

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

Technical Report 202

Technical Report No. NJU-SEG-2023-IC-004

Xizao Wang, Zhiqiang Zuo, Lei Bu, Jianhua Zhao

3

prohibited.

2023-IC-004

DStream: A Streaming-Based Highly Parallel IFDS Framework

DStream: A Streaming-Based Highly Parallel IFDS
Framework

Xizao Wang, Zhiqiang Zuo†, Lei Bu†, Jianhua Zhao
State Key Laboratory for Novel Software Technology, Nanjing University, China

wangxiz@smail.nju.edu.cn, zqzuo@nju.edu.cn, bulei@nju.edu.cn, zhaojh@nju.edu.cn

Abstract—The IFDS framework supports interprocedural
dataflow analysis with distributive flow functions over finite
domains. A large class of interprocedural dataflow analysis
problems can be formulated as IFDS problems and thus can be
solved with the IFDS framework precisely. Unfortunately, scaling
IFDS analysis to large-scale programs is challenging in terms of
both massive memory consumption and low analysis efficiency.

This paper presents DStream, a scalable system dedicated
to precise and highly parallel IFDS analysis for large-scale
programs. DStream leverages a streaming-based out-of-core com-
putation model to reduce memory footprint significantly and
adopts fine-grained data parallelism to achieve efficiency. We
implemented a taint analysis as a DStream instance analysis and
compared DStream with three state-of-the-art tools. Our exper-
iments validate that DStream outperforms all other tools with
average speedups from 4.37x to 14.46x on a commodity PC with
limited available memory. Meanwhile, the experiments confirm
that DStream successfully scales to large-scale programs which
the state-of-the-art tools (e.g., FlowDroid and/or DiskDroid) fail
to analyze.

Index Terms—interprocedural static analysis, IFDS analysis,
streaming, data-parallel computation

I. INTRODUCTION

The IFDS (interprocedural, finite, distributive, subset)

framework, pioneered by Reps et al. [1], is a general inter-

procedural context-sensitive dataflow analysis framework. The

framework is tailored for a rich set of problems that satisfy its

restrictions (a.k.a., the IFDS problems), including taint anal-

ysis [2], [3], [4], [5], program slicing [6], bug detection [7],

[8], [9], [10], and security analysis [11]. The IFDS framework

formulates an IFDS problem as a graph reachability problem

that can be solved precisely and efficiently.

The IFDS framework is empowered by a tabulation algo-

rithm (i.e., the IFDS algorithm) of polynomial complexity.

Although the IFDS algorithm is asymptotically fast, it suffers

from poor scalability, especially when analyzing large-scale

programs with expensive abstract domains. Such poor scalabil-

ity mainly lies in two-fold: considerable time cost and massive

memory consumption. Performance-wise, many studies over

the past decades have been constantly proposed to accelerate

the analysis by adopting sparse representations [3], incremen-

tal algorithms [12], and parallel accelerations [13], [14], [15].

However, the massive amount of peak memory consumption

becomes a more severe bottleneck for scaling the IFDS anal-

ysis to large-scale programs. As reported by [16], analyzing

† Corresponding authors.

even a moderate-sized program takes 730 GB memory for

FlowDroid. SparseDroid [3] adopting sparse representation

also consumes around 80 GB of RAM. Even the incremental

IFDS solver Reviser [12] generally needs more than 35 GB

memory for every run. How to tackle the memory obstacle

is increasingly becoming crucial to scaling IFDS analysis to

large-scale programs.

State of the Art. Several studies have been presented to

reduce memory footprint and thus improve the scalability

of IFDS solvers. Heros [17] and FlowDroid’s FastSolver [2]

reduce their memory footprints by constructing program rep-

resentations in a demand-driven way. CleanDroid [5] adopts

a semantic garbage collector for IFDS-based analyses to

reclaim memory. Although the above attempts reduce memory

footprint to some extent, they can only partially address the

problem, especially when analyzing large-scale programs.

DiskDroid [4] is an IFDS-based taint analysis tool that

extends FlowDroid with a disk-assisted IFDS solver. The disk-

assisted approach improves the memory scalability of existing

IFDS implementation by exporting/importing certain edges

into/from disks. Unfortunately, DiskDroid heavily relies on a

heuristic-based strategy to decide when and what data to swap

between memory and disks. This strategy could cause frequent

fine-grained I/O accesses, leading to poor performance. Even

worse, as the swapping strategy is ad-hoc, it is still very likely

to run out of memory when analyzing large-scale programs.

Graspan [18], [19] is a disk-based system supporting context-

sensitive static analyses via function inlining [20] rather than

summary-based approach [1]. Graspan is designed for more

general static analysis problems that can be formulated as

CFL-reachability [21], [22], [23], of which the IFDS problems

are only a subset. However, Graspan fails to propose an

optimized design specific to the IFDS problems for the sake

of generality. We discuss the experimental data showing the

inefficiency of both DiskDroid and Graspan in Section IV.

Our Insight & Approach. The IFDS problems can be for-

mulated as a special kind of graph-reachability problem [1].

The core computation of the graph-reachability is to constantly

generate a large number of new transitive edges (termed as

“path-edges”) by joining1 with a fixed set of edges in the

1Here “join” refers to an operation performed to establish a connection
between two or more edges, which is similar to the “table join” in database
terminology, rather than the “join transformer” in abstract interpretation.

2492

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00208

For Research Only

exploded super-graph (Definition 2). According to the memory

usage statistics reported by [4], the path-edges dominate the

memory consumption in FlowDroid’s FastSolver. In particular,

the memory usage of the path-edges accounts for an average

of 79.07% of the total memory consumed in their experiments,

while that of other edges is relatively small. Analyzing large-

scale programs could generate too many path-edges to fit into

the memory of a commodity PC, resulting in poor scalability

and even infeasibility. We observed that the IFDS algorithm

demonstrates the locality to some extent, meaning that its core

computation around a path-edge only relies on the path-edge

and all the edges in the exploded super-graph and requires no

other path edges. This observation means that it is unnecessary

to maintain all the path-edges in memory all the time. On the

contrary, to improve the scalability, we can store the path-

edges on disks and process several edge chunks simultaneously

by performing streaming-based parallel computation.

Fig. 1: The workflow of DStream

Based on the above insight, we devise a scalable IFDS

framework named DStream, whose workflow is demonstrated

as Figure 1. DStream consists of three crucial components: 1

preprocessing, 2 streaming, and 3 in-memory computation

indicated with purple background. Here we briefly overview

the overall workflow and elaborate on each component in

detail in Sections III-A to III-C shortly.

Given a program to be analyzed, we first preprocess the

program to construct the exploded super-graph and the initial

set of path-edges (termed as seed path-edges or simply seeds)

accordingly (cf. 1). We load the exploded super-graph G#
IP

into memory, followed by iterative streaming-based processing

(cf. 2). At the beginning of each iteration, we partition the

input-stream consisting of path-edges into multiple smaller

chunks, which are loaded into memory and processed in-

dividually. Having each chunk, an in-memory computation

phase (cf. 3) is performed to join the path-edges contained

in the loaded chunk with the edges of G#
IP based on the CFL-

based formulation (Definition 3), and generate new path-edges

(PEdgesΔ) which will be stored to disks in a streaming way.

At the end of each iteration, DStream checks whether the fixed

point is reached. If not, the output-stream is used as the input-

stream for the next iteration, and the computation continues.

The design of DStream is beneficial to both the scalability

and efficiency of the IFDS framework. First, the maximum

memory usage during computation is under control. We can

readily control the maximum memory consumption by tuning

the sizes of chunks and I/O buffers to fit the available memory.

Second, once several chunks are loaded into memory, they

can be processed data-parallelly to accelerate the reachability

computation.

Contributions. We make the following contributions:

• We propose a systematic streaming-based out-of-core

approach to significantly improve the memory scalability

of the IFDS framework.

• We present a fine-grained data-parallel approach to ef-

fectively enhance the analysis parallelism of the IFDS

framework.

• We designed and implemented a scalable IFDS frame-

work named DStream, which is publicly available at

https://github.com/DStream-project.

• We evaluated DStream over a comprehensive set of

benchmarks. The experiments validated that DStream

running on a commodity PC with limited available mem-

ory outperforms all other tools with average speedups

from 4.37x to 14.46x. Meanwhile, the experiments con-

firmed that DStream successfully scales large-scale pro-

grams which FlowDroid and/or DiskDroid fail to analyze

under the limited available memory.

