

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2023-IC-008

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

Technical Report 202

Zelin Zhao, Xizao Wang, Zhaogui Xu, Zhenhao Tang, Yongchao Li, Peng Di

3

prohibited.

2023-IC-008

Incremental Call Graph Construction in Industrial Practice

Incremental Call Graph Construction
in Industrial Practice

Zelin Zhao∗, Xizao Wang∗†, Zhaogui Xu∗, Zhenhao Tang∗, Yongchao Li∗, Peng Di∗‡
Ant Group, Hangzhou, China∗ Nanjing University, Nanjing, China†

{zelin.zzl, wangxizao.wxz, zhengrong.xzg, tangzhenhao.tzh, liyongchao.lyc, dipeng.dp}@antgroup.com

Abstract—Interprocedural program analysis is critical in
finding hidden program defects and vulnerabilities in CI/CD
pipelines. A pre-constructed call graph is a prerequisite for
interprocedural analysis. However, the exhaustive call graph
construction, i.e., analyzing the target program as a whole and
constructing from scratch, often takes too much time. We made
a scalable empirical study on both industrial and open-source
projects and observed that most program updates only involve
a very limited part of the code. The observation inspires an
efficient approach that not wholely re-constructs a call graph
but incrementally patches the old one with the partial graph
affected by the update. We propose a sound incremental call
graph construction algorithm that works in a reset-recompute
way: first, prune invalid nodes and edges from the old call
graph, then analyze the new code to patch it to construct the
new one. We implemented the algorithm and built a benchmark
suite consisting of 20 industrial and 10 open-source projects. The
experimental evaluation shows that the efficiency improvement
is encouraging. Compared with the exhaustive construction
algorithm, the incremental way can speed up the construction
by 20.0 times and reduce the memory and storage consumption
to 58.1% and 10.4%, respectively.

Index Terms—call graph, incremental construction, class hier-
archy analysis, CI/CD

I. INTRODUCTION

Continuous integration and delivery (CI/CD) pipelines are

now widely practiced by modern software enterprises to man-

age program development. Interprocedural program analysis

is a promising step in the CI/CD pipeline for finding program

defects and vulnerabilities. Broadly, interprocedural analyses

are classified into top-down and bottom-up [1], both kinds

of which require a call graph (CG) to propagate information

between callers and callees. The whole CI/CD pipeline should

finish in a few minutes in agile practice [2], [3]. Therefore,

the efficiency of constructing CG as a fundamental program

representation has become a key metric to CI/CD pipelines.

The ever-growing program size and agile development of

industrial software pose great challenges for effectively con-

structing call graphs. Most existing CG construction algo-

rithms are designed in an exhaustive style, i.e., analyze the

target program as a whole and construct CG from scratch.

For complicated programs, these algorithms require too much

time to meet the requirement of CI/CD. The widely-used class
hierarchy analysis (CHA) algorithm [4] takes over 9 minutes

for industrial programs (with 367K LOC on average in our

evaluation) to construct CG (see section V), which exceeds the

‡ Corresponding author.

suggested time limit [5]–[7]. Frequent program updates make

the situation even worse in CI/CD. An Ant Group application

releases 294 new versions in only one year (see section V).

On the one hand, the successive updates of a program require

much storage space to save different versions of full CG; on

the other hand, the simultaneous releases of different programs

require much computing resources and time to construct CG.

Moreover, no matter how much code changes in the update, the

old CG becomes stale, and the new CG must be constructed

from scratch in existing practices.

Patching the old CG to construct the new one, just like

patching the code, is an ideal way of CG construction in the

CI/CD pipeline. According to our observation, most program

releases only update a small part of the code and leave

the major part unchanged. 40.93% of updates in Ant Group

only change less than 100 LOC (lines of code), and 72.45%

of updates change less than 1,000 LOC. The CG patch to

these updates could be small-scale. The observation inspires

an efficient approach which not wholely re-constructs CG

but incrementally patches the previous CG with the partial

graph affected by the updates. However, the incremental CG

construction is not trivial, because updates may explicitly and

implicitly affect the call graph. Therefore, all impacts are

supposed to be captured during construction to guarantee the

new CG is valid and sound, and the consumption of resources

and time has to meet the limits.

In this paper, we propose an incremental CHA-based CG

construction algorithm for industrial Java applications. The

approach first collects all the method-level program updates

as inputs, capturing the explicit effects to CG; then locates

unchanged methods that are affected by the updates, capturing

the implicit effects. The incremental construction works in

a reset-recompute way: first, prune invalid nodes and edges

from the old CG, then analyze the new code to patch the

old CG to construct the new one. Existing incremental CG

construction approach can not be easily adopted into CI/CD

infrastructures, because they are designed for specific IDE [8]

or special programs [9], or require too much memory [10].

The key advantage of our incremental algorithm over the

existing one [4] is that reusing the unchanged part of the

old CG, which is the major part for most program updates,

significantly saves computing resources and time. Compared

with the full CG construction, the patch, consisting of the

removed and added nodes and edges, is a tiny scale and takes

much less storage space. Our algorithm is theoretically as

471

2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

2832-7659/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-SEIP58684.2023.00048

For Research Only

sound as the full CHA-based algorithm. The new CG consists

of two sound parts: the reused part is constructed soundly

for the code irrelevant to the update, and the new part is

constructed soundly for the code relevant to the update.

Our contributions are summarized as follows.

• We conduct an empirical study of 9,059 updates (releases)

from 108 industrial and 20 open-source programs. The re-

sults confirm our observation that most program updates

only involve a small part of the code.

• We propose a novel incremental CG construction al-

gorithm, which can capture all impacts caused by the

program update and construct a valid and sound new CG.

• We implement the proposed algorithm and evaluate it

by comparing it with the full CG construction on 735

updates from 30 projects (with 20 real industrial and 10

open-sourced projects). On average, the incremental CG

construction algorithm speedups the construction by 20.0

times and reduces the memory and storage consumption

to 58.1% and 10.4%, respectively.

The rest is organized as follows. Section II gives the

background and motivation with an example, and discusses

the challenges of incremental CG construction. Section III

introduces the original CG algorithm, and section IV presents

our incremental CG algorithm. The evaluation is shown in

section V, followed by the discussion of threats in section VI,

the overview of related work in section VII, and the conclusion

in section VIII.

II. MOTIVATION AND CHALLENGE

In this section, we first present the motivation for incremen-

tal CG construction, then discuss the challenges of conducting

this idea.

A. Motivation

Most CG construction algorithms are designed in an exhaus-

tive style, i.e., analyzing the whole program to construct the

full CG from scratch. Such a design costs a lot, especially for

large-scale industrial programs. Our later experiment shows

that the CHA [4] algorithm can take over 22 minutes and 18

GB of memory to construct the CG for an industrial program

(with 339K LOC). Moreover, an industrial program usually

evolves continually in the CI/CD pipeline. Constructing a full

CG for each program update increases the resource consump-

tion of these full construction algorithms.

The key idea is to patch the old CG to incrementally

construct a new CG, which is feasible for real program

updates. Our insight is that the update from the old CG to the

new CG must be correlative to the updated code, which should

be located and analyzed. It is also observed that a program

update usually only modifies a small part of the code, and the

resultant CG update is likely small-scale.

Figure 1 shows a simplified update of an industrial program.

