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Abstract—Interpro; 1 program analysis is critical in suggested time limit [5]-[7]. Frequent program updates make
fects and vulnerabilities in CI/CD  the situation even worse in CI/CD. An Ant Group application
cted call graph is a prerequisite for releases 294 new versions in only one year (see section V).
ever, the exhaustive call graph On the one hand, the successive updates of a program require
e target program as a whole and ’

s too much time. We made much storage space to save different versions of full CG; on
a scalable empirical study oth ¥ndustrial and open-source the other hand, the simultaneous releases of different programs
projects and observed that 1iost program updates only involve require much computing resources and time to construct CG.
a very limited part of the code. The obsepgtion inspires an Moreover, no matter how much code changes in the update, the

efficient approach that not wholely re-c s a call graph
but incrementally patches the old one partial graph old CG becomes stale, and the new CG must be constructed

affected by the update. We propose ingremental call from scratch in existing practices.
graph construction algorithm that works{in ¢)-recompute Patching the old CG to construct the new one, just like

way: first, prune invalid nodes and edges geld call  pacching the code, is an ideal way of CG construction in the

graph, then analyze the new code to patch it cofgtrigt the CI/CD pipeline. According to our observation, most program
new one. We implemented the algorithm and builtth b@aclimark | pp | ’ d & n ) f th ’ d ) IZi ig
suite consisting of 20 industrial and 10 open-source Pagfe releases only update a small part of the code and leave

constructing from scrat®

experimental evaluation shows that the efficiency imr e the major part unchanged. 40.93% of updates in Ant Group
is encouraging. Compared with the exhaustive cons ion only change less than 100 LOC (lines of code), and 72.45%
algorithm, the incremental way can speed up the constructj f updates change less than 1,000 LOC. The CG patch to

by 20.0 times and reduce the memory and storage consumpti
to 58.1% and 10.4%, respectively.
Index Terms—call graph, incremental construction, class hier-

pdates could be small-scale. The observation inspires
n efficient approach which not wholely re-constructs CG

archy analysis, CI/CD but #iCreMentally patches the previous CG with the partial
grajh affe by the updates. However, the incremental CG

[. INTRODUCTION const t trivial, because updates may explicitly and

implicit t the call graph. Therefore, all impacts are

Continuous integration and delivery (CI/CD) pipelines are
now widely practiced by modern software enterprises to man-
age program development. Interprocedural program analysis
is a promising step in the CI/CD pipeline for finding program
defects and vulnerabilities. Broadly, interprocedural analyses
are classified into top-down and bottom-up [1], both kinds
of which require a call graph (CG) to propagate information
between callers and callees. The whole CI/CD pipeline should
finish in a few minutes in agile practice [2], [3]. Therefore,
the efficiency of constructing CG as a fundamental program
representation has become a key metric to CI/CD pipelines.

The ever-growing program size and agile development of
industrial software pose great challenges for effectively con-
structing call graphs. Most existing CG construction algo-
rithms are designed in an exhaustive style, i.e., analyze the
target program as a whole and construct CG from scratch.
For complicated programs, these algorithms require too much
time to meet the requirement of CI/CD. The widely-used class
hierarchy analysis (CHA) algorithm [4] takes over 9 minutes
for industrial programs (with 367K LOC on average in our
evaluation) to construct CG (see section V), which exceeds the

In this paper, we
construction algorithm 4
approach first collects all
as inputs, capturing the expli fec
unchanged methods that are affected iy thequpdates, capturing
the implicit effects. The incremen nstruction works in
a reset-recompute way: first, prune invalid nodes and edges
from the old CG, then analyze the new code to patch the
old CG to construct the new one. Existing incremental CG
construction approach can not be easily adopted into CI/CD
infrastructures, because they are designed for specific IDE [8]
or special programs [9], or require too much memory [10].

The key advantage of our incremental algorithm over the
existing one [4] is that reusing the unchanged part of the
old CG, which is the major part for most program updates,
significantly saves computing resources and time. Compared
with the full CG construction, the patch, consisting of the
removed and added nodes and edges, is a tiny scale and takes
1 Corresponding author. much less storage space. Our algorithm is theoretically as

astrig@lava applications. The
-level program updates
to CG; then locates

2832-7659/23/$31.00 ©2023 IEEE 471
DOI 10.1109/ICSE-SEIP58684.2023.00048



sound as the full CHA-based algorithm. The new CG consists
of two sound parts: the reused part is constructed soundly
for the code irrelevant to the update, and the new part is
constructed soundly for the code relevant to the update.

Our contributions are summarized as follows.

« We conduct an empirical study of 9,059 updates (releases)
from 108 industrial and 20 open-source programs. The re-
sults confirm our observation that most program updates
only involve a small part of the code.

We propose a novel incremental CG construction al-
gorithm, which can capture all impacts caused by the
program update and construct a valid and sound new CG.
We implement thg proposed algorithm and evaluate it

peedups the construction by 20.0
and storage consumption

to 58.1% and 10.4%, ectively.

The rest is organized as follows. Se
background and motivation with an exg
the challenges of incremental CG

gon II gives the
and discusses
on. Section III

introduces the original CG algorithm, ang/se V presents
our incremental CG algorithm. The evalufti shown in
section V, followed by the discussion of thr in €&ctipn VI,
the overview of related work in section VII, and tile c@nclusion

in section VIII.

II. MOTIVATION AND CHALLENGE

In this section, we first present the motivation for increm
tal CG construction, then discuss the challenges of conducting
this idea.

A. Motivation

Most CG construction algorithms are designed in an exhaus-
tive style, i.e., analyzing the whole program to construct the
full CG from scratch. Such a design costs a lot, especially for
large-scale industrial programs. Our later experiment shows
that the CHA [4] algorithm can take over 22 minutes and 18
GB of memory to construct the CG for an industrial program
(with 339K LOC). Moreover, an industrial program usually
evolves continually in the CI/CD pipeline. Constructing a full
CG for each program update increases the resource consump-
tion of these full construction algorithms.

