Software Engineering Group
Department of Computer Science
Nanjing University
http:/ﬁeg.nju.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2023-/C-004

2023-IC-004

DStream: A Streaming—Based Highly Parallel IFDS Framework

Xizao Wang, Zhiqiang Zuo, Lei Bu, Jianhua Zhao

Technical Report 2023

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is
prohibited.

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

DStream: A Streaming-Based Highly Parallel IFDS
Framework

Xizao Wang, Zhigiang Zuo®, Lei Buf, Jianhua Zhao
State Key Laboratory for Novel Software Technology, Nanjing University, China
wangxiz@smail.nju.edu.cn, zqzuo@nju.edu.cn, bulei@nju.edu.cn, zhaojh@nju.edu.cn

Abstract—The

framework supports interprocedural
dataflow analysi i

ibutive flow functions over finite
domains. A large cla

terprocedural dataflow analysis
problems can be formuated S problems and thus can be
solved with the IFDS fral

isely. Unfortunately, scaling

IFDS analysis to large-scale grams is challenging in terms of
both massive memory consumption and low analysis efficiency.

This paper presents DStream, a scala

to precise and highly parallel IFDS ay

compared DStream with three state-of-the-art tools.
iments validate that DStream outperforms all ot
average speedups from 4.37x to 14.46x on a commo
limited available memory. Meanwhile, the experiments (ton
that DStream successfully scales to large-scale program
the state-of-the-art tools (e.g., FlowDroid and/or DiskDroid)
to analyze.

Index Terms—interprocedural static analysis, IFDS analysis,
streaming, data-parallel computation

I. INTRODUCTION

The IFDS (interprocedural, finite, distributive, subset)
framework, pioneered by Reps et al. [1], is a general inter-
procedural context-sensitive dataflow analysis framework. The
framework is tailored for a rich set of problems that satisfy its
restrictions (a.k.a., the IFDS problems), including taint anal-
ysis [2], [3], [4], [5], program slicing [6], bug detection [7],
[8], [9], [10], and security analysis [11]. The IFDS framework
formulates an IFDS problem as a graph reachability problem
that can be solved precisely and efficiently.

The IFDS framework is empowered by a tabulation algo-
rithm (i.e., the IFDS algorithm) of polynomial complexity.
Although the IFDS algorithm is asymptotically fast, it suffers
from poor scalability, especially when analyzing large-scale
programs with expensive abstract domains. Such poor scalabil-
ity mainly lies in two-fold: considerable time cost and massive
memory consumption. Performance-wise, many studies over
the past decades have been constantly proposed to accelerate
the analysis by adopting sparse representations [3], incremen-
tal algorithms [12], and parallel accelerations [13], [14], [15].
However, the massive amount of peak memory consumption
becomes a more severe bottleneck for scaling the IFDS anal-
ysis to large-scale programs. As reported by [16], analyzing

1 Corresponding authors.

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00208

even a moderate-sized program takes 730 GB memory for
FlowDroid. SparseDroid [3] adopting sparse representation
also consumes around 80 GB of RAM. Even the incremental
IFDS solver Reviser [12] generally needs more than 35 GB
memory for every run. How to tackle the memory obstacle
is increasingly becoming crucial to scaling IFDS analysis to
large-scale programs.

State of the Art. Several studies have been presented to
reduce memory footprint and thus improve the scalability
of IFDS solvers. Heros [17] and FlowDroid’s FastSolver [2]
reduce their memory footprints by constructing program rep-
resentations in a demand-driven way. CleanDroid [5] adopts
a semantic garbage collector for IFDS-based analyses to
reclaim memory. Although the above attempts reduce memory
ootprint to some extent, they can only partially address the

prghlem, especially when analyzing large-scale programs.
roid [4] is an IFDS-based taint analysis tool that
exten

2492

wDroid with a disk-assisted IFDS solver. The disk-
improves the memory scalability of existing
ation by exporting/importing certain edges
nfortunately, DiskDroid heavily relies on a
strategy to decide when and what data to swap

ig his strategy could cause frequent
gading to poor performance. Even
is ad-hoc, it is still very likely
large-scale programs.
supporting context-

assigied a
IFDS
into/fro

general static analysis problems th
CFL-reachability [21], [22], [23], ich the IFDS problems
are only a subset. However, Graspan fails to propose an
optimized design specific to the IFDS problems for the sake
of generality. We discuss the experimental data showing the
inefficiency of both DiskDroid and Graspan in Section IV.

Our Insight & Approach. The IFDS problems can be for-
mulated as a special kind of graph-reachability problem [1].
The core computation of the graph-reachability is to constantly
generate a large number of new transitive edges (termed as
“path-edges”) by joining! with a fixed set of edges in the

'Here “join” refers to an operation performed to establish a connection
between two or more edges, which is similar to the “table join” in database
terminology, rather than the “join transformer” in abstract interpretation.

exploded super-graph (Definition 2). According to the memory
usage statistics reported by [4], the path-edges dominate the
memory consumption in FlowDroid’s FastSolver. In particular,
the memory usage of the path-edges accounts for an average
of 79.07% of the total memory consumed in their experiments,
while that of other edges is relatively small. Analyzing large-
scale programs could generate too many path-edges to fit into
the memory of a commodity PC, resulting in poor scalability
and even infeasibility. We observed that the IFDS algorithm
demonstrates the locality to some extent, meaning that its core
computation around a path-edge only relies on the path-edge
and all the edges in the exploded super-graph and requires no
other path edges. This gbservation means that it is unnecessary
to maintain all the es in memory all the time. On the
contrary, to imp he scalability, we can store the path-

edges on disks and proceggayeral edge chunks simultaneously
by performing streami @ d parallel computation.

©)

Preprocessing

Source
Code

PathEdge
(All PEdges)

1
0
o

InputStream
(Active PEdges;

InputChunk

)
%V
1

Fig. 1: The workflow of DStream

Based on the above insight, we devise a scalable IFDS
framework named DStream, whose workflow is demonstrated
as Figure 1. DStream consists of three crucial components: (1D
preprocessing,) streaming, and (3) in-memory computation
indicated with purple background. Here we briefly overview
the overall workflow and elaborate on each component in
detail in Sections III-A to III-C shortly.

Given a program to be analyzed, we first preprocess the
program to construct the exploded super-graph and the initial
set of path-edges (termed as seed path-edges or simply seeds)
accordingly (cf. (D). We load the exploded super-graph G
into memory, followed by iterative streaming-based processing
(cf.). At the beginning of each iteration, we partition the
input-stream consisting of path-edges into multiple smaller
chunks, which are loaded into memory and processed in-
dividually. Having each chunk, an in-memory computation
phase (cf.) is performed to join the path-edges contained
in the loaded chunk with the edges of G based on the CFL-
based formulation (Definition 3), and generate new path-edges
(PEdges) which will be stored to disks in a streaming way.
At the end of each iteration, DStream checks whether the fixed
point is reached. If not, the output-stream is used as the input-
stream for the next iteration, and the computation continues.

