value to the number of CPU cycles. To this end, we use a

linear regression to simulate the mapping function with a positive

correlation between CPU cycles and the actual execution time on a

set of tests.

821

For Research Only

Catamaran: Low-Overhead Memory Safety Enforcement via Parallel Acceleration ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Loop Parallel Task Optimization. Catamaran handles loops in
a di�erent way from that of loop-free code. For example, there is
a loop with meta-operations $ and % being inserted in the body,
shown as Lines N-Q in Figure 2a. After the inter-point parallel
task dispatch, a parallel task executing $ and % is created within
each loop iteration as illustrated by Figure 2c. Suppose that at one
iteration of the loop, the execution cost required bymeta-operations
$ and % is C$% (i.e., C" in de�nition 4); the cost executed by the
original code & is C& (i.e., C(in de�nition 4); C- represents the cost
of thread implementation and the number of loop iteration is # .
According to the cost model shown as de�nition 4, we can calculate
the cost of original safety enforced code and that after inter parallel
task dispatch as �>A868=0; and �8=C4A as follows, respectively.

{
�>A868=0; = # × (C$% + C&)

�8=C4A = # ×<0G {C& , C$% + C- }
(1)

For tiny loops where the loop body only contains a few instruc-

tions, C& is usually much smaller than C$% , sometimes even compa-

rable to C- . In this case, the following equation holds.

�8=C4A ≈ # × (C$% + C-) (2)

As such, we can hardly achieve any performance gain via inter-
point parallel task dispatch. Even worse, it may probably introduce
extra overhead to the original safety code especially when C- is
larger than C& . In other words, instantiating small parallel tasks in a
loop not only gets little performance gain, but causesmore overhead.
To optimize it, Catamaran extracts a separate loop with only the
meta-operations inside, and treats the whole loop as a parallel task.
In essence, this is equivalent to unrolling the loop in�nitely and
then applying the above loop-free parallel task optimization to it.
We term this special parallel task as loop parallel task. The start
point of the loop parallel task is set conservatively as the pre-header
position of the original loop. The end point is placed at the end of
the function for more parallelism. In this way, the total cost�>?C
of the loop optimized can be calculated as follows. It can be easily
seen from eq. (2) and eq. (3) that �>?C has (# − 1) × C- fewer CPU
cycles than �8=C4A . Therefore, loop parallel tasks can eliminate the
redundant thread instantiation overhead, while still enjoying the
bene�ts of parallelism.

�>?C = # ×<0G {C& , C$% } + C- ≈ # × C$% + C- (3)

We also provide load balance optimization for loop parallel tasks.

According to the cost model (de�nition 4), the loop code cost is

similarly dominated by the maximum between the C" and C(. Thus,

we try the best to adjust and balance the costs of the two loops

(i.e., the original loop and the loop parallel task extracted), which

supports for gaining more parallel pro�ts. For the case where C" is

much greater than C(, instead of extracting all the meta-operations

into the loop parallel task, we only separate a portion of them so

as to make the cost of two loops as close as possible.

For nested loops, Catamaran only optimizes the outermost loop

at the current moment. Apparently, in most cases, to make the

extracted loop run successfully, certain original code in the loop

perhaps needs to be re-executed in the loop parallel task. To avoid

data race and false sharing problems, Catamaran allocates an extra

memory space to maintain certain local variables (e.g., loop index),

while initializing them and the corresponding meta-data if neces-

sary. Note that not all the loops can be optimized. We cannot do

any optimization under the following cases, e.g., the loop contains

thread-safe functions (e.g., malloc, free, scanf) which are imple-

mented using mutex; a function pointer or recursion is included in

a loop. For the loops that cannot be specially optimized, Catamaran

will optimize it as loop-free code.

5 IMPLEMENTATION

Catamaran is implemented as an optimization pass of LLVM. It

takes as input a memory safe program in the form of LLVM IR, and

eventually generates a parallel version.

Parallel Task Dispatch. Catamaran analyzes def/use relations

bene�ting from the SSA form of LLVM IR by following [14], and

exploits the existing pointer analysis [4] to detect all the alias infor-

mation. Moreover, Catamaran leverages the Semi-NCA algorithm

[15] which is provided by the LLVM (Post-)DominatorTree pass to

discover all (post-)dominator nodes of interest.

Parallel Task Optimization. Catamaran exploits the cost model

of TTI [2] in LLVM to estimate C" and C(. To obtain C- , dynamic

pro�ling is done once for each baseline tool under each library setup.

Catamaran uses the LoopInfo pass [1] in LLVM to identify loop code,

and refers to NOELLE [27] to implement loop transformation. Note

that, to extract a separate loop, Catamaran allocates separate copies

of all live variables (together with their corresponding meta-data if

needed) used for the loop execution.

Parallel Code Transformation. Catamaran creates a wrapper

function for each optimized parallel task) , takes the necessary

program values as function parameters to be passed, and completes

the memory allocation and initialization. Catamaran inserts the

thread create and join function at the ;BC0AC and ;4=3 points with an

unsigned parallel task ID randomly assigned. An e�ective thread

pool with work stealing algorithm enabled is designed and imple-

mented to provide multi-threaded runtime for manipulating parallel

tasks e�ciently. Considering the unsound impact of thread-unsafe

meta-operations in SoftBoundCETS and MoveC, we have to avoid

data races when accessing the shared lookup table in parallel. To

this end, we modify the original runtime libraries and provide the

thread-safe variants. Meanwhile, we only add �ne-grained locks to

the innermost meta-data entry for meta-operations, thus lowering

the synchronization overhead as much as possible.

