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Abstract—Automated GUI testing through the reuse of existing
tests has recently gained prominence in research. Cross-platform
migration of GUI tests between different platform versions of an
application offers a promising opportunity for test reuse. Widget
mapping, identifying similarities between source and target
application widgets and connecting semantically analogous pairs,
is central to these approaches. Vision-based widget mapping
approaches are supposed to provide platform-agnostic solutions
more suitable for cross-platform migration, considering that dif-
ferent platform versions frequently display strong resemblances
in the appearance of their semantically similar widgets. However,
the efficacy of vision-based widget mapping for cross-platform
migration remains limited and the reasons remain unclear.

In this paper, we present the first comprehensive investigation
of vision-based widget mapping for cross-platform GUI test
migration. We devote considerable effort to constructing a dataset
consisting of 6,730 bi-directional mapped widget pairs across the
iOS and Android platforms, and categorize the mapped widgets
into eight classifications to thoroughly assess the capabilities of
various approaches. We implement 89 configurations, derived
from five distinct vision-based widget mapping methodologies,
and evaluate their performance utilizing our dataset. Our findings
reveal valuable insights that can be employed to advance vision-
based widget mapping techniques: (1) The current approach
exhibits potential for improvement, as certain configurations
demonstrate superior performance in comparison to existing
methods; (2) Some features can adversely impact the mapping,
requiring more consideration; (3) A substantial proportion of
mapped widgets display varying inconsistent contents in their
appearance, which require more sophisticated vision algorithms.

Index Terms—Test migration, GUI testing, vision-based GUI
analysis

I. INTRODUCTION

GUI tests play a crucial role in ensuring the quality of

mobile apps by simulating user interactions with the app’s

graphical user interface. However, manual test development

is time-consuming, and automated test generation techniques

[1]–[3] may miss certain scenarios, resulting in undetected

faults related to specific app functionalities [4], [5]. To over-

come this challenge, researchers propose reusing meaningful

GUI tests from a source app to generate new tests for a target

app, which has been shown feasible for the automated testing

of Android apps within the same domain [6]–[9]. Cross-

platform app development is prevalent but requires distinct

*Corresponding authors.

GUI tests for each platform, which is redundant. Therefore,

migrating GUI tests across different platform versions of an

app is a potential solution for test reuse and cross-platform

testing enhancement.

GUI test reuse is possible due to the semantically similar

functionalities shared by many GUI applications. In the case of

cross-platform mobile apps, this similarity can be even more

pronounced, with identical or nearly identical functionalities

and consistent appearances across platforms. This consistency

facilitates users switching between platforms and enhances

app retention. Based on the observation that apps provide the

same or almost the same functionalities through semantically

similar events, the migration of GUI tests across platforms

involves mapping such events across platforms. Since an

event is triggered by user interaction with a widget and this

interaction can be reused as-is [10], the main challenge is to

map semantically similar widgets across platforms.

The widget mapping approach for test migration can lever-

age consistencies in appearances and employ vision-based

GUI analysis guidance instead of textual information, which

includes text extracted from the source code of applications

[7]–[9], [11] and platform-dependent attributes found in layout

file (e.g., iOS’s label and Android’s content descriptor) [6],

[10]. Accessing and interpreting these textual information can

be challenging and platform-dependent. In contrast, vision-

based approaches only capture and utilize text displayed on

screens, which is extracted using optical character recogni-

tion (OCR) techniques [12]. Vision-based approaches offer

a broader perspective, and provide supplementary guidance

beyond textual information, thereby improving the ability to

semantically map widgets. Additionally, vision-based widget

mapping techniques are platform-agnostic, enhancing their

applicability for test migration across platforms. Despite these

advantages, research on vision-based widget mapping ap-

proaches for GUI test migration is limited. Currently, MAPIT

[10] is the only approach utilizing visual features in app

appearances to map semantically similar widgets for test

migration across platforms, albeit with preliminary usage of

visual features. TestMig [11] is another recent approach but

it relies on app source code to map widgets and transfers

GUI tests from iOS to Android. Other works that reuse tests

across apps within the same domain also mostly rely on
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source code and textual information [7]–[9]. A recent study by

Mariani et al. [6] examines the mapping of GUI events using

textual information for test reuse across applications within

the same domain. The study acknowledges the significance of

widget mapping but does not investigate visual features. Thus,

there is still a significant gap in vision-based widget mapping

for GUI test migration across platforms that requires further

exploration.

This paper presents the first investigation into solutions for

vision-based widget mapping in GUI test migration across

platforms. Given the scarcity of related work and suitable

datasets, considerable effort are devoted to collecting mapped

widgets from a selection of highly popular apps that are avail-

able on both the iOS and Android platforms. This enables us to

construct the first real-world dataset, comprising 6,730 distinct

widget mapping relations from 50 pairs of apps. We also man-

ually identify inconsistencies in the appearances of mapped

widgets based on our dataset, to comprehensively understand

widget mapping for cross-platform GUI test migration and

deepen our evaluation on the adopted feature comparison

and matching algorithms for all kinds of consistencies and

inconsistencies. It also provides guidance for further vision-

based widget mapping in other related domains. Furthermore,

we explore several domains of GUI testing and select five

approaches, which we adapt as vision-based widget mapping

approaches. We identify three key steps in the mapping process

and evaluate the impact of different choices for each step

on widget mapping effectiveness using our dataset. Specifi-

cally, we implement 89 configurations using the five selected

approaches, and examine the 6,730 unique widget mapping

relations twice, once mapping iOS widgets to Android widgets

and once vice versa.

Our study reveals limitations in existing approaches and

presents valuable insights for improving vision-based widget

mapping methods. The key findings include: (i) A notable

proportion of semantically similar widgets display inconsis-

tent appearances, necessitating the consideration of additional

features and the application of more sophisticated compari-

son techniques. (ii) Numerous vision-based widget mapping

configurations, derived from existing techniques across vari-

ous domains, surpass the performance of current approaches,

revealing significant potential for enhancement. (iii) The se-

lection of visual features demands a judicious consideration to

achieve positive outcomes, as incorporating more features does

not always lead to better results and certain features should

be utilized in conjunction with others. (iv) Specific features,

such as text, offer benefits only for particular widget types and

should be applied cautiously. (v) Current graphic comparison

algorithms associated with the graphic feature encounter diffi-

culties handling graphical inconsistencies, necessitating further

development and improvement.