Outline. The rest of this paper is structured as follows. We

start with the necessary background about the IFDS frame-

work in Section II. Section III outlines the design of our

DStream framework, followed by an empirical evaluation of

the DStream framework in Section IV. Finally, we survey

related work in Section V and Section VI concludes.

II. BACKGROUND

This section provides the necessary background about the

IFDS framework, including the definition of the IFDS prob-

lem (§II-A), the IFDS algorithm (§II-B), and how the IFDS

algorithm is formulated as a CFL-reachability problem (§II-C).

A. The IFDS Problem

In the classic IFDS formulation proposed by Reps et al. [1],

a program is represented as a super-graph G∗ = (N∗, E∗)
(aka. interprocedural CFG or simply ICFG). G∗ is comprised

of a set of CFGs G0, G1, . . . , and Gn (each for per method),

one of which, G0 indicates the entry method of the program.

These intraprocedural CFGs are connected with call-edges
and return-edges to construct the final G∗. For a method

p, its CFG Gp has a unique start-node sp ∈ N∗, and a

unique exit-node xp ∈ N∗. The other nodes represent the

statements and predicates as usual, except that a callsite is

represented by two nodes, a call-node c ∈ N∗ and a return-
node r ∈ N∗ for convenience. E∗ is a set of control-flow

edges between nodes. There are four kinds of edges in E∗.

The ordinary intraprocedural edges in Gp are termed normal-
edges. For each callsite with its call-node c and return-node

r, an intraprocedural call-to-return-edge connects c to r; an

2493

For Research Only

interprocedural call-edge connects c to the start-node sq of its

callee method q; and an interprocedural return-edge connect

the exit-node xq to r. Thus, dataflow facts can propagate

interprocedurally via call-edges and return-edges.

Based on the definition of the super-graph, the IFDS prob-

lem can be defined as follows:

Definition 1 (IFDS Problem). An instance IP of an IFDS

problem is a five-tuple (G∗, D, F,M,�), where:

1) G∗ = (N∗, E∗) is a super-graph as defined above.

2) D is a finite set of dataflow facts.

3) F ⊆ 2D �→ 2D is a set of distributive functions.

4) M : E∗ �→ F is a map from E∗ to dataflow functions.

5) The meet operator � is either union or intersection.

B. The IFDS Algorithm

To solve the IFDS problems precisely and efficiently, Reps

et al. [1] proposed the IFDS algorithm, which transforms an

IFDS problem into a graph reachability problem. The key

is to represent the distributive transfer functions as graphs.

Equivalently, each function can be represented as a bipartite

graph with 2(D+1) nodes and at most (D+1)2 edges. Each

node represents an element of D, and an edge d1 → d2 occurs

in the graph if and only if d2 ∈ f({d1}). In this way, the super-
graph G∗ of IP is extended to an exploded super-graph (ESG)

G#
IP , which combines the ICFG and the dataflow functions.

Definition 2 (Exploded Super-Graph). Given an IFDS prob-

lem instance IP = (G∗, D, F,M,�), the exploded super-graph
for IP, denoted by G#

IP = (N#, E#), is defined as follows:

1) The node set N# = N∗ × (D ∪ {0}),
2) The edge set E# = {〈m, d1〉 → 〈n, d2〉 | (m,n) ∈ E∗ ∧

d2 ∈M(m,n)({d1})},
where 0 signifies an empty set of facts and M(m,n) ∈ F is

the flow function associated with the edge (m,n) ∈ E∗.

In the rest of the paper, the notations of nodes and edges

are extended from super-graph to exploded super-graph. For

example, 〈n, d〉 is a call-node in G#
IP if n is a call-node in G∗,

and 〈n, d1〉 → 〈m, d2〉 is a call-edge in G#
IP if n → m is a

call-edge in G∗.

The IFDS algorithm is a worklist algorithm that takes G#
IP

as input for solving IP. Starting with the seeds, the algorithm

maintains two sets during the computation:

• PathEdge records all the path-edges. A path-edge is a

same-level realizable path of the form 〈sp, d1〉 → 〈n, d2〉
which represents the suffix of a realizable path from

〈smain,0〉 to 〈n, d2〉. A zero-length path-edge of the form

〈sp, d〉 → 〈sp, d〉 is termd as a self path-edge.

• SummaryEdge records all the summary-edges. A

summary-edge is a same-level realizable path from

〈n, d1〉 to 〈m, d2〉, where n is a call-node and m is the

matched return-node. A summary-edge summarizes inter-

procedural dataflow dependencies across method bound-

aries and can be reused at different callsites.

1 void main() {
2 x = source();
3 y = foo(x);
4 z = y;
5 t = foo(z);
6 sink(z);
7 sink(t);
8 }

9 Object foo(p) {
10 q = p;
11 return q;
12 }

(a) Example code

0 x y z t 0 p q

�

� �

� � �

� � 	 �

�� �� �� ����

�� ���� �
�	

�� �� �� �� ��

�� ��

�� �	 �

�� �� ��

��

�����

�����������

��

���������������

������������

���������

�����
�����

main

foo

1

2

3

4

5

6

7

9

10

11

(b) Exploded super-graph

Fig. 2: The toy example of IFDS-based taint analysis. Fig-

ure 2a shows the example program consisting of two methods,

main and foo. Figure 2b shows the corresponding exploded

super-graph with summary-edges and a subset of path-edges
related to node 19 and 25.

The algorithm accumulates path-edges and summary-edges
until a fixed point is reached. Please refer to [1] for more

technical details about the IFDS algorithm.

Example. Figure 2 gives a toy example showing how to apply

the IFDS algorithm to taint analysis. Figure 2a shows the code

of the example, where main is the entry method and foo is

an identity method which is invoked by main twice. source
and sink are the taint source method and the taint sink

method, respectively. Figure 2b shows the corresponding ex-

ploded super-graph of the example. Each node in the exploded

super-graph represents a tainted fact at a program point, and

each edge represents the propagation of a tainted fact along the

ICFG. For example, node 19 represents the fact that z is tainted

at the program point after Line 6, and the path-edge 1 → 1

is a seed. Line 2 of main marks x as tainted, and one new

path-edge 1→ 3 is generated. Line 3 calls foo with x as the

argument and y as the return variable. The parameter p of foo
is then marked as tainted along the call-edge 3→ 27, and thus

one new self path-edge 27→ 27 is generated. As the analysis

of foo finishes, p at the exit point of foo is marked as tainted,

and it returns to y along the return-edge 33 → 6. Since the

call-edge 3→ 27 and the return-edge 33→ 6 are matched, one

new summary-edge 3→ 6 is generated. Therefore, the tainted

fact is propagated along 3→ 6 and one new path-edge 1→ 6

is obtained. At the end of the computation, the path-edges
1 → 19 and 1 → 25 indicate that z and t are tainted at their

sink points, respectively.

C. The CFL-reachability Formulation
Based on the IFDS algorithm, we can further formulate it

as a context-free language- (CFL-) reachability problem.

Definition 3 (CFL-reachability Formulation). Given an

IFDS problem instance IP with its exploded super-graph

G#
IP , and the set of all the callsites of G#

IP is denoted as

CallSite. Let L be a context-free language over alphabet

Σ = {e, n} ∪ ⋃
i∈CallSite{li, ri}. Each path in G#

IP defines a

word over Σ obtained by concatenating the edge labels in

2494

For Research Only

order on the path. A path in G#
IP is a L-path if its word is

a member of L. We can formulate the IFDS algorithm as a

CFL-reachability problem, in particular, a multi-source L-path

problem where L consists of the following productions:

N ← n | N e | N S (1)

N ← N li (i ∈ CallSite) (2)

S ← li N ri (i ∈ CallSite) (3)

Each (terminal or non-terminal) symbol represents a kind

of edge: n represents a seed path-edge, e represents a normal-
edge (or a call-to-return-edge), li and ri represent a call-edge
and a return-edge with context matching at the callsite i, N
represents a path-edge, and S represents a summary-edge.

The path-edge generated by production (2) is a self path-

edge (e.g., 27 → 27 in Figure 2). Productions (1) and (2)

indicate the computation logic of path-edges, while production

(3) indicates the computation logic of summary-edges. In the

rest of the paper, we use the term “original-edge” to refer to an

edge that has the type represented by the terminal symbols e,

li, and ri. In other words, all edges in E# are original-edges.

The CFL-based formulation is equivalent to the original

IFDS algorithm. Here we discuss the equivalence briefly. The

initialization of PathEdge and WorkList in the IFDS algorithm

corresponds to the production N ← n. There are 3 cases in the

IFDS algorithm. The first case corresponds to the productions

N ← N li and N ← N e | N S, the second case corresponds

to the productions S ← li N ri and N ← N S, and the third

case corresponds to the production N ← N e.