There are 6 classes, 7 methods, and 3 fields in the new

code related to the update, while a considerable amount

of unchanged code is not shown. Existing exhaustive CG

construction algorithms (e.g., CHA [4]) must analyze the new

1 class UserService {
2 private List<User> users;
3 public void add(User user) { ... }
4 }
5 class VipService extends UserService {
6+ private VipVerifier vipVerf;
7 @Override
8 public void add(User user) {
9+ if (vipVerf.isVip(user))

10 super.add(user);
11 }
12 }
13- class BlackListService extends UserService {
14+ class BlockedService extends UserService {
15 @Override
16 public void add(User user) { ... }
17 }
18- class FooService extends UserService {
19+ class FooService extends Foo {
20 @Override
21 public void add(User user) { ... }
22 }
23 class Server {
24 private UserService service;
25 public void init(UserService userService) {
26 this.service = userService;
27 }
28 public void userRegister(User user) {
29 service.add(user);
30 }
31 }
32 class VipVerifier {
33 public boolean isVip(User user){ ... }
34 }

Fig. 1: Example of a program update. Red lines are removed,

green lines are added, and others are unchanged.

code as a whole, including the unchanged code. By patching

the old CG, however, we can ignore almost all unchanged code

and only analyze the 3 changed classes and 1 class (Server)

that is unchanged but affected by the update, i.e., the virtual
call resolution in line 29 becomes different.

To confirm our observation, we conducted an empirical

study of the program evolution history to measure the scale

of updated code in the real world. We build a benchmark

suite containing both industrial and open-source programs. For

industrial programs, we randomly chose 108 core applications

in Ant Group and collected their updates (releases) from April

2021 to April 2022, and got 7,262 updates. For open-source

programs, we chose 20 widely used Maven [11] projects which

have different purposes (libraries, cli tools, and gui tools),

collected all updates, and got 1,797 updates.

Figure 2 shows the results of the empirical study, where each

update is measured with its updated LOC. The updates with

less than 100 updated LOC occupy a big part, and the ones

with less than 1,000 updated LOC occupy the major part. For

such simple updates, incremental CG construction may only

need to update a small part of the old CG, which is much

cheaper than the original way. A small part of updates are

complex and changes more than 1,000 or even 10,000 LOC.

Incremental CG construction for a complex update may take

a longer time than that for a simple one.

The insight and empirical observation motivate us to reform

472

For Research Only

4.46%

23.09%

31.52%

40.93%

≥ 10000

[1000, 9999)

[100, 999)

< 100

9.85%

34.39%

33.67% 22.09%

Fig. 2: Ths statistics of updated LOC in the evolution history

of programs. The left pie is for industrial programs, and the

right is for open-source programs.

the CHA algorithm to construct a CG for a program update

incrementally. The CHA algorithm is widely used and suit-

able for CI/CD. On the other hand, it is the basis of other

algorithms, such as RTA [12], VTA [13], etc. The incremen-

talization of CHA is the precondition of other incremental

construction algorithms. We will discuss this in section VII.

B. Challenges of Incremental CG Construction

1) Capture Different Update Effects on CG: Program up-

dates can explicitly and implicitly affect the CG. These update

effects on CG should all be captured by incremental CG

construction.

The explicit effect means that, a method invocation is

updated, and its CG edges must be updated accordingly. For

example, line 9 in fig. 1 adds a new method invocation and

introduces an explicit effect to CG, i.e., adding a new CG edge

〈VipService#add,VipVerifier#isVip〉.
The implicit effect means that, although a method invocation

is unchanged, its CG edges should be updated due to the

program update. For example, lines 13–14 in fig. 1 first remove

and then add a subtype for UserService. The sub methods

of UserService#add become different. So that the CG

edges of the unchanged virtual call in line 29 become different.

2) Construct a Valid and Sound CG: The CHA algorithm

exhaustively analyzes a program and ensures the validity
and soundness of the class hierarchy and call graph. The

incremental construction must also preserve these properties.

Validity: Each node and edge in the class hierarchy and

call graph must be valid in the corresponding version of a

program. Because of program updates, types and inheritances,

methods and invocations can be removed from program code.

The corresponding nodes and edges become invalid and will

be removed from the new class hierarchy and call graph.

Soundness: A sound class hierarchy contains all (in)direct

super types for each type, thus all possible callees in the call

graph can be resolved via a sound class hierarchy. Because

of program updates, types and inheritances, methods and

invocations can be added to the new version of program. The

corresponding nodes and edges must be added to the new class

hierarchy and call graph.

The updating class hierarchy and call graph sequence

also affect their validity and soundness. Suppose updating

the call graph before the class hierarchy, invalid inheritance

edges may still exist in the class hierarchy (such as 〈Foo-

Service,UserService〉 in fig. 1), and the virtual call reso-

lution can generate invalid CG edges (i.e., 〈UserService#-
userRegister,29,FooService#add〉 is invalid in the

new program). Suppose updating the class hierarchy before

the call graph, invalid invocation nodes (such as Black-
ListService#add) may still exist in the call graph and

introduce invalid types (i.e., BlackListService).

III. FULL CALL GRAPH CONSTRUCTION

The class hierarchy is a graph that describes the inheritance

between classes in a program. In this graph, nodes are classes

in a program, and edges are inheritance relationships pointing

from each class to its direct super types. In this paper, we

use 〈superType,subType〉 to denote a class hierarchy edge

and 〈caller,call-site,callee〉 1 to denote a CG edge.

Take the old code in fig. 1 as an example. The class hierarchy

contains the following edges:

• 〈VipService,UserService〉,
• 〈BlackListService,UserService〉,
• 〈FooService,UserService〉.

The call graph contains the following edges for line 29:

• 〈Server#userReg,29,UserService#add〉,
• 〈Server#userReg,29,VipService#add〉,
• 〈Server#userReg,29,BlackListService#add〉,
• 〈Server#userReg,29,FooService#add〉.

A. CHA-based CG Construction Algorithm

The CHA algorithm assumes a class hierarchy is already

available before CG construction [4]. In this paper, we present

the CHA algorithm more practically, i.e., building the class

hierarchy and call graph in one run.

The CHA algorithm is shown in alg. 1. It takes as input

the entry methods of the target program, usually the main
method, and constructs the class hierarchy and the call graph

from scratch. Line 2 initializes the class hierarchy H and the

call graph G as two empty graphs. Lines 3–9 iteratively update

the two graphs until they do not change, i.e., reaching the fixed

point. Before each iteration, M is initialized as all methods

from input (Me) and G in line 4. The main logic in lines 5–

8 is visiting each method to first update H (line 7) and then

update G (line 8).

Line 7 invokes createCH to create a partial class hierarchy

to update H. Lines 13–14 iterate through types directly used

by the method and collect their (in)direct super types. Line 15

creates direct inheritance edges for each collected type. These

edges are added to the partial class hierarchy H
′.

Line 8 invokes createCG to create a partial call graph

to update G. It first initializes an empty call graph, then

iterates through each method invocation in this method.

The class hierarchy is necessary for resolving virtual calls.

Therefore H is a parameter of the createCG method. The

resolveMethods resolves all possible callees via H for

each invocation. Line 21 creates CG edges and adds them to

1The caller can invoke a callee multiple times in different call-sites. For
simplicity, we denote a call-site by its line number in this paper.

473

For Research Only

Algorithm 1: Full CHA-based CG algorithm

Input: Me, the entry methods
Output: H, the full class hierarchy;

G, the full call graph
1 Function fullChaBasedCG(Me):
2 H← {},G← {};
3 repeat

// visit entry methods or reachable ones
4 M ←Me ∪ nodes(G);
5 foreach m ∈M do
6 if m was not visited before then
7 H← H ∪ createCH(m);
8 G← G ∪ createCG(H,m);
9 until H and G do not change;

10 return H,G
11 Function createCH(m):
12 T ← {};
13 foreach type t directly used by m do

// collect t and its (in)direct super types
14 T ← T ∪ {t} ∪ allSuperTypes(t);

// create a partial class hierarchy
15 H

′ ← {〈t, t′〉 | t ∈ T ∧ t′ ∈ directSuperTypes(t)};
16 return H

′

17 Function createCG(H,m):
18 G

′ ← {};
19 foreach method invocation i in m do

// resolve possible callees for i using H

20 M ← resolveMethods(H, i);
21 G

′ ← G
′ ∪ {〈m, i,m′〉 |m′ ∈M};

22 return G
′

We simplify graph denotation to the set of edges, and use nodes() to retrieve
methods from the call graph.