In summary, this paper presents the following contributions:

• Dedicates significant effort to the creation of a real-world

dataset for assessing widget mapping in cross-platform GUI

test migration, making it publicly accessible for future

ei1=(click, wi1, null) ei2=(click, wi2, null)

ei3=(click, wi3, null)

ea1=(click, wa1, null)
ea2=(click, wa2, null)

ea3=(click, wa3, null)

ssti1 (Also ssti3) ssti2

ssta1 (Also ssta3) ssta2

[iOS]

[Android]

Fig. 1. The GUI tests for Booking on iOS and Android platforms.

research [13];

• Conducts the first comprehensive study of vision-based

widget mapping approaches, delineating their main process;

• Evaluates 89 configurations of vision-based widget map-

ping, identifying configurations that outperform all the

original methods;

• Examines the impact of each step in the widget mapping

process on mapping outcomes, elucidating the optimal

choice for each step.

II. VISION-BASED WIDGET MAPPING

This section introduces the vision-based widget mapping.

A. Preliminary

This paper focuses on the investigation of Graphical Use

Interface (GUI) testing of mobile applications (app). An app

consists of numerous screens that form its GUI. Each screen

contains various visual and interactive elements, i.e., widgets.

Our focus lies on events arising from user interactions (uia)

with a widget (w) on the active screen, e.g., tapping a button

or entering text into a field. We represent an event e as a tuple

(uia, w, txt), where txt can be empty. We capture changes in

the app’s screens using screenshots, which show the state of

the app. A GUI test is a sequence of events 〈e1, ..., en〉 on

screens. Its execution is a sequence of state transitions of the

app from one screenshot to another (e.g., ssti
ei−→ ssti+1).

Automatic GUI tests migration across mobile platforms is

to transfer tests from one platform’s implementation of an

app to another platform’s implementation of the same app

(e.g., from iOS to Android). Fig. 1 shows two GUI tests and

their executions of the popular app, Booking, on Android and

iOS platforms. Staring from the iOS app with 〈ei1, ei2, ei3〉
and ssti1, ssti2, ssti3, the test cross-platform migration aims

to sequentially construct 〈ea1, ea2, ea3〉 using ssta1, ssta2,

and ssta3 to generate the GUI test for the Android app.

The mapped widgets that trigger semantically similar events

generally exhibit consistent appearance, although some incon-

sistencies may exist, e.g., graphics.

Identifying the mapped widgets is crucial for event matching

and has a significant impact on cross-platform GUI test
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{wt1, wt2, …, wtn}
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ds

{dt1, …, dtn}

Mapping
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wot
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Yes

Success
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Fail

ws & sststtw

eetsetWiddgedgedgWidgdgdge
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Fig. 2. The process to study vision-based widget mapping. Descriptor
Extractor denotes Vision-based Widget Descriptor Extractor, and Mapping
Approach denotes Vision-based Widget Mapping Approach. A widget mapping
relation from DataSet provides the source and target widgets (ws & wt),
along with the screenshots displaying the source and target widget (ssts &
sstt). sstt displays a set of candidate widgets ({wt1, ..., wtn}). Descriptor
Extractor generates the descriptors of ws and {wt1, ..., wtn}, which are
denoted as ds and {dt1, ..., dtn}. The output widget from Mapping Approach
is denoted as wot. Solutions are configurations under test.

migration. We focus on vision-based widget mapping, which

aims to exploit the consistency in widgets’ appearances and

mitigate the impact of inconsistency to achieve the tasks.

B. Vision-based Widget Mapping

Current approaches employ widget features as descriptors
to represent the widgets and identify their semantically similar

counterparts across different platform versions of an app. In

this paper, we focus on the vision-based widget mapping ap-
proaches that rely on visual characteristics to generate descrip-

tors and identify widget mapping relations. By exploiting the

consistency in widget appearances and mitigating the impact

of inconsistency, these approaches are able to effectively use

visual features to improve widget mapping.

We illustrate the process of vision-based widget mapping in

Fig. 2, building on prior research in this field. It consists of two

main modules: the Vision-based Widget Descriptor Extractor,

and the Vision-based Widget Mapping Approach. The former

extracts descriptors of the source widget and all the candidate

widgets, and the latter uses descriptors to calculate the output

widget, which is verified based on the truly mapped widget.

Vision-based Widget Descriptor Extractor receives a

source widget and a set of candidate widgets to identify the

semantically similar widget (i.e., the target widget), along with

screenshots of the source widget and all candidate widgets. It

extracts descriptors by selecting one or more visual features.

We review the related research work and collect the possible

visual features. The features are listed as follows.

• text refers to textual content that appears as a visual feature

in widget appearances. text can be captured using Optical

Character Recognition (OCR) algorithms [10], [14].

• graphic refers to the visual content that makes up a widget’s

appearance, such as icons, images, and text. This means that

a widget having textual content in its appearance generally

can have both graphic and text.

• location refers to the position of a widget within a screen-

shot and is often represented as a 2D coordinate indicating

the top-left corner of the widget. Such location is absolute

location. It is commonly used, although some approaches

also create relative location to gain deeper insights.

• size refers to the rectangular area bounded by the top-left

and bottom-right coordinates of the widget in a screenshot.

The current techniques for widget mapping lack the ability

to differentiate between visual and non-visual text, resulting

in the integration of non-visual text sources such as platform-

dependent XML layouts files into their text features, which

may not be suitable for less well-known platforms. This paper

prefers the visual text.
Vision-based Widget Mapping Approach receives de-

scriptors of both the source widget and the candidate widgets.

It compares descriptors of the source widget and all the

candidate widgets, which consist of features constructing the

descriptors, and then match and output the most semantically

similar widget among all the candidates. This process typ-

ically involves two steps. (i) Compare each adopted visual

feature individually using proper visual feature comparison
algorithms . Various algorithms are used for comparison, such

as Word2Vec [15] for feature text and SIFT for feature graphic.

For a given source widget and all candidate widgets, the

comparison algorithms for a specified feature may output a

similarity value list or directly identify the most semantically

similar widget in terms of that feature. (ii) Design a matching
method to determine the most semantically similar widget

based on the comparison results from Step (i). If the descriptor

adopts more than one feature, the matching methods aggregate

all the comparison results properly to arrive at a final decision

of the most semantically similar widget.

III. EMPIRICAL STUDY DESIGN

This section provides the design of our investigation into

vision-based widget mapping, including an overview, our real-

world dataset, the selected techniques, the research questions,

and the experiment design and settings.