The key idea is to patch the old CG to incrementally
construct a new CG, which is feasible for real program
updates. Our insight is that the update from the old CG to the
new CG must be correlative to the updated code, which should
be located and analyzed. It is also observed that a program
update usually only modifies a small part of the code, and the
resultant CG update is likely small-scale.

Figure 1 shows a simplified update of an industrial program.
There are 6 classes, 7 methods, and 3 fields in the new
code related to the update, while a considerable amount
of unchanged code is not shown. Existing exhaustive CG
construction algorithms (e.g., CHA [4]) must analyze the new

class UserService {
private List<User> users;
public void add(User user) { ... }
}
class VipService extends UserService {
private VipVerifier vipVerf;
@Override
public void add(User user) {
if (vipVerf.isVip (user)
super.add (user) ;
}
}
class BlackListService extends UserService {
class BlockedService extends UserService {
@Override
public void add(User user) { ... }
}
class FooService extends UserService {
class FooService extends Foo {
@Override
public void add(User user) { ... }

» )

3 class Server {

private UserService service;
public void init (UserService userService) {
this.service userService;

27 }

public void userRegister (User user) {
service.add (user);

30 }

}

32 class VipVerifier {

public boolean isVip(User user){ ... }

34 }
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Fig. 1: Example of a program update. Red lines are removed,
reen lines are added, and others are unchanged.

s a whole, including the unchanged code. By patching
e old CG, however, we can ignore almost all unchanged code

and gfily Snalyze the 3 changed classes and 1 class (Server)
tha@is un ed but affected by the update, i.e., the virtual
call line 29 becomes different.

To confirgf’our observation, we conducted an empirical

study of th€ program eyglution history to measure the scale
of updated code in world. We build a benchmark

suite containing bot ﬁ ial and open-source programs. For
industrial programs, a chose 108 core applications
in Ant Group and colle t up (releases) from April

2021 to April 2022, and ggt7, dates. For open-source
programs, we chose 20 widely n [11] projects which
have different purposes (librartes, c}fy togls, and gui tools),
collected all updates, and got 1,797 es.

Figure 2 shows the results of the empirical study, where each
update is measured with its updated LOC. The updates with
less than 100 updated LOC occupy a big part, and the ones
with less than 1,000 updated LOC occupy the major part. For
such simple updates, incremental CG construction may only
need to update a small part of the old CG, which is much
cheaper than the original way. A small part of updates are
complex and changes more than 1,000 or even 10,000 LOC.
Incremental CG construction for a complex update may take
a longer time than that for a simple one.

The insight and empirical observation motivate us to reform



Service,UserService) in fig. 1), and the virtual call reso-

[ > 10000 lution can generate invalid CG edges (i.e., (UserService#—
[ 11000, 9999) userRegister,Z9,FooSeryice#add> is invalid in the
07 1100, 999) new program). S.upp(?se‘updatlpg the class hierarchy before
O - 100 the call graph, invalid invocation nodes (such as Black-—

ListService#add) may still exist in the call graph and
introduce invalid types (i.e., BlackListService).

40.93%

III. FuLL CALL GRAPH CONSTRUCTION
Fig. 2: Ths statistics of updated LOC in the evolution history

of programs. The left pie is for industrial programs, and the The class hierarchy is a graph that describes the inheritance
right is for open-source programs. between classes in a program. In this graph, nodes are classes

in a program, and edges are inheritance relationships pointing
from each class to its direct super types. In this paper, we
use (superType,subType) to denote a class hierarchy edge
and (caller,call-site,callee) ! to denote a CG edge.
Take the old code in fig. 1 as an example. The class hierarchy
contains the following edges:

the CHA algorithm to construct a CG for a program update
incrementally. The algorithm is widely used and suit-
able for CI/CD. the Gther hand, it is the basis of other
algorithms, sucas ], VTA [13], etc. The incremen-
talization of CHA is (rcondition of other incremental
construction algorith wilddiscuss this in section VII. ) ) )
% e (VipService,UserService),
B. Challenges of Incremenftl CG Construction o (BlackListService,UserService),

o (FooService,UserService).

1) Capture Different Update Effects o. > Program up- . . . .
dates can explicitly and implicitly affec . These update The call graph contains the following edgels for line 29:
effects on CG should all be captufed ingremental CG * (Servert#userReg,29,UserServicetadd),
construction. e (Server#userReg,29,VipService#add),

The explicit effect means that, a metRod Wivgmegion is e (Server#userReg,29,BlackListService#add),

updated, and its CG edges must be updated acgprdgaghy. For * (ServerfuserReg,29,FooServicetadd).

example, line 9 in fig. 1 adds a new method in i A. CHA-based CG Construction Algorithm
introduces an explicit effect to CG, i.e., adding a new

(VipService#add,VipVerifier#isvip) The CHA algorithm assumes a class hierarchy is already
The implicit effect means that, although a method invocati vailable before CG construction [4]. In this paper, we present

is unchanged, its CG edges should be updated due to the t HA algorithm more practically, i.e., building the class
program update. For example, lines 13—14 in fig. 1 first remove crarthy and call .graph. 1 one run. .
and then add a subtype for UserService. The sub methods T algorithm is shown in alg. 1. It takes as 1nput
of UserService#add become different. So that the CG ods of the target program, usually the main
edges of the unchanged virtual call in line 29 become different. SthFS .t},le .class hlerarchy. and the call graph

2) Construct a Valid and Sound CG: The CHA algorithm from scflitch. 4¥ne 2 initializes the class hierarchy H and the
exhaustively analyzes a program and ensures the validity call graph @as tW(,) empty graphs. Lines 3-9 iterat.ively update
and soundness of the class hierarchy and call graph. The the, twoBgrfaphs ungl (X;hagg?’,l'ﬁ" r(el:achm]% the ?lxzd
incremental construction must also preserve these properties. I;O]nt', © orcj\/[eeac i ’ 4lsT1}rl11t1a 12¢ ) as & r;et 055

Validity: Each node and edge in the class hierarchy and 8rc?m 1.n1.)tgt ( )ha th t. etm:%n 19g1071n n:iefh -
call graph must be valid in the corresponding version of a ls leé}mi;. eacé me © ugge b (line 7) and then
program. Because of program updates, types and inheritances, uPLE,l ¢ 7 ,( mi ) A ol class hi h
methods and invocations can be removed from program code. ‘ mjt HIIH\I/OL?S cr1e3atzligt : thte lljla:tla ¢ z.ss ilerarc g
The corresponding nodes and edges become invalid and will 0 upcate . LINes 15714 1terdte rggeh gpes directy use

. by the method and collect their (in) per types. Line 15

be removed from the new class hierarchy and call graph. . . .