The CFL-based formulation characterizes the core compu-

tation of the IFDS algorithm. Based on the formulation, the

IFDS framework can be modeled as a dynamic transitive-

closure computation over the exploded super-graph G#
IP . The

essential operation of the dynamic transitive-closure computa-

tion is the join operation between edges. For example, given

1
N−→ 6 and 6

e−→ 10 in Figure 2, we can join them and obtain

1
N−→ 10 according to N ← N e. For S ← li N ri, an example

is 〈3 l0−→ 27, 27
N−→ 33, 33

r0−→ 6〉, we can obtain 3
S−→ 6 after

performing a double-join operation on them.

III. THE DSTREAM FRAMEWORK

In this section, we describe the design and implementa-

tion of our streaming-based data-parallel IFDS framework,

DStream, which aims to tackle the poor scalability problem

of the IFDS framework. We have developed DStream as

a single-machine, out-of-core system which enables precise

IFDS analysis on a commodity PC with limited memory.

The IFDS algorithm essentially performs iterative reacha-

bility computation on an exploded super-graph until all the

path-edges are generated [1]. Based on the CFL-formulation

(Section II-C), the core computation around a path-edge is

locality-aware, and it is not necessary to maintain all the path-

edges in memory all the time during the computation. On the

contrary, to improve the scalability, we can store PathEdge on

disks and process a part of PathEdge at a time by performing

streaming-based parallel computation. In this way, we improve

Algorithm 1: Streaming-based IFDS Algorithm

Input: P: program under analysis
Data: PEdges, SEdges: all path-/summary-edges;

PEdgesΔ, PEdgestmp: active/inactive new path-edges;
SEdgesΔ: new summary-edges

/* Preprocessing */

1 〈G#
IP , InputStream〉 ← PREPROCESS(P)

/* Streaming-based computation */
2 SEdges ← ∅

3 repeat
4 OutputStream ← ∅

5 ListSEdgesΔ ← ∅

/* Parallel streaming phase */
6 while HASNEXT(InputStream) do in parallel
7 InputChunk ← STREAMIN(InputStream)

/* In-memory computation */
8 〈PEdgesΔ,PEdgestmp, SEdgesΔ〉 ←

INMEMCOMPUTATION(InputChunk, E#, SEdges)
9 OutputStream ← STREAMOUT(PEdgesΔ)

10 PEdges ← STREAMOUT(PEdgestmp)
11 insert SEdgesΔ to ListSEdgesΔ

/* Synchronization phase */
12 SEdges ← SEdges ∪ ListSEdgesΔ
13 PEdges ← PEdges ∪ OutputStream
14 InputStream ← OutputStream
15 until InputStream = ∅

the scalability of the IFDS framework from two aspects. First,

we propose a systematic streaming-based out-of-core compu-

tation model to reduce memory footprint significantly. Second,

we adopt fine-grained data-parallel computation, which can

effectively improve computation efficiency.

Algorithm 1 presents a high-level streaming-based, data-

parallel algorithm. The algorithm takes as input a program

to be analyzed and preprocesses it for the subsequent com-

putation (Line 1). The following loop is a streaming-based

BSP-style [24] iterative process (Lines 3–15), where each

iteration is termed as a superstep. Each superstep consists

of two phases, namely the parallel streaming (Lines 6–11)

and synchronization (Lines 12–14). The above process is

repeated until the InputStream is empty. In the following,

we elaborate on each crucial component of our algorithm,

including preprocessing (§ III-A), streaming-based processing

(§ III-B), and in-memory computation (§ III-C).

A. Preprocessing

Preprocessing prepares for the core computation. Given a

program to be analyzed, DStream preprocesses it to generate

an exploded super-graph G#
IP for a specific IFDS problem

instance IP, while building certain edge index and initializing

the seed path-edges to facilitate the subsequent computation.

The generated G#
IP consists of a set of original-edges, whereas

the node information is implicitly encoded in the edges, thus

reducing memory overhead. An original-edge is represented

by a triple 〈src, tgt, label〉 whose elements denote the source-
node, the target-node, and the edge label (corresponding a

terminal symbol in Definition 3), respectively. During prepro-

cessing, all the original-edges are loaded into memory.

2495

For Research Only

Edge Indexing. As mentioned earlier, the core IFDS compu-

tation of DStream is to perform the join operation between

labeled edges. As intensive queries of edges would happen

during joining, we must be able to quickly find needed edges

for efficient join implementation. The indexing scheme for

the original-edges is critical for good performance. Here we

adopt a two-layered index for an efficient query of edges. The

first layer indexes the graph by source-node, and the second

one indexes the graph by edge label. For example, suppose we

would like to perform the CFL-reachability computation based

on the production N ← N e. Given a path-edge x
N−→ y, to

complete the computation, we need to acquire all the normal-

edges (i.e., e-edges) whose source-node is y. Based on the

two-layered indexing, we utilize the first layer index to locate

all the original-edges with y as their source-node, and then

apply the second layer index over the above-indexed edges

to identify all the normal-edges needed quickly. In this way,

we can achieve effective indexing, thus supporting efficient in-

memory CFL-reachability computation, especially double-join

operations (§ III-C).

PathEdge Initialization at Multiple Entry Points. The orig-

inal IFDS algorithm takes the seed path-edge 〈smain,0〉 →
〈smain,0〉 of main method as the initial PathEdge, where main
is the only one entry point of the program. However, for

some programs under analysis, there may be more than one

entry point. For example, Android applications do not have a

main method like the traditional Java programs. Instead, many

entry points are implicitly called by the Android framework.

Another example is the library code, where generally no entry

method exists. But there may be sample code or test code that

can be used as entry points for analysis. For such codebases,

different entry points may lead to different components of

a large-scale program. To cover as much code as possible

during analysis, we collect all the entry points of a program

to be analyzed and take all the seed path-edges (i.e., n-edges)

of these entry points as the initial InputStream. The initial

InputStream is stored onto disks and used later to turn on the

core computation of streaming-based processing (§ III-B).

B. Streaming-based Processing

After the preprocessing, the streaming-based processing is

started (Lines 3–15 in Algorithm 1). Streaming-based com-

putation essentially provides a scalable and efficient locality-

aware graph reachability computation. The computation is

represented as the join of two sets of edges where the small

set of static edges are held in memory, and a large number

of dynamic edges are streamed from/to disks. In the DStream

framework, based on CFL-reachability discussed in § II-C,

the two sets of edges to be joined are original-edges (plus

summary-edges) and path-edges constantly generated during

computation. As described in § III-A, we load the original-
edges into memory and store the path-edges on disk before

the streaming-based computation. The core of streaming-based

computation is a BSP-style iterative process, where each

iteration is termed as a superstep. Each superstep consists of

two phases, namely the parallel streaming phase (Lines 6–11)

and synchronization phase (Lines 12–14).

At the parallel streaming phase, DStream takes as input

the InputStream, which is a file storing all the active path-

edges and launches a parallel streaming process. At first, the

InputStream is divided into several smaller chunks of (almost)

fixed size according to available memory. DStream handles

the chunks by multiple threads in parallel. In particular, each

thread loads one chunk into memory. Next, each thread invokes

the in-memory computation procedure INMEMCOMPUTATION

(which will be elaborated shortly in § III-C) to generate new

path-edges and summary-edges (Line 8). The newly generated

path-edges are divided into two categories: active PEdgesΔ
and inactive PEdgestmp. Active PEdgesΔ is exported to the

OutputStream for the next superstep (Line 9), while the

processing of inactive PEdgestmp has been done in current

superstep and is exported to result PEdges directly (Line 10).

As the chunks are independent of each other, we can safely

launch multiple threads to process the entire InputStream
simultaneously. For the sake of performance, we maintain

a separate buffer of PEdgesΔ and a file of OutputStream
for each thread, thus avoiding synchronization costs. Apart

from the original-edges, the computation of path-edges, as

shown in Production 1, also demands the dynamically gener-

ated summary-edges. To ensure the computation’s correctness,

we also keep the summary-edges in memory. Maintaining

summary-edges in memory has no significant impact on scal-

ability since the number of summary-edges is much smaller

compared with that of path-edges, and we will delete the

summary edges that are no longer needed from memory during

the computation (§ III-C).

Once the parallel streaming phase finishes, a synchro-

nization phase is conducted. In particular, the in-memory

summary-edges are updated by combining the newly generated

ones (Line 12). The OutputStream is aggregated to PEdges
(Line 13), and the OutputStream is treated as the new Input-
Stream for the next superstep (Line 14). After synchronization,

the next superstep is scheduled until the InputStream is empty.