A. Overview

This study employs the process illustrated in Fig. 2 to

investigate vision-based widget mapping approaches. To facil-

itate an effective evaluation of vision-based widget mapping

approaches, we construct a real-world dataset and extract

vision-based widget mapping approaches from the literature.

The dataset contains widget mapping relations, each of

which involves a pair of semantically similar widgets from

an app’s iOS and Android versions. Each widget mapping

relation provides inputs for the vision-based widget mapping

approaches, including a source widget, a source screenshot of

the app on the source platform displaying the source widget,

and a target screenshot of the app on the target platform

displaying a set of candidate widgets from which to identify

the target widget. The mapping process in our study involves

identifying the target widget from the candidate widgets, with

1418

For Research Only



Fig. 3. Number of the collected widget mapping relations and the screen pairs
displaying the mapped widgets of all app types in our real-world dataset.

one widget mapping relation providing the target widget to

validate whether it has been located successfully.

B. A Real-world Dataset

To study vision-based widget mapping approaches in cross-

platform GUI test migration, we need a real-world dataset. It is

commonly believed that multiple platform version apps share

consistency in e.g., widget graphics (e.g., images and icons),

screen layout [16], and widget attributes [11], which supports

test migration across platforms. However, previous research

has shown that this belief is too crude and preliminary and

needs to be improved. With this dataset, researchers can dig

into the consistency and inconsistency in the visual aspect

between the cross-platform versions of apps, and validate

state-of-the-art techniques or design more efficient approaches.

Unfortunately, we found that there is still a lack of such a real-

world dataset to support further research.

To build our real-world dataset, we selected cross-platform

apps that have both Android and iOS versions, which are

widely used mobile platforms [11] and provide sufficient

cross-platform apps for our study. Each unit of the dataset is a

widget mapping relation, consisting of a pair of semantically

similar widgets from the app’s iOS and Android versions,

along with screenshots of the app displaying these widgets and

XML layout files. These XML layout files contain attributes

for all widgets displayed in the screenshots, serving as locators

for all widgets. We recorded a pair of mapped widgets by

storing their locators together. Additionally, we recognized any

remaining unmatched widgets using the attributes provided by

the XML layout files.

To increase diversity, we selected 50 applications spanning

ten different types from the Top Free App List in both the

Apple Store and Google Play (Fig. 3). We opted for the

latest versions of iOS apps, as the Apple Store only provides

the latest version, to minimize version update differences

when downloading Android apps from Google Play. We then

executed both versions of the applications simultaneously on

different devices. We manually explored and located mapped

screens, and employed Appium [17] to automatically record

corresponding screenshots and XML layout files at specific

TABLE I
ACTIVITY COVERAGE AND UNMATCHED WIDGETS. A IS ACTIVITIES, AC

IS ACTIVITY COVERAGE, AND UMW IS UNMATCHED WIDGETS.

# Avg. 

UMW per 

Screen (iOS)

# UMW 

(iOS)

# Avg. UMW 

per Screen 

(Android)

# UMW 

(Android)

Avg. AC 

per App 

(%)

# A

29.174,37616.212,43210.4432Business

30.893,27413.071,38513.5250Education

31.534,03615.561,99210.1633Lifestyle

31.814,29426.703,60412.0230Music

38.674,40825.662,9257.0222News

32.382,72020.151,69311.9320
Photo & 

Video

33.052,77616.011,3458.8531Productivity

28.994,11722.533,19912.5484Shopping

33.945,73611.461,9376.3149
Social 

Networking

37.803,21317.441,48214.6044Travel

-38,950-21,994-395Total

time intervals. Subsequently, we manually identified the se-

mantically similar widgets across iOS and Android based on

the mapped screens.

To ensure accuracy and avoid bias in the collection of

widget mapping relations, a team of two Ph.D. candidates

and two master students manually conducted the process.

Due to the complexity and diversity of widget mapping

relations, automated matching is still challenging. Therefore,

the team relied on their observation and experience. The

team was divided into two groups, each consisting of one

Ph.D. candidate and one master student. The two groups

independently collected mapped widgets from cross-platform

apps, which were then cross-validated and merged as a single

set of widget mapping relations. Conflicts were resolved by

consensus among all team members. In case of disagreements,

the two groups examined the actual apps together and made

decisions jointly.

Dataset Overview. For a comprehensive overview of our

dataset, Fig. 3 presents the number of widget mapping rela-

tions and the number of mapped screens in our dataset [13].

In its entirety, it includes 6,730 widget mapping relations from

1,197 pairs of screens across 50 popular cross-platform apps

on iOS and Android (10 categories, 5 apps per category).

Additionally, we report the activity coverage for each app

category during the dataset construction, including the number

of covered activities and the average activity coverage for each

app within that category, and the total number of unmatched

widgets and the average number of unmatched widgets per

screen for both Android and iOS apps in our dataset. This

information is presented in Table I.

C. Selected Techniques

Various vision-based widget mapping approaches use dis-

tinct descriptors that combine visual features and employ
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S1: MAPIT

ORB L2 norm

wAvg

v2

W2V

v1 Thd Rnk

S2: METER

SIFT

vv

Sim

wot

S3:LIRAT S4:WebEvo S5: FMA

WS

gt l s gt /

Rnk Rnk

wot wot

g rl

SIFT Match

p2p1

wAvg

wot

IHED

gt

v2v1

ThdRnk

wot

p

SIFT

wot

g

Fig. 4. Overview of the selected vision-based widget mapping approaches in this paper (S1-S5). t, g, l, s, and rl denote features text, graphic, location,
and relative location. v is a similarity value, p is a coordinate, and wot is the output widget. W2V is Word2Vec, L2 norm is Euclidean distance [18], WS is
widget size, wAvg is a weighted average formula, Sim is to calculate the similarity between two texts, Match is designed by LIRAT, ED is Levenshtein Edit
Distance, IH is image hashing. Thd means adopting a similarity threshold. Rnk means ranking the similarity values.

diverse visual feature comparison algorithms and matching

methods. These factors can have a significant impact on widget

mapping. In our literature review, we found that only one tech-

nique, MAPIT [10], uses visual features for widget mapping

in the context of cross-platform GUI test migration. However,

it is insufficient for our study. We believe that our investigation

should not be limited to cross-platform test migration but

should also consider other GUI testing domains. Thus, we

identified five state-of-the-art techniques and extracted their

vision-based widget mapping approaches. Although GUI test

migration across apps in the same category requires identify-

ing semantically similar widgets between different apps, we

excluded the existing techniques in this domain because they

do not involve visual features or vision-based techniques. The

selected techniques are as follows. Details are in Fig. 4.