The design of DStream is beneficial to both the scalability

and efficiency of the IFDS framework. First, the maximum
memory usage during computation is under control. We can
readily control the maximum memory consumption by tuning
the sizes of chunks and I/O buffers to fit the available memory.
Second, once several chunks are loaded into memory, they
can be processed data-parallelly to accelerate the reachability
computation.

Contributions. We make the following contributions:

We propose a systematic streaming-based out-of-core
approach to significantly improve the memory scalability
of the IFDS framework.

We present a fine-grained data-parallel approach to ef-
fectively enhance the analysis parallelism of the IFDS
framework.

We designed and implemented a scalable IFDS frame-
work named DStream, which is publicly available at
https://github.com/DStream-project.

We evaluated DStream over a comprehensive set of
benchmarks. The experiments validated that DStream
running on a commodity PC with limited available mem-
ory outperforms all other tools with average speedups
from 4.37x to 14.46x. Meanwhile, the experiments con-
firmed that DStream successfully scales large-scale pro-
grams which FlowDroid and/or DiskDroid fail to analyze
under the limited available memory.

QOutline. The rest of this paper is structured as follows. We
start with the necessary background about the IFDS frame-
ork in Section II. Section III outlines the design of our

Stream framework, followed by an empirical evaluation of
ﬁtream framework in Section IV. Finally, we survey
late

2493

ork in Section V and Section VI concludes.

II. BACKGROUND

This sgftion Jrovides the necessary background about the
IFDS framewy@rk, including the definition of the IFDS prob-
lem (§1I-A), the IFDS algarithm (§II-B), and how the IFDS

algorithm is formula ﬁ FL-reachability problem (§1I-C).
A. The IFDS Problég

In the classic IFDS fo! n p sed by Reps et al. [1],
a ~graph G* = (N*, E*)
y IGFG). G* is comprised

a program is represented
(aka. interprocedural CFG or

of a set of CFGs Gy, G1, ..., and G4/(e for per method),
one of which, Gy indicates the e thod of the program.
These intraprocedural CFGs are connected with call-edges
and return-edges to construct the final G*. For a method
p, its CFG G, has a unique start-node s, € N*, and a
unique exit-node x, € N*. The other nodes represent the
statements and predicates as usual, except that a callsite is
represented by two nodes, a call-node ¢ € N* and a return-
node r € N* for convenience. £* is a set of control-flow
edges between nodes. There are four kinds of edges in E*.
The ordinary intraprocedural edges in G, are termed normal-
edges. For each callsite with its call-node ¢ and return-node
r, an intraprocedural call-to-return-edge connects c to r; an

ul

interprocedural call-edge connects c to the start-node s, of its
callee method ¢; and an interprocedural return-edge connect
the exit-node x,; to r. Thus, dataflow facts can propagate
interprocedurally via call-edges and return-edges.

Based on the definition of the super-graph, the IFDS prob-
lem can be defined as follows:

Definition 1 (IFDS Problem). An instance /P of an IFDS
problem is a five-tuple (G*, D, F', M, 1), where:

1) G* = (N*, E*) is a super-graph as defined above.

2) D is a finite set of dataflow facts.

3) F C 2P 5 2D is a set of distributive functions.

4) M :E*— Fis ap from E* to dataflow functions.
5) The meet operghor [W§is either union or intersection.

B. The IFDS Algorith

To solve the IFDS sgecisely and efficiently, Reps
et al. [1] proposed the IFDﬁhm, which transforms an
IFDS problem into a graph reachability problem. The key
is to represent the distributive transfer ons as graphs.

Equivalently, each function can be repy as a bipartite
graph with 2(D + 1) nodes and at mo§ 2 edges. Each

node represents an element of D, and an do occurs
in the graph if and only if do € f({d1}). In t{is Wy, thg super-
graph G™ of IP is extended to an exploded superygraph BESG)

G?, which combines the ICFG and the dataflo

Definition 2 (Exploded Super-Graph). Given an IF

lem instance IP = (G*, D, F, M,), the exploded super-

for IP, denoted by Gﬁ, = (N#, E#), is defined as follows?
1) The node set N# = N* x (D u {0}),
2) The edge set E# = {(m,d1) — (n, dy) |

dy € M(m,n)({d1})},
where O signifies an empty set of facts and M (m,n) € F is
the flow function associated with the edge (m,n) € E*.

(m,n) € E*A

In the rest of the paper, the notations of nodes and edges
are extended from super-graph to exploded super-graph. For
example, (n,d) is a call-node in G}, if n is a call-node in G*,
and (n,d;) — (m,ds) is a call-edge in G if n — m is a
call-edge in G*.

The IFDS algorithm is a worklist algorithm that takes G7
as input for solving IP. Starting with the seeds, the algorithm
maintains two sets during the computation:

o PathEdge records all the path-edges. A path-edge is a
same-level realizable path of the form (s,,d1) — (n,ds)
which represents the suffix of a realizable path from
(Smain, 0) to (n,da). A zero-length path-edge of the form
(sp,d) — (sp,d) is termd as a self path-edge.
SummaryEdge records all the summary-edges. A
summary-edge is a same-level realizable path from
(n,d;) to (m,ds), where n is a call-node and m is the
matched refurn-node. A summary-edge summarizes inter-
procedural dataflow dependencies across method bound-
aries and can be reused at different callsites.

void main() {
x = source();
y = foo(x);

z H

t = foo(z);
sink(z);
sink(t);

¥

Object foo(p) {
q=p;
return q;

— normal-edge
call-edge

> return-edge

» call-to-return-edge
> summary-edge
path-edge

O-O-@- OO CF
: OO0 OT-

©-9-©:

(a) Example code (b) Exploded super-graph

Fig. 2: The toy example of IFDS-based taint analysis. Fig-
ure 2a shows the example program consisting of two methods,
main and foo. Figure 2b shows the corresponding exploded
super-graph with summary-edges and a subset of path-edges
related to node 19 and 25.

The algorithm accumulates path-edges and summary-edges
until a fixed point is reached. Please refer to [1] for more
technical details about the IFDS algorithm.

Example. Figure 2 gives a toy example showing how to apply
the IFDS algorithm to taint analysis. Figure 2a shows the code
of the example, where main is the entry method and foo is
an identity method which is invoked by main twice. source
and sink are the taint source method and the taint sink
method, respectively. Figure 2b shows the corresponding ex-

loded super-graph of the example. Each node in the exploded

uper-graph represents a tainted fact at a program point, and
jﬂge represents the propagation of a tainted fact along the
FG.