Fig. 3: Streaming-based data-parallel computation

Example. Figure 3 illustrates the process of parallel stream-

ing for the running example (Figure 2). For simplicity, we

assume only two threads (thread-1 and thread-2) are available

2496

For Research Only

to illustrate the main idea of the process. We first divide

the InputStream into smaller chunks as described earlier. In

Figure 3, (more than) 5 chunks are divided, each containing

one path-edge. We take the first four chunks as an example

to demonstrate the streaming process. At the very beginning,

thread-1 and thread-2 are both idle. Each can thus be assigned

to load and process one chunk in parallel. For example,

thread-1 loads chunk-1 (1
N−→ 7) into its local read-buffer,

while thread-2 reads chunk-2 (1
N−→ 8) into its local buffer.

The two threads then perform the in-memory computation

independently by joining the path-edges in their local buffers

with the globally shared original-edges and summary-edges.

For brevity, Figure 3 shows a simplified version of in-memory

computation (§ III-C), which processes only the path-edges

in the InputStream and then outputs them directly to the

OutputStream. In particular, thread-2 joins 1
N−→ 7 in chunk-1

with 7
N−→ 11 and generates one new path-edge 1

N−→ 11. Simul-

taneously, thread-2 generates one new path-edge 1
N−→ 12. The

path-edges newly generated by each thread are stored in their

local write-buffers. Once the write-buffer is full (or the chunk

has been processed completely), we flush the write-buffer

to OutputStream which is stored on disks. Here each thread

associates with one separate OutputStream file on disks. As

shown in Figure 3, thread-1 exports the new path-edge 1
N−→ 11

to its associated file OutputStream1. Similarly, thread-2 writes

the path-edge generated 1
N−→ 12 to OutputStream2. Once

a thread finishes processing one chunk, we check whether

there are still unprocessed chunks. If so, the idle thread

will load and process the next chunk as described above. In

Figure 3, thread-1 finishes the processing of chunk-1 and then

streams in chunk-3; the processing is similar to the above.

The process continues until all the chunks in InputStream have

been processed.

C. In-memory Computation

This section presents the details of in-memory computation,

as well as the designs for improving efficiency. During in-

memory computation, DStream performs the core computation

of the IFDS algorithm according to the CFL-reachability

formulation. The essence of the CFL-reachability formulation

is to generate new reachable edges by joining labeled edges.

Algorithm 2 shows the details of the in-memory computation.

It takes as inputs an InputChunk loaded, the original-edges

E#, and the SEdges. At the beginning of the computation,

we initialize the sets of active new path-edges PEdgesΔ,

inactive new path-edges PEdgestmp, and new summary-edges

SEdgesΔ as empty (Line 1), and then process each of the

active path-edges in InputChunk one by one (Lines 3–22)

to generate new path-edges (and summary-edges). The newly

generated PEdgesΔ will be used as (part of) the input for the

next superstep. At the end of Algorithm 2, all the new path-

edges (PEdgesΔ and PEdgestmp) and the new summary-edges

SEdgesΔ are returned.

Correctness and Termination. For each path-edge x
N−→ y to

be processed, we perform its CFL-reachability computation

Algorithm 2: INMEMCOMPUTATION

Input: InputChunk, E#, SEdges
1 PEdgesΔ,PEdgestmp, SEdgesΔ ← ∅

2 Worklist ← InputChunk
3 while Worklist �= ∅ do
4 pop x

N−→ y from Worklist
/* case 1: N ← N e */

5 foreach y
e−→ z ∈ E# do

6 if z is a join- or call-node then
7 if x /∈ src(z) then add x to src(z)
8 else continue

9 add x
N−→ z to PEdgestmp and WorkList

/* case 2: N ← N S */

10 foreach y
S−→ z ∈ SEdges do // z is return-node

11 if x /∈ src(z) then
12 add x to src(z)

13 add x
N−→ z to PEdgestmp and WorkList

/* case 3: N ← N li */

14 foreach y
li−→ z ∈ E# do // z is start-node

15 if init(z).isFalse() then
16 add z

N−→ z to PEdgesΔ
17 init(z).setTrue()

/* case 4: S ← li N ri and N ← N S */

18 foreach matched x
li−→ t and y

ri−→ z ∈ E# do
19 add t

S−→ z to SEdgesΔ
20 foreach a ∈ src(t) do // t is call-node
21 add a to src(z) // z is return-node

22 add a
N−→ z to PEdgestmp and WorkList

23 return 〈PEdgesΔ,PEdgestmp, SEdgesΔ〉

based on the productions as shown in Definition 3. The first

case (Lines 5–9) corresponds to N ← N e. The second

(Lines 10–13) and third (Lines 14–17) cases correspond to

N ← N S and N ← N li, respectively. The fourth case

(Lines 18–22) corresponds to S ← li N ri and N ← N S,

which actually performs a double-join operation and nec-

essary joining between N -edges and the generated S-edge.

With the correspondence between Algorithm 2 and the CFL-

reachability formulation (Definition 3), we can immediately

obtain the correctness of Algorithm 2.

The termination of Algorithm 1 is determined by the empti-

ness of InputStream, which indicates that no new active path-

edges are generated in the current superstep. However, an edge

may be generated in multiple ways. For instance, both edge

pairs x
N−→ a

e−→ y and x
N−→ b

e−→ y could generate the same

edge x
N−→ y and propagate further to generate more duplicated

edges. These duplicated edges may cause the computation to

fail to terminate. Therefore, the key to termination is to avoid

duplication of path-edges. One source of duplication is join-
node, which has multiple incoming intraprocedural original-

edges. A return-node can also become a join-node during the

computation as the summary-edges are generated. We thus

consider all the return-nodes as potential join-nodes. To avoid

duplication of path-edges, we maintain a reverse index src

2497

For Research Only

of the path-edges for each join-node. With src, no duplicated

path-edges will be generated and propagated further as shown

in Lines 7 and 11. Another source of duplication is start-node,

which has multiple incoming interprocedural call-edges. As

shown by Algorithm 2, only non-initialized self path-edges

are considered active path-edges at the beginning. Therefore,

we only need to take care of the duplication of self path-edges.

For a start-node x, we synchronize on init(x) to ensure that

only one self path-edge can be generated (and therefore only

in one thread). No duplicated self path-edges will be processed

in two different threads in the next superstep.

Computation Closure. Naively, all the new path-edges gener-

ated according to the ones of the InputChunk should be put

into PEdgesΔ which becomes the input for the next superstep

(as shown by the naive version in Figure 3). However, a new

path-edge could be processed immediately to generate more

transitive path-edges in a superstep, rather than exporting to

OutputStream and being processed in the next superstep. In

this way, each thread can produce as many reachable path-

edges as possible to accelerate the convergence and thus

reduce the I/O costs. In particular, we maintain WorkList for

the closure computation and initialize it with InputStream
(Line 2). PEdgestmp contains the new path-edges processed in

the current superstep. All new non-self path-edges are added

to WorkList as well as PEdgestmp and processed immediately,

and all new self edges are added to PEdgesΔ. The in-memory

computation continues until all the path-edges in WorkList
have been processed. Note that although such full closure

computation brings performance benefits, it could lead to

massive memory consumption, which smashes the scalability.

Fortunately, we can do fine-grained tuning to terminate the

closure computation at any moment and stream all the unpro-

cessed path-edges to OutputStream, which would not affect

the correctness.

Double-join Implementation. In the CFL-reachability formu-

lation shown as Definition 3, the production S ← li N ri
involves three symbols, which means that we need to perform

a double-join operation on three edges labeled as the RHS

to generate a summary-edge. Given the double-joining of a

path-edge x
N−→ y, not only all the return-edges y

ri−→ � but

also the call-edges � li−→ x are required. All the return-edges

y
ri−→ � can be found in an efficient way by indexing on the

source node y and label ri based on the two-layered index

structure. However, it can not support the efficient query of

call-edges � li−→ x since the source node is unknown. The

key to efficient double-joining is quickly finding all the call-

edges whose target node is x. To this end, we adopt a new

approach by introducing a reverse edge x
li−→ � for each call-

edge � li−→ x in the exploded super-graph. In this way, we

can obtain all the reverse call-edges via the edge index and

perform the double-joining efficiently.