• S1. MAPIT [10] is a cross-platform GUI test migration ap-

proach and currently considered state-of-the-art. We include

its widget mapping approach and use the text information

only from the screens.

• S2. METER [14] is a state-of-the-art approach for GUI

test repair in case of changes in the GUI of an app. Using

their techniques of detecting widget changes to measure the

similarity between widgets, we can locate mapped widgets.

• S3. LIRAT [16] is a latest test record and replay technique.

To replay a test on a new device, widget mapping tech-

niques are necessary to locate the widget associated with

the event to be triggered. We include this technique.

• S4. WebEvo [19] is one of the latest techniques to detect

changes for evolving web pages. Similar as METER, We

use WebEvo’s ability to measure widgets’ similarity in ap-

pearances and locate the mapped widgets across platforms.

• S5. Feature Matching-based Approach (FMA) [20] is re-

cently provided to support visual GUI testing on Android.

Visual GUI testing techniques require a widget mapping

process that matches the screenshots of the widget with the

event to be triggered in the test case to the actual widget

on the screen. We use FMA’s ability of locating mapped

widgets via graphic comparisons.

The selected vision-based widget mapping approaches share

similarities but differ in three key aspects: (1) the adopted

visual feature combinations for descriptors, e.g., MAPIT uses

four visual features, while FMA only uses feature graphic; (2)

the feature comparison algorithms, e.g., MAPIT and METER

both use feature graphic, but the selected feature comparison

algorithms are different, i.e., ORB [21] and SIFT [22]; (3) the

matching methods, e.g., MAPIT provides a threshold for text,
while WebEvo provides a threshold for graphic.

D. Research Questions

We will answer the following research questions.

RQ1. Inconsistency Identification. Are there any inconsis-
tencies in the content of mapped widgets in their ap-
pearances between cross-platform versions of an app?

We investigate whether there are inconsistencies in the appear-

ance of widgets that may affect the effectiveness of vision-

based widget mapping. To do this, we classify the widgets

in our real-world dataset as either textual or graphical and

identify any inconsistencies in the appearance of mapped

widgets across platforms.

RQ2. Overall Effectiveness. What is the most effective con-
figuration to locate the semantically similar widgets
between cross-platform versions of an app?

We implement 89 configurations based on the selected ap-

proaches and evaluate all of them on the real-world dataset

(Sec. III-B) collected by us in this paper to explore the vision-

based widget mapping approaches in cross-platform GUI test

migration and determine the most effective configuration.

RQ3. Internal Comparison. What are the most effective
instances of each step of a widget mapping approach?

We study which instances perform the best in each step and

recommend to prioritize these instances in future research.

E. Experiment Design and Settings

1) RQ1: Widgets convey functionality to users through the

visual content in their appearances. The selected approaches

are related with GUI testing and focus on the widgets’ visual

content in their appearances, which are then transferred as

feature graphic. Some of them also transfer the content in

the widget’s appearance as feature text using OCR. Then,

the selected approaches can adopt graphic or text or their

combination to create descriptors aiming at supporting vision-

based widget mapping. Different approaches employ different
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# ConfigurationsVariations (Feature combinations)text comparison algorithmgraphic comparison algorithm

3*3*1*1+3*3*1+3*3*1+3*1*1+3*1*1

+3*3+3*1+3*1+3*1+3*1+1*1+1+1+3=60

(t, g, s, l), (t, g, s), (t, g, l), (t, s, l), (g, s, l), 

(t, g), (t, s), (g, s), (t, l), (g, l), (s, l), (l), (s), (g)
ED, Sim, W2VORB, IH, SIFT-MMAPIT

# Config.Variationstextgraphic

3*3=9(g, t)ED, Sim, W2VORB, IH, SIFT-MMETER

3*3+3=12(g, t), (t)ED, Sim, W2VORB, IH, SIFT-MWebEvo

# Config.Variationsgraphic

5*1+5*1+1-3=8
(g, rl), (g), (rl), but some (g) 

are used in MAPIT

ORB, IH, SIFT-M,

SIFT-L, SIFT-F
LIRAT

5-5=0
(g), but some (g) used 

in MAPIT and LIRAT

ORB, IH, SIFT-M,

SIFT-L, SIFT-F
FMA

89

Fig. 5. Experiment configurations. t, g, l, s, and rl refer to text, graphic, location, size, and relative location. size, location, and relative location have one
comparison algorithm. So, their choices are not listed.

algorithms to compare the feature graphic and text between

the source widget and candidate widgets, e.g., SIFT and ORB

for graphic. The mapping process is to find the widget pair

with the highest similarity value.

Mapped widgets should have similar appearances since they

represent the same app functionality on different platforms.

However, since different teams develop cross-platform ver-

sions, inconsistencies in appearances can arise. These inconsis-

tencies can impact vision-based widget mapping by affecting

the performance of comparison algorithms. Therefore, inspired

by METER, we classify the widgets in our real-world dataset

as either textual or graphical. Then, we identify any incon-

sistencies in the textual and graphical contents of widgets’

appearances across platforms to confirm their existence and

enhance the evaluation of widget mapping.

We will manually classify all collected widget mapping

relations. The team of four people (Sec. III-B) is divided

into two groups as before, and both groups work on the

entire dataset. They cross-validate and merge their results, and

conflicts are resolved by all four people together.

2) RQ2 & RQ3: We conducted experiments with 89 differ-

ent configurations for vision-based widget mapping, including

the five originally selected approaches that serve as baselines

for RQ2. These configurations are shown in Fig. 5. Each

configuration was tested twice on our dataset, mapping iOS

widgets to Android widgets and vice verse. The results were

used to answer RQ2 and RQ3.

We identify three factors in Sec. II that can impact their

ability of vision-based widget mapping: adopted visual feature

combinations, feature comparison algorithms, and matching

methods. Then, we set up the configurations by combining

various choices of the three factors.

Visual feature combinations. As shown in Fig. 4, MAPIT

uses text, graphic, location, and size; METER uses text and

graphic; LIRAT uses graphic and relative location; WebEvo

uses text and graphic; and FMA uses graphic. We generate

variations of these approaches by using subsets of the adopted

feature combinations. For example, LIRAT uses the combina-

tion of graphic and relative location, and we can create two

variations by using only using graphic or relative location (for

a total of 3 = 22−1 configurations, including the original). In

principle, MAPIT can provide 15 (= 24 − 1) configurations,

METER can provide 3 (= 22 − 1), WebEvo can provide 3

(= 22 − 1), and FMA can provide 1 (= 21 − 1).