6 EVALUATION

The goal of Catamaran is to reduce the runtime overhead of dy-

namic memory safety enforcement via task parallelization. It is

general enough to bene�t a large number of existing dynamic

memory safety enforcement approaches/tools [9, 12, 31, 40]. In our

experiments, we selected three representative dynamic memory

enforcement tools SoftBoundCETS [31], MoveC [9], and Address-

Sanitizer [40] (ASAN for short) as the subject tools to evaluate

how well Catamaran can lower the overheads introduced by them.

SoftBoundCETS and ASAN instrument meta-operation code at the

IR level whereas MoveC enforces the program at the source code

level. We evaluated SoftBoundCETS (for LLVM-3.4) with full checks

(i.e., both spatial and temporal checks) enabled, MoveC (version

0.9.0) by default setting, and ASAN (for LLVM-3.5.2) with outlined

checks. All the experiments were conducted on a commodity PC

with an Intel Xeon W-2145 8-Core CPU, 64GB memory, and 1T SSD,

running Ubuntu 16.04.

822

For Research Only

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yiyu Zhang, Tianyi Liu, Zewen Sun, Zhe Chen, Xuandong Li, and Zhiqiang Zuo

Table 2: Overhead reduction of Catamaran for SoftBoundCETS, MoveC and ASAN on SPEC CPU2006 and 2017 benchmark

under -O3 compiler optimization setting with 4 threads available; columns)$V and)$W denote time overhead of V and W

versions, respectively;"$ indicates memory overhead; △)$ means)$V −)$W , similar for △"$; ')$ means)$V/)$W ; Abort

indicates that SoftBoundCETS detects memory violation and aborts the program; IE indicates instrumentation failure; RE

denotes that the program reports runtime error (e.g., segmentation fault).

Subject
SoftBoundCETS [31] MoveC [9] ASAN [40]

)$V)$W △)$ ')$ "$V "$W △"$)$V)$W △)$ ')$ "$V "$W △"$)$V)$W △)$ ')$ "$V "$W △"$

perlbench Abort Abort - - - - - IE IE - - - - - 318% 247% 71% 1.29x 240% 241% 1%

bzip2 183% 76% 107% 2.42x 132% 134% 2% 719% 302% 417% 2.38x 0.09% 0.50% 0.41% 151% 86% 65% 1.76x 4% 4.40% 0.40%

gcc IE IE - - - - - IE IE - - - - - 201% 173% 28% 1.16x 216% 217% 1%

mcf 324% 183% 141% 1.77x 400% 407% 7% 523% 301% 223% 1.74x 400% 411% 11% 84% 46% 38% 1.84x 13% 15% 2%

milc 132% 62% 70% 2.13x 238% 256% 18% IE IE - - - - - 70% 51% 19% 1.37x 42% 46% 4%

gobmk 216% 173% 43% 1.25x 998% 1012% 14% IE IE - - - - - 112% 88% 24% 1.27x 1142% 1152% 10%

hmmer 253% 134% 119% 1.89x 1336% 1350% 14% IE IE - - - - - 265% 156% 109% 1.70x 1616% 1624% 8%

sjeng 153% 131% 22% 1.17x 7% 9% 2% 515% 380% 171% 1.45x 0.63% 2.85% 2.22% 133% 85% 48% 1.56x 7% 10% 3%

libquantum Abort Abort - - - - - 748% 292% 456% 2.56x 0.08% 1.06% 0.98% 37% 20% 17% 1.85x 274% 280% 6%

lbm 58% 29% 29% 1.99x 0.18% 0.59% 0.41% 589% 299% 290% 1.97x 0.06% 0.51% 0.45% 66% 41% 25% 1.61x 15% 16% 1%

sphinx3 336% 215% 121% 1.56x 712% 720% 8% RE RE - - - - - 128% 92% 36% 1.39x 940% 949% 9%

x264_r Abort Abort - - - - - 1082% 1051% 32% 1.03x 12% 17% 5% 179% 114% 65% 1.57x 27% 31% 4%

imagick_r Abort Abort - - - - - 326% 296% 30% 1.10x 88% 93% 5% 184% 110% 74% 1.68x 188% 189% 1%

nab_r 100% 47% 53% 2.15x 157% 165% 8% IE IE - - - - - 86% 48% 38% 1.81x 272% 274% 2%

xz_r 260% 196% 65% 1.33x 13% 14% 1% 781% 610% 171% 1.28x 0.37% 1.04% 0.67% 94% 65% 29% 1.45x 32% 33% 1%

Mean 77% 1.77x 7.44% 224% 1.69x 3.22% 46% 1.55x 3.56%

We intend to answer the following research questions:

• Q1: How well does Catamaran reduce the runtime overheads

su�ered by SoftBoundCETS, MoveC, and ASAN? (§6.1)

• Q2: How does Catamaran perform compared to the state-of-

the-art? (§6.2)

• Q3: What about the impact of the number of threads avail-

able and the compiler’s optimizations on Catamaran’s per-

formance? (§6.3)

• Q4: Does Catamaran a�ect the capability of detecting mem-

ory errors? (§6.4)

6.1 Performance

In the performance experiments, we chose the commonly used

SPEC CPU 2006 and 2017 benchmarks. Excluding the subjects writ-

ten in Fortran or C++ that could not be instrumented by SoftBound-

CETS and MoveC, we ended up retaining 15 C subjects. The �rst

column of Table 2 lists all the subjects used. The last four subjects

with su�x _r belong to SPEC CPU 2017. Each subject comes with

a training workload used for cost model pro�ling, and a reference

workload used for measuring overhead. We compiled for each sub-

ject a baseline version without any instrumentation (U), a memory

safety enforced version (V) produced by SoftBoundCETS, MoveC, or

ASAN, and a corresponding version Catamaran parallelized (W). Un-

fortunately, not all subjects are compatible with the reference tools;

SoftBoundCETS succeeds in processing 10 subjects and MoveC can

handle 8 subjects under -O3 compiler optimization setting. The

rest of subjects failed due to either compilation errors or instru-

mentation errors. We collected the average execution elapsed time

and peak memory used by running each version ten times, and

calculated both time and memory overhead of them.