Edge Deletion. DStream keeps all the original-edges in mem-

ory throughout the computation. Although DStream maintains

these edges in a very compact way, they still consume con-

siderable memory for a large-scale graph. We observed that

many normal-edges are not used all the time. For instance,

a normal-edge having only one predecessor path-edge only

needs to be used once; they are redundant after their use. As

such, we can delete redundant original-edges from memory

in time to reduce memory footprint. We propose a simple

but effective edge deletion strategy: given a normal-edge,

if all its predecessor normal-edges have been deleted, this

edge can also be deleted safely. The simplest case is the

normal-edge whose source-node is a start-node. According to

the IFDS algorithm, each start-node will be processed only

once to produce a self path-edge. Therefore, the normal-edges

whose source-node is a start-node will also be used only

once and can be deleted after the use. The summary-edges

can be deleted according to the same strategy. By deleting

edges, we can reclaim memory so that more path-edges can be

processed in a subsequent superstep, which in turn accelerates

the convergence of computation.

Example. Figure 4 shows a complete example to illustrate

how computation closure, double-join, and edge deletion work,

where the computation reaches the fixed point after three

supersteps. We use only one thread here for brevity, as the

parallel computation has been illustrated in Figure 3. At

the very beginning, Figure 4a shows the exploded super-

graph and the seed path-edge {N0}. Figure 4b shows the

first superstep, whose input-stream is {N0}. In this superstep,

DStream computes the closure for N0 as {Ni | i ∈ [1, 4]}
and generates one new self path-edge N5 which is put into

PEdgesΔ. Note that node 2 is a call-node; thus, its associated

src is updated to {0}. The normal-edges e0�e3 are deleted at

the end of the superstep. Figure 4c shows the second superstep,

whose input-stream is {N5}. In this superstep, two path-edges

N6 and N7 are generated first, and then the summary-edge

S0 : 2
S−→ 5 is also generated by the double-joining performed

between l0, N7 and r0. As src(2) is {0}, then N8 is propagated

through S0, src(5) is updated to {0}, and N9 is generated as

part the computation closure of N8. The normal-edges e4�e6
are deleted at the end of superstep 2. Note that S0 generated

in this superstep is also deleted as there is no predecessor

edge for node 2. For the third superstep shown in Figure 4d,

whose input-stream is empty, there is no more path-edge to

be processed, and the computation terminates.

IV. EVALUATION

To demonstrate the performance and scalability of our

streaming-based data-parallel DStream framework, we con-

ducted a comprehensive set of experiments. Since the precision

and effectiveness of the IFDS algorithm have already been

validated in prior work [2], [18], we mainly focus on the

efficiency and scalability of DStream in our evaluations and

discuss analysis precision briefly in § IV-E. Our evaluation

seeks to answer the following three research questions:

RQ1. How does DStream perform and how does it com-

pare with state-of-the-art tools?

RQ2. How about the thread scalability of DStream?

RQ3. How about the memory scalability of DStream?

2498

For Research Only

(a) Input (b) Superstep-1 (c) Superstep-2 (d) Superstep-3

Fig. 4: An example to illustrate the process of double join, edge deletion, and computation closure. The red edges are newly

generated in each superstep, and the blue edges will be deleted at the end of the superstep.

TABLE I: Characteristics and performance data of taint analysis on 36 subject apps. The first 3 columns provide the essential

information about the apps. The middle 3 columns depict the complexity of analyzing these apps. The last 4 columns report

the analysis time (in seconds) of each tool with 8 threads, 16 GB maximum available memory, and the time limit of 1 hour.

OOM indicates out of memory error, while OOT indicates out of the time limit.

App. Abbr. Version Size #Source #Sink FlowDroid DiskDroid Graspan DStream
F-Droid FDD 1.1 7.3MB 92 380 756 739 399 103
acr.browser.lightning ABL 5.1.0 3.3MB 23 110 OOM OOMgc+OOT 530 126
bus.chio.wishmaster BCW 1.0.2 3.5MB 28 313 212 180 105 24
com.alfray.timeriffic CAT 1.09.05 347KB 6 117 200 512 90 14
com.app.Zensuren CAZ 1.21 177KB 93 13 9 11 4 3
com.genonbeta.TrebleShot CGT 1.4.2 4.2MB 19 379 OOM OOT 563 94
com.github.axet.bookreader CGAB 1.12.14 28MB 22 101 OOM 725 194 50
com.github.axet.callrecorder CGAC 1.7.13 5.6MB 16 119 OOM 593 195 30
com.ichi2.anki CIA 2.9.4 11MB 65 465 OOM OOT 555 91
com.igisw.openmoneybox CIO 3.4.1.11 10MB 42 213 OOM OOT 554 102
com.ilm.sandwich CIS 2.2.4f 3.0MB 6 71 10 19 6 4
com.kanedias.vanilla.metadata CKVM 1.0.4 6.3MB 4 18 55 399 13 9
com.kunzisoft.keepass.libre CKKL 3.0.2 9.9MB 13 570 OOM OOT 440 75
com.orgzly COR 1.8.5 4.9MB 27 487 OOM 1288 400 86
com.poupa.vinylmusicplayer CPV 1.3.0 6.2MB 32 298 16 13 4 4
com.zeapo.pwdstore CZP 1.3.3 4.3MB 12 186 OOM OOT 510 76
de.k3b.android.androFotoFinder DKAA 0.8.0 1.4MB 32 394 OOM OOT 573 93
dk.jens.backup DJB 0.3.4 6.2MB 5 134 8 12 4 3
fr.gouv.etalab.mastodon FGEM 2.28.1 28MB 85 287 OOM OOT 457 107
hashengineering.groestlcoin.wallet HGW 7.11.1 3.2MB 4 192 OOM 570 189 68
im.vector.app IVA 1.2.2 109MB 13 340 OOM OOMgc+OOT 612 156
nodomain.freeyourgadget.gadgetbridge NFG 0.6.0 6.4MB 72 739 OOM OOMgc+OOT 638 131
nya.miku.wishmaster NMW 1.5.0 3.4MB 19 282 198 210 84 31
org.adw.launcher OAL 1.3.6 1.1MB 13 136 27 185 10 6
org.csploit.android OCA 1.6.5 3.5MB 7 110 10 12 5 3
org.decsync.sparss.floss ODSF 1.16.0-1 2.8MB 36 252 OOM OOT 466 72
org.fdroid.fdroid OFF 1.8 7.6MB 102 393 674 634 215 69
org.gateshipone.odyssey OGO 1.2.0 3.5MB 23 230 OOM OOT 641 113
org.kde.kdeconnect tp OKKT 1.13.5 4.4MB 10 225 OOM 861 284 39
org.lumicall.android OLA 1.13.1 5.6MB 38 216 OOM 477 171 38
org.openpetfoodfacts.scanner OOS 3.6.8 12MB 57 393 OOM OOT 421 82
org.secuso.privacyfriendlyactivitytracker OSPA 2.4 4.6MB 14 290 OOM OOT 768 93
org.secuso.privacyfriendlytodolist OSPT 2.1 2.3MB 8 50 43 80 19 4
org.secuso.privacyfriendlyweather OSPW 2.1.1 4.8MB 50 35 207 243 71 16
org.smssecure.smssecure OSS 0.16.12 13MB 67 273 OOM OOT 610 110
org.yaxim.androidclient OYA 0.9.3 1.9MB 45 217 174 241 62 17

2499

For Research Only

A. Experimental Setup

Platform. All experiments were conducted on a commodity

PC, with an 8-core 3.60GHz Intel i7-9700K CPU, 32 GB avail-

able memory, and 1 TB magnetic disk storage, running Ubuntu

20.04.3 LTS (Focal Fossa). In the following experiments, we

set the maximum number of available threads of all tools to

8 (except for RQ2) and limited the maximum memory usage

of all tools to 16 GB (except for RQ3).

Instance Analysis. Analogous to the declarative program

analysis [25], [26], we separate the computation back-end from

the client analysis implementations. DStream is a back-end

analysis engine that supports various IFDS instance analyses.

To implement an instance analysis in DStream, we need a

front-end to generate input ESGs for DStream back-end. In

our evaluation, we chose the taint analysis, the most common

instance of the IFDS framework, as the instance analysis. We

implemented a taint analysis front-end with Soot [27] and

SPARK [28]. Instead of computing the aliased access paths

incrementally, we leveraged the off-the-shelf SPARK alias

analysis to construct the exploded super-graph, including all

the potential aliased paths beforehand. We applied the same

way as FlowDroid to parse and identify the entry points in An-

droid apps. Therefore, the entry points considered by DStream

are consistent with that by FlowDroid. We also adopted

the same configuration files (e.g., SourcesAndSinks.txt) that

FlowDroid uses to find sources and sinks in Android apps.