Soundness: A sound class hierarchy contains all (in)direct creates direct inheritance edges foi*cach collected type. These

: . . ,

super types for each type, thus all possible callees in the call edie?s arg ?ddes to the pirtlgchiass hletr archy Hil '1 1 h
graph can be resolved via a sound class hierarchy. Because e © fmvptes crea.evt o credle a pama ca - grap
of program updates, types and inheritances, methods and FO updae G. It first initializes an empty Fall graph, then
invocations can be added to the new version of program. The lterates thrgugh each method _invocation ! " th.l s method.
correspondine nodes and edees must be added to the new class The class hierarchy is necessary for resolving virtual calls.
hierar(I:)hy an f call graph g Therefore H is a parameter of the createCG method. The

. . resolveMethods resolves all possible callees via H for
The updating class hierarchy and call graph sequence . . .
: . . each invocation. Line 21 creates CG edges and adds them to
also affect their validity and soundness. Suppose updating

the call graph before the class hierarchy, invalid inheritance !The caller can invoke a callee multiple times in different call-sites. For
edges may still exist in the class hierarchy (such as <FOO* simplicity, we denote a call-site by its line number in this paper.

the &ntry
met
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Algorithm 1: Full CHA-based CG algorithm

Input: M€, the entry methods
Output: H, the full class hierarchy;
G, the full call graph

1 Function fullChaBasedCG (M°):
2 | He{},G+{}
3 repeat
// visit entry methods or reachable ones
M + M€ Unodes (G);
foreach m € M do
if m was not visited before then

| H<+ HUcreateCH(m);:
G + GUcreateCG (H,m);
until H and G do not change;
return H, G
Function create@f (
T« {}h
foreach ty
// collect t an direct super types

T+ TuU{t &- erTypes (t);
// create a partial Ne#8 hj y
H « {{t,t')|teTA directSuperTypes (1)

return H'

Function createCG (H,m):

G «+ {};

foreach method invocation 7 in m,

// resolve possible callees for v usiffg
M < resolveMethods (H, %) §
G + G U{(m,i,m')|m' € M},
return G’

t di

IS

20
21
22

‘We simplify graph denotation to the set of edges, and use nod
methods from the call graph.

G'. Each newly reachable method will be finally adde
in line 4 and visited in the next iteration. The class hierar

and the call graph grow successively until they reach the fixed
point.

bzlpSermce] lBlackListService] [FooServlce] vs#add | |BLS#add| |FS#add |

(b) Call graph

(a) Class hierarchy

Fig. 3: The class hierarchy and call graph constructed by the
CHA algorithm for the old code in fig. 1. Assume that the old
code does not use VipVerifier, and that method x calls
Foo#add. Class names in CG are abbreviated to save space.

Figure 3 presents the two graphs constructed for the old
code in fig. 1 by the CHA algorithm. We assume Vip-
Verifier is not reachable in the old code. Therefore the two
graphs do not contain its type and methods. While analyzing
the UserService#add method, the inheritance edge from
UserService to Object is created. The resolution for
line 29 in userRegister can be sound only after the three
subclasses of UserService are added to the class hierarchy.

IV. INCREMENTAL CALL GRAPH CONSTRUCTION
Alg. 2 presents our incremental CHA-based CG algorithm,
IncCHA. The inputs contain a program update A, the old

class hierarchy H,, and the old call graph G,. INcCCHA mainly
contains six steps.

Algorithm 2: Incremental CHA-based CG algorithm
(IncCHA)

Input: A, a program update;
Ho,, the old class hierarchy;
Gy, the old call graph
Output: H,,, the new class hierarchy;
G, the new call graph
1 Function incrementalChaBasedCG(A):
// Step 1: obtain all updated methods
2 Ma < processUpdate (A);
3 initialize H,, and G,, to duplicate of H, and G,;
// Step 2: prune the class hierarchy
4 foreach m € nodes (G,) N Ma do
5 | M, ¢ H, — createCH(m);
6 repeat
// Step 3: collect updated and affected methods
// collect newly reachable methods

7 M, < nodes (G,) —nodes (G,);
// collect super methods in the old version
8 M, + oldSuperMethods (Ma U M,);
// collect super methods in the new version
9 M,, < newSuperMethods (Ma U M,);

// collect direct callers in the old call graph
M, + {m|m’' € MAUM,UM,A{m,i,m’) € Go};
// Step 4: prune the call graph
1 foreach m € Ma U M. do
12 if m was not visited before then
13 Ga + {{(m,i,m') | {(m,i,m') € Go};
14 Gn < G, — Ga;
// Step 5: analyze new method to update H,, and G,
foreach m € (Ma U M. U M,) Nnodes (G,) do
if m was not visited before then
| H, + H, UcreateCH (m);
8 Gy < G, UcreateCG (H,,,m);

10

19 until H,, and G,, do not change;
// Step 6: clean non-entry nodes whose in-degree is 0
leanUp (Gy);
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A. Rucrem Construction Algorithm
Step 1:&btaiupdated methods. For different element up-
dates in A, grocessUpdate parses them to obtain updated

A, as shown in table 1. A class
sion of the program is an added
eclared methods are added or
ly. Far the two versions of a

are first matched by
s are removed or added
ethod bodies are then

methods and adds theg@tS
that only exists in ﬁ
or removed class, dad al1

removed methods corres
changed class, their declar
their signatures?. Unmatched
methods. For matched metho eir
compared to distinguish unchanged nged methods. If
the fields, import statements, or dir@®¢ super types of a class are
changed, like FooService in fig. 1, its methods are treated
as changed methods, except those removed and added ones.