Feature comparison algorithms. We found 5 choices of

feature comparison algorithms for feature graphic, 3 choices

for text, and 1 choice for the others. The feature comparison

algorithms for feature graphic are Scale Invariant Feature

Transform (SIFT) [22], Oriented FAST and rotated BRIEF

(ORB) [21], and Image Hashing (IH) [23]. As shown in Fig.

4, METER, LIRAT, and FMA use SIFT but with different

supporting algorithms, e.g., FMA uses SIFT with RANSAC

[24]. We denote them as SIFT-M, SIFT-L, and SIFT-F, respec-

tively. The feature comparison algorithms for feature text are

Word2Vec with tf-idf [25] (W2V for short), Edit Distance [26]

(ED), and a customized formula (Sim). For feature location,

Euclidean distance [18] (L2 norm) is used as the feature

comparison algorithm. For feature size, the similarity values

are determined by the difference in widget sizes normalized

by the device size. The instance of feature relative location is

proposed by LITRA [16]. LITRA divides the source and target

screenshots into groups and assigns each widget a unique

group number, row number, and column number within a grid.

These numbers are combined to create a 3-tuple, representing

the widget’s relative position. The Match algorithm is then

used to compare the similarity between these 3-tuples.

Matching methods. Each selected technique provides a

distinct choice. MAPIT, METER, and WebEvo compute the

similarity values of specified features between the source

widget and all candidate widgets and generate similarity value

lists for each feature. METER differentiates widgets based

on their textual or graphical content and considers either

graphic or text as a single active feature to construct a widget

descriptor. Hence, METER ranks the comparison results of

a single specified feature and outputs the widget with the

highest similarity value in that feature. MAPIT and WebEvo

rank multiple features and use a similarity threshold on one

feature to determine an acceptable range of similarity values.

Widgets whose comparison result of this feature is higher than

the threshold can participate in further ranking. While MAPIT

provides a threshold for text, WebEvo provides a threshold

for graphic. Furthermore, MAPIT uses a weighted average

formula to aggregate graphic, location, and size as a new

similarity value. After filtering candidates by the threshold,

WebEvo ranks them based on the similarity value of feature

text, while MAPIT ranks them based on the new similarity

values. LIRAT and FMA adopt different matching methods

compared to the other approaches. Their feature comparison

algorithms identify the most matching location within the

target screenshots for a specified feature. FMA only adopts
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graphic as a descriptor and determines the output widget based

on this location. LIRAT separately calculates the comparison

results of graphic and relative position and outputs the two

most matching locations for each feature. Then, it combines

the coordinates of the two most matching locations using

a customized weighted average formula to create a new

coordinate for the final output widget.

As previously mentioned, MAPIT, METER, and WebEvo

need similarity value lists generated by the feature comparison

algorithms, and LIRAT and FMA need the most matching

locations. While similarity value lists can be used to identify

the most matching locations, the reverse is not true. So, SIFT-L

and SIFT-F cannot be used by MAPIT, METER, and WebEvo.

The matching methods used by the selected approaches

also restrict the acceptance of some subsets of adopted fea-

ture combinations. Specifically, WebEvo can not use graphic
alone because its matching method uses a similarity value of

graphic as a lower limit, which cannot determine the output

widgets. Therefore, WebEvo can only adopt 2 kinds of feature

combinations: text only or a combination of graphic and text.
Similarly, MAPIT can not use text in isolation, so it can adopt

14 (= 24 − 1 − 1) kinds of feature combinations. METER

uses both text and graphic, but only one of these features can

be used as the descriptor of a widget in METER. Therefore,

METER only adopts the one feature combination.

Remove redundant configurations. Fig. 5 presents all the

possible choices for the key factors. By combining different

instances of each factor, we can generate various configu-

rations. Initially, there could be 97 different configurations

of the selected techniques. However, some configurations are

redundant. For example, LIRAT’s variation that only adopts

graphic using ORB, IH, and SIFT-M separately derives three

configurations. They are covered by the configurations derived

from MAPIT’s variation that only adopts graphic. Similarly,

all configurations derived from FMA are covered by the

configurations derived from MAPIT’s and LIRAT’s variations

which only adopt graphic. Hence, we finally have 89 different

configurations in total.

3) Metrics: We aim to identify the target widget in a set

of candidate widgets that is semantically similar to a given

source widget, using various approaches. We evaluate the

effectiveness of these approaches using mapped widgets across

iOS and Android versions of an app from our real-world

dataset. We use one of the mapped widgets as the source

widget and the other as the target (i.e., the ground truth).

To access the performance of the selected approaches,

we compute their precision, recall, and F1 values for each

widget mapping request. A widget mapping request involves

identifying the target widget which is semantically similar

to a given source widget from the set of candidate widgets.

These candidate widgets comprise all the widgets displayed

in the target screenshots, irrespective of their involvement in

any widget mapping relations. We calculate true positive (TP)

when the source widget is correctly mapped to the target

widget, false positive (FP) when the source widget is mapped

to a wrong widget, and false negative (FN) when the source

TABLE II
DEFINITIONS OF THE CATEGORIES OF MAPPED WIDGETS.

DefinitionCategory

The mapped widgets have the identical text in
their appearances.

T0

Textual
The mapped widgets have similar text in their
appearances, but not identical.

T1

The mapped widgets have text in their
appearances that has no words in common.

T2

The mapped widgets have the identical
graphics in their appearances.

G0

Graphical

The mapped widgets have graphics with the
same shape but different colors.

G1

The mapped widgets have graphics with the
same color but different shapes.

G2

The mapped widgets have graphics with
different shapes and colors.

G3

Of the mapped widgets, one has text while
the other has a graphic in their appearances.

MixMixed

widget is not mapped to any widgets. Precision is computed

as TP/(TP + FP ), recall is computed as TP/(TP + FN),
and F1 score is computed as 2 ∗ prec ∗ rec/(prec+ rec).

IV. EMPIRICAL STUDY RESULT

In the following, we report the results of our study.

A. RQ1: Inconsistency Identification

To address RQ1, we examine all widget mapping relations

in our dataset (Sec. III-B) and classify them into three cat-

egories with eight subcategories, as shown in Table II. The

three categories are textual mapped widgets (T0-T2), graphical

mapped widgets (G0-G3), and mixed mapped widgets (Mix).