2494

example, node 19 represents the fact that z is tainted
oint after Line 6, and the path-edge 1 — 1
2 of main marks x as tainted, and one new
is generated. Line 3 calls foo with x as the
as the return variable. The parameter p of foo
is then marKed as taintedgalong the call-edge 3 — 27, and thus

one new self path-edge 27 is generated. As the analysis

of foo finishes, p a 3 int of foo is marked as tainted,

g urn-edge 33 — 6. Since the

call-edge 3 — 27 and théfreturgfed, — 6 are matched, one

new summary-edge 3 — 6 i¥ge . Therefore, the tainted
0

and it returns to y

fact is propagated along 3 — new path-edge 1 — 6
is obtained. At the end of the compuitatign, the path-edges
1 — 19 and 1 — 25 indicate that are tainted at their

sink points, respectively.
C. The CFL-reachability Formulation

Based on the IFDS algorithm, we can further formulate it
as a context-free language- (CFL-) reachability problem.

Definition 3 (CFL-reachability Formulation). Given an
IFDS problem instance [P with its exploded super-graph
G7, and the set of all the callsites of Gf is denoted as
CallSite. Let £ be a context-free language over alphabet
¥ = {e;n} UU,ccasie{li>i}- Each path in G, defines a
word over ¥ obtained by concatenating the edge labels in

order on the path. A path in G¥ is a L-path if its word is
a member of £. We can formulate the IFDS algorithm as a
CFL-reachability problem, in particular, a multi-source £-path
problem where £ consists of the following productions:

N+n|Ne|NS (1)
N« N1 (i€ CallsSit) @)
S« 1; Nr; (i€ CallSite) 3)

Each (terminal or non-terminal) symbol represents a kind
of edge: n represents a seed path-edge, e represents a normal-
edge (or a call-to-return-edge), l; and r; represent a call-edge
and a return-edge with_context matching at the callsite ¢, NV
represents a path-e nd S represents a summary-edge.
The path-edge g ted 0y production (2) is a self path-
edge (e.g., 27 27 Bigure 2). Productions (1) and (2)
indicate the computatiq @ of path-edges, while production
(3) indicates the compta Ig@ic of summary-edges. In the
rest of the paper, we use the ﬁginal—edge” to refer to an
edge that has the type repreSented by the terminal symbols e,
I;, and 7;. In other words, all edges in E#

The CFL-based formulation is equi
IFDS algorithm. Here we discuss the €qui
initialization of PathEdge and WorkList i algorithm
corresponds to the production N <— n. Ther in the
IFDS algorithm. The first case corresponds to pigduptions
N+ Nl;and N < N e | N S, the second caselgoties
to the productions S <~ I; N r; and N <~ N S, and t
case corresponds to the production N < N e.

The CFL-based formulation characterizes the core com
tation of the IFDS algorithm. Based on the formulation, t
IFDS framework can be modeled as a dynamic transitive-
closure computation over the exploded super-graph G7,. The
essential operation of the dynamic transitive-closure computa-
tion is the join operation between edges. For example, given
1% 6 and 6 < 10 in Figure 2, we can join them and obtain
1Y 10 according to N <— N e. For S < [; N r;, an example
is (3 2 27,27 & 33,33 2% 6), we can obtain 3 = 6 after
performing a double-join operation on them.

original-edges.
the original

nce briefly. The
t

e

III. THE DSTREAM FRAMEWORK

In this section, we describe the design and implementa-
tion of our streaming-based data-parallel IFDS framework,
DStream, which aims to tackle the poor scalability problem
of the IFDS framework. We have developed DStream as
a single-machine, out-of-core system which enables precise
IFDS analysis on a commodity PC with limited memory.

The IFDS algorithm essentially performs iterative reacha-
bility computation on an exploded super-graph until all the
path-edges are generated [1]. Based on the CFL-formulation
(Section II-C), the core computation around a path-edge is
locality-aware, and it is not necessary to maintain all the path-
edges in memory all the time during the computation. On the
contrary, to improve the scalability, we can store PathEdge on
disks and process a part of PathEdge at a time by performing
streaming-based parallel computation. In this way, we improve

Algorithm 1: Streaming-based IFDS Algorithm

Input: P: program under analysis
Data: PEdges, SEdges: all path-/summary-edges;
PEdges 5, PEdgestmp: active/inactive new path-edges;
SEdges »: new summary-edges
/+ Preprocessing */
(GT,, InputStream) < PREPROCESS(P)
/* Streaming-based computation =/
SEdges <+ @
repeat
OutputStream <— &
ListSEdges 5 <+ @
/* Parallel streaming phase x/
while HASNEXT(InputStream) do in parallel
InputChunk < STREAMIN(InputStream)
/+ In-memory computation =/
(PEdges 5, PEdges,,,,,,, SEdges »)
INMEMCOMPUTATION (InputChunk, E* | SEdges)
OutputStream <— STREAMOUT(PEdges 5)
PEdges < STREAMOUT(PEdges,,,,,)
insert SEdges , to ListSEdges 5

-

(7 R N}

10
11

/* Synchronization phase x/
SEdges < SEdges U ListSEdges 5
13 PEdges < PEdges U OutputStream
14 InputStream <— OutputStream

15 until InputStream = &

12

the scalability of the IFDS framework from two aspects. First,

we propose a systematic streaming-based out-of-core compu-

tation model to reduce memory footprint significantly. Second,

we adopt fine-grained data-parallel computation, which can
ffectively improve computation efficiency.

Igorithm 1 presents a high-level streaming-based, data-
algorithm. The algorithm takes as input a program
0 be

2495

zed and preprocesses it for the subsequent com-
incg!). The following loop is a streaming-based

iterative process (Lines 3-15), where each
iteration 46" tergled as a superstep. Each superstep consists
of two phags, namely the parallel streaming (Lines 6-11)
and synchronization (Limgs 12-14). The above process is

repeated until the 7 am is empty. In the following,
we elaborate on ed

2
@ igl component of our algorithm,
including preprocessiitg -, streaming-based processing
co

putafon
BSKstyle

(§ III-B), and in-memo tatj § III-C).

A. Preprocessing

Preprocessing prepares for the computation. Given a
program to be analyzed, DStream preprocesses it to generate
an exploded super-graph G¥ for a specific IFDS problem
instance /P, while building certain edge index and initializing
the seed path-edges to facilitate the subsequent computation.
The generated G7; consists of a set of original-edges, whereas
the node information is implicitly encoded in the edges, thus
reducing memory overhead. An original-edge is represented
by a triple (src, tgt,label) whose elements denote the source-
node, the target-node, and the edge label (corresponding a
terminal symbol in Definition 3), respectively. During prepro-
cessing, all the original-edges are loaded into memory.