The Ma column in table II presents the updated methods
obtained by this step. The order of these methods does not
affect incremental construction.

Step 2: Prune the Class Hierarchy. To ensure the validity of
H,, and G,, (section II-B2), IncCHA first finds and removes
invalid types and inheritances via lines 4-5. After this step,

2Method signature consists of the declaring class name, method name,
parameter types, and return type.



TABLE I: The updated methods added to M, by processing
different updates

Update Category
Add class

Methods Added to Ma
set of added methods, {+m}

Remove class

Add method

set of removed methods, {-m}

an added method, +m

Remove method | a removed method, -m

Change method | a changed method, *m

Update fields, imports, and

super types of class efc. a set of changed methods, {»m}

“47, “~” and “+” denote added, removed and changed.

all nodes and edgegfin are valid for the new program.
Therefore the su nt virtual call resolutions will be valid.

Invalid CG edges are ved in line 14, which will be
described in line 20.
For removed and chal in M that are reachable

S
in the old program, line 5 rﬁ createCH function from
the full CHA algorithm to build the partial class hierarchy.

In fig. 1, the add method in FooSe is processed
as a changed method. When crea sing the add

method in the old program, the type inhejita ge, (Foo—
Service,UserService), is captured” igft tial class
hierarchy and finally removed from H,, in

Valid type inheritance edges may also be (capgircd by

createCH, such as (VipService,UserSer

analyzing VipService#add method. These edges {vil
added back into Hl,, in line 17 when visiting the correspofidi
new version of methods. Moreover, we can optimize s
superfluous deletions by skipping valid type inheritance edges.

Fig. 4: Removing invalid types and inheritance edges (red
dashed ones) from H,,.

Figure 4 shows the new class hierarchy after this step. The
remaining types and edges ensure the validity of virtual call
resolution. INCCHA can directly use H, to resolve virtual calls
in subsequent construction. While resolving line 29 in fig. 1,
IncCHA will not generate the invalid edge pointing to Foo—
Service#add.

Step 3: Collect Updated and Affected Methods. The out-
going edges from updated methods and the incoming edges
to updated methods should be recreated. INcCCHA (lines 7-10)
finds all methods that are affected by the program update.
Methods that are unreachable in the old program but be-
come reachable in the new program should be analyzed. In
line 7, the nodes (G,,) —nodes (G,) operation computes
such methods. These methods could be the added ones, or the
existing ones in both versions but are never called in the old
program. CG edges originating from them should be created.
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Callers that could invoke updated or newly reachable meth-
ods should be analyzed. Besides the invocations directly
pointing to these methods, invocations that point to their super
methods should also be found. INcCHA (lines 8-9) finds all
super methods M, and M,, for updated and newly reachable
ones in the old and the new program. Line 10 walks on the old
call graph to obtain direct callers. If there is no old bytecode,
the oldSuperMethods computes the super methods based
on the old class hierarchy and the old call graph.

TABLE II: Methods added into variables of lines 7-10 in
IncCHA

Ma |

@O *VS#add
@ -BLS#add
Q@ +Bs#add
@ *Fs#add

@O *VS#add
@ -BLS#add
® +BS#add
@ *Fs#add

M, | MoU M, | M.

US#add (B S#userReg

US#add
Foo#add

® s#userReg

® VV#isVip @ =

The first and second row shows the states in the first and second iteration,
respectively. We put M, and M,, in one column for saving space.
Numbered methods are finally visited in each iteration.

Table II presents the states of variables in lines 7-10. In the
first iteration (i.e., first row), Ma contains the four updated
methods. Because the initial G,, is the duplicate of G,, there
are no newly reachable methods in M,.. When collecting super
methods, the new inheritance edge from FooService to Foo

as not been created, so there is only one super method in M,,.

Th#direct caller in the first iteration is only userRegister
Se®vce class.
In econd iteration (i.e., second row), M remains

uncfange ause the new version of VipService#add
is isd e previous iteration, VipVerifier#add
become#newlf’ reachable in the new program. Because the
new versiog of FooService#add is visited in the first

iteration, the new inhegj
is created, and the
M,,. As a result,
Foo#add.

Step 4: Prune the Call
removes illegal CG edges. F at
callers, line 13 retrieves their ‘outgging edges and line 14
removes these stale edges from the call graph. We only
need to remove each stale edge one time. An updated method
can be unreachable in the old program, and the corresponding
Ga will be empty. In fig. 1, the BlackListServicefadd
is a removed method, and its outgoing edges will be removed
after this step.

edge from FooService to Foo
er method Foo#add is put into
found as the direct caller of

ra e loop (lines 11-14)

methods or affected

Step 5: Analyze New Version of Methods. For updated
methods, affected callers, and newly reachable methods in the
new call graph, lines 16-18 open them to expand the new
class hierarchy and the new call graph. Line 17 reuses the
createCH function to update H, and line 18 reuses the
createCG function to update G,,.



FS#add || Foo#add

|W#isvip| TBL

(b) Call graph

(a) Class hierarchy

Fig. 5: Program updates to the class hierarchy and the call
graph. Red dashed lines denote removed edges and nodes, and
green solid lines denote added ones. Gray shadowed squares
denote code that is newly reachable in the new program.