G
′. Each newly reachable method will be finally added to M

in line 4 and visited in the next iteration. The class hierarchy

and the call graph grow successively until they reach the fixed

point.

BlackListService

Object

VipService

UserServiceServer

FooService

Foo

(a) Class hierarchy

S#userReg

US#add

VS#add BLS#add FS#add

x

Foo#add

(b) Call graph

Fig. 3: The class hierarchy and call graph constructed by the

CHA algorithm for the old code in fig. 1. Assume that the old

code does not use VipVerifier, and that method x calls

Foo#add. Class names in CG are abbreviated to save space.

Figure 3 presents the two graphs constructed for the old

code in fig. 1 by the CHA algorithm. We assume Vip-
Verifier is not reachable in the old code. Therefore the two

graphs do not contain its type and methods. While analyzing

the UserService#add method, the inheritance edge from

UserService to Object is created. The resolution for

line 29 in userRegister can be sound only after the three

subclasses of UserService are added to the class hierarchy.

IV. INCREMENTAL CALL GRAPH CONSTRUCTION

Alg. 2 presents our incremental CHA-based CG algorithm,

IncCHA. The inputs contain a program update Δ, the old

class hierarchy Ho, and the old call graph Go. IncCHA mainly

contains six steps.

Algorithm 2: Incremental CHA-based CG algorithm

(IncCHA)

Input: Δ, a program update;
Ho, the old class hierarchy;
Go, the old call graph

Output: Hn, the new class hierarchy;
Gn, the new call graph

1 Function incrementalChaBasedCG(Δ):
// Step 1: obtain all updated methods

2 MΔ ← processUpdate(Δ);
3 initialize Hn and Gn to duplicate of Ho and Go;

// Step 2: prune the class hierarchy
4 foreach m ∈ nodes(Go) ∩MΔ do
5 Hn ← Hn − createCH(m);
6 repeat

// Step 3: collect updated and affected methods
// collect newly reachable methods

7 Mr ← nodes(Gn)− nodes(Go);
// collect super methods in the old version

8 Mo ← oldSuperMethods(MΔ ∪Mr);
// collect super methods in the new version

9 Mn ← newSuperMethods(MΔ ∪Mr);
// collect direct callers in the old call graph

10 Mc ← {m |m′ ∈MΔ∪Mo∪Mn∧〈m, i,m′〉 ∈ Go};
// Step 4: prune the call graph

11 foreach m ∈MΔ ∪Mc do
12 if m was not visited before then
13 GΔ ← {〈m, i,m′〉 | 〈m, i,m′〉 ∈ Go};
14 Gn ← Gn −GΔ;

// Step 5: analyze new method to update Hn and Gn

15 foreach m ∈ (MΔ ∪Mc ∪Mr) ∩ nodes(Gn) do
16 if m was not visited before then
17 Hn ← Hn ∪ createCH(m);
18 Gn ← Gn ∪ createCG(Hn,m);
19 until Hn and Gn do not change;

// Step 6: clean non-entry nodes whose in-degree is 0
20 cleanUp(Gn);

A. Incremental Construction Algorithm

Step 1: obtain updated methods. For different element up-

dates in Δ, processUpdate parses them to obtain updated

methods and adds them to MΔ, as shown in table I. A class

that only exists in one version of the program is an added

or removed class, and all its declared methods are added or

removed methods correspondingly. For the two versions of a

changed class, their declared methods are first matched by

their signatures2. Unmatched methods are removed or added

methods. For matched methods, their method bodies are then

compared to distinguish unchanged from changed methods. If

the fields, import statements, or direct super types of a class are

changed, like FooService in fig. 1, its methods are treated

as changed methods, except those removed and added ones.

The MΔ column in table II presents the updated methods

obtained by this step. The order of these methods does not

affect incremental construction.

Step 2: Prune the Class Hierarchy. To ensure the validity of

Hn and Gn (section II-B2), IncCHA first finds and removes

invalid types and inheritances via lines 4–5. After this step,

2Method signature consists of the declaring class name, method name,
parameter types, and return type.

474

For Research Only

TABLE I: The updated methods added to MΔ, by processing

different updates

Update Category Methods Added to MΔ

Add class set of added methods, {+m}
Remove class set of removed methods, {-m}

Add method an added method, +m

Remove method a removed method, -m

Change method a changed method, *m

Update fields, imports, and
a set of changed methods, {*m}super types of class etc.

“+”, “-” and “*” denote added, removed and changed.

all nodes and edges in Hn are valid for the new program.

Therefore the subsequent virtual call resolutions will be valid.

Invalid CG edges are removed in line 14, which will be

described in line 20.

For removed and changed methods in MΔ that are reachable

in the old program, line 5 reuses the createCH function from

the full CHA algorithm to build the partial class hierarchy.

In fig. 1, the add method in FooService is processed

as a changed method. When createCH parsing the add
method in the old program, the type inheritance edge, 〈Foo-
Service,UserService〉, is captured in the partial class

hierarchy and finally removed from Hn in line 5.

Valid type inheritance edges may also be captured by

createCH, such as 〈VipService,UserService〉 when

analyzing VipService#add method. These edges will be

added back into Hn in line 17 when visiting the corresponding

new version of methods. Moreover, we can optimize such

superfluous deletions by skipping valid type inheritance edges.

BlackListService

Object

VipService

UserServiceServer

FooService

Foo

Fig. 4: Removing invalid types and inheritance edges (red

dashed ones) from Hn.

Figure 4 shows the new class hierarchy after this step. The

remaining types and edges ensure the validity of virtual call

resolution. IncCHA can directly use Hn to resolve virtual calls

in subsequent construction. While resolving line 29 in fig. 1,

IncCHA will not generate the invalid edge pointing to Foo-
Service#add.

Step 3: Collect Updated and Affected Methods. The out-

going edges from updated methods and the incoming edges

to updated methods should be recreated. IncCHA (lines 7–10)

finds all methods that are affected by the program update.

Methods that are unreachable in the old program but be-

come reachable in the new program should be analyzed. In

line 7, the nodes(Gn)−nodes(Go) operation computes

such methods. These methods could be the added ones, or the

existing ones in both versions but are never called in the old

program. CG edges originating from them should be created.

Callers that could invoke updated or newly reachable meth-

ods should be analyzed. Besides the invocations directly

pointing to these methods, invocations that point to their super

methods should also be found. IncCHA (lines 8–9) finds all

super methods Mo and Mn for updated and newly reachable

ones in the old and the new program. Line 10 walks on the old

call graph to obtain direct callers. If there is no old bytecode,

the oldSuperMethods computes the super methods based

on the old class hierarchy and the old call graph.

TABLE II: Methods added into variables of lines 7–10 in

IncCHA

MΔ Mr Mo ∪Mn Mc

1© *VS#add

US#add 5© S#userReg2© -BLS#add
3© +BS#add
4© *FS#add

1© *VS#add

5© VV#isVip2© -BLS#add US#add 6© S#userReg
3© +BS#add Foo#add 7© x
4© *FS#add

The first and second row shows the states in the first and second iteration,
respectively. We put Mo and Mn in one column for saving space.
Numbered methods are finally visited in each iteration.