Edge Indexing. As mentioned earlier, the core IFDS compu-
tation of DStream is to perform the join operation between
labeled edges. As intensive queries of edges would happen
during joining, we must be able to quickly find needed edges
for efficient join implementation. The indexing scheme for
the original-edges is critical for good performance. Here we
adopt a two-layered index for an efficient query of edges. The
first layer indexes the graph by source-node, and the second
one indexes the graph by edge label. For example, suppose we
would like to perform the CFL-reachability computation based
on the production N <— N e. Given a path-edge = o, y, to
complete the computation, we need to acquire all the normal-
edges (i.e., e-edges) whose source-node is y. Based on the
two-layered indexi tilize the first layer index to locate
all the original- with y as their source-node, and then
apply the second layer g#8gx over the above-indexed edges
to identify all the nores needed quickly. In this way,
we can achieve effectivéuisfiexj hus supporting efficient in-
memory CFL-reachability utation, especially double-join
operations (§ III-C).

PathEdge Initialization at Multiple En
inal IFDS algorithm takes the seed gfatl

ints. The orig-
(S <3main70> —

(Smain, 0) of main method as the initial Pglh here main
is the only one entry point of the progrfm: wever, for

one

some programs under analysis, there may ord(t
entry point. For example, Android applications

main method like the traditional Java programs. In
entry points are implicitly called by the Android fra
Another example is the library code, where generally no ¢
method exists. But there may be sample code or test code t
can be used as entry points for analysis. For such codebases,
different entry points may lead to different components of
a large-scale program. To cover as much code as possible
during analysis, we collect all the entry points of a program
to be analyzed and take all the seed path-edges (i.e., n-edges)
of these entry points as the initial InputStream. The initial
InputStream is stored onto disks and used later to turn on the
core computation of streaming-based processing (§ III-B).

B. Streaming-based Processing

After the preprocessing, the streaming-based processing is
started (Lines 3-15 in Algorithm 1). Streaming-based com-
putation essentially provides a scalable and efficient locality-
aware graph reachability computation. The computation is
represented as the join of two sets of edges where the small
set of static edges are held in memory, and a large number
of dynamic edges are streamed from/to disks. In the DStream
framework, based on CFL-reachability discussed in § II-C,
the two sets of edges to be joined are original-edges (plus
summary-edges) and path-edges constantly generated during
computation. As described in § III-A, we load the original-
edges into memory and store the path-edges on disk before
the streaming-based computation. The core of streaming-based
computation is a BSP-style iterative process, where each
iteration is termed as a superstep. Each superstep consists of

two phases, namely the parallel streaming phase (Lines 6-11)
and synchronization phase (Lines 12-14).

At the parallel streaming phase, DStream takes as input
the InputStream, which is a file storing all the active path-
edges and launches a parallel streaming process. At first, the
InputStream is divided into several smaller chunks of (almost)
fixed size according to available memory. DStream handles
the chunks by multiple threads in parallel. In particular, each
thread loads one chunk into memory. Next, each thread invokes
the in-memory computation procedure INMEMCOMPUTATION
(which will be elaborated shortly in § III-C) to generate new
path-edges and summary-edges (Line 8). The newly generated
path-edges are divided into two categories: active PEdges
and inactive PEdges,,,,. Active PEdges, is exported to the
OutputStream for the next superstep (Line 9), while the
processing of inactive PEdges,,,, has been done in current
superstep and is exported to result PEdges directly (Line 10).
As the chunks are independent of each other, we can safely
launch multiple threads to process the entire InputStream
simultaneously. For the sake of performance, we maintain
a separate buffer of PEdges, and a file of OutputStream
for each thread, thus avoiding synchronization costs. Apart
from the original-edges, the computation of path-edges, as
shown in Production 1, also demands the dynamically gener-
ated summary-edges. To ensure the computation’s correctness,
we also keep the summary-edges in memory. Maintaining
summary-edges in memory has no significant impact on scal-
ability since the number of summary-edges is much smaller

ompared with that of path-edges, and we will delete the

ummary edges that are no longer needed from memory during
%putation (§ II-C).
Onc

e parallel streaming phase finishes, a synchro-

nizadn pPasegis conducted. In particular, the in-memory

sumigar re updated by combining the newly generated
ones (L1 he OutputStream is aggregated to PEdges
(Line 13), apf"the OutputStream is treated as the new Input-

Stream for the next supezs
the next superstep is g

ap (Line 14). After synchronization,
I¥d until the InputStream is empty.

75118512
B 9513 105,

InputStream
(Active PathEdges)

OutputStream
(Generated PathEdges)

InputChunk
[1] d OutputStream,
Readﬂuﬁerb— > 5
1511
[2) [thread-1 | TN
D ——»
| ==
° L, nputChunk | OutputStream,
> 1512
A J =
Stream In In-memory Computation Stream Ou

Fig. 3: Streaming-based data-parallel computation

Example. Figure 3 illustrates the process of parallel stream-
ing for the running example (Figure 2). For simplicity, we
assume only two threads (thread-1 and thread-2) are available

2496

to illustrate the main idea of the process. We first divide
the InputStream into smaller chunks as described earlier. In
Figure 3, (more than) 5 chunks are divided, each containing
one path-edge. We take the first four chunks as an example
to demonstrate the streaming process. At the very beginning,
thread-1 and thread-2 are both idle. Each can thus be assigned
to load and process one chunk in parallel. For example,
thread-1 loads chunk-1 (1 X, 7) into its local read-buffer,
while thread-2 reads chunk-2 (1 o, 8) into its local buffer.
The two threads then perform the in-memory computation
independently by joining the path-edges in their local buffers
with the globally shared original-edges and summary-edges.
For brevity, Figure 3 shows a simplified version of in-memory
computation (§ III- ich processes only the path-edges
in the InputStre d then outputs them directly to the
OutputStream. In partiCig@Nthread-2 joins 1 X, 7 in chunk-1
with 7 % 11 and gene new path-edge 1 — 11. Simul-
taneously, thread-2 gendmsCs w path-edge 1 X, 12. The
path-edges newly generate each thread are stored in their
local write-buffers. Once the write-buffer is full (or the chunk
has been processed completely), we fl e write-buffer
to OutputStream which is stored on dj
associates with one separate OutputStre
shown in Figure 3, thread-1 exports the n
to its associated file QutputStream,. Simila

a thread finishes processing one chunk, we ch
there are still unprocessed chunks. If so, the idl
will load and process the next chunk as described above.
Figure 3, thread-1 finishes the processing of chunk-1 and t
streams in chunk-3; the processing is similar to the above.
The process continues until all the chunks in InputStream have
been processed.