Figure 5 presents the updates to the class hierarchy and the
n the class hierarchy, one node and
step 13. In the first iteration of
pdates happen in order:

1) when visiting (1) ay, the edge from VipVerifier

to Object is\adgfd; #he CG edge from Vip-
Service#add to Vighler®fier#isVip is added;
when visiting 3) method, the inheritance edge from

BlockedService to UserServigg is added;
when visiting (4) method, the new 4 @i nce edge from
FooService to Foo is added

when visiting (5) method, the tw Q yes are re-
moved, and one new edge to Blockad SNV igge fadd
is added.
After the first iteration, the class hierarchy rea t
point. In the second iteration, the method x ((7) in ta
el

visited and the edge from it to FooService#add is

2)

3)

4)

Step 6: Cleanup Unreachable Nodes. The program upd
can make methods in the old call graph unreachable in the new
one. The cleanUp in line 20 walks on the new call graph
and removes methods that are non-entry methods but have no
incoming edges. Their outgoing edges are removed, and the
callees are checked to find other unreachable nodes.

The program update can make a reachable type in the
old class hierarchy unreachable in the new one. However,
these types cannot be removed from the new class hierarchy.
One type can be used in multiple places, and analyzing only
program updates cannot decide the reachability of the type. We
can only know whether one type was used by the old program
and can not know whether it is unreachable after the update
unless it is a deleted type. Keeping an unreachable type in the
new class hierarchy does not affect the soundness of INCCHA
because it only leads to some redundant edges and nodes.

B. Tackle the Challenges

The explicit and implicit update effects to call graph are
all captured by IncCHA. Explicit effects are introduced by
directly updating method invocations. The processUpdate
function obtains all updated methods, therefore captures all
explicit effects. Implicit effects are caused by different virtual
call resolutions. Step 3 of alg. 2 captures all implicit effects by

3Here, we assume the superfluous deletions of valid nodes and edges are
skipped in optimization.

locating the unchanged caller methods affected by the update
and considering newly reachable methods.

Besides capturing all effects, the carefully designed update
sequence in INCCHA preserves the validity and soundness
of the class hierarchy and the call graph. Before generating
new CG edges in step 5, all invalid inheritance edges were
already removed in step 2, so that all constructed CG edges
are valid. Before generating new inheritance edges in step 5,
all invalid invocation edges were already removed in step 4, so
that all constructed inheritance edges are valid. The iterations
of IncCHA will finally construct the sound class hierarchy and
then the sound call graph, just like the full CHA algorithm.

V. EVALUATION

A. Implementation

1) FullCHA: We implemented the full CHA algorithm on
top of GraalVM [14]. A large-scale program usually contains
two parts: application code and dependent libraries. We use
all methods in application code as entry methods to the full
CHA algorithm, which means all application code and only
reachable code in libraries are analyzed.

2) IncCHA: We implemented two versions of the incre-
mental algorithms, INcCHA® and INcCHA®, to handle the case
without or with the old bytecode.

The old bytecode may be unavailable for the following
easons. Compiling two versions of program can take a very

ong time, which is unbearable in CI/CD, or it is unable
ﬁpile the old program which is incompatible with the
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rrent CI/CD pipeline. INcCHA?® parses the source code patch

to oyfr-approximate updated methods. Updated classes can be
obtalned the source code patch. Their old methods and
super e retrieved from the old call graph and class
hierarchy, a: eir new methods and super types can be found

ich is available. The method body

A program updat
Without the old byteco
Jar file names) to determi
which are available in configur (e.
project). When saving the class hi in FullCHA, we
record an extra attribute for eac s: the library name
containing the class. Classes from removed (added) libraries
are treated as removed (added) classes, and their methods are
removed (added) methods.

The createCH is also different in IncCHA®. Without
the old bytecode, createCH can not get all directly used
types for an old method. Only types in method signatures are
available. As a result, some removed types may be ignored. If
these types are from application code, they will be captured
by parsing the source code patch. Otherwise, these types
must exist in removed libraries, which are already considered
removed types to analyze.

upgrade dependent libraries.

he library names (i.e.,
d and added libraries,
, pom.xml in Maven




TABLE III: Evaluation results on industrial (1-20) and open-source (21-30) programs: byte-buddy, commons-bcel, commons-io,
commons-lang, easyexcel, fastjson, flyway, gson, jedis, and opennlp