Table 2 shows the performance of Catamaran under -O3 com-

piler optimization setting with 4 threads available. The columns

)$V and)$W denote the time overhead of V and W versions, respec-

tively."$ indicates the memory overhead. △)$ means)$V −)$W ,

similar for △"$. ')$ means the ratio, i.e.,)$V/)$W . Abort in-

dicates SoftBoundCETS detects the memory violation and aborts

the program. IE indicates the instrumentation failure. RE denotes

that the program reports runtime error (e.g., segmentation fault).

Note that for MoveC, we keep the default setting – when a memory

violation is detected, it continues the execution while reporting

the error information to the shell. All the V versions in Table 2 are

running on top of the original thread-unsafe runtime libraries.

As can be seen, Catamaran is able to e�ectively reduce the over-

head introduced by SoftBoundCETS, MoveC, and ASAN. For sub-

jects under SoftBoundCETS instrumentation, Catamaran removes

22%-141% of overhead. Especially, Catamaran has a signi�cant ef-

fect on removing the overhead for bzip2 where the ratio)$V/)$W

is up to 2.42x, while 2.15x and 2.13x for nab_r andmilc respectively.

For subjects under MoveC instrumentation, 30%-456% of overhead

can be decreased by Catamaran. In particular, the overhead reduc-

tion ratio on libquantum reaches 2.56x and on bzip2 reaches 2.38x.

For ASAN1, Catamaran also achieves the speedup ratio of 1.55x

on average. As the meta-operations of updating and looking up in

ASAN are directly inlined into the original code, Catamaran is not

able to parallelize these meta-operations. Meanwhile, the memory

overhead introduced by Catamaran is negligible where it mainly

comes from the creation of the thread pool and the allocation of

additional memory for executing loop parallel tasks. Only 7.44%

for SoftBoundCETS, 3.22% for MoveC, and 3.56% for ASAN extra

memory overhead is introduced on average, and nearly half of sub-

jects introduce less than 3% memory overhead. A few subjects such

as milc and gobmk, have slightly higher memory overheads due to

slightly more variable copies allocated in the loop parallel tasks.

However, the acceleration of Catamaran over some subjects, such

as gobmk, sjeng, x264_r, and imagick_r, is limited. For gobmk, there

are a large number of mutex-locked library functions involving I/O

1Note that the average overhead of ASAN in Table 2 is slightly higher than that
reported in [40], since we outlined checks in ASAN (supported from LLVM-3.5.2) for
adaption to Catamaran.

823

For Research Only

Catamaran: Low-Overhead Memory Safety Enforcement via Parallel Acceleration ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

operations, which Catamaran can seldom accelerate via paralleliza-

tion. As for sjeng, plenty of recursive functions are included. Hence

Catamaran cannot process them, resulting in fewer bene�ts. For

x264_r and imagick_r enforced by MoveC, as intensive logging is

constantly exported during running since MoveC continues the

execution for detecting multiple errors in a run, the parallel pro�t

cannot be re�ected in the elapsed time.

bzip2
mcf
milc
gobmk
hmmer

sjeng
lbmsphinx3

nab_r
xz_r

Avg
-50%
-25%
0%
25%
50%
75%
100%
125%
150%

85.9

9.2
4.9

79.2

14.3
6.5

70.8

20.4

8.8

60.0

84.0

-44.0

80.9

12.4
6.7

64.7

63.5

-28.2

81.8

10.1
8.1

80.4

21.4

-1.8

76.5

13.1

10.4

87.9

42.4

-30.3

76.8

29.2

-6.0

Intra Inter Optimized

Figure 5: Percentage of each step contributed to the overall

overhead reduction for SoftBoundCETS.

Step-by-Step Performance Improvement. To understand the con-

tributions of each step of Catamaran (i.e., intra dispatch in §4.1,

inter dispatch in §4.2, task optimization in §4.3) to the overall per-

formance, we conducted an ablation study. We limited the par-

allelization processing step by step and generated the respective

parallel binary code accordingly. Speci�cally, the intra step ends

after the execution of Line 2 in Algorithm 1 and produces the cor-

responding parallelized binary code (W-intra). Similarly, the inter

step generates binary code (W-inter) after Line 3 in Algorithm 1

is executed. The optimization step generates the code (W-opt) af-

ter the whole process of Algorithm 1, which is identical to the

version W . We run each binary code W-intra, W-inter, and W-opt

to collect the overhead)$W -intra,)$W -inter, and)$W -opt, respec-

tively. The percentage of each step contributed is computed as

Percentintra = ()$V −)$W -intra)/()$V −)$W), Percentinter =

()$W -intra−)$W -inter)/()$V −)$W), and Percentopt = ()$W -inter−

)$W -opt)/()$V −)$W).

Figure 5 shows the percentage of each step contributed to the

overall overhead reduction for SoftBoundCETS. Note that the in-

tra step (i.e., Intra) may bring negative impact meaning that the

overhead)$W -intra is even larger than)$V , resulting in negative

values. As a result, the y-axis values possibly exceed 100%, but the

percentage sum of three steps must equal to 100% on each subject.