The textual group is classified into three types based on shared

words between source and target widgets. The graphical group

is classified based on shape and color. Mixed mapped widgets

occur when one widget contains text while the other has

graphics. These categories are based on the consistency of

content in the mapped widgets, which are extracted using the

features text and/or graphic when mapping widgets. T0 and G0
describe the mapped widgets with consistent content in their

appearances, while the others involve the mapped widgets with

inconsistent content.

We present the classification results for all mapped widgets

in our dataset in Fig. 6. The mapped widgets with consistent

content (T0 and G0) account for 71.9% of all the mapped

widgets with fluctuations ranging from 59.5% (43.4% of T0
plus 16.1% of G0 for Social Networking apps) to 88.5%

(57.3% of T0 plus 31.2% of G0 for Shopping apps), while

mapped widgets with inconsistent content constitute the re-

maining 28.1%. T0 outweighs G0, with both of them being

the top two among all app types. G1-G3 outnumber T1-T2.

The distribution of Mix varies, ranging from 2.9% to 16.4%,

across different app types.

The results show that over 71.9% of the mapped widgets

have identical text and graphics, highlighting the potential for
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Fig. 6. The distributions of all categories of widget mapping relations in our dataset.

test reuse. Nonetheless, a notable proportion of mapped widget

appearances display inconsistent content concerning the text
and graphic features. This implies that relying solely on

these features and their comparison algorithms, which check

consistency between two widgets, to map widgets may not

always be reliable, as the inconsistent content can negatively

impact the widget mapping using vision-based methods. To

address this issue, more powerful comparison algorithms for

text and graphic are needed, and other visual features like

location and size can be introduced to reduce the interference

from inconsistency and enhance the mapping accuracy when

combined with text and graphic. Introducing new features

also requires well-designed matching methods to aggregate

comparison results for each feature.

Finding: In our real-world dataset, approximately 28.1% of

all mapped widgets display varying inconsistent content in

their appearance, despite being semantically similar. This

suggests a need for considering additional features and

employing more sophisticated comparison methods.

B. RQ2: Overall Effectiveness

We implement 89 configurations, each of which handled

6,730 widget mapping requests for mapping iOS widgets to

Android widgets and vice versa. Each widget mapping relation

in our dataset yields two widget mapping requests. In each

widget mapping request, one widget is designated as the

source, and all widgets displayed on the target screen page

are considered as potential candidates. Therefore, each con-

figuration handles a total of 13,460 widget mapping requests.

The results obtained by using the 89 configurations for

mapping 13,460 widgets from our dataset are illustrated in

Fig. 7. Our evaluation of these configurations shows that the

precision ranges from 11.61% to 81.57%, recall ranges from

17.41% to 94.75%, and F1 score ranges from 13.93% to

85.17%. The mean values of precision, recall, and F1 score of

the 89 configurations are represented by the green dashed lines

with circles at their endpoints on each box of Fig. 7, and they

are 61.84%, 74.89%, and 66.75%, respectively. The median

values of precision, recall, and F1 score are represented by

the yellow solid lines on each box, and they are 65.93%,

81.59%, and 68.75%. When sorted by precision, the original

methods (MAPIT, FMA, WebEvo, METER, and LIRAT) rank

41 (68.85%), 62 (57.57%), 77 (47.96%), 30 (70.92%), and 79

(41.70%), respectively. When sorted by recall, the rankings are

9 (93.74%), 30 (85.46%), 31 (84.22%), 69 (64.56%), and 88

(21.36%). Sorted by F1 score, the rankings are 24 (79.39%),

45 (68.79%), 64 (61.12%), 50 (67.59%), and 87 (28.25%).

Out of the 89 configurations tested, only MAPIT appeared

the in top 10% (top 9 entries) for recall. The precision of

METER and MAPIT are higher than the mean and median

values, while the recalls of MAPIT, FMA, and WebEvo are

higher than the mean and median values. The F1 scores of

MAPIT and FMA are higher than the mean value and median

value, and METER’s F1 score is higher than the mean value

but lower than the median value. The others performed poorly

in all metrics. Notably, almost all the configurations in the

top 30% (top 27 entries) for precision, recall, and F1 score

are derived from MAPIT, except for one configuration derived

from LIRAT, which achieves the 11th place precision.
We selected the best configuration based on the F1 score,

which uses IH for feature graphic and ED for feature text.
It also uses feature location and size with their respective

comparison algorithms, sets a threshold for the similarity value

of text, and combines graphic, location, and size using a

weighted average formula to generate a new similarity value.

It finally ranks based on the combined similarity values,

requiring text higher than the threshold. The best configuration

ranks 5th in precision (78.18%) and 10th in recall (93.54%).

Although the best values of precision and recall (81.57% and

94.75%) are achieved by different configurations, the best

configuration selected is very close to them.
The best configuration provides improvements over the

original approaches in F1 score, ranging from 5.78% for

MAPIT, 16.38% for FMA, 17.58% for METER, 24.05%

for WebEvo, and 56.92% for LIRAT. The best configuration

achieves meaningful improvements for MAPIT, FMA, ME-

TER, and WebEvo. The significant improvement over LIRAT

is due to its design not fitting iOS very well [16], which may

worsen when mapping widgets across iOS and Android.

Finding: Numerous vision-based widget mapping config-

urations can be derived from existing techniques across

various domains, with many surpassing the performance

of current approaches. This indicates substantial potential

for improvement in existing approaches.

C. RQ3: Internal Comparison
The selected approaches exhibit unique designs in each

step of widget mapping, making it difficult to utilize some
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Fig. 7. All configurations’ precision, recall, and F1 score values.

Fig. 8. The average F1 scores of the configurations using the same instances.
The performance of comparison algorithms for feature graphic and text and
matching methods are illustrated by three line charts on the left. On the right,
a heat map is used to visualize the performance of different combinations of
visual features. t refers to text, g refers to graphic, l refers to location, and
s refers to size. The experiment results are presented for all mapped widgets
and for different categories of mapped widgets.

of these designs in other approaches, which restricts the

number of possible configurations. For example, there are

60 configurations derived from MAPIT, whereas only 9 are

derived from METER. To ensure a fair analysis of the impact

of the considered factors, we select two subsets of the 89

configurations for internal comparison. The first set of 27 con-

figurations uses the combination of text and graphic. Within

this set, we identify the most effective instances for the feature

comparison algorithms (i.e., ED, Sim, and W2V for feature

text and ORB, SIFT-M, and IH for graphic) and the matching

method (i.e., S1-MAPIT, S2-METER, and S4-WebEvo). The

second set includes all the configurations derived from MAPIT,

involving feature text (t), graphic (g), location (l), and size (s).