Baselines. We selected three state-of-the-art tools: (memory-

only) FlowDroid [2], (disk-assisted) DiskDroid [4] and (disk-

based) Graspan [18] as the baselines, and compared them with

DStream in terms of both efficiency and scalability. FlowDroid

and DiskDroid themselves are taint analyzers. We can compare

directly with them. We obtained the executables (jar files) of

both DiskDroid and FlowDroid from the link for artifacts2 of

DiskDroid, and run DiskDroid with its default disk-swapping

configuration (i.e., group by source). Graspan is a general

analysis framework that does not have a front-end for taint

analysis. We ported the taint analysis front-end implemented

for DStream to Graspan by adding function inlining. We

obtained the executable of Graspan by building it from the

source code, which is publicly available at GitHub3.

Benchmarks. We adopted all the open-source apps from the

benchmarks of [3] and [4] to form the benchmarks of our

evaluation. Since we are focusing on analyzing large-scale

programs, if an app can be analyzed by every tool (DStream

and all the baselines) within 10 seconds, we filtered it out

from the benchmarks. Columns 1–6 of Table I show the

characteristics of the remaining 36 apps of the benchmarks in

detail. The first 3 columns provide the essential information

of the apps. The following 3 columns depict the complexity

of analyzing these apps, where the app size approximates the

size of the codebase of the app, and the numbers of the taint

sources and sinks capture the taint analysis workloads of the

2DiskDroid artifacts: https://doi.org/10.6084/m9.figshare.13246316
3Graspan at GitHub: https://github.com/Graspan/graspan-cpp

app to some extent. We run each tool 5 times on each app and

report the average data of 5 runs.

B. DStream Performance

To understand the performance of DStream, we compared

it with three state-of-the-art tools using taint analysis. We

limited the maximum available memory to 16 GB for each

tool, as our goal is to enable developers to benefit from precise

static analysis on their development machines. Columns 7–

10 of Table I show the analysis time (in seconds) for each

tool. Note that the analysis time of DStream and Graspan

(i.e., the last two columns in Table I) include the time cost

for constructing the input exploded super-graph with alias

analysis. OOM indicates that the tool runs out of memory

when analyzing the app, while OOT denotes that the tool can

not finish the analysis of the app within 1 hour.

As shown in the last column of Table I, DStream can finish

the analysis on most apps (28 of 36) within 100 seconds.

Comparing the last two columns in Table I, we can see

that DStream outperforms Graspan on all the apps (except

they tie on the “small” app CPV), with a maximum speedup

of 8.26x (OSPA) and an average speedup of 4.37x. The

comparison reveals that DStream is much more efficient than

Graspan, which is attributed to the fact that DStream adopts

the streaming-based approach and is much less computing

intensive than Graspan because of no function inlining.

Column 7 of Table I shows the results of FlowDroid. More

than half of the apps (21 of 36) are marked as OOM, which

indicates that FlowDroid runs out of memory on these apps.

The fact confirms that the memory-intensive nature of the

IFDS framework is a significant obstacle to its scalability.

For the apps that FlowDroid can finish, DStream achieves a

maximum speedup of 14.29x (CAT) and an average speedup

of 7.11x.

Column 8 of Table I shows the analysis time of DiskDroid

running on the benchmarks, in which almost half of the apps

(15 of 36) are marked as OOT and 3 apps are marked as

OOMgc+OOT4. As DiskDroid is a disk-assisted IFDS solution

with disk-swapping equipped, it should not run OOM in

theory. The reason for DiskDroid running OOM is that the

GC overhead limit is exceeded. More specifically, the error

occurs when the JVM spends too much time performing GC

and can only reclaim very little heap space. OOMgc shows

that DiskDroid’s ad-hoc disk-memory swapping strategy is

ineffective for certain cases. For 15 apps that DiskDroid runs

OOT, DiskDroid seems to be trapped into the prohibitively

expensive fine-grained disk I/O. Even if we extended the time

limit to 3 hours, DiskDroid still runs OOT on these apps. For

21 apps that at least one of FlowDroid and DiskDroid can

finish, DiskDroid did not show absolutely better performance

than FlowDroid. DiskDroid performed worse than FlowDroid

on more than half of the apps (11 of 21), which suggests that

the performance cost of DiskDroid’s disk-swapping strategy

4FlowDroid/DiskDroid does not terminate immediately when OOT hap-
pens. New tasks are not allowed to submit. However, all submitted tasks
continue to be processed, which may lead to OOM.

2500

For Research Only

outweighs its memory gain. On all the apps, DStream con-

sistently outperforms DiskDroid, with a maximum speedup of

44.33x (CKVM) and an average speedup of 14.46x.

The answer to RQ1: DStream finishes the analysis on

most apps within 100 seconds with 8 threads and 16 GB

maximum available memory and outperforms all other

tools on all the apps. Overall, these results indicate that

the streaming-based approach of DStream significantly im-

proves the IFDS framework’s performance in terms of

analysis time and memory usage.

C. Thread Scalability

Parallelism support is crucial to fully utilize modern com-

puting resources. To investigate the parallelism of DStream

and answer RQ2, we run FlowDroid, DiskDroid, Graspan, and

DStream on each subject app with 1, 2, 4, and 8 threads,

respectively. In this experiment, we limited the maximum

available memory to 16 GB and set the time limit to 1 hour

for all tools.

Figure 5 shows the analysis time (in seconds) of DStream

and the baselines on the benchmarks with varying numbers

of threads. For the sake of brevity of the line charts, we have

selected 4 apps (FDD, OFF, DJB, and CAZ) for presentation.

These 4 apps are selected because, first, they can be analyzed

by all the tools. Second, among these 4 apps, FDD and OFF
cost the longest execution time of FlowDroid. DJB and CAZ
cost the shortest execution time of FlowDroid. Thus, we use

them as representative complex and simple cases, respectively.

We can see from Figure 5 that both DStream and Graspan

scale almost linearly as the number of threads increases, no

matter on complex or simple apps. However, it is surprising

that their parallelism is far from satisfactory for the other two

tools, especially on complex apps. For FDD, both FlowDroid

and DiskDroid slow down as the number of threads increases

from 2 to 8. For OFF, FlowDroid slows down as the number

of threads increases from 2 to 8, while DiskDroid slows

down as the number of threads increases from 4 to 8. The

speedup trends of these tools differ so much because of the use

of different parallelism mechanisms. FlowDroid/DiskDroid

uses naive task parallelism, while DStream, as well as Gras-

pan, devises a data-parallel algorithm by revisiting the CFL-

reachability from a data-parallel perspective and solving it as a

big-data problem. Data parallelism scales the computation by

decomposing the data set into concurrent processing streams,

all performing the same set of operations. Theoretically, the

more threads a data-parallel algorithm has, the higher the

speedup (before reaching the limit of the speedup).

The answer to RQ2: DStream, as well as Graspan, scales

almost linearly as the number of threads increases, while

FlowDroid and DiskDroid even slow down as the number

of threads increases. It shows that fine-grained data-parallel

computation is of significant importance for a highly parallel

IFDS solver.

1 2 4 8
0

200

400

600

800

1,000

Number of Threads

Ti
m

e
(S

ec
on

ds
)

Data of FDD

1 2 4 8
0

5

10

15

20

25

30

Number of Threads

Ti
m

e
(S

ec
on

ds
)

Data of DJB

1 2 4 8
0

200

400

600

800

1,000

Number of Threads

Ti
m

e
(S

ec
on

ds
)

Data of OFF

1 2 4 8
0

5

10

15

20

25

30

Number of Threads

Ti
m

e
(S

ec
on

ds
)

Data of CAZ

FlowDroid DiskDroid Graspan DStream

Fig. 5: Analysis time (in seconds) of 4 tools on 4 selected apps

(FDD, DJB, IFF and CAZ) with varying numbers of threads

(1, 2, 4, and 8).

D. Memory Scalability

The goal of DStream is to enable developers to lever-

age precise static analysis (in particular, the IFDS analysis)

more practically on their development machines with limited

available memory. To understand the memory scalability of

DStream, we compared it with FlowDroid, DiskDroid, and

Graspan using taint analysis with varying memory budgets.

As the typical RAM configuration for a development machine

does not exceed 32 GB typically (e.g., the machine of our

experimental platform), we conducted the experiment with dif-

ferent memory budgets (in GB) of 8, 16 and 32, respectively.

In this experiment, we set the maximum number of threads to

8 and the time limit to 1 hour for all tools.