It can be seen that the contribution of the intra step is negligible on

somes subjects for SoftBoundCETS. The average value is -6.0%. The

main reason is that the intra step only considers limited parallelism

within a single memory access point. Moreover, the cost paid due

to the intensive thread assignments and joins is even higher than

the pro�t gained from parallelization. With more parallelism ex-

ploited in a broader scope, the inter step (i.e., Inter) shows better

performance than that of the intra step. However, its gain is still

limited and the average contribution percentage is only 29.2% for

SoftBoundCETS. In the optimization step (i.e., Optimized) where

speci�c parallel task merging/rescheduling are considered, signi�-

cant overhead reductions are accomplished. On average, the opti-

mization step contributes 76.8% for SoftBoundCETS to the overall

performance gain. Note that the similar step-by-step contribution

distribution is observed in MoveC and ASAN.

Table 3: Overhead reduction of Catamaran and Reference

[24] for SoftBoundCETS.

Subject)$V
Catamaran Reference [24]

)$W △)$ ')$)$W △)$ ')$

bzip2 183% 76% 107% 2.42x 145% 38% 1.26x

mcf 324% 183% 141% 1.77x 249% 75% 1.30x

milc 132% 62% 70% 2.13x 80% 52% 1.65x

gobmk 216% 173% 43% 1.25x 194% 22% 1.11x

hmmer 253% 134% 119% 1.89x 235% 18% 1.08x

sjeng 153% 131% 22% 1.17x 137% 16% 1.12x

lbm 58% 29% 29% 1.99x 51% 7% 1.14x

sphinx3 336% 215% 121% 1.56x 334% 2% 1.01x

nab_r 100% 47% 53% 2.15x 88% 12% 1.14x

xz_r 260% 196% 65% 1.33x 217% 43% 1.20x

Mean 77% 1.77x 28% 1.20x

6.2 Comparison against the State-of-the-Art

To verify how well Catamaran performs compared to the state-of-

the-art, we would like to conduct the empirical comparisons be-

tween Catamaran and other decoupling/parallelization approaches

[24, 33, 36]. Unfortunately, none of the existing approaches’ imple-

mentations is publicly accessible. Since no existing implementations

for direct comparison, we implemented by ourselves a prototype of

[24] which is the most recent and related work to Catamaran, by

faithfully following the key insight and algorithm described in their

paper. Reference [24] extracts separate meta-functions/operations

from the original code and executes them in customized helper

threads. The helper threads communicate with the main thread

via pipelined communication, which passes the required data to

perform the meta-operations. We selected SoftBoundCETS as the

candidate tool to be accelerated as its meta-operations �t best that

de�ned in [24]. We conducted the experiments on both Reference

[24] and Catamaran under the same setting as that of Table 2. Table

3 shows the comparison results in terms of overhead reduction.

We can read from Table 3 that Catamaran reduces much more

overheads on all subjects. On average, Catamaran is able to elim-

inate around 77% runtime overheads, whereas Reference [24] re-

duces 28%. The reasons why Catamaran outperforms [24] are three-

fold. First, the meta-operations which can be parallelized [24] are

statically determined and manually speci�ed a priori. In such case,

only the spatial _check and _update statically satisfying the depen-

dence restriction can be parallelized, leading to the limited number

of parallel tasks. Second, [24] allows only one helper thread to ex-

ecute in parallel with the main thread at runtime, meaning that

only the parallelism between the meta-operation and original code

is exploited. Finally, optimizations like merging and rescheduling

parallel tasks are not considered in [24]. In a word, Catamaran

outperforms [24] thanks to the holistic design including dynamic

identi�cation of potential parallel tasks, parallelism exploitation

among meta-operations themselves, and pro�t-based optimizations.

824

For Research Only

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yiyu Zhang, Tianyi Liu, Zewen Sun, Zhe Chen, Xuandong Li, and Zhiqiang Zuo

6.3 E�ects of Thread Count and Compiler’s
Optimizations

bzip2
mcf

milc
gobmk

hmmer
sjeng

lbm sphinx3

nab_r
xz_r

Avg
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

R
at

e
(T
O
β/T

O
γ)

Thr-1 Thr-2 Thr-4 Thr-6

Figure 6: Overhead ratio under di�erent numbers of threads

(1, 2, 4, 6) for SoftBoundCETS.

Thread Count. To understand the impact of thread count, we col-

lected the performance data of Catamaran under di�erent numbers

of threads available. Speci�cally, we adjusted the maximum num-

ber of threads in the thread pool to 2, 4, and 6. Based on the time

overhead collected, we computed the ratio (i.e.,)$V/)$W) for each

setting. Figure 6 shows the ratio of time overhead under di�erent

numbers of threads for SoftBoundCETS. Thr-1 corresponds to the

baseline where no overhead is reduced (i.e., Catamaran is not appli-

cable as no additional thread is available). What stands out in Figure

6 is that the increase of thread count results in more overhead reduc-

tion for most subjects as more threads enables more tasks to execute

in parallel. This trend is signi�cant especially for the numbers 1,

2, and 4. However, with 6 threads available, the reduction ratios

of certain subjects (e.g., gobmk, sjeng, lbm, and sphinx3) are not

improved compared with that of 4. Instead of bringing pro�t, the

oversupplied threads introduce extra overhead, which degrades the

overall performance. Moreover, the average memory overhead is

3.58%, 7.44%, and 7.48% under 2, 4, and 6 threads, respectively. Since

more threads need more memory for computation, the peak mem-

ory becomes slightly larger with the increase of threads. MoveC

and ASAN show the same trends in terms of reduction ratio and

memory overhead.

bzip2
mcf

milc
gobmk

hmmer

sjeng
lbm sphinx3

nab_r
xz_r

Avg
0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
at

io

-O0 -O1 -O2 -O3

Figure 7: Normalized overhead ratio under di�erent compiler

optimization levels (-O0, -O1, -O2, -O3) for SoftBoundCETS.