Table II presents the states of variables in lines 7–10. In the

first iteration (i.e., first row), MΔ contains the four updated

methods. Because the initial Gn is the duplicate of Go, there

are no newly reachable methods in Mr. When collecting super

methods, the new inheritance edge from FooService to Foo
has not been created, so there is only one super method in Mo.

The direct caller in the first iteration is only userRegister
in Servce class.

In the second iteration (i.e., second row), MΔ remains

unchanged. Because the new version of VipService#add
is visited in the previous iteration, VipVerifier#add
becomes newly reachable in the new program. Because the

new version of FooService#add is visited in the first

iteration, the new inheritance edge from FooService to Foo
is created, and the new super method Foo#add is put into

Mn. As a result, method x is found as the direct caller of

Foo#add.

Step 4: Prune the Call Graph. The loop (lines 11–14)

removes illegal CG edges. For updated methods or affected

callers, line 13 retrieves their outgoing edges and line 14

removes these stale edges from the new call graph. We only

need to remove each stale edge one time. An updated method

can be unreachable in the old program, and the corresponding

GΔ will be empty. In fig. 1, the BlackListService#add
is a removed method, and its outgoing edges will be removed

after this step.

Step 5: Analyze New Version of Methods. For updated

methods, affected callers, and newly reachable methods in the

new call graph, lines 16–18 open them to expand the new

class hierarchy and the new call graph. Line 17 reuses the

createCH function to update Hn and line 18 reuses the

createCG function to update Gn.

475

For Research Only

BlackListService

Object

VipService

UserServiceServer

FooService

Foo VipVerifier

BlockedService

(a) Class hierarchy

S#userReg

US#add

VS#add

BLS#add

FS#add

x

Foo#add

VV#isVip

BS#add

(b) Call graph

Fig. 5: Program updates to the class hierarchy and the call

graph. Red dashed lines denote removed edges and nodes, and

green solid lines denote added ones. Gray shadowed squares

denote code that is newly reachable in the new program.

Figure 5 presents the updates to the class hierarchy and the

call graph in steps 1–4. In the class hierarchy, one node and

two edges are removed by step 13. In the first iteration of

table II, the following updates happen in order:

1) when visiting 1© method, the edge from VipVerifier
to Object is added; the CG edge from Vip-
Service#add to VipVerifier#isVip is added;

2) when visiting 3© method, the inheritance edge from

BlockedService to UserService is added;

3) when visiting 4© method, the new inheritance edge from

FooService to Foo is added;

4) when visiting 5© method, the two CG edges are re-

moved, and one new edge to BlockedService#add
is added.

After the first iteration, the class hierarchy reaches its fixed

point. In the second iteration, the method x (7© in table II) is

visited and the edge from it to FooService#add is added.

Step 6: Cleanup Unreachable Nodes. The program update

can make methods in the old call graph unreachable in the new

one. The cleanUp in line 20 walks on the new call graph

and removes methods that are non-entry methods but have no

incoming edges. Their outgoing edges are removed, and the

callees are checked to find other unreachable nodes.

The program update can make a reachable type in the

old class hierarchy unreachable in the new one. However,

these types cannot be removed from the new class hierarchy.

One type can be used in multiple places, and analyzing only

program updates cannot decide the reachability of the type. We

can only know whether one type was used by the old program

and can not know whether it is unreachable after the update

unless it is a deleted type. Keeping an unreachable type in the

new class hierarchy does not affect the soundness of IncCHA
because it only leads to some redundant edges and nodes.

B. Tackle the Challenges

The explicit and implicit update effects to call graph are

all captured by IncCHA. Explicit effects are introduced by

directly updating method invocations. The processUpdate
function obtains all updated methods, therefore captures all

explicit effects. Implicit effects are caused by different virtual

call resolutions. Step 3 of alg. 2 captures all implicit effects by

3Here, we assume the superfluous deletions of valid nodes and edges are
skipped in optimization.

locating the unchanged caller methods affected by the update

and considering newly reachable methods.

Besides capturing all effects, the carefully designed update

sequence in IncCHA preserves the validity and soundness

of the class hierarchy and the call graph. Before generating

new CG edges in step 5, all invalid inheritance edges were

already removed in step 2, so that all constructed CG edges

are valid. Before generating new inheritance edges in step 5,

all invalid invocation edges were already removed in step 4, so

that all constructed inheritance edges are valid. The iterations

of IncCHA will finally construct the sound class hierarchy and

then the sound call graph, just like the full CHA algorithm.

V. EVALUATION

A. Implementation

1) FullCHA: We implemented the full CHA algorithm on

top of GraalVM [14]. A large-scale program usually contains

two parts: application code and dependent libraries. We use

all methods in application code as entry methods to the full

CHA algorithm, which means all application code and only

reachable code in libraries are analyzed.

2) IncCHA: We implemented two versions of the incre-

mental algorithms, IncCHAs
and IncCHAb

, to handle the case

without or with the old bytecode.

The old bytecode may be unavailable for the following

reasons. Compiling two versions of program can take a very

long time, which is unbearable in CI/CD, or it is unable

to compile the old program which is incompatible with the

current CI/CD pipeline. IncCHAs
parses the source code patch

to over-approximate updated methods. Updated classes can be

obtained from the source code patch. Their old methods and

super types can be retrieved from the old call graph and class

hierarchy, and their new methods and super types can be found

in the new bytecode, which is available. The method body

can not be compared; therefore all signature-paired methods

in changed classes are treated as changed methods.

A program update can also upgrade dependent libraries.

Without the old bytecode, we compare the library names (i.e.,

Jar file names) to determine removed and added libraries,

which are available in configuration (e.g., pom.xml in Maven

project). When saving the class hierarchy in FullCHA, we

record an extra attribute for each class: the library name

containing the class. Classes from removed (added) libraries

are treated as removed (added) classes, and their methods are

removed (added) methods.

The createCH is also different in IncCHAs
. Without

the old bytecode, createCH can not get all directly used

types for an old method. Only types in method signatures are

available. As a result, some removed types may be ignored. If

these types are from application code, they will be captured

by parsing the source code patch. Otherwise, these types

must exist in removed libraries, which are already considered

removed types to analyze.

476

For Research Only

TABLE III: Evaluation results on industrial (1–20) and open-source (21–30) programs: byte-buddy, commons-bcel, commons-io,

commons-lang, easyexcel, fastjson, flyway, gson, jedis, and opennlp

ID Size PR Com LOCΔ
(K) MetΔ FullCHA IncCHAs IncCHAb

Jar(MB) LOC(K) Max Avg Max Avg M(GB) T(S) M(GB) T(S) M(GB) T(S)

1 176 684.9 43 1110 8.2 0.9 1023 130 11.7 693.8 5.4(46.3%) 54.0(19.5) 5.0(43.2%) 28.4(28.9)

2 313 671.2 44 4161 19.4 4.0 4591 673 16.2 1254.6 10.0(61.6%) 127.0(16.1) 9.1(56.1%) 74.3(22.5)

3 244 433.2 91 5067 18.9 2.7 1502 232 10.0 582.3 4.8(48.6%) 46.0(20.5) 4.3(43.2%) 21.9(29.9)

4 118 277.5 43 1513 14.7 1.3 995 92 5.7 249.4 3.1(55.0%) 22.6(14.4) 2.9(50.8%) 13.7(19.8)

5 226 487.9 51 3123 5.1 1.2 433 116 6.2 282.5 3.5(56.2%) 32.4(11.7) 3.0(49.0%) 14.5(20.6)