C. In-memory Computation

This section presents the details of in-memory computation,
as well as the designs for improving efficiency. During in-
memory computation, DStream performs the core computation
of the IFDS algorithm according to the CFL-reachability
formulation. The essence of the CFL-reachability formulation
is to generate new reachable edges by joining labeled edges.
Algorithm 2 shows the details of the in-memory computation.
It takes as inputs an InputChunk loaded, the original-edges
E#, and the SEdges. At the beginning of the computation,
we initialize the sets of active new path-edges PEdgesx,
inactive new path-edges PEdges,,,,,, and new summary-edges
SEdges, as empty (Line 1), and then process each of the
active path-edges in InputChunk one by one (Lines 3-22)
to generate new path-edges (and summary-edges). The newly
generated PEdges , will be used as (part of) the input for the
next superstep. At the end of Algorithm 2, all the new path-
edges (PEdges and PEdges,,,,,) and the new summary-edges
SEdges » are returned.

Correctness and Termination. For each path-edge x X, y to
be processed, we perform its CFL-reachability computation

2497

Algorithm 2: INMEMCOMPUTATION

Input: InputChunk, E*, SEdges
1 PEdges, , PEdges,,,,, SEdges « &
2 Worklist <— InputChunk
3 while Worklist # @ do
pop © n, y from Worklist
/+x case 1: N+ N e «/
foreach y = z € E* do
if z is a join- or call-node then
L if © ¢ src(z) then add z to src(z)

else continue
addz S 210 PEdges,,,,,, and WorkList
/ N+ N S «/

foreach y S e SEdges do
if z ¢ src(z) then
add z to sre(z)
addz 5z 1o PEdges,,,,, and WorkList
: case 3:

® 9 & W

]

* case 2:

/)~ 1

10
11
12

/ return—node

13

/ N« N l; ~/

foreach y * » € E# do

if init(z).isFalse() then
addz % 2 to PEdges
init(z).setTrue()

/
/]

14
15

z 1s start-node

16
17

/* case 4: S<«1l; N r; and N+ N S «*/

foreach matched = 2 ¢ and y — z € E* do

addt 3 210 SEdges
foreach a € src(t) do
L add a to sre(z)

adda 5 2 to PEdges,,,,, and WorkList
rn (PEdges x, PEdges,,,,, SEdges)

18

19
20
21

call-nc

z 1s return—node

/

e productions as shown in Definition 3. The first

d N < N [;, respectively. The fourth case
to S < I; Nr,and N «+ N S,
double-join operation and nec-
cdges and the generated S-edge.
ween Algorithm 2 and the CFL-
ion we can immediately

reachability formulatio
obtain the correctness of A

The termination of Algorith sd
ness of InputStream, which indicates fha new active path-
edges are generated in the current ep. However, an edge
may be generated in multiple ways. For instance, both edge
pairs z 5 a % y and 2 25 b % y could generate the same
edge = = y and propagate further to generate more duplicated
edges. These duplicated edges may cause the computation to
fail to terminate. Therefore, the key to termination is to avoid
duplication of path-edges. One source of duplication is join-
node, which has multiple incoming intraprocedural original-
edges. A return-node can also become a join-node during the
computation as the summary-edges are generated. We thus
consider all the return-nodes as potential join-nodes. To avoid
duplication of path-edges, we maintain a reverse index src

rmined by the empti-

of the path-edges for each join-node. With src, no duplicated
path-edges will be generated and propagated further as shown
in Lines 7 and 11. Another source of duplication is start-node,
which has multiple incoming interprocedural call-edges. As
shown by Algorithm 2, only non-initialized self path-edges
are considered active path-edges at the beginning. Therefore,
we only need to take care of the duplication of self path-edges.
For a start-node x, we synchronize on init(x) to ensure that
only one self path-edge can be generated (and therefore only
in one thread). No duplicated self path-edges will be processed
in two different threads in the next superstep.

Computation Closure. Naively, all the new path-edges gener-
ated according to the s of the InputChunk should be put

immediately to generate more
transitive path-edges i pergtep, rather than exporting to
OutputStream and being p%&n the next superstep. In
this way, each thread can ¥foduce as many reachable path-
edges as possible to accelerate the conyg
reduce the /O costs. In particular, we n WorkList for
the closure computation and initiali InputStream
(Line 2). PEdges,,,,, contains the new pa —(@ocessed in
the current superstep. All new non-self patfre e added
to WorkList as well as PEdges,,,,, and proce i

and all new self edges are added to PEdgesn. T
computation continues until all the path-edges 1
have been processed. Note that although such full §los
computation brings performance benefits, it could lea
massive memory consumption, which smashes the scalabili
Fortunately, we can do fine-grained tuning to terminate the
closure computation at any moment and stream all the unpro-

cessed path-edges to OutputStream, which would not affect
the correctness.

cence and thus

Double-join Implementation. In the CFL-reachability formu-
lation shown as Definition 3, the production S < [; N r;
involves three symbols, which means that we need to perform
a double-join operation on three edges labeled as the RHS
to generate a summary-edge. Given the double-joining of a
path-edge = I, y, not only all the return-edges y —+ A but
also the call-edges v L, 2 are required. All the return-edges
y — A can be found in an efficient way by indexing on the
source node y and label r; based on the two-layered index
structure. However, it can not support the efficient query of
call-edges v Y, 2 since the source node is unknown. The
key to efficient double-joining is quickly finding all the call-
edges whose target node is x. To this end, we adopt a new
approach by introducing a reverse edge z L, v for each call-
edge v L, 2 in the exploded super-graph. In this way, we
can obtain all the reverse call-edges via the edge index and
perform the double-joining efficiently.

Edge Deletion. DStream keeps all the original-edges in mem-
ory throughout the computation. Although DStream maintains
these edges in a very compact way, they still consume con-

siderable memory for a large-scale graph. We observed that
many normal-edges are not used all the time. For instance,
a normal-edge having only one predecessor path-edge only
needs to be used once; they are redundant after their use. As
such, we can delete redundant original-edges from memory
in time to reduce memory footprint. We propose a simple
but effective edge deletion strategy: given a normal-edge,
if all its predecessor normal-edges have been deleted, this
edge can also be deleted safely. The simplest case is the
normal-edge whose source-node is a start-node. According to
the IFDS algorithm, each start-node will be processed only
once to produce a self path-edge. Therefore, the normal-edges
whose source-node is a start-node will also be used only
once and can be deleted after the use. The summary-edges
can be deleted according to the same strategy. By deleting
edges, we can reclaim memory so that more path-edges can be
processed in a subsequent superstep, which in turn accelerates
the convergence of computation.