Compiler’s Optimization Level. To understand the e�ect of com-

piler optimization levels, we produce three versions of code (i.e.,

U, V , and W) under each compiler setting (i.e., -O0, -O1, -O2, and

-O3). We measure the overhead reduction ratios of Catamaran with

4 threads available compared to SoftBoundCETS, which are demon-

strated as Figure 7. For ease of presentation, we take the data of

-O0 as the baseline and normalize the reduction ratios for each

optimization level. For most subjects, the reduction ratio with com-

piler optimization enabled is lower than that without optimization.

This is because the overheads introduced by SoftBoundCETS is

decreased due to the optimization, meaning that the potential par-

allelism pro�t of Catamaran is also decreased. Moreover, some

loops are unrolled during compiler optimization, causing the loop-

speci�c optimization of Catamaran inapplicable. However, we also

have observed that for certain subjects (e.g., sjeng and xz_r), the

reduction ratios are improved when more aggressive optimizations

are applied, such as from -O2 to -O3. This is because the higher

optimization level aggressively inlines certain functions, creating

more parallelism opportunities for Catamaran. In addition, the av-

erage memory overhead is 8.25%, 7.65%, 7.31%, and 7.44% for O0,

O1, O2, and O3, respectively. The similar results are observed in

both MoveC and ASAN.

6.4 E�ectiveness of Safety Enforcement

Apart from the overhead reduction, we also empirically validated

the e�ectiveness of Catamaran on memory safety enforcement. In

other words, we would like to measure if Catamaran degrades the

ability of detecting memory errors compared to the reference tools

(i.e., SoftBoundCETS, MoveC, and ASAN). We �rstly selected the

arti�cial MoveC-MSBench [9], which contains three test suites (i.e.,

all-mem-err, C-syntax, and nptrs) covering a rich set of memory

errors. The all-mem-err test suite aims at checking whether a tool

can detect all known types of memory errors. The C-syntax test

suite is used to test whether a tool supports the diverse syntax of C.

The nptrs is mainly for testing if a tool can detect spatial memory

errors under extreme stress. We run both V and W versions over the

three test suites. Ultimately, we got the same detection results of

two versions for SoftBoundCETS, MoveC, and ASAN.

Table 4: Real-life CVEs used for evaluation; ✓ denotes that

the memory error can be successfully detected.

Software
CVE SoftBoundCETS ASAN

ID Type V W V W

libzip-1.2.0 CVE-2017-12858 use after free ✓ ✓ ✓ ✓

zziplib-0.13.62 CVE-2017-5978 bu�er over�ow ✓ ✓ ✓ ✓

libti�-4.0.7

CVE-2016-10270 bu�er over�ow ✓ ✓ ✓ ✓

CVE-2016-10271 bu�er over�ow ✓ ✓ ✓ ✓

CVE-2016-10095 bu�er over�ow ✓ ✓ ✓ ✓

graphicsmagick

-1.3.26

CVE-2017-12936 use after free ✓ ✓ ✓ ✓

CVE-2017-12937 bu�er over�ow ✓ ✓ ✓ ✓

potrace-1.14 CVE-2017-7263 bu�er over�ow ✓ ✓ ✓ ✓

Besides the MoveC-MSBench, we also considered the real-life

CVEs used by [25, 48] from the LinuxFlaw [29] repository. We ex-

amined all the CVEs and found all which satis�es the following

three conditions: 1) is memory-related error; 2) can be successfully

compiled and reproduced in our environment; 3) can be success-

fully instrumented by SoftBoundCETS, MoveC, or ASAN. Finally,

8 real-world vulnerabilities are selected for experiments. Table 4

shows the e�ectiveness results of V version and W version under 8

real-life vulnerabilities. It can be seen that W version parallelized by

Catamaran is able to detect all the 8 memory errors, which shows

the identical capability to that of the V version generated by Soft-

BoundCETS and ASAN. Here we did not report any data of MoveC

as it fails to process these programs due to instrumentation errors.

825

For Research Only

Catamaran: Low-Overhead Memory Safety Enforcement via Parallel Acceleration ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

7 DISCUSSION

Correctness of Parallel Enforced Program. Catamaran ensures

the correctness of the parallel enforced program from two aspects.

First of all, Catamaran only parallelizes the dynamic checking code,

leaving the original code to run as usual in the main thread. As all

the states of the main thread are read-only to the dynamic checking

code, the execution of dynamic checking code will not change any

state of the main thread. As a result, scheduling the execution order

of dynamic checking code will not a�ect the execution correctness

of the original code.Moreover, the correctness of executing dynamic

checking code is not a�ected as well since the happens-before

relations among all the control/data dependent code are rigorously

preserved by the sound dependence analysis. To sum up, the output

parallel program generated by Catamaran retains the functionalities

of both the original code and dynamic checking code. The execution

correctness is guaranteed.