6 178 172.2 59 1511 9.3 0.8 9129 587 6.8 322.7 3.6(53.3%) 29.6(16.0) 3.4(51.0%) 21.6(19.2)

7 120 119.8 54 948 5.0 0.5 728 95 4.6 220.0 2.6(57.0%) 16.0(15.3) 2.4(52.2%) 10.9(20.7)

8 435 339.0 50 2142 0.2 0.1 20 10 18.7 1320.6 10.0(53.4%) 68.0(19.9) 9.5(50.9%) 47.2(28.2)

9 201 200.7 79 2456 30.4 1.8 379 113 12.2 585.9 6.2(50.7%) 59.3(12.9) 5.5(45.4%) 30.6(20.5)

10 69 284.9 50 2942 7.0 1.5 725 131 5.6 302.1 3.1(55.5%) 22.2(17.5) 2.9(51.0%) 14.1(23.4)

11 63 214.2 52 1559 2.3 0.3 142 25 3.1 134.9 1.9(63.0%) 10.4(16.2) 1.7(56.7%) 7.4(20.4)

12 374 644.6 57 6672 52.3 6.0 2638 436 12.7 826.8 6.0(47.3%) 68.8(17.6) 5.6(44.1%) 37.2(27.1)

13 115 209.2 70 1476 5.8 0.9 962 137 9.0 414.4 4.4(49.4%) 30.4(17.6) 4.2(46.8%) 22.2(20.8)

14 150 221.5 50 1496 16.3 2.4 1282 210 3.7 204.0 2.3(63.2%) 14.7(18.9) 2.1(56.3%) 9.8(25.9)

15 224 422.5 47 1146 8.1 1.4 913 194 11.8 722.3 5.7(48.8%) 55.8(20.5) 5.4(46.4%) 37.6(26.4)

16 195 810.7 127 3172 22.6 2.7 1370 233 16.6 995.6 7.8(47.9%) 67.8(21.6) 7.3(45.1%) 43.9(26.1)

17 130 243.5 59 1679 31.6 2.1 3605 231 6.5 365.9 3.5(53.9%) 28.5(19.4) 3.2(49.4%) 15.5(26.0)

18 164 155.5 68 1823 9.7 0.8 880 84 8.5 498.0 4.2(49.9%) 27.5(21.9) 4.0(47.6%) 20.2(27.4)

19 213 434.1 294 6080 29.0 0.6 18K 246 11.9 712.1 5.3(45.3%) 41.2(22.7) 5.1(43.5%) 28.6(28.6)

20 186 317.8 45 740 10.2 1.0 905 105 5.1 225.7 2.9(57.8%) 21.3(11.7) 2.6(50.8%) 12.0(19.9)

21 42 170.7 248 6655 4.5 0.7 695 108 4.8 188.7 3.3(69.7%) 43.0(7.3) 2.9(61.0%) 24.3(10.3)

22 3 60.7 25 1964 118.4 12.6 7293 787 1.0 31.3 0.9(94.1%) 4.3(9.0) 0.6(64.0%) 2.3(21.2)

23 2 26.9 58 3955 17.1 1.4 582 61 0.7 12.3 0.6(97.1%) 2.5(5.9) 0.5(81.4%) 1.5(13.1)

24 2 68.2 85 7182 40.5 3.0 862 106 0.7 13.5 0.7(97.5%) 3.5(4.8) 0.6(80.4%) 1.9(11.2)

25 32 19.4 39 879 12.7 1.5 16K 933 1.3 40.9 1.3(94.8%) 8.7(6.1) 1.0(79.0%) 5.0(11.2)

26 55 51.9 132 7203 1.6 0.5 505 68 0.9 23.0 0.9(103.6%) 5.8(4.3) 0.7(79.6%) 3.4(7.6)

27 135 50.1 147 3406 4.3 0.6 3172 198 2.2 86.0 1.6(74.6%) 11.9(9.6) 1.4(64.6%) 6.2(16.7)

28 1 15.1 45 2973 29.7 2.4 899 121 0.6 11.7 0.7(111.6%) 3.4(4.0) 0.6(95.0%) 2.0(7.9)

29 6 42.2 81 2826 64.5 4.9 13K 1545 0.8 17.9 0.9(110.4%) 7.0(3.3) 0.7(86.1%) 4.4(5.1)

30 10 90.1 40 2796 11.9 2.7 10K 665 1.4 45.2 1.2(85.8%) 9.5(7.3) 1.0(71.2%) 5.1(14.8)

Avg 139 264.7 78 3022 20.4 2.1 3450 289 6.7 379.5 3.6(66.9%) 31.4(13.8) 3.3(58.1%) 18.9(20.0)

The ID column presents the program id, 1–20 are from the industrial world, and their names are hidden intentionally; 21–30 are open-source programs.
The Size column presents the average size of bytecode (Jar) and lines of code (LOC). The PR and Com columns present the number of releases and
commits, respectively. The LOCΔ and MetΔ columns present the max (Max) and average (Avg) number of changed code lines and Java methods
among the updates we used in the evaluation. The last six columns show the memory (M) and time (T) different CHA algorithms took to execute. The
“m(n%)” in the memory column means that the incremental CHA needs “m” GB of memory, which is “n%” of the memory that the full CHA needs (the
lower, the better). The “m(n)” in the time column means that the incremental CHA needs “m” seconds, which is “n” times faster than the full CHA (the
higher, the better).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
2
4
6
8
10

(a) Correlation between memory overhead and updated LOC

0
2
4
6
8

10
GB K12.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
2
4
6
8
10

(a) Correlation beteen time overhead and updated LOC

0
20
40
60
80

100
S K127.0 12.6

LOCΔ Avg IncCHAs IncCHAb

Fig. 6: Correlation between the overhead of incremental construction (the left y-axis) and the updated LOC (the right y-axis).

The x-axis is the program id in table III. Green marks programs with similar updated LOC (0.9 ∼ 1.1 K) but different

overheads.

B. Experimental Setup

We evaluate the effectiveness and efficiency of incremen-

tal CHA algorithms by applying FullCHA, IncCHAs
, and

IncCHAb
on target programs to build the class hierarchy and

call graph, and comparing their performance.

Table III presents the information of all 30 subjects, in-

cluding 20 industrial and 10 open-source programs. From the

108 industrial programs in fig. 2, we randomly sampled 20,

collected their updates within the last year, and categorized

updates according to the distribution in fig. 2. Finally, we

randomly sampled one-third of the updates in each distribu-

tion and got 433 program updates (out of 1,433). Following

the same procedure, we randomly sampled 10 open-source

programs (out of 20) and 302 updates (out of 900).

For each update, we first execute FullCHA to build the class

hierarchy and call graph for both versions of the update. The

results of the old version are used as inputs to incremental

CHA, and the results of the new version are used as the

comparison criteria of incremental CHA. To evaluate the

effectiveness, we compare the CG constructed by incremental

477

For Research Only

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

I11 I12 I13 I14 I15 I16 I17 I18 I19 I20

O21 O22 O23 O24 O25 O26 O27 O28 O29 O30

LOCΔ Time of IncCHAs Time of IncCHAb

Fig. 7: The number of updated LOC and the incremental construction time of each program update.

CHA with the ones constructed by FullCHA. To evaluate the

efficiency, we record the memory, time, and storage space each

CHA tool requires for the new program. We run each tool on

a program update 5 times and compute the average data.
We set the 1-hour time limit and 25 GB memory limit for

each execution. The three CHA tools successfully constructed

CGs for all subjects. All experiments were conducted on a PC

running CentOS with an Intel E5 CPU and 250 GB RAM.