Example. Figure 4 shows a complete example to illustrate
how computation closure, double-join, and edge deletion work,
where the computation reaches the fixed point after three
supersteps. We use only one thread here for brevity, as the
parallel computation has been illustrated in Figure 3. At
the very beginning, Figure 4a shows the exploded super-
graph and the seed path-edge {Ny}. Figure 4b shows the
first superstep, whose input-stream is {No}. In this superstep,
DStream computes the closure for Ny as {N; | ¢ € [1,4]}
and generates one new self path-edge N5 which is put into

Edges ». Note that node 2 is a call-node; thus, its associated

sraais updated to {0}. The normal-edges ey~e3 are deleted at
&of the superstep. Figure 4c shows the second superstep,
hosed

t-stream is {Ns}. In this superstep, two path-edges
Ns fad generated first, and then the summary-edge
So : N 54 o generated by the double-joining performed
betwee

IV. EVALUATI

To demonstrate the performanc scalability of our
streaming-based data-parallel DStream framework, we con-
ducted a comprehensive set of experiments. Since the precision
and effectiveness of the IFDS algorithm have already been
validated in prior work [2], [18], we mainly focus on the
efficiency and scalability of DStream in our evaluations and
discuss analysis precision briefly in § IV-E. Our evaluation
seeks to answer the following three research questions:

RQ1. How does DStream perform and how does it com-

pare with state-of-the-art tools?

RQ2. How about the thread scalability of DStream?

RQ3. How about the memory scalability of DStream?

2498

sre(2) = {0}
@ sre(5) = {0}

SEdges = @ InputStream = { Ny} InputStream = { N5} InputStream = &
PEdges = {Ny} SEdgesp = @ SEdgesp = {So} SEdgesp = @
SEdges = @ SEdges = & SEdges = &
PEdgesp = {Ns} PEdgespy = @ PEdgesp = &
PEdges;, = {N;|i € [1,4]} PEdgesy,,, = {N;|i € [6,9]} PEdgesin, = &
PEdges = {N;|i € [0,5]} PEdges = {N;l|i € [0,9]} PEdges = {N;|i € [0,9]}
(a) Input (b) Superstep-1 (c) Superstep-2 (d) Superstep-3

of double join, edge deletion, and computation closure. The red edges are newly
s will be deleted at the end of the superstep.

Fig. 4: An example to illustrate the proceg
generated in each superstep, and the bl

TABLE I: Characteristics and performanfe f taint analysis on 36 subject apps. The first 3 columns provide the essential
information about the apps. The middle’ 3o s depict the complexity of analyzing these apps. The last 4 columns report
the analysis time (in seconds) of each toolNgith ds, 16 GB maximum available memory, and the time limit of 1 hour.
OOM indicates out of memory error, while O illiCates out of the time limit.

App. Abbr. Version Sie | #Source [#Sink | FlowDroid DiskDroid | Graspan | DStream
F-Droid FDD 1.1 7.5V1B. 92 380 756 739 399 103
acr.browser.lightning ABL 5.1.0 .3 23 110 OOM | OOM,.+OO0T 530 126
bus.chio.wishmaster BCW 1.0.2 3.8MB 8 313 212 180 105 24
com.alfray.timeriffic CAT 1.09.05 | 34 117 200 512 90 14
com.app.Zensuren CAZ 1.21 177 93 13 9 11 4 3
com.genonbeta. TrebleShot CGT 142 4.2MB 19, 79 OOM OO0T 563 94
com.github.axet.bookreader CGAB 1.12.14 28MB 1 OOM 725 194 50
com.github.axet.callrecorder CGAC 1.7.13 5.6MB OOM 593 195 30
com.ichi2.anki CIA 294 11MB 6 OOM OO0T 555 91
com.igisw.openmoneybox CIO 34.1.11 10MB 42 213 OOM 00T 554 102
com.ilm.sandwich CIS 224f | 3.0MB 6 10 19 6 4
com.kanedias.vanilla.metadata CKVM 1.0.4 6.3MB 4 18 399 13 9
com.kunzisoft.keepass.libre CKKL 3.02 | 99MB 13 570 OO0T 440 75
com.orgzly COR 1.8.5 | 49MB 27 487 400 86
com.poupa.vinylmusicplayer CPV 1.3.0 6.2MB 32 298 4 4
com.zeapo.pwdstore CZpP 1.33 | 43MB 12 186 510 76
de.k3b.android.androFotoFinder DKAA 0.8.0 1.4MB 32 394 573 93
dk.jens.backup DJB 034 | 6.2MB 5 134 4 3
fr.gouv.etalab.mastodon FGEM 2.28.1 28MB 85 287 457 107
hashengineering.groestlcoin.wallet HGW 7.11.1 3.2MB 4 192 189 68
im.vector.app IVA 1.2.2 | 109MB 13 340 612 156
nodomain.freeyourgadget.gadgetbridge NFG 0.6.0 6.4MB 72 739 638 131
nya.miku.wishmaster NMW 1.5.0 | 3.4MB 19 282 198 210 84 31
org.adw.launcher OAL 1.3.6 1.IMB 13 136 27 185 10 6
org.csploit.android OCA 1.6.5 3.5MB 7 110 10 12 5 3
org.decsync.sparss.floss ODSF 1.16.0-1 2.8MB 36 252 OOM OO0T 466 72
org.fdroid.fdroid OFF 1.8 | 7.6MB 102 393 674 634 215 69
org.gateshipone.odyssey OGO 1.2.0 3.5MB 23 230 OOM OO0T 641 113
org.kde.kdeconnect_tp OKKT 1.135 | 44MB 10 225 OOM 861 284 39
org.lumicall.android OLA 1.13.1 5.6MB 38 216 OOM 477 171 38
org.openpetfoodfacts.scanner 00S 3.6.8 12MB 57 393 OOM OO0T 421 82
org.secuso.privacyfriendlyactivitytracker | OSPA 24 | 4.6MB 14 290 OOM OO0T 768 93
org.secuso.privacyfriendlytodolist OSPT 2.1 2.3MB 8 50 43 80 19 4
org.secuso.privacyfriendlyweather OSPW 2.1.1 4.8MB 50 35 207 243 71 16
org.smssecure.smssecure 0SS 0.16.12 13MB 67 273 OOM 00T 610 110
org.yaxim.androidclient OYA 0.9.3 1.9MB 45 217 174 241 62 17

2499

A. Experimental Setup

Platform. All experiments were conducted on a commodity
PC, with an 8-core 3.60GHz Intel i7-9700K CPU, 32 GB avail-
able memory, and 1 TB magnetic disk storage, running Ubuntu
20.04.3 LTS (Focal Fossa). In the following experiments, we
set the maximum number of available threads of all tools to
8 (except for RQ2) and limited the maximum memory usage
of all tools to 16 GB (except for RQ3).