Applicability of Catamaran. Catamaran allows the checking

meta-operation _check to be executed in parallel with the origi-

nal dereference instruction. In other words, it is possible that the

original dereference code is executed before _check in the parallel

program. This relaxation does not a�ect the error detection since

the checking code will be executed anyway and the same error

is reported. However, it might be unsuitable for certain scenarios

where the program is forced to be terminated before the memory

violation happens or timely reports errors. From this point of view,

Catamaran is more tailored to the o�ine scenarios such as testing,

debugging, and development process where timely security miti-

gation is not the top priority. In such scenarios, it is worthwhile

to sacri�ce some of the timeliness of error reporting in exchange

for a signi�cant performance improvement. Moreover, Catamaran

currently only considers single-threaded applications as subjects.

We leave the support of multi-threaded programs as future work.

8 RELATED WORK

Dynamic Memory Safety Enforcement. Thanks to the high pre-

cision, many dynamic approaches [3, 9, 11, 12, 18–20, 31, 32, 40]

have been widely adopted to enforce memory safety. However, the

prohibitively high overhead severely undermines their applicability.

Catamaran focuses on reducing the runtime overhead of these dy-

namic approaches, while without sacri�cing their ability in memory

safety enforcement.

Runtime Overhead Reduction. Several studies leveraged static

[22, 41, 46] and/or dynamic analysis [44, 48] to remove the redun-

dant checking code. Unfortunately, they are limited by the im-

precision and/or incompleteness of program analyses. In contrast,

Catamaran transforms parallel tasks on the basis of dependence

analysis, which ensures that no false positives or negatives will be

added. More importantly, our approach is orthogonal to the pro-

gram analysis-based approaches. Catamaran can take the output of

them, further reduce the overhead. Another way to reduce check-

ing code is to add annotations manually, such as Checked C [13].

However, writing annotations is labor-intensive and error-prone. It

takes plenty of time to understand the code, which is impractical

for large scale programs. Moreover, there exists a group of work

[30, 34, 42, 45] speeding up the execution of checking code with

hardware assistance. Although the performance is signi�cantly

improved by hardware acceleration, it strongly depends on the

speci�c hardware and compiler supports. While Catamaran can

run on a commodity PC without requiring any speci�c supports.

Another category for overhead reduction is via decoupling. [36]

customized a guarded program by decoupling the checking logic

from the original and launched an additional shadow process to

execute it, where parallelism among dynamic checking code is not

explored. Speck [33] decouples the dynamic checking code and

executes it on other cores. However, due to the dependence be-

tween the original code and dynamic checking code, the original

code has to be frequently replayed on other cores to produce the

state required for running dynamic checking code correctly. The

log-based architectures [7, 16, 43] divide dynamic checking code

into di�erent types of events. One core produces an event stream

and passes it to another core via logs. However, the execution in

each event stream is not parallel. Even worse, it has to endure the

heavy communication cost via aggressive log passing. The most

related work to Catamaran is [24], which extracts meta-operations

from the original program and executes them in customized helper

threads. As discussed before in §6.2, it requires manual intervention

to specify the code decoupled a priori. Meanwhile, its performance

is severely limited.

Automatic Parallelization. Plenty of work [5, 37–39] have been

proposed to automatically parallelize the sequential code. Di�er-

ent from these approaches, Catamaran only parallelizes the meta-

operations, leaving the original code unchanged. Several work (e.g.,

DSWP [35], DOACROSS [10], DOALL [21]) parallelize loop struc-

tures. Catamaran can also bene�t from these automatic loop paral-

lelization paradigms, especially for loop parallel task optimization.

9 CONCLUSION

We propose a novel approach for reducing runtime overhead of

memory safety enforcement via parallel acceleration. We manip-

ulate the dynamic checking code and run them in parallel, thus

lowering the time overhead. By leveraging the sound static analysis,

we ensure that all the happens-before relations between the data/-

control dependent code are strictly preserved, without a�ecting

the correctness of the memory enforced program. Evaluations over

a rich set of arti�cial and real-world programs validate that our

approach is able to signi�cantly reduce the time overhead intro-

duced by the existing dynamic enforcement tools, while without

retrograding their capability of memory error detection.

10 DATA AVAILABILITY

All the experimental data can be accessed via the link: https://

�gshare.com/articles/dataset/material_issta23/22099655. The arti-

fact is publicly avaiable on Zenodo via the link: https://doi.org/10.

5281/zenodo.7957261.

ACKNOWLEDGMENTS

We would like to thank all the anonymous reviewers for their

valuable comments. This work is partially supported by the Na-

tional Natural Science Foundation of China (Grants 62032010 and

62272217), the Fundamental Research Funds for the Central Univer-

sities (Grant 020214380104), and the Huawei-NJU Innovation Lab

for Next-Generation Programming (Project YBN2019105178SW21).

826

For Research Only

https://figshare.com/articles/dataset/material_issta23/22099655
https://figshare.com/articles/dataset/material_issta23/22099655
https://doi.org/10.5281/zenodo.7957261
https://doi.org/10.5281/zenodo.7957261

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Yiyu Zhang, Tianyi Liu, Zewen Sun, Zhe Chen, Xuandong Li, and Zhiqiang Zuo

REFERENCES
[1] 2022. LLVM LoopInfo Class Reference. https://llvm.org/doxygen/classllvm_1_

1LoopInfo.html. Accessed: 2022-3-1.
[2] 2022. LLVM TargetTransformInfo Class Reference. https://llvm.org/doxygen/

classllvm_1_1TargetTransformInfo.html. Accessed: 2022-3-1.
[3] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy

Bounds Checking: An E�cient and Backwards-Compatible Defense against Out-
of-Bounds Errors.. In USENIX Security Symposium, Vol. 10.