Based on the comparisons within this set, we will investigate

the usage of visual features.

To compare the performances of different configurations in

a specific aspect (e.g., the best instance of visual compari-

son algorithm for feature graphic), we calculate the average

F1 scores of all configurations using the same instance of

that aspect. This statistical approach helps to provide a fair

evaluation of the instances’ performances across the different

configurations. The experiment results are depicted in Fig. 8.

The left side of the figure contains three line charts displaying

the results of the first configuration set, while the right side

shows the results of the second configuration set in the form

of a heat map. The figure showcases the performances of all

the mapped widgets and the mapped widgets categorized into

different types that were defined and identified in RQ1.

The overall experiment results (on all the mapped wid-

gets) show that SIFT-M and ED are the best comparison

algorithms for text and graphic, respectively, and the best

matching method is S1 (MAPIT’s method) for all the mapped

widgets. The results also reveal that the feature combina-

tion text, graphic, location, and size (i.e., (t, g, l, s)) and

(t, g, l) perform the best, while the combination (t, g, s)

performs worse than (t, g), and (g, s) performs worse than

(g). This suggests that adding size may negatively affect

widget mapping. Additionally, using location and size together

can result in better performance than using location without

size, indicating that using location together with size can

reduce the uncertainty of widget mapping caused by size.

The overall internal comparison results are inconsistent with

the best configuration found in RQ2, because the selected

graphic feature comparison algorithm is different. Next, we

will provide further analysis for each kind of mapped widgets
within our classification.

Feature comparison algorithms. The results in the top line

chart on the left of Fig. 8 indicate that: (1) SIFT-M and IH

consistently outperform ORB in handling all kinds of mapped

widgets; and (2) SIFT-M performs better than IH for T0, T1,

G0, and G1 mapped widgets, while IH performs better than

SIFT-M for the other kinds. For graphical mapped widgets

(G0-G3), since the feature text is empty, the performance is

dominated by the comparison algorithms for graphic. SIFT-

M significantly outperforms the other choices for G0 and G1
mapped widgets, which refer to identical mapped widgets and

widgets with color inconsistencies, respectively. This suggests

that SIFT-M is good at recognizing the consistent shape of

graphics, ignoring differences in colors. IH considers both the

shape and color of graphics, and hence performs better on G2,

G3, and Mix, where the consistency of color is important. For

textual mapped widgets (T0-T2), feature graphic is considered

in most configurations. Similar text (T0 and T1) can be treated

as similar shapes if the textual content is considered as a kind

of graphic. Thus, SIFT-M performs the best on T0 and T1.

The middle line chart on the left of Fig. 8 reveals that the

comparison algorithms for text (including ED, Sim, and W2V),

exhibit very similar performances. In most cases, ED shows

a slight advantage over the other two choices. This indicates

that ED is the preferred choice for identifying mapped widgets,

aligning with the overall results for all the mapped widgets.

Matching methods. The bottom line chart on the left of

Fig. 8 shows that MAPIT’s and METER’s matching methods

(S1 and S2) are close and significantly outperform WebEvo’s

matching method (S4) on all kinds of mapped widgets, except

for mapped widgets with identical text (T0), where MAPIT

performs the best. MAPIT and WebEvo set thresholds for text
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and graphic respectively, i.e., MAPIT uses text in a coarse

granularity, while WebEvo uses text in high accuracy require-

ments. Further analysis shows that: (1) certain T0 mapped

widgets have multiple candidates in target screens displaying

identical text; and (2) OCR may miss some characters [27],

making the identical text not entirely consistent. These facts

can affect the accuracy of using text to identify consistency,

indicating the need to set a threshold for comparing text

results. This conclusion aligns with the existing research [10].

We also observe that METER slightly outperforms MAPIT

on graphical mapped widgets (G0-G3). This is because

MAPIT uses feature text for mapping graphical widgets. When

mapping graphical widgets, text is empty, which does not make

contributions and dilute the reliability of identifying consis-

tency between graphical mapped widgets when aggregating

graphic and text. In contrast, METER distinguishes between

textual and graphical content and only uses feature graphic
for graphical widgets. Hence, using text in coarse granularity,

e.g., a threshold, or not at all is recommended when mapping

graphical widgets to avoid interference.

Visual feature combination. The heat map on the right of

Fig. 8 shows that, in vision-based widget mapping for cross-

platform test migration: (1) feature location can significantly

improve the performance on graphical mapped widgets (G0-

G3) and slightly improve the performance on Mix mapped

widgets; (2) adding feature size to the original feature combi-

nation that includes location improves performance, but adding

size alone does not improve performance; and (3) feature text
can significantly improve the performance on textual mapped

widgets (T0-T2). These observations lead to the conclusion

that the most important visual features in vision-based widget

mapping for cross-platform test migration are feature location
and text, while the commonly-used graphic is less effective.

This could be attributed to the fact that current feature compar-

ison algorithms for graphics are able to identify consistencies

but struggle to give measurable similarity values between the

semantics of two widgets’ graphics, particularly when there

are inconsistencies. Additionally, feature size should be used

together with location, as consistency identified via size may

significantly overlap with that identified via graphic and/or

text.

Findings: The design of vision-based widget mapping

approaches require significant consideration, since:

(i) In terms of selecting visual features for semantic match-

ing of widgets, more features do not always equate to

better results; certain features must be used in conjunction

with others to yield a positive impact; (ii) Features such

as text are not advantageous for all types of widgets. The

text feature should not be employed for mapped widgets

displaying graphical content and should be applied only in a

coarse-grained manner; (iii) Current comparison algorithms

associated with the graphic feature struggle to effectively

handle all types of graphical inconsistencies in widget

appearances within our classification.

Fig. 9. Examples of Mix mapping relations in our dataset.

V. DISCUSSION

Limitations. We focused on one-to-one widget mapping

and carefully collected and verified one-to-one mapped wid-

gets across platforms. However, one-to-many or many-to-

one mapping can also occur, which poses challenges due

to the indeterminacy of the number of widgets involved.