C. Overall Results
1) FullCHA: The FullCHA column presents the average

memory and time it took to execute on the new version of all

updates in a program.
The memory and time overhead of FullCHA are related to

the program size. Among all 30 programs4, industrial program

I8 requires the most memory (18.7 GB) and the most time

(1320.6 seconds). Its compiled Jar is the largest among all

programs; hence, its CG has the most edges, 16.8 million on

average. Open-source program O28 (gson [15]) requires the

least memory (0.6 GB) and the minimum time (11.7 seconds).

Its LOC and the compiled Jar are the smallest among all

programs, and its CG only has 119.8 K edges on average.
Industrial programs are more complicated than open-source

programs. FullCHA takes more resources to execute on indus-

trial programs. On average, FullCHA takes 9.3 GB and 545.7

seconds to run on industrial programs and only takes 1.4 GB

and 47.1 seconds to run on open-source programs.
2) IncCHAs and IncCHAb: The IncCHAs

and IncCHAb

columns present the average memory and time they took

to execute, along with the average efficiency improvement.

IncCHAb
analyzes less updated methods. Therefore it requires

less memory and time on most updates than IncCHAs
. On

average, IncCHAb
takes 3.3 GB and 18.9 seconds, whereas

IncCHAs
takes 3.6 GB and 31.4 seconds. In terms of ef-

ficiency improvement, IncCHAb
only needs 58.1% of the

memory FullCHA needs and speeds up the construction by

20.0 times. Although IncCHAs
performs slightly worse than

IncCHAb
, it still only needs 66.9% of the memory FullCHA

needs and speeds up the construction by 13.8 times.

4From now on, we use Ix denote industrial program x, use Oy denote
open-source program y.

Incremental CHA only saves the constructed partial graph

(i.e., the patch) and reduces the storage space. The data is not

shown in this paper due to space limits. On average, FullCHA
needs 140.5 MB to save the full class hierarchy and call graph,

whereas IncCHAs
needs 18.4 MB (13.1% of FullCHA) and

IncCHAb
needs 14.6 MB (10.4%) to save the graph patch.

D. Detailed Analysis

1) Correlation Between Overhead and Updated LOC:
There is an unobvious correlation between the overhead of in-

cremental CHA and the updated LOC among all programs, just

as shown in fig. 6. The 3 green shaded programs have similar

updated LOC on average. However, their average overheads

are not close, especially the memory overhead. I8 has the

smallest updated LOC, but its memory overhead of IncCHAs

is the highest. The reason is that each program has different

basic overhead, such as loading the old graphs. Updating

the same LOC among different programs does not introduce

similar overhead during incremental construction. However,

more updated LOC generally requires more overhead.

The O22 (commons-bcel [16]) has the most updated LOC.

Several updates renamed its package names for almost all

classes so that the updated LOC almost doubled the size of the

original program. IncCHAb
still speeds up the construction by

21.2 times on average. That is because part of CG constructed

by FullCHA is for library code and can be reused directly dur-

ing incremental construction. So that IncCHAs
and IncCHAb

only need to rebuild the partial CG for application code.

Figure 7 presents the time of incremental construction with

the updated LOC of each update in different programs. The

general trend within each program is that the more updated

LOC, the longer the construction time. Some updates have

less updated LOC but consume longer construction time,

such as I2 and O21. The updated LOC only considers the

diff patch of application code and ignores the updates to

dependent libraries. Upgrading libraries could introduce more

construction time, especially for IncCHAs
, which treats all

classes in updated libraries as updated classes.

IncCHAb
runs faster than IncCHAs

on most updates, except

several updates in I11, I13 and O27. For these updates,

IncCHAb
generates more extra CG nodes and edges than

478

For Research Only

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
0.1
0.2
0.3
0.4
0.5

(a) The proportion of extra CG nodes

%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
0.1
0.2
0.3
0.4
0.5

(b) The proportion of extra CG edges

%

IncCHAs IncCHAb

Fig. 8: Extra CG nodes and edges generated by incremental CHA. The x-axis is the program id in table III.

0
150
300
450
600
750

31 updates

(a) The incremental construction time on I3

S

0
5

10
15
20
25

30 updates

(b) The incremental construction time on O29, jedis

S

FullCHA IncCHAs IncCHAb

Fig. 9: Incremental CHA speeds up the most (a) and least (b) times. The x-axis is the program updates.

0

3

6

9

12

31 updates

(a) The memory consumption on I3

GB

0

0.2

0.4

0.6

0.8

20 updates

(b) The memory consumption on O28, gson

GB

FullCHA IncCHAs IncCHAb

Fig. 10: Incremental CHA reduces memory consumption the most (a) and least (b). The x-axis is the program updates.

IncCHAs
(explained in section V-D2), so that IncCHAb

takes

more time (less than 5 seconds) to execute.

2) Extra Nodes and Edges: Figure 8 shows the proportion

of extra CG nodes and edges generated by IncCHAs
and

IncCHAb
. On average, IncCHAs

generated 34.2 more nodes

and2,439.6 more edges; IncCHAb
generated 88.1 more nodes

and 3,131.7 more edges. For both tools, the proportions are

less than 0.4%, except IncCHAb
generated 0.41% extra nodes

for I16. Such a proportion is tiny and acceptable, considering

the performance improvement incremental CHA can make.

In general, IncCHAb
generates more extra nodes and edges.

IncCHAs
treats all classes from upgraded libraries as removed

classes and deletes them directly from the class hierarchy. In

contrast, IncCHAb
only deletes real removed classes from the

class hierarchy (because of line 20). Assume a library class

exists in both versions of the program and is only used in

the old program, IncCHAs
can delete this class if the library

containing the class is upgraded, but IncCHAb
can not. So

that IncCHAs
introduces fewer unreachable types into the

class hierarchy and generates fewer unreachable CG nodes

and edges.

These extra nodes and edges are unreachable but still valid
in the new program. Hence IncCHAs

and IncCHAb
still ensure

the validity property section II-B2. Such extra nodes and edges

can be cleaned up by constructing a full CG periodically for

the latest version of the program.

3) Time Efficiency: The improvement of time efficiency

on industrial programs is better than that of open-source

programs, although the average construction time on the latter

is less than that of the former. This is because FullCHA took

much more time to execute on industrial programs.

Figure 9 shows the construction time on two programs.

Among all targets, IncCHAb
speeds up the most (29.9) on

I3, and IncCHAs
speeds up the worst (3.3) on O29. The

incremental construction time of I3 is higher than the full

construction time of O29, but the full construction time of I3

is even higher, so the improvement on I3 is better.

4) Memory Efficiency: The improvement in memory ef-

ficiency is not as good as the improvement in time. There

is a basic memory consumption for initializing an instance

of VM, loading the old class hierarchy and the old call

graph, etc. Figure 10 shows the improvements in memory

efficiency on two programs. On average, IncCHAb
needs the

least proportion (43.2%) of memory on I3, and IncCHAb

needs the most proportion (111.6%) of memory on O28.

On open-source programs, the memory overhead of incre-

mental CHA is close to or even higher than FullCHA. Because

the incremental CHA tools have to create caches for indexing

and removing in the class hierarchy and the call graph, such

caches are unnecessary for FullCHA. The size of these caches

grows along with the updated LOC. Therefore the memory-

saving caches are more pronounced for open-source programs.

479

For Research Only

VI. THREATS TO VALIDITY

A major threat concerns the soundness of our incremental

CG construction algorithm. IncCHA is a reform of the full

CHA algorithm, and they share the underlying ability of pars-

ing code and constructing edges. The final new CG generated

by IncCHA consists of two parts. The reused part is inherited

from the old CG and soundly constructed by CHA for the code

irrelevant to the update. The new part is soundly constructed

by analyzing the code relevant to the update, i.e., updated or

affected. The two parts of code make a complete new program.