[4] Lars Ole Andersen. 1994. Program analysis and specialization for the C program-
ming language. Ph. D. Dissertation. Citeseer.

[5] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni, and David I Au-
gust. 2020. Perspective: A sensible approach to speculative automatic paralleliza-
tion. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. 351–367.

[6] Luiz André Barroso and Urs Hölzle. 2009. The datacenter as a computer: An
introduction to the design of warehouse-scale machines. Synthesis lectures on
computer architecture 4, 1 (2009), 1–108.

[7] Shimin Chen, Babak Falsa�, Phillip B Gibbons, Michael Kozuch, Todd C Mowry,
Radu Teodorescu, Anastassia Ailamaki, Limor Fix, Gregory R Ganger, Bin Lin,
et al. 2006. Log-based architectures for general-purpose monitoring of deployed
code. In Proceedings of the 1st workshop on Architectural and system support for
improving software dependability. 63–65.

[8] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsa�, Phillip B
Gibbons, Todd C Mowry, Vijaya Ramachandran, Olatunji Ruwase, Michael Ryan,
and Evangelos Vlachos. 2008. Flexible hardware acceleration for instruction-
grain program monitoring. ACM SIGARCH Computer Architecture News 36, 3
(2008), 377–388.

[9] Zhe Chen, Junqi Yan, Shuanglong Kan, Ju Qian, and Jingling Xue. 2019. Detecting
memory errors at runtime with source-level instrumentation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
341–351.

[10] Ron Cytron. 1986. Doacross: Beyond vectorization for multiprocessors. In Proc.
of the Int. Conf. on Parallel Processing, 1986.

[11] Gregory J Duck and Roland HC Yap. 2016. Heap bounds protection with low
fat pointers. In Proceedings of the 25th International Conference on Compiler
Construction. 132–142.

[12] Gregory J Duck and Roland HC Yap. 2018. E�ectiveSan: type and memory
error detection using dynamically typed C/C++. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 181–
195.

[13] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. 2018.
Checked C: Making C safe by extension. In 2018 IEEE Cybersecurity Development
(SecDev). IEEE, 53–60.

[14] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program de-
pendence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (1987), 319–349.

[15] Loukas Georgiadis, Renato F Werneck, Robert E Tarjan, Spyridon Triantafyllis,
and David I August. 2004. Finding dominators in practice. In European Symposium
on Algorithms. Springer, 677–688.

[16] Michelle L Goodstein, Evangelos Vlachos, Shimin Chen, Phillip B Gibbons,
Michael A Kozuch, and Todd C Mowry. 2010. Butter�y analysis: Adapting
data�ow analysis to dynamic parallel monitoring. ACM SIGARCH Computer
Architecture News 38, 1 (2010), 257–270.

[17] Google. 2020. The memory safety report of the Chromium project. https://www.
chromium.org/Home/chromium-security/memory-safety. Accessed: 2022-3-1.

[18] Niranjan Hasabnis, Ashish Misra, and R Sekar. 2012. Light-weight bounds check-
ing. In Proceedings of the Tenth International Symposium on Code Generation and
Optimization. 135–144.

[19] Reed Hastings and Bob Joyce. 1992. Purify: A tool for detecting memory leaks and
access errors in C and C++ programs. In Proceedings of the Winter 1992 USENIX
Conference. 125–138.

[20] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney,
and YanlingWang. 2002. Cyclone: a safe dialect of C.. In USENIX Annual Technical
Conference, General Track. 275–288.

[21] Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I. August.
2012. Speculative Separation for Privatization and Reductions. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (Beijing, China) (PLDI ’12). Association for ComputingMachinery,
New York, NY, USA, 359–370. https://doi.org/10.1145/2254064.2254107

[22] Tina Jung, Fabian Ritter, and Sebastian Hack. 2021. PICO: a Presburger in-bounds
check optimization for compiler-based memory safety instrumentations. ACM
Transactions on Architecture and Code Optimization (TACO) 18, 4 (2021), 1–27.

[23] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[24] Sanghoon Lee and James Tuck. 2013. Automatic Parallelization of Fine-Grained
Metafunctions on a Chip Multiprocessor. ACM Trans. Archit. Code Optim. 10, 4,

Article 30 (Dec. 2013), 26 pages. https://doi.org/10.1145/2541228.2541237
[25] Daiping Liu, Mingwei Zhang, and Haining Wang. 2018. A robust and e�cient

defense against use-after-free exploits via concurrent pointer sweeping. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 1635–1648.

[26] Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianni
Xu, Zhicheng Yao, Yun Chen, Haibin Wang, et al. 2015. Supporting di�erentiated
services in computers via programmable architecture for resourcing-on-demand
(PARD). In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems. 131–143.

[27] Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip Ghosh,
Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi, David I. August,
and Simone Campanoni. 2022. NOELLE O�ers Empowering LLVM Extensions.
In International Symposium on Code Generation and Optimization, 2022. CGO
2022.

[28] Matt Miller. 2019. MSRC security report. https://github.com/microsoft/MSRC-
Security-Research/tree/master/presentations/2019_02_BlueHatIL. Accessed:
2022-3-1.

[29] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao,
and Gang Wang. 2018. Understanding the reproducibility of crowd-reported
security vulnerabilities. In 27th USENIX Security Symposium (USENIX Security
18). 919–936.

[30] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. 2012. Watchdog:
Hardware for safe and secure manual memory management and full memory
safety. In 2012 39th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 189–200.