D Size PR Com LOCA Met2 FullCHA IncCHA® IncCHAP
Jarnme) LOCx) Max Avg  Max Avg  Mwcs) Tes) M) Tes) M) Ts)
1 176 684.9 43 1110 8.2 09 1023 130 11.7 693.8 5.4(46.3%) 54.0(19.5)  5.0(432%) 28.4(28.9)
2 313 671.2 44 4161 194 4.0 4591 673 162  1254.6  10.0(61.6%)  127.0(16.1)  9.1(56.1%)  74.3(22.5)
3 244 4332 91 5067 18.9 2.7 1502 232 10.0 582.3 4.8(48.6%) 46.020.5)  4.3(432%)  21.9(29.9)
4 118 271.5 43 1513 14.7 1.3 995 92 57 249.4 3.1(55.0%) 22.6(14.4)  2.9(50.8%)  13.7(19.8)
5 226 487.9 51 3123 5.1 1.2 433 116 6.2 282.5 3.5(56.2%) 324(11.7)  3.049.0%)  14.5(20.6)
6 178 172.2 59 1511 9.3 0.8 9129 587 6.8 322.7 3.6(53.3%) 29.6(16.0)  3.4(51.0%)  21.6(19.2)
7 120 119.8 54 948 5.0 0.5 728 95 4.6 220.0 2.6(57.0%) 16.0(15.3)  2.4(522%) 10.9(20.7)
8 435 339.0 50 2142 0.2 0.1 20 10 187  1320.6  10.0(53.4%) 68.0(19.9)  9.5(50.9%)  47.2(28.2)
9 201 200.7 79 2456 30.4 1.8 379 113 12.2 585.9 6.2(50.7%) 59.3(12.9)  5.5(45.4%)  30.6(20.5)
10 69 284.9 50 2942 7.0 1.5 725 131 5.6 302.1 3.1(55.5%) 22.2(17.5)  2.9(51.0%)  14.1(23.4)
11 63 214 52 1559 2.3 0.3 142 25 3.1 134.9 1.9(63.0%) 10.4¢16.2)  1.7(56.7%) 7.4(20.4)
12 374 648" 57 6672 52.3 6.0 2638 436 12.7 826.8 6.0(47.3%) 68.8(17.6)  5.6(44.1%)  37.2(27.1)
13 115 2 0 1476 5.8 0.9 962 137 9.0 414.4 4.4(49.4%) 30.4(17.6)  4.2(46.8%)  22.2(20.8)
14 150 221% 0 1496 16.3 24 1282 210 3.7 204.0 2.3(63.2%) 14.7(18.9)  2.1(56.3%) 9.8(25.9)
15 224 422.5 1146 8.1 14 913 194 11.8 7223 5.7(48.8%) 55.8(20.5)  5.4(46.4%)  37.6(26.4)
16 195 810, 3172 22.6 2.7 1370 233 16.6 995.6 7.8(47.9%) 67.8(21.6)  7.3(45.1%)  43.9(26.1)
17 130 243, 79 31.6 2.1 3605 231 6.5 365.9 3.5(53.9%) 28.5(19.4)  3.2(49.4%)  15.5(26.0)
18 164 155.5 6 9.7 0.8 880 84 8.5 498.0 4.2(49.9%) 27.5(21.9)  4.047.6%)  20.2(27.4)
19 213 434.1 2 6080 29.0 0.6 18K 246 11.9 712.1 5.3(45.3%) 41.2(22.7)  5.1(43.5%)  28.6(28.6)
20 186 317.8 45 105 5.1 225.7 2.9(57.8%) 21.3(11.7)  2.6(50.8%)  12.0(19.9)
21 42 170.7 248 108 4.8 188.7 3.3(69.7%) 43.07.3)  2.9(61.0%)  24.3(10.3)
22 3 60.7 25 787 1.0 31.3 0.9(94.1%) 4.3(9.0) 0.6(64.0%) 2.3(21.2)
23 2 26.9 58 61 0.7 12.3 0.6(97.1%) 2.5(5.9)  0.5(81.4%) 1.5(13.1)
24 2 68.2 85 106 0.7 13.5 0.7(97.5%) 3.5(4.8)  0.6(80.4%) 1.9(11.2)
25 32 19.4 39 933 1.3 40.9 1.3(94.8%) 8.7(6.1)  1.0(79.0%) 5.0(11.2)
26 55 519 132 68 0.9 23.0  0.9(103.6%) 5.84.3)  0.7(79.6%) 3.4(7.6)
27 135 50.1 147 198 2.2 86.0 1.6(74.6%) 11.909.6)  1.4(64.6%) 6.2(16.7)
28 1 15.1 45 121 0.6 1.7 0.7(111.6%) 3.4(4.0)  0.6(95.0%) 2.0(7.9)
29 6 422 81 45 0.8 17.9  0.9(110.4%) 7.03.3)  0.7(86.1%) 4.45.1)
30 10 90.1 40 5 14 45.2 1.2(85.8%) 9.5(7.3)  1.0(71.2%) 5.1(14.8)
Avg 139 264.7 78 6.7 379.5 3.6(66.9%) 31.4(13.8) 3.3(58.1%)  18.9(20.0)

commits, respectively. The LOCA and Met? columns present the m3
among the updates we used in the evaluation. The last six columns show th

PTSEE)

“m(n%)” in the memory column means that the incremental CHA needs

(a) Correlation between memory overhead and updated LOC

m

GB of]
lower, the better). The “m(n)” in the time column means that the incremental CHASheeds ©
higher, the better).

eir names are hidden intentionally; 21-30 are open-source programs.
C). The PR and Com columns present the number of releases and
average (Avg) number of changed code lines and Java methods

and time (T) different CHA algorithms took to execute. The

morl) whigh is “n%” of the memory that the full CHA needs (the

Fig. 6: Correlation between the overhead of incremental construction (the left y-axis) and the upi

B. Experimental Setup

We evaluate the effectiveness and efficiency of incremen-
tal CHA algorithms by applying FullCHA, IncCHA®, and
IncCHA® on target programs to build the class hierarchy and
call graph, and comparing their performance.

Table III presents the information of all 30 subjects, in-
cluding 20 industrial and 10 open-source programs. From the
108 industrial programs in fig. 2, we randomly sampled 20,
collected their updates within the last year, and categorized
updates according to the distribution in fig. 2. Finally, we

477

d
The z-axis is the program id in table III. Green marks programs with similar updated LOC (0.9
overheads.

C (the right y-axis).
) but different

randomly sampled one-third of the updates in each distribu-
tion and got 433 program updates (out of 1,433). Following
the same procedure, we randomly sampled 10 open-source
programs (out of 20) and 302 updates (out of 900).

For each update, we first execute FUllCHA to build the class
hierarchy and call graph for both versions of the update. The
results of the old version are used as inputs to incremental
CHA, and the results of the new version are used as the
comparison criteria of incremental CHA. To evaluate the
effectiveness, we compare the CG constructed by incremental



—— Loc®
Fig.

CHA with the ones co

d by FullCHA. To evaluate the
efficiency, we record t|
CHA tool requires for tl

ory time, and storage space each
%am. We run each tool on
a program update 5 times compute the average data.

We set the 1-hour time limit and 25 GBgnemory limit for
each execution. The three CHA tools su ly constructed
CGs for all subjects. All experiments yfer: ucted on a PC
running CentOS with an Intel ES CPU agid RAM.

C. Overall Results

1) FUllCHA: The FullCHA column presentgy th§ aferage
memory and time it took to execute on the new
updates in a program. &

The memory and time overhead of FUllCHA are re
the program size. Among all 30 programs*, industrial progr
18 requires the most memory (18.7 GB) and the most time
(1320.6 seconds). Its compiled Jar is the largest among all
programs; hence, its CG has the most edges, 16.8 million on
average. Open-source program O28 (gson [15]) requires the
least memory (0.6 GB) and the minimum time (11.7 seconds).
Its LOC and the compiled Jar are the smallest among all
programs, and its CG only has 119.8 K edges on average.