Hence the two parts of sound CG make a sound new CG.

The extra nodes and edges (section V-D2) do not affect the

soundness of the new CG.

Another threat concerns the evaluation results, because we

mainly use programs from Ant Group in evaluation. We argue

that (1) because of the confidentiality in industrial world, it is

difficult to obtain code from other companies, (2) the evalua-

tion on the 10 open-source programs also shows that IncCHA
significantly improves the construction efficiency, and (3) the

design and implementation of the target programs follow the

general principles of software systems and are representative.

Therefore we can conclude that IncCHA indeed constructs CG

more efficiently for similar complicated programs.

VII. RELATED WORK

Call graph construction has been studied extensively in

the static analysis community. We first review the research

focusing on different targets of CG construction, then briefly

discuss other incremental analyses.

Resolve Virtual Calls. Reachability analysis (RA) [17] is a

simple CG construction algorithm that takes into account only

the name (or signature) of a method to resolve virtual calls.

Dean etc. [4] present CHA which extends RA to use type

inheritance (class hierarchy) to determine virtual targets. RTA

[12] is a refinement of CHA that narrows down the possible

types of a receiver object to subtypes instantiated within the

target program, rather than all subtypes in the class hierarchy.

Tip and Palsberg [18] use a unified framework for

propagation-based CG construction algorithms. They present

four new algorithms (CTA, MTA, FTA, and XTA) that use a

distinct set of types to different scopes (i.e., classes, methods,

fields, or their combinations) to filter possible types further.

Sundaresan etc. [13] propose VTA and DTA, which find the

types that reach each variable. They can be considered refined

versions of RTA. The k-CFA [19] adopts points-to analysis

with various levels of call-site sensitivity to construct CG, and

many modern points-to analyses [18], [19] construct CG on-

the-fly.

These algorithms are designed in the exhaustive style,

whereas IncCHA is an exploratory study towards incremental

CG construction. The incrementalization of these algorithms

can reform IncCHA. For incremental RTA, we need to update

the set of instantiated types while pruning and updating

the class hierarchy. For algorithms that compute propagated

types, the stale propagations should be first pruned, and

new propagations should be computed after each iteration of

updating CG. For algorithms based on points-to analysis, the

incrementalization should combine the insight of IncCHA and

the incremental points-to analysis [10], [20].

Resolve Other Language Features. Many other language fea-

tures also affect the construction of CG, especially the dynamic

ones [21], [22]. Agesen [23], [24] and Petrashko etc. [25]

present CG construction algorithms concerning parametric

polymorphism. Santos etc. [26] provide a serialization-aware

CG construction algorithm. There are several CG construction

algorithms for dynamic languages, e.g., Python [27], [28] and

JavaScript [29], [30]. Other feature handling techniques, such

as reflection [31], invokedynamic [32], and dynamic proxy

[33], all contribute to the precision of CG construction. They

are generally orthogonal to this paper. Combining them with

incremental construction can also improve the precision of CG.

Improve Efficiency of CG Construction. Demand-driven

analysis [34]–[36] only constructs CG when required, and

distributed analysis [37] divides the computation to improve

the construction speed. Modular analysis [30], [38], [39]

constructs CG in a compositional way. They can cooperate

with IncCHA to make CG construction even faster.

Souter and Pollock [40] present an incremental version of

CPA [24], which transforms echo source editing into adding

and deleting a call-site. Lin etc. [9] incrementalizes CHA for

AspectJ software, which uses atomic change representation

to capture the semantic differences between two program

versions. Wang etc. [41] investigate the influences of edge

instability on change propagation and connectivity in CG and

[42] present an incremental CG construction algorithm for CG

visualization. These researches try to improve efficiency in

different domains, whereas IncCHA can be utilized generally

in different scenarios.

Other Incremental Analyses. There exist incremental anal-

yses for improving the efficiency in points-to analysis (PTA).

Most of them assume a pre-built call graph before performing

the incremental analysis [43], [44], which are orthogonal to

this paper and can cooperate with IncCHA. Recent work

[10], [20] can incrementally update the call graph along with

incremental points-to analysis. However, they require much

more resources to execute (e.g., 140 GB memory consumption

in [10]), which is impractical in industrial scenarios.

VIII. CONCLUSION

This paper revisits the need for efficient CG construction

for CI/CD pipelines in the industrial world, recognizes the

challenges of incremental CG construction, then proposes the

IncCHA algorithm to patch the previous CG to construct a

new one. The experimental evaluation shows that IncCHA can

efficiently construct valid and sound CG for industrial and

open-source programs. Compared with the full construction

algorithm, IncCHA can speed up the construction by 20.0

times, reduce the memory consumption to 58.1%, and only

need 10.4% storage space.

480

For Research Only

REFERENCES

[1] X. Zhang, R. Mangal, M. Naik, and H. Yang, “Hybrid top-
down and bottom-up interprocedural analysis,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM, 2014, pp. 249–258.
https://doi.org/10.1145/2594291.2594328

[2] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change. Pearson Education, 2004.

[3] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. Pearson
Education, 2010.

[4] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” in Proceedings of the
9th European Conference on Object-Oriented Programming (ECOOP).
Springer, 1995, pp. 77–101. https://doi.org/10.1007/3-540-49538-X 5

[5] P. W. O’Hearn, “Continuous reasoning: Scaling the impact of formal
methods,” in Proceedings of the 33rd annual ACM/IEEE symposium
on logic in computer science (LICS). ACM, 2018, pp. 13–25.
https://doi.org/10.1145/3209108.3209109

[6] N. Chong, B. Cook, K. Kallas, K. Khazem, F. R. Monteiro,
D. Schwartz-Narbonne, S. Tasiran, M. Tautschnig, and M. R. Tuttle,
“Code-level model checking in the software development workflow,” in
Proceedings of the 2020 IEEE/ACM 42nd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE, 2020, pp. 11–20. https://doi.org/10.1145/3377813.3381347

[7] C. Sadowski, J. Van Gogh, C. Jaspan, E. Soderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Proceedings
of the 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering (ICSE). IEEE, 2015, pp. 598–608. https:
//doi.org/10.1109/ICSE.2015.76

[8] U. Ismail, “Incremental call graph construction for the eclipse ide,” Tech.
Rep., 2009.

[9] Y. Lin, S. Zhang, and J. Zhao, “Incremental call graph reanalysis
for aspectj software,” in Proceedings of the 2009 IEEE International
Conference on Software Maintenance (ICSM). IEEE, 2009, pp.
306–315. https://doi.org/10.1109/ICSM.2009.5306311

[10] B. Liu, J. Huang, and L. Rauchwerger, “Rethinking incremental
and parallel pointer analysis,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 41, no. 1, pp. 6:1–6:31, 2019.
https://doi.org/10.1145/3293606

[11] Maven. Accessed: 2022-09-22. https://maven.apache.org

[12] D. F. Bacon and P. F. Sweeney, “Fast static analysis of c++
virtual function calls,” in Proceedings of the 11th ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA). ACM, 1996, pp. 324–341. https:
//doi.org/10.1145/236337.236371

[13] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin, “Practical virtual method call resolution
for java,” in Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). ACM, 2000, pp. 264–280. https://doi.org/10.1145/353171.
353189

[14] GraalVM. Accessed: 2022-09-22. https://graalvm.org

[15] Gson. Accessed: 2022-09-22. https://github.com/google/gson

[16] Apache Commons BCEL. Accessed: 2022-09-22. https://commons.
apache.org/proper/commons-bcel

[17] A. Srivastava, “Unreachable procedures in object-oriented
programming,” ACM Letters on Programming Languages and
Systems (LOPLAS), vol. 1, no. 4, pp. 355–364, 1992.
https://doi.org/10.1145/161494.161517

[18] F. Tip and J. Palsberg, “Scalable propagation-based call graph
construction algorithms,” in Proceedings of the 15th ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA). ACM, 2000, pp. 281–293. https:
//doi.org/10.1145/353171.353190

[19] O. G. Shivers, “Control-flow analysis of higher-order languages of
taming lambda,” PhD Thesis, Carnegie Mellon University, 1991.