[31] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. 2015. Everything
you want to know about pointer-based checking. In 1st Summit on Advances in
Programming Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

[32] Myoung Jin Nam, Periklis Akritidis, and David J Greaves. 2019. FRAMER: a
tagged-pointer capability system with memory safety applications. In Proceedings
of the 35th Annual Computer Security Applications Conference. 612–626.

[33] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn. 2008. Paral-
lelizing Security Checks on Commodity Hardware. In Proceedings of the 13th Inter-
national Conference on Architectural Support for Programming Languages and Op-
erating Systems (Seattle, WA, USA) (ASPLOS XIII). Association for Computing Ma-
chinery, New York, NY, USA, 308–318. https://doi.org/10.1145/1346281.1346321

[34] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. 2018. Intel mpx explained: A cross-layer analysis of the intel mpx system
stack. Proceedings of the ACM on Measurement and Analysis of Computing Systems
2, 2 (2018), 1–30.

[35] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I August. 2005. Au-
tomatic thread extraction with decoupled software pipelining. In 38th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’05). IEEE, 12–
pp.

[36] Harish Patil and Charles Fischer. 1997. Low-cost, concurrent checking of pointer
and array accesses in C programs. Software: Practice and Experience 27, 1 (1997),
87–110.

[37] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, Jagan-
nathan Ramanujam, and Ponnuswamy Sadayappan. 2010. Combined iterative and
model-driven optimization in an automatic parallelization framework. In SC’10:
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 1–11.

[38] Easwaran Raman, GuilhermeOttoni, Arun Raman,Matthew J Bridges, andDavid I
August. 2008. Parallel-stage decoupled software pipelining. In Proceedings of the
6th annual IEEE/ACM international symposium on Code generation and optimiza-
tion. 114–123.

[39] Bin Ren, Sriram Krishnamoorthy, Kunal Agrawal, and Milind Kulkarni. 2017.
Exploiting vector and multicore parallelism for recursive, data-and task-parallel
programs. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 117–130.

[40] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A fast address sanity checker. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12). 309–318.

[41] Yulei Sui, Ding Ye, Yu Su, and Jingling Xue. 2016. Eliminating redundant bounds
checks in dynamic bu�er over�ow detection using weakest preconditions. IEEE
Transactions on Reliability 65, 4 (2016), 1682–1699.

[42] M. Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, Ryan Piersma, and
Simha Sethumadhavan. 2021. No-FAT: Architectural Support for Low Overhead
Memory Safety Checks. In Proceedings of the 48th Annual International Symposium
on Computer Architecture (ISCA-48). Worldwide Event, 916–929.

[43] Evangelos Vlachos, Michelle L Goodstein, Michael A Kozuch, Shimin Chen,
Babak Falsa�, Phillip B Gibbons, and Todd C Mowry. 2010. ParaLog: Enabling
and accelerating online parallel monitoring of multithreaded applications. In
Proceedings of the �fteenth International Conference on Architectural support for
programming languages and operating systems. 271–284.

827

For Research Only

https://llvm.org/doxygen/classllvm_1_1LoopInfo.html
https://llvm.org/doxygen/classllvm_1_1LoopInfo.html
https://llvm.org/doxygen/classllvm_1_1TargetTransformInfo.html
https://llvm.org/doxygen/classllvm_1_1TargetTransformInfo.html
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://doi.org/10.1145/2254064.2254107
https://doi.org/10.1145/2541228.2541237
https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL
https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL
https://doi.org/10.1145/1346281.1346321

Catamaran: Low-Overhead Memory Safety Enforcement via Parallel Acceleration ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

[44] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes Kinder.
2015. High system-code security with low overhead. In 2015 IEEE Symposium on
Security and Privacy. IEEE, 866–879.

[45] Hongyan Xia, Jonathan Woodru�, Sam Ainsworth, Nathaniel W Filardo, Michael
Roe, Alexander Richardson, Peter Rugg, Peter G Neumann, Simon W Moore,
Robert NM Watson, et al. 2019. Cherivoke: Characterising pointer revocation
using cheri capabilities for temporal memory safety. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. 545–557.

[46] Hongfa Xue, Yurong Chen, Fan Yao, Yongbo Li, Tian Lan, and Guru Venkatara-
mani. 2017. Simber: Eliminating redundant memory bound checks via statistical
inference. In IFIP International Conference on ICT Systems Security and Privacy

Protection. Springer, 413–426.
[47] Suan Hsi Yong and Susan Horwitz. 2005. Using static analysis to reduce dynamic

analysis overhead. Formal Methods in System Design 27, 3 (2005), 313–334.
[48] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He, and Zhendong Su. 2021.

SANRAZOR: Reducing Redundant Sanitizer Checks in C/C++ Programs. In 15th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
21). USENIX Association, 479–494. https://www.usenix.org/conference/osdi21/
presentation/zhang

Received 2023-02-16; accepted 2023-05-03

828

For Research Only

https://www.usenix.org/conference/osdi21/presentation/zhang
https://www.usenix.org/conference/osdi21/presentation/zhang

	Abstract
	1 Introduction
	2 Background & Overview
	2.1 Background
	2.2 Overview of Catamaran

	3 Problem Formulation
	4 Approach
	4.1 Intra-Point Parallel Task Dispatch
	4.2 Inter-Point Parallel Task Dispatch
	4.3 Parallel Task Optimization

	5 Implementation
	6 Evaluation
	6.1 Performance
	6.2 Comparison against the State-of-the-Art
	6.3 Effects of Thread Count and Compiler's Optimizations
	6.4 Effectiveness of Safety Enforcement

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Data Availability
	Acknowledgments
	References