Instance Analysis. Analogous to the declarative program
analysis [25], [26], we separate the computation back-end from
the client analysis implementations. DStream is a back-end
analysis engine that supports various IFDS instance analyses.
analysis in DStream, we need a
input ESGs for DStream back-end. In

g taint analysis, the most common
instance of the IFDS

@ ork, as the instance analysis. We
implemented a taint agalyfis nt-end with Soot [27] and
SPARK [28]. Instead of c@ the aliased access paths
incrementally, we leveraged the off-the-shelf SPARK alias

analysis to construct the exploded super-

our evaluation,

the same configuration files (e.g., SourcesAndSi
FlowDroid uses to find sources and sinks in An

Baselines. We selected three state-of-the-art tools: (nfem
only) FlowDroid [2], (disk-assisted) DiskDroid [4] an
based) Graspan [18] as the baselines, and compared them
DStream in terms of both efficiency and scalability. FlowDroid
and DiskDroid themselves are taint analyzers. We can compare
directly with them. We obtained the executables (jar files) of
both DiskDroid and FlowDroid from the link for artifacts® of
DiskDroid, and run DiskDroid with its default disk-swapping
configuration (i.e., group by source). Graspan is a general
analysis framework that does not have a front-end for taint
analysis. We ported the taint analysis front-end implemented
for DStream to Graspan by adding function inlining. We
obtained the executable of Graspan by building it from the
source code, which is publicly available at GitHub?.

Benchmarks. We adopted all the open-source apps from the
benchmarks of [3] and [4] to form the benchmarks of our
evaluation. Since we are focusing on analyzing large-scale
programs, if an app can be analyzed by every tool (DStream
and all the baselines) within 10 seconds, we filtered it out
from the benchmarks. Columns 1-6 of Table I show the
characteristics of the remaining 36 apps of the benchmarks in
detail. The first 3 columns provide the essential information
of the apps. The following 3 columns depict the complexity
of analyzing these apps, where the app size approximates the
size of the codebase of the app, and the numbers of the taint
sources and sinks capture the taint analysis workloads of the

2DiskDroid artifacts: https://doi.org/10.6084/m9.figshare.13246316
3Graspan at GitHub: https:/github.com/Graspan/graspan-cpp

2500

app to some extent. We run each tool 5 times on each app and
report the average data of 5 runs.

B. DStream Performance

To understand the performance of DStream, we compared
it with three state-of-the-art tools using taint analysis. We
limited the maximum available memory to 16 GB for each
tool, as our goal is to enable developers to benefit from precise
static analysis on their development machines. Columns 7—
10 of Table I show the analysis time (in seconds) for each
tool. Note that the analysis time of DStream and Graspan
(i.e., the last two columns in Table I) include the time cost
for constructing the input exploded super-graph with alias
analysis. OOM indicates that the tool runs out of memory
when analyzing the app, while OOT denotes that the tool can
not finish the analysis of the app within 1 hour.

As shown in the last column of Table I, DStream can finish
the analysis on most apps (28 of 36) within 100 seconds.
Comparing the last two columns in Table I, we can see
that DStream outperforms Graspan on all the apps (except
they tie on the “small” app CPV), with a maximum speedup
of 8.26x (OSPA) and an average speedup of 4.37x. The
comparison reveals that DStream is much more efficient than
Graspan, which is attributed to the fact that DStream adopts
the streaming-based approach and is much less computing
intensive than Graspan because of no function inlining.

Column 7 of Table I shows the results of FlowDroid. More
than half of the apps (21 of 36) are marked as OOM, which
indicates that FlowDroid runs out of memory on these apps.

he fact confirms that the memory-intensive nature of the
ﬁramework is a significant obstacle to its scalability.

or the apps that FlowDroid can finish, DStream achieves a
maxij
of

m¥peedup of 14.29x (CAT) and an average speedup

able I shows the analysis time of DiskDroid
enchmarks, in which almost half of the apps
OOT and 3 apps are marked as
is a disk-assisted IFDS solution
, it should not run OOM in
id running OOM is that the
. Mgf specifically, the error
to h time performing GC
and can only reclaim very li ap pace. OOM,,. shows
that DiskDroid’s ad-hoc disk-niemogy swapping strategy is
ineffective for certain cases. For 15 at DiskDroid runs
OOT, DiskDroid seems to be trapped into the prohibitively
expensive fine-grained disk I/O. Even if we extended the time
limit to 3 hours, DiskDroid still runs OOT on these apps. For
21 apps that at least one of FlowDroid and DiskDroid can
finish, DiskDroid did not show absolutely better performance
than FlowDroid. DiskDroid performed worse than FlowDroid
on more than half of the apps (11 of 21), which suggests that
the performance cost of DiskDroid’s disk-swapping strategy

(15 of 36)
OOM,,.+00T*. As
with disk-swapping
theory. The reason 1%
GC overhead limit is esCeed:
occurs when the JVM spe

4FlowDroid/DiskDroid does not terminate immediately when OOT hap-
pens. New tasks are not allowed to submit. However, all submitted tasks
continue to be processed, which may lead to OOM.

outweighs its memory gain. On all the apps, DStream con- Data of FDD Data of DJB
sistently outperforms DiskDroid, with a maximum speedup of 1,000 30
44.33x (CKVM) and an average speedup of 14.46x.

800

The answer to RQ1: DStream finishes the analysis on
most apps within 100 seconds with 8 threads and 16 GB
maximum available memory and outperforms all other
tools on all the apps. Overall, these results indicate that

400

Time (Seconds)
[=3
o
o
Time (Seconds)
- [T N
o [=] o o &)
|
!/
!’ /
|
1+

200

0 0
the streaming-based approach of DStream significantly im- ' Number of Threads ' Number of Threads
proves the IFDS framework’s performance in terms of
analysis time and memory usage. Data of OFF Data of CAZ

-
=}
IS}
S

@

=]

C. Thread Scalability
Parallelism sup

cial to fully utilize modern com-
puting resource vestigate the parallelism of DStream
and answer RQ2, we ri oW Droid, DiskDroid, Graspan, and
DStream on each sull &o ith 1, 2, 4, and 8 threads,

respectively. In this ex%e limited the maximum ° > J 5
available memory to 16 GEVand set the time limit to 1 hour Number of Threads Number of Threads

for all tools.
Figure 5 shows the analysis time (in g€) of DStream] o .
and the baselines on the benchmarks arying numbers Fig. 5: Analysis time (in second.s) of 4 tlools on 4 selected apps
of threads. For the sake of brevity of theflin s, we have (FDD, DJB, IFF and CAZ) with varying numbers of threads
selected 4 apps (FDD, OFF, DJB, and CA esentation. (1> 2, 4, and 8).
These 4 apps are selected because, first, they®stn b
by all the tools. Second, among these 4 apps, F
cost the longest execution time of FlowDroid. D