TABLE II: #OOM, #OOT, and #Finished of apps for the 4

tools with varying memory budgets (in GB) of 8, 16, and 32.

Note the sum of these numbers in each column of DiskDroid

may not equal the number of all the apps of the benchmarks

(i.e., 36), as OOM+OOT could occur as shown in Table I.

FlowDroid DiskDroid Graspan DStream
Mem (GB) 8 16 32 8 16 32 8 16 32 8 16 32
#OOM 28 21 18 3 3 2 0 0 0 0 0 0
#OOT 0 0 1 15 15 13 0 0 0 0 0 0
#Finished 8 15 17 21 21 23 36 36 36 36 36 36

Table II shows the numbers of (OOM, OOT and finished)

apps for all tools with varying memory budgets. As shown,

DStream and Graspan finished the analysis on all the apps with

all different memory budgets. For FlowDroid, the number of

finished apps increases with the memory budget, but more

than half of the benchmarks (19 of 36) still failed to finish

the analysis with 32 GB memory budget. Note that there is an

2501

For Research Only

OOT app for FlowDroid at a 32 GB memory budget, but it

does not appear at smaller memory budgets. The reason is that

the app indeed took a very long time to finish the analysis at

all memory budgets, but the analysis on the app at a smaller

memory budget was terminated earlier by an out-of-memory

error, which caused the app to be reported as OOM instead of

OOT. The report of FlowDroid confirms again that the IFDS

analysis is memory- and computing-intensive. For DiskDroid,

the number of finished apps is consistently greater than that of

FlowDroid, but the numbers of (OOM, OOT and finished) apps

remain almost constant as the memory budget increases. The

almost constant trend indicates that the ad-hoc disk-swapping

strategy does not solve the memory bottleneck problem of the

IFDS framework in general.

The answer to RQ3: DStream finishes the analysis on all

the apps with varying memory budgets (in GB) of 8, 16,

and 32. These results empirically show that DStream can

achieve the goal of enabling developers to leverage the IFDS

analysis on their development machines.

E. Analysis Precision

DStream theoretically has the same analysis precision as

FlowDroid because the basic algorithm of taint analysis fol-

lowed by DStream remains unchanged. In our experiments,

we checked the analysis results reported by DStream and

FlowDroid. DStream can identify all the source-sink pairs that

FlowDroid/DiskDroid reports. Due to the discrepancy in the

implementation of DStream and FlowDroid, the false positives

they reported are slightly inconsistent. But they do not vary

significantly regarding the number of false positives.

Note that compared with the demand-driven alias analysis

used by FlowDroid, DStream adopts a less precise alias anal-

ysis (i.e., SPARK [28]) to construct the exploded super-graph.

But our experimental results validate that DStream can identify

all the source-sinks pairs FlowDroid finds. The extra number

of false positives reported by DStream is also negligible. It can

be explained from two aspects. First, the flow-sensitivity seems

not crucial for Java applications, and SPARK already obtains

most of the benefit of flow-sensitivity by splitting variables;

Second, both context- and flow-sensitivity are, to some extent,

covered by the subsequent taint tracking. In other words, the

false positives introduced by imprecise alias analysis are very

likely to be filtered by the context- and flow-sensitive taint

analysis afterward.

V. RELATED WORK

In this section, we survey several work related to the IFDS

framework[1] from the following aspects:

Applicability. The IDE framework [29] generalizes the IFDS

framework for the IDE problems, and more general CFL-

reachability problems are described in [30]. Naeem et al. [31]

provides several practical IFDS extensions, making it appli-

cable to a wider class of interprocedural dataflow problems.

Access-Path Abstraction [32] is a novel IFDS extension,

which combines efficiency with maximal precision. Schubert

et al. [33] builds an extendable IFDS/IDE solver for C/C++

in LLVM. Madsen et al. [34] formulates IFDS/IDE in FLIX,

a Datalog-inspired declarative programming language.

Efficiency. Rodriguez et al. [13] introduces an actor-based

concurrent IFDS implementation. Bodden [17] develops a

generic (multi-threaded) implementation of IFDS/IDE solver

in Soot [27]. Reviser [12] is an incremental IFDS algorithm.

He et al. [3] provided a sparse IFDS algorithm to accelerate

the performance. Shi et al. [14] presents a parallel bottom-up

IFDS/IDE implementation that pipelines the sub-tasks.

Scalability. WALA [35] offers a memory-efficient bit-vector-

based IFDS implementation. Weiss et al. [36] proposed a

database-backed strategy for IFDS problems. CleanDroid [5]

is an IFDS implementation with semantic garbage collectors.

DiskDroid [4] improves memory scalability through an ad-

hoc disk-swapping strategy. Following the line of systemizing

program analysis, various systems are developed to support

scalable interprocedural analysis. Graspan [19], BigSpa [37],

and Grapple [38] scale the context-sensitive CFL-reachability

analysis in a single machine and distributed environment.

Chianina [39] is an out-of-core system supporting the general

flow- and context-sensitive dataflow analysis.

Our work aims to tackle the poor scalability of the IFDS

framework, especially when analyzing large-scale programs.

Different from the existing approaches, which either rely on

a heuristic-based strategy [4] or lack the dedicated design to

IFDS problems [18], we propose a systematic streaming-based

data-parallel DStream framework to improve the memory

scalability. Moreover, thanks to the flexible control of mem-

ory consumed during computation and fine-grained parallel

acceleration, DStream significantly outperforms Graspan and

DiskDroid in terms of both efficiency and scalability.

VI. CONCLUSION

We have proposed DStream, a streaming-based data-parallel

IFDS framework, for tackling the poor scalability of the

IFDS framework. DStream improves the scalability from two

aspects: (1) using streaming-based out-of-core computation

to reduce memory footprint and I/O cost significantly, and

(2) using fine-grained data-parallel computation to improve

computing efficiency. Experimental results show that DStream

can improve the scalability of the IFDS algorithm in large-

scale programs and can outperform the state-of-the-art in terms

of both efficiency and scalability.

ACKNOWLEDGMENT

We would like to thank Zhaogui Xu and Peng Di from

Ant Group, and the anonymous reviewers for constructive

comments and thoughtful feedback on earlier drafts. Our

thanks also go to Lian Li from ICT CAS for providing the

code of baselines. This work is supported in part by the

Leading-Edge Technology Program of Jiangsu Natural Sci-

ence Foundation (No. BK20202001) and the National Natural

Science Foundation of China (No.62232008, No.62172200,

No.62272217).

2502

For Research Only

REFERENCES

[1] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, 1995, pp. 49–61. [Online]. Available:
http://doi.org/10.1145/199448.199462

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for Android apps,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). ACM, 2014, pp. 259–269. [Online]. Available: https:
//doi.org/10.1145/2594291.2594299

[3] D. He, H. Li, L. Wang, H. Meng, H. Zheng, J. Liu, S. Hu,
L. Li, and J. Xue, “Performance-boosting sparsification of the IFDS
algorithm with applications to taint analysis,” in Proceedings of the
34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 267–279. [Online]. Available:
https://doi.org/10.1109/ASE.2019.00034

[4] H. Li, H. Meng, H. Zheng, L. Cao, J. Lu, L. Li, and L. Gao,
“Scaling up the IFDS algorithm with efficient disk-assisted computing,”
in Proceedings of the 19th IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, 2021, pp. 236–247.
[Online]. Available: https://doi.org/10.1109/CGO51591.2021.9370311

[5] S. Arzt, “Sustainable solving: Reducing the memory footprint of
IFDS-based data flow analyses using intelligent garbage collection,”
in Proceedings of the 43rd IEEE/ACM International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 1098–1110. [Online].
Available: https://doi.org/10.1109/ICSE43902.2021.00102

[6] Y. Li, T. Tan, Y. Zhang, and J. Xue, “Program tailoring: Slicing by
sequential criteria,” in Proceedings of the 30th European Conference on
Object-Oriented Programming (ECOOP). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016, pp. 15:1–15:27. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15

[7] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang,
“PSE: Explaining program failures via postmortem static analysis,” in
Proceedings of the 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE). ACM, 2004, pp. 63–72.
[Online]. Available: https://doi.org/10.1145/1029894.1029907

[8] S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A system and language for
building system-specific, static analyses,” in Proceedings of the 23rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM, 2002, pp. 69–82. [Online]. Available:
https://doi.org/10.1145/512529.512539

[9] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in Proceedings of the 30th ACM/IEEE International
Conference on Software Engineering (ICSE). ACM, 2008, pp.
171–180. [Online]. Available: https://doi.org/10.1145/1368088.1368112