Industrial programs are more complicated than open-source
programs. FUllCHA takes more resources to execute on indus-
trial programs. On average, FUllCHA takes 9.3 GB and 545.7
seconds to run on industrial programs and only takes 1.4 GB
and 47.1 seconds to run on ogen-source programs.

2) IncCHAS® and IncCHAP: The IncCHA® and IncCHAP
columns present the average memory and time they took
to execute, along with the average efficiency improvement.
IncCHA® analyzes less updated methods. Therefore it requires
less memory and time on most updates than IncCHAS. On
average, INcCHA® takes 3.3 GB and 18.9 seconds, whereas
INcCHA® takes 3.6 GB and 31.4 seconds. In terms of ef-
ficiency improvement, IncCHA® only needs 58.1% of the
memory FUllCHA needs and speeds up the construction by
20.0 times. Although IncCHA® performs slightly worse than
IncCHAb, it still only needs 66.9% of the memory FullCHA
needs and speeds up the construction by 13.8 times.

4From now on, we use Ix denote industrial program x, use Oy denote
open-source program y.

——— Time of IncCHA®

——— Time of INcCHAP

e ntimber of updated LOC and the incremental construction time of each program update.

Incremental CHA only saves the constructed partial graph
(i.e., the patch) and reduces the storage space. The data is not
shown in this paper due to space limits. On average, FUllCHA
needs 140.5 MB to save the full class hierarchy and call graph,
whereas INcCHAS® needs 18.4 MB (13.1% of FullCHA) and
INcCCHA® needs 14.6 MB (10.4%) to save the graph patch.

D. Detailed Analysis

1) Correlation Between Overhead and Updated LOC:
There is an unobvious correlation between the overhead of in-
cremental CHA and the updated LOC among all programs, just
as shown in fig. 6. The 3 green shaded programs have similar
updated LOC on average. However, their average overheads

re not close, especially the memory overhead. I8 has the

smgllest updated LOC, but its memory overhead of INcCCHAS
q ighest. The reason is that each program has different
asic
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head, such as loading the old graphs. Updating
the fame HOGPamong different programs does not introduce
sim oV during incremental construction. However,
more u C generally requires more overhead.

The O224fommons-beel [16]) has the most updated LOC.
Several updates renamp@mts package names for almost all
classes so that the upf OC almost doubled the size of the
original program. | A¢ sill speeds up the construction by
21.2 times on average. cause part of CG constructed
by FUllCHA is for libra e reused directly dur-
ing incremental constructioff. INcCHA® and IncCHA®
only need to rebuild the parti application code.

Figure 7 presents the time of incr onstruction with
the updated LOC of each updategitferent programs. The
general trend within each program is that the more updated
LOC, the longer the construction time. Some updates have
less updated LOC but consume longer construction time,
such as 12 and O21. The updated LOC only considers the
diff patch of application code and ignores the updates to
dependent libraries. Upgrading libraries could introduce more
construction time, especially for INcCHA®, which treats all
classes in updated libraries as updated classes.

InNcCHAP® runs faster than INcCHA® on most updates, except
several updates in I11, I13 and O27. For these updates,
IncCHA® generates more extra CG nodes and edges than

ed

f




(a) The proportion of extra CG nodes
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Fig. 8: Extra CG nodes and edges generated by incremental CHA. The z-axis is the program id in table III.

(a) The incremental construction time on I3

(b) The incremental construction time on 029, jedis

[ 0 FullCHA [ 0 IncCHAS [ B IncCHAP

Fig. 9: Incre %speeds up the most (a) and least (b) times. The x-axis is the program updates.

(a) The memory consumptlon o 13

1 upddtes

|.||!||| mm.."'“‘lil"Jhlh\h\|I|hlhl

(b) The memory consumption on 028, gson

20 updates

[ FQICHA [ 11 IncCHA® [ 0 IncCHA®

Fig. 10: Incremental CHA reduces memory consurfipt

2) Extra Nodes and Edges: Figure 8 shows the proportion
of extra CG nodes and edges generated by IncCHA® and
IncCHA®. On average, INCCHA® generated 34.2 more nodes
and2,439.6 more edges; IncCHA® generated 88.1 more nodes
and 3,131.7 more edges. For both tools, the proportions are
less than 0.4%, except IncCHA® generated 0.41% extra nodes
for I16. Such a proportion is tiny and acceptable, considering
the performance improvement incremental CHA can make.

In general, IncCHA® generates more extra nodes and edges.
INcCHA® treats all classes from upgraded libraries as removed
classes and deletes them directly from the class hierarchy. In
contrast, IncCHAP only deletes real removed classes from the
class hierarchy (because of line 20). Assume a library class
exists in both versions of the program and is only used in
the old program, INcCCHAS® can delete this class if the library
containing the class is upgraded, but IncCHA® can not. So
that IncCHA® introduces fewer unreachable types into the
class hierarchy and generates fewer unreachable CG nodes
and edges.

These extra nodes and edges are unreachable but still valid
in the new program. Hence INcCHAS® and IncCHA® still ensure
the validity property section II-B2. Such extra nodes and edges
can be cleaned up by constructing a full CG periodically for
the latest version of the program.
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he most (a) and least (b). The z-axis is the program updates.

INcCHA® (explained in section V-D2), so that INcCHAP ta
more time (less than 5 seconds) to execute.

Time Efficiency: The improvement of time efficiency
ustrial programs is better than that of open-source

although the average construction time on the latter
thal) thag, of the former. This is because FUllCHA took

rogra
is 1

s the construction time on two programs.
, INcCHA® speeds up the most (29.9) on
up the worst (3.3) on 029. The
e of I3 is higher than the full
the full construction time of /3

is even higher, so th

4) Memory Efficienct.
ficiency is not as good a
is a basic memory consumpti
of VM, loading the old class hie nd the old call
graph, efc. Figure 10 shows the _if#rovements in memory
efficiency on two programs. On average, IncCHA® needs the
least proportion (43.2%) of memory on I3, and IncCHA®
needs the most proportion (111.6%) of memory on O28.