Time (Seconds)
[V ' =) g
o o o [=]
o (=] o o
Time (Seconds)

[NN

(=}] [=} o
/ (

|

(=)

N
IS
3

’ —+ FlowDroid + DiskDroid —+ Graspan —=— DStream ‘

D. Memory Scalability

The goal of DStream is to enable developers to lever-
cost the shortest execution time of FlowDroid. Thus, age precise static analysis (in particular, the IFDS analysis)
them as representative complex and simple cases, respectivi ore practically on their development machines with .li.rnited

We can see from Figure 5 that both DStream and Grasp avgilable memory. To un.dersFand the memory .scalab}llty of
scale almost linearly as the number of threads increases, no » we compared it with FlowDroid, DiskDroid, and
matter on complex or simple apps. However, it is surprising raspagmysing taint analysis with varying memory budgets.
that their parallelism is far from satisfactory for the other two As @al AM conﬁgur?non for a developmer}t machine
tools, especially on complex apps. For FDD, both FlowDroid doe i & 32 GB typically (e.g., the n?achlne f)f our
and DiskDroid slow down as the number of threads increases experimggfal plgiform), we conducted the experiment with dif-
from 2 to 8. For OFF, FlowDroid slows down as the number erent memggy budgets (in GB) of 8, 16 and 32, respectively.
of threads increases from 2 to 8, while DiskDroid slows 1N this experiment, we © maximum number of threads to
down as the number of threads increases from 4 to 8. The 8 and the time limit
speedup trends of these tools differ so much because of the use TABLE II: #OOM,
of different parallelism mechanisms. FlowDroid/DiskDroid
uses naive task parallelism, while DStream, as well as Gras-
pan, devises a data-parallel algorithm by revisiting the CFL-
reachability from a data-parallel perspective and solving it as a (i.e., 36), as OOM+OOT could occurfls s
big-data problem. Data parallelism scales the computation by

tools with varying mem
Note the sum of these nu

GB) of 8, 16, and 32.
column of DiskDroid

decomposing the data set into concurrent processing streams FlowDroid DStream
posing ent p g , Mem (GB) | 8 | 16 32| 8| 1632 | S| 1632 8] 16] 32
all performing the same set of operations. Theoretically, the #0OM W20 [8] 3] 3 2[0[0] 0] 0] 0] 0
. . #OOT 0 0] I |15 1B3] 0] 0] 0] 0] 0] 0
more threads a data-parallel algorithm has, the higher the Frmshed T8 TI5 T 17121 121 725 T36 136 136 36 136 1 36

speedup (before reaching the limit of the speedup).

Table II shows the numbers of (OOM, OOT and finished)
apps for all tools with varying memory budgets. As shown,
DStream and Graspan finished the analysis on all the apps with
all different memory budgets. For FlowDroid, the number of
finished apps increases with the memory budget, but more
than half of the benchmarks (19 of 36) still failed to finish
the analysis with 32 GB memory budget. Note that there is an

The answer to RQ2: DStream, as well as Graspan, scales
almost linearly as the number of threads increases, while
FlowDroid and DiskDroid even slow down as the number
of threads increases. It shows that fine-grained data-parallel
computation is of significant importance for a highly parallel
IFDS solver.

2501

OOT app for FlowDroid at a 32 GB memory budget, but it
does not appear at smaller memory budgets. The reason is that
the app indeed took a very long time to finish the analysis at
all memory budgets, but the analysis on the app at a smaller
memory budget was terminated earlier by an out-of-memory
error, which caused the app to be reported as OOM instead of
OOT. The report of FlowDroid confirms again that the IFDS
analysis is memory- and computing-intensive. For DiskDroid,
the number of finished apps is consistently greater than that of
FlowDroid, but the numbers of (OOM, OOT and finished) apps
remain almost constant as the memory budget increases. The
almost constant trend indicates that the ad-hoc disk-swapping
strategy does not solve the memory bottleneck problem of the

rory budgets (in GB) of 8, 16,

. eRgri show that DStream can
achieve the goal of enabling@€veldpers to leverage the [IFDS

analysis on their development machines.

E. Analysis Precision

DStream theoretically has the same gha ecision as
FlowDroid because the basic algorithm of {ain is fol-
lowed by DStream remains unchanged. In exjieriients,

we checked the analysis results reported by tr]
FlowDroid. DStream can identify all the source-sink p.
FlowDroid/DiskDroid reports. Due to the discrepanc
implementation of DStream and FlowDroid, the false positi
they reported are slightly inconsistent. But they do not va
significantly regarding the number of false positives.

Note that compared with the demand-driven alias analysis
used by FlowDroid, DStream adopts a less precise alias anal-
ysis (i.e., SPARK [28]) to construct the exploded super-graph.
But our experimental results validate that DStream can identify
all the source-sinks pairs FlowDroid finds. The extra number
of false positives reported by DStream is also negligible. It can
be explained from two aspects. First, the flow-sensitivity seems
not crucial for Java applications, and SPARK already obtains
most of the benefit of flow-sensitivity by splitting variables;
Second, both context- and flow-sensitivity are, to some extent,
covered by the subsequent taint tracking. In other words, the
false positives introduced by imprecise alias analysis are very
likely to be filtered by the context- and flow-sensitive taint
analysis afterward.

V. RELATED WORK

In this section, we survey several work related to the IFDS
framework[1] from the following aspects:

Applicability. The IDE framework [29] generalizes the IFDS
framework for the IDE problems, and more general CFL-
reachability problems are described in [30]. Naeem et al. [31]
provides several practical IFDS extensions, making it appli-
cable to a wider class of interprocedural dataflow problems.
Access-Path Abstraction [32] is a novel IFDS extension,

which combines efficiency with maximal precision. Schubert
et al. [33] builds an extendable IFDS/IDE solver for C/C++
in LLVM. Madsen et al. [34] formulates IFDS/IDE in FLIX,
a Datalog-inspired declarative programming language.

Efficiency. Rodriguez et al. [13] introduces an actor-based
concurrent [FDS implementation. Bodden [17] develops a
generic (multi-threaded) implementation of IFDS/IDE solver
in Soot [27]. Reviser [12] is an incremental IFDS algorithm.
He et al. [3] provided a sparse IFDS algorithm to accelerate
the performance. Shi et al. [14] presents a parallel bottom-up
IFDS