[10] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding
and detecting evolution-induced compatibility issues in Android apps,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE). ACM, 2018, pp. 167–177.
[Online]. Available: https://doi.org/10.1145/3238147.3238185

[11] A. Gotsman, J. Berdine, and B. Cook, “Interprocedural shape
analysis with separated heap abstractions,” in Proceedings of the 13th
International Symposium on Static Analysis (SAS). Springer, 2006,
pp. 240–260. [Online]. Available: https://doi.org/10.1007/11823230 16

[12] S. Arzt and E. Bodden, “Reviser: Efficiently updating IDE-/IFDS-based
data-flow analyses in response to incremental program changes,”
in Proceedings of the 36th International Conference on Software
Engineering (ICSE). ACM, 2014, pp. 288–298. [Online]. Available:
http://doi.org/10.1145/2568225.2568243

[13] J. Rodriguez and O. Lhoták, “Actor-based parallel dataflow analysis,”
in Proceedings of the 20th International Conference on Compiler
Construction (CC). Springer, 2011, pp. 179–197. [Online]. Available:
http://doi.org/10.1007/978-3-642-19861-8 11

[14] Q. Shi and C. Zhang, “Pipelining bottom-up data flow analysis,”
in Proceedings of the 42nd ACM/IEEE International Conference on
Software Engineering (ICSE). ACM, 2020, pp. 835–847. [Online].
Available: https://doi.org/10.1145/3377811.3380425

[15] D. Helm, F. Kübler, J. T. Kölzer, P. Haller, M. Eichberg,
G. Salvaneschi, and M. Mezini, “A programming model for semi-
implicit parallelization of static analyses,” in Proceedings of the 29th

ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). ACM, 2020, pp. 428–439. [Online]. Available:
https://doi.org/10.1145/3395363.3397367

[16] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proceedings of the 37th IEEE/ACM International Conference on
Software Engineering (ICSE). IEEE, 2015, pp. 426–436. [Online].
Available: https://doi.org/10.1109/ICSE.2015.61

[17] E. Bodden, “Inter-procedural data-flow analysis with IFDS/IDE and
Soot,” in Proceedings of the 1st ACM SIGPLAN International Workshop
on State of the Art in Java Program Analysis (SOAP). ACM, 2012,
pp. 3–8. [Online]. Available: https://doi.org/10.1145/2259051.2259052

[18] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani, “Graspan:
A single-machine disk-based graph system for interprocedural static
analyses of large-scale systems code,” in Proceedings of the 22nd
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2017, pp.
389–404. [Online]. Available: https://doi.org/10.1145/3037697.3037744

[19] Z. Zuo, K. Wang, A. Hussain, A. A. Sani, Y. Zhang, S. Lu, W. Dou,
L. Wang, X. Li, C. Wang, and G. H. Xu, “Systemizing interprocedural
static analysis of large-scale systems code with Graspan,” ACM
Transactions on Computer Systems (TOCS), vol. 38, no. 1-2, pp.
4:1–4:39, 2021. [Online]. Available: https://doi.org/10.1145/3466820

[20] M. Sharir and A. Pnueli, “Two approaches to interprocedural data flow
analysis,” in Program Flow Analysis: Theory and Application. Prentice
Hall, 1981, pp. 189–233.

[21] T. Reps, “Shape analysis as a generalized path problem,” in Proceedings
of the 1995 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM). ACM, 1995, pp.
1–11. [Online]. Available: https://doi.org/10.1145/215465.215466

[22] M. Sridharan, D. Gopan, L. Shan, and R. Bodı́k, “Demand-driven
points-to analysis for Java,” in Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). ACM, 2005, pp. 59–76.
[Online]. Available: https://doi.org/10.1145/1094811.1094817

[23] X. Zheng and R. Rugina, “Demand-driven alias analysis for C,” in
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). ACM, 2008, pp.
197–208. [Online]. Available: https://doi.org/10.1145/1328438.1328464

[24] L. G. Valiant, “A bridging model for parallel computation,”
Communications of the ACM (CACM), vol. 33, no. 8, pp. 103–111,
1990. [Online]. Available: https://doi.org/10.1145/79173.79181

[25] B. Scholz, H. Jordan, P. Subotić, and T. Westmann, “On fast large-scale
program analysis in datalog,” in Proceedings of the 25th International
Conference on Compiler Construction (CC). ACM, 2016, pp. 196–206.
[Online]. Available: https://doi.org/10.1145/2892208.2892226

[26] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification
of sophisticated points-to analyses,” in Proceedings of the 24th
ACM SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA). ACM, 2009, pp. 243–262.
[Online]. Available: https://doi.org/10.1145/1640089.1640108

[27] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot - a Java bytecode optimization framework,” in
Proceedings of the 1999 Conference of the Centre for Advanced Studies
on Collaborative Research (CASCON). IBM, 1999, pp. 13:1–13:11.
[Online]. Available: https://dl.acm.org/doi/10.5555/781995.782008

[28] O. Lhoták and L. Hendren, “Scaling java points-to analysis using
spark,” in Proceedings of the 12th International Conference on
Compiler Construction (CC). Springer-Verlag, 2003, pp. 153–169.
[Online]. Available: https://doi.org/10.1007/3-540-36579-6 12

[29] M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural dataflow
analysis with applications to constant propagation,” Theoretical
Computer Science (TCS), vol. 167, no. 1, pp. 131–170, 1996. [Online].
Available: http://doi.org/10.1016/0304-3975(96)00072-2

[30] T. Reps, “Program analysis via graph reachability,” Information and
Software Technology (IST), vol. 40, no. 11, pp. 701–726, 1998.
[Online]. Available: https://doi.org/10.1016/S0950-5849(98)00093-7

[31] N. A. Naeem, O. Lhoták, and J. Rodriguez, “Practical extensions to the
IFDS algorithm,” in Proceedings of the 19th International Conference
on Compiler Construction (CC). Springer, 2010, pp. 124–144.
[Online]. Available: http://doi.org/10.1007/978-3-642-11970-5 8

[32] J. Lerch, J. Späth, E. Bodden, and M. Mezini, “Access-path Abstraction:
Scaling field-sensitive data-flow analysis with unbounded access paths,”
in Proceedings of the 30th IEEE/ACM International Conference on

2503

For Research Only

Automated Software Engineering (ASE). IEEE, 2015, pp. 619–629.
[Online]. Available: https://doi.org/10.1109/ASE.2015.9

[33] P. D. Schubert, B. Hermann, and E. Bodden, “PhASAR: An
inter-procedural static analysis framework for C/C++,” in Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS). Springer, 2019, pp. 393–410. [Online]. Available: https:
//doi.org/10.1007/978-3-030-17465-1 22

[34] M. Madsen, M.-H. Yee, and O. Lhoták, “From Datalog to Flix: A
declarative language for fixed points on lattices,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). ACM, 2016, pp. 194–208. [Online].
Available: http://doi.org/10.1145/2908080.2908096

[35] WALA: T.J. Watson Libraries for Analysis. Accessed: 2022. [Online].
Available: https://github.com/wala/WALA

[36] C. Weiss, C. Rubio-González, and B. Liblit, “Database-backed program
analysis for scalable error propagation,” in Proceedings of the
37th IEEE/ACM International Conference on Software Engineering,
Volume 1 (ICSE). IEEE, 2015, pp. 586–597. [Online]. Available:
https://doi.org/10.5555/2818754.2818827

[37] Z. Zuo, R. Gu, X. Jiang, Z. Wang, Y. Huang, L. Wang, and X. Li,
“BigSpa: An efficient interprocedural static analysis engine in the
cloud,” in Proceedings of the 33rd IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2019, pp. 771–780.
[Online]. Available: https://doi.org/10.1109/IPDPS.2019.00086

[38] Z. Zuo, J. Thorpe, Y. Wang, Q. Pan, S. Lu, K. Wang, G. H.
Xu, L. Wang, and X. Li, “Grapple: A graph system for static
finite-state property checking of large-scale systems code,” in
Proceedings of the 14th European Conference on Computer Systems
(EuroSys). ACM, 2019, pp. 38:1–38:17. [Online]. Available: https:
//doi.org/10.1145/3302424.3303972

[39] Z. Zuo, Y. Zhang, Q. Pan, S. Lu, Y. Li, L. Wang, X. Li, and G. H. Xu,
“Chianina: An evolving graph system for flow- and context-sensitive
analyses of million lines of C code,” in Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI). ACM, 2021, pp. 914–929. [Online].
Available: https://doi.org/10.1145/3453483.3454085

2504

For Research Only