[20] B. Liu and J. Huang, “SHARP: fast incremental context-sensitive
pointer analysis for java,” Proceedings of the ACM on Programming
Languages (PACMPL), vol. 6, no. OOPSLA1, pp. 88:1–88:28, 2022.
https://doi.org/10.1145/3527332

[21] M. Reif, F. Kübler, M. Eichberg, D. Helm, and M. Mezini, “Judge:
Identifying, understanding, and evaluating sources of unsoundness in
call graphs,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA). ACM, 2019,
pp. 251–261. http://doi.org/10.1145/3293882.3330555

[22] L. Sui, J. Dietrich, A. Tahir, and G. Fourtounis, “On the recall of static
call graph construction in practice,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (ICSE). ACM,
2020, pp. 1049–1060. https://doi.org/10.1145/3377811.3380441

[23] O. Agesen, “Constraint-based type inference and parametric
polymorphism,” in Proceedings of the First International
Static Analysis Symposium (SAS). Springer, 1994, pp. 78–100.
https://doi.org/10.1007/3-540-58485-4 34

[24] O. Agesen, “The cartesian product algorithm: Simple and precise
type inference of parametric polymorphism,” in Proceedings of the
9th European Conference on Object-Oriented Programming (ECOOP).
Springer, 1995, pp. 2–26. https://doi.org/10.1007/3-540-49538-X 2

[25] D. Petrashko, V. Ureche, O. Lhoták, and M. Odersky, “Call graphs
for languages with parametric polymorphism,” in Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA).
ACM, 2016, pp. 394–409. http://doi.org/10.1145/2983990.2983991

[26] J. C. S. Santos, R. A. Jones, C. Ashiogwu, and M. Mirakhorli,
“Serialization-aware call graph construction,” in Proceedings of the
10th ACM SIGPLAN International Workshop on the State Of
the Art in Program Analysis (SOAP). ACM, 2021, pp. 37–42.
https://doi.org/10.1145/3460946.3464319

[27] G. Gharibi, R. Tripathi, and Y. Lee, “Code2graph: automatic generation
of static call graphs for python source code,” in Proceedings of the 33rd
International Conference on Automated Software Engineering (ASE).
ACM, 2018, pp. 880–883. http://doi.org/10.1145/3238147.3240484

[28] V. Salis, T. Sotiropoulos, P. Louridas, D. Spinellis, and D. Mitropoulos,
“Pycg: Practical call graph generation in python,” in Proceedings of the
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 1646–1657. https://doi.org/10.1109/ICSE43902.2021.00146

[29] D. Seifert, M. Wan, J. Hsu, and B. Yeh, “An asynchronous call graph
for javascript,” in Proceedings of the 44th IEEE/ACM International
Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 2022, pp. 29–30. https://doi.org/10.1109/
ICSE-SEIP55303.2022.9794057

[30] B. B. Nielsen, M. T. Torp, and A. Møller, “Modular call graph
construction for security scanning of node.js applications,” in
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). ACM, 2021, pp. 29–41.
https://doi.org/10.1145/3460319.3464836

[31] Y. Li, T. Tan, and J. Xue, “Understanding and analyzing java reflection,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 28, no. 2, pp. 7:1–7:50, 2019. https://doi.org/10.1145/3295739

[32] G. Fourtounis and S. Yannis, “Deep static modeling of invokedynamic,”
in Proceedings of the 33rd European Conference on Object-
Oriented Programming (ECOOP). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019, pp. 15:1–15:28. https://doi.org/10.4230/LIPIcs.
ECOOP.2019.15

[33] G. Fourtounis, G. Kastrinis, and Y. Smaragdakis, “Static analysis of
java dynamic proxies,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA).
ACM, 2018, pp. 209–220. https://doi.org/10.1145/3213846.3213864

[34] G. Agrawal, “Simultaneous demand-driven data-flow and call graph
analysis,” in Proceedings of the 1999 IEEE International Conference
on Software Maintenance (ICSM). IEEE, 1999, pp. 453–462.
https://doi.org/10.1109/ICSM.1999.792643

[35] G. Agrawal, “Demand-driven construction of call graphs,” in
Proceedings of the 9th International Conference on Compiler
Construction (CC). Springer, 2000, pp. 125–140. https://doi.org/10.
1007/3-540-46423-9 9

[36] G. Agrawal, J. Li, and Q. Su, “Evaluating a demand driven technique
for call graph construction,” in Proceedings of the 11th International
Conference on Compiler Construction (CC). Springer, 2002, pp.
29–45. https://doi.org/10.1007/3-540-45937-5 5

[37] D. Garbervetsky, E. Zoppi, and B. Livshits, “Toward full elasticity
in distributed static analysis: the case of callgraph analysis,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE). ACM, 2017, pp. 442–453.
http://doi.org/10.1145/3106237.3106261

481

For Research Only

[38] D. Helm, F. Kübler, M. Reif, M. Eichberg, and M. Mezini, “Modular
collaborative program analysis in OPAL,” in Proceedings of the 28th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM,
2020, pp. 184–196. https://doi.org/10.1145/3368089.3409765

[39] P. D. Schubert, B. Hermann, and E. Bodden, “Lossless, persisted
summarization of static callgraph, points-to and data-flow analysis,”
in Proceedings of the 35th European Conference on Object-Oriented
Programming (ECOOP). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, pp. 2:1–2:31. https://doi.org/10.4230/LIPIcs.ECOOP.
2021.2

[40] A. L. Souter and L. L. Pollock, “Incremental call graph reanalysis
for object-oriented software maintenance,” in Proceedings of the 2001
IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2001, pp. 682–691. https://doi.org/10.1109/ICSM.2001.972787

[41] L. Wang, H. Li, and X. Wang, “The influences of edge instability on
change propagation and connectivity in call graphs,” in Proceedings
of the 19th International Conference on Fundamental Approaches
to Software Engineering (FASE). Springer, 2016, pp. 197–213.
https://doi.org/10.1007/978-3-662-49665-7 12

[42] I. Császár and R. R. Slavescu, “Interactive call graph generation for
software projects,” in Proceedings of the 2020 IEEE 16th International
Conference on Intelligent Computer Communication and Processing
(ICCP). IEEE, 2020, pp. 51–58. https://doi.org/10.1109/ICCP51029.
2020.9266149

[43] Y. Lu, L. Shang, X. Xie, and J. Xue, “An incremental points-to
analysis with cfl-reachability,” in Proceedings of the 22nd International
Conference on Compiler Construction (CC). Springer, 2013, pp.
61–81. https://doi.org/10.1007/978-3-642-37051-9 4

[44] S. Arzt and E. Bodden, “Reviser: efficiently updating ide-/ifds-
based data-flow analyses in response to incremental program
changes,” in Proceedings of the 36th International Conference
on Software Engineering (ICSE). ACM, 2014, pp. 288–298.
https://doi.org/10.1145/2568225.2568243

482

For Research Only