On open-source programs, the memory overhead of incre-
mental CHA is close to or even higher than FUllCHA. Because
the incremental CHA tools have to create caches for indexing
and removing in the class hierarchy and the call graph, such
caches are unnecessary for FUICHA. The size of these caches
grows along with the updated LOC. Therefore the memory-
saving caches are more pronounced for open-source programs.

itializing an instance



VI. THREATS TO VALIDITY

A major threat concerns the soundness of our incremental
CG construction algorithm. INCCHA is a reform of the full
CHA algorithm, and they share the underlying ability of pars-
ing code and constructing edges. The final new CG generated
by INncCHA consists of two parts. The reused part is inherited
from the old CG and soundly constructed by CHA for the code
irrelevant to the update. The new part is soundly constructed
by analyzing the code relevant to the update, i.e., updated or
affected. The two parts of code make a complete new program.
Hence the two parts of sound CG make a sound new CG.
The extra nodes and edges (section V-D2) do not affect the
soundness of the new,

Another threat cern®the evaluation results, because we
mainly use progs#fims Wpm_Ant Group in evaluation. We argue
that (1) because of the g0nfi@entiality in industrial world, it is
difficult to obtain cods & other companies, (2) the evalua-
tion on the 10 open-source % also shows that IncCCHA
significantly improves the struction efficiency, and (3) the
design and implementation of the target p
general principles of software systems agf
Therefore we can conclude that INcCHA’i
more efficiently for similar complicated

ggrams follow the
chrepresentative.
add constructs CG

Q

VII. RELATED WORK

Call graph construction has been studied effenfive
the static analysis community. We first review t
focusing on different targets of CG construction, the
discuss other incremental analyses.

Resolve Virtual Calls. Reachability analysis (RA) [17] is a
simple CG construction algorithm that takes into account only
the name (or signature) of a method to resolve virtual calls.
Dean etc. [4] present CHA which extends RA to use type
inheritance (class hierarchy) to determine virtual targets. RTA
[12] is a refinement of CHA that narrows down the possible
types of a receiver object to subtypes instantiated within the
target program, rather than all subtypes in the class hierarchy.

Tip and Palsberg [18] use a unified framework for
propagation-based CG construction algorithms. They present
four new algorithms (CTA, MTA, FTA, and XTA) that use a
distinct set of types to different scopes (i.e., classes, methods,
fields, or their combinations) to filter possible types further.
Sundaresan etc. [13] propose VTA and DTA, which find the
types that reach each variable. They can be considered refined
versions of RTA. The k-CFA [19] adopts points-to analysis
with various levels of call-site sensitivity to construct CG, and
many modern points-to analyses [18], [19] construct CG on-
the-fly.

These algorithms are designed in the exhaustive style,
whereas INCCHA is an exploratory study towards incremental
CG construction. The incrementalization of these algorithms
can reform IncCCHA. For incremental RTA, we need to update
the set of instantiated types while pruning and updating
the class hierarchy. For algorithms that compute propagated
types, the stale propagations should be first pruned, and

new propagations should be computed after each iteration of
updating CG. For algorithms based on points-to analysis, the
incrementalization should combine the insight of INcCCHA and
the incremental points-to analysis [10], [20].

Resolve Other Language Features. Many other language fea-
tures also affect the construction of CG, especially the dynamic
ones [21], [22]. Agesen [23], [24] and Petrashko etc. [25]
present CG construction algorithms concerning parametric
polymorphism. Santos efc. [26] provide a serialization-aware
CG construction algorithm. There are several CG construction
algorithms for dynamic languages, e.g., Python [27], [28] and
JavaScript [29], [30]. Other feature handling techniques, such
as reflection [31], invokedynamic [32], and dynamic proxy
[33], all contribute to the precision of CG construction. They
are generally orthogonal to this paper. Combining them with
incremental construction can also improve the precision of CG.

Improve Efficiency of CG Construction. Demand-driven
analysis [34]-[36] only constructs CG when required, and
distributed analysis [37] divides the computation to improve
the construction speed. Modular analysis [30], [38], [39]
constructs CG in a compositional way. They can cooperate
with IncCHA to make CG construction even faster.

Souter and Pollock [40] present an incremental version of
CPA [24], which transforms echo source editing into adding
and deleting a call-site. Lin efc. [9] incrementalizes CHA for
Aspect] software, which uses atomic change representation
to capture the semantic differences between two program

ersions. Wang etc. [41] investigate the influences of edge

instability on change propagation and connectivity in CG and
esent an incremental CG construction algorithm for CG
isuali
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ion. These researches try to improve efficiency in

diffgfent dhmaips, whereas INCCHA can be utilized generally
in erent arios.

Other tal Analyses. There exist incremental anal-
yses for im@roving the efficiency in points-to analysis (PTA).

built call graph before performing

B3], [44], which are orthogonal to

with IncCHA. Recent work

y uplate call graph along with

er, they require much

emory consumption
ial scenarios.

Most of them assume g#pre
the incremental ana 4
this paper and carnggogpe,

[10], [20] can incremen

incremental points-to anal
more resources to execute (e.g.
in [10]), which is impractical 1

ndu

VIII. CONCI¥SION

This paper revisits the need for efficient CG construction
for CI/CD pipelines in the industrial world, recognizes the
challenges of incremental CG construction, then proposes the
IncCHA algorithm to patch the previous CG to construct a
new one. The experimental evaluation shows that INcCHA can
efficiently construct valid and sound CG for industrial and
open-source programs. Compared with the full construction
algorithm, INncCCHA can speed up the construction by 20.0
times, reduce the memory consumption to 58.1%, and only
need 10.4% storage space.
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