Thus, our dataset might not fully assess the capabilities of

the configurations of widget mapping approaches. To address

this concern, we thoroughly examined the existing approaches

under evaluation. It was found that the current approaches

primarily focus on one-to-one mapping and rarely consider

one-to-many or many-to-one mapping, often limited to simple

scenarios. Hence, our evaluation could effectively reflect the

current state of vision-based widget mapping approaches.

We plan to investigate other types of widget mapping in

future work. Furthermore, although the focus of this paper

is on widget mapping, additional experiments are necessary

to evaluate the impact of widget mapping on overall cross-

platform GUI test migration. Nonetheless, widget mapping

remains crucial and plays a significant role in test reuse.

Implication. In this paper, we explore vision-based widget

mapping approaches for cross-platform GUI test migration.

Our study results can facilitate GUI test migration across

platforms with minimal effort. Moreover, our findings can

be used to improve vision-based widget mapping and cross-

platform GUI test migration approaches. Additionally, our

study results on vision-based approaches can also be applied to

other GUI testing domains, such as test record and replay [16],

GUI test repair [14], [19], and visual GUI testing [20], as they

can benefit from widget mapping. The study focuses on vision-

based approaches, which have not been extensively explored.

By combining our study results with existing techniques, we

can improve not only test reuse but also other tasks related to

GUI testing. This study identifies inconsistencies in mapped

widgets’ appearances to support our evaluation, which can

guide further research in vision-based widget mapping. Ma-

chine learning techniques can be introduced to address these

inconsistencies and improve widget mapping. For example, we

identify mixed widget mapping relations (Mix), which contain

widgets with graphics that are not comparable to text (Fig.

9). Image captioning techniques can be introduced to generate

texts from graphics for comparison purposes.

1425

For Research Only



Threats to validity. External validity. One potential threat

to the external validity is the generalization of our results to

other cross-platform apps or app scenarios. During the dataset

construction, we did not achieve exhaustive activity coverage,

resulting in potential oversights of certain widgets. To mitigate

this, we invested considerable effort in collecting a diverse

range of apps, selecting five apps from each of the ten different

categories. This process ensures that our dataset collects a

wide variety of widgets. Moreover, modern mobile apps often

maintain consistent GUIs to offer seamless user experiences,

resulting in visually similar widgets. By accumulating widgets

from a diverse set of apps spanning different categories,

this process can ensure greater diversity within our dataset.

Although increasing activity coverage could enhance diversity,

it requires extensive manual efforts to explore and identify

new mapped screens, resulting in only marginal improvements.

To balance efforts and efficiency, we followed the method

outlined in this paper for dataset construction. Internal validity.
A possible threat to internal validity is that there might be

errors in our programs that led to wrong results. We migrated

it by manually validating the correctness of feature comparison

results and inspecting the screenshots of source and target

widgets. If there is an abnormally high or low feature com-

parison results, we will check the source and all the candidate

widgets with the screenshots displaying them. Additionally, we

accounted for potential mistakes caused by human perception,

such as discrepancies in color perception, by cross-validating

the results with two independent groups. Construct validity. To

minimize the potential threat to construct validity, we ensured

that the selected approaches were faithfully re-implemented by

referring to the original source code provided by the authors.

VI. RELATED WORK

To the best of our knowledge, this paper presents the first

empirical study on vision-based widget mapping for cross-

platform GUI test migration. Recently, Zhao et al. [28] pro-

posed the FrUITeR framework to evaluate test reuse techniques

as a whole. It does not specifically focus on widget mapping.

Mariani et al. [6] empirically studied events matching of test

reuse techniques, but their work was limited to apps within the

same category and only used textual information without vi-

sual features, focusing on Natural Language Processing (NLP)

techniques for event mapping. In addition, there is currently no

suitable dataset available to support widget mapping for cross-

platform test migration. Therefore, our work collects such a

dataset and investigates the application of visual features to

support widget mapping for cross-platform GUI test migration.

There are currently two approaches for migrating tests

across platforms: TestMig [11] and MAPIT [10]. TestMig

requires the source code of both source and target apps and

does not use any visual features to migrate tests. On the other

hand, MAPIT uses many visual features and some textual

information from the XML layout files. However, MAPIT may

not be platform-agnostic for less well-known platforms, and

its use of multiple visual features is preliminary and simple,

without considering the consistency of these features or how to

mitigate the impact of inconsistency. In our study, we include

MAPIT. We also examine the latest vision-based widget map-

ping approaches used in other GUI testing domains, including:

METER [14], which detects changes in app GUIs and repair

GUI tests; WebEvo [19], which identifies changes in web page

evolution that affect the GUI; LIRAT [16], which designs a

vision-based approach to support test record and replay; and

a feature matching-based approach [20], which enables visual

GUI testing for Android. To migrate GUI tests across apps

in the same category, it is necessary to identify semantically

similar widgets between different apps. Previous studies by

Behrang et al. [8], [29] and Lin et al. [9] constructed GUI

models from the source code of apps to map widgets and

reuse GUI tests. However, these approaches rely less on visual

features or vision-based techniques. In contrast, our paper

focuses on vision-based widget mapping approaches for cross-

platform GUI test migration and excludes these techniques.

A survey [30] has been conducted on the use of computer

vision (CV) algorithms in software engineering tasks. In

our study, we utilize CV algorithms, e.g., SIFT, as visual

feature comparison techniques for widget mapping in cross-

platform test migration. Our study is the first to evaluate the

effectiveness of CV algorithms in widget mapping for cross-

platform test migration.

VII. CONCLUSION

This paper investigates the potential of reusing GUI tests

across mobile app platform versions via vision-based widget

mapping. We assess 89 configurations using a real-world

dataset with 6,730 iOS and Android widget pairs, reporting

crucial insights for improving the current design of the vision-

based widget approaches.

Future research can explore promising avenues to address

inconsistencies in vision-based widget mapping. One potential

approach is to employ machine learning methods to precisely

measure the similarity between the semantics of two widgets’

graphics. This could enhance the accuracy of widget mapping

in cases of visual inconsistencies. While this paper focused on

one-to-one mapping, future studies can delve into one-to-many

or many-to-one mapping techniques to enhance automatic

GUI test migration techniques. Our findings can be leveraged

to explore effective vision-based approaches for GUI test

migration across platforms. Furthermore, it could serve as a

guide for investigating vision-based techniques in other GUI

testing domains, such as test record and replay, GUI test

repair, and visual GUI testing. These explorations may yield

valuable insights, thereby contributing to the advancement of

GUI testing methods.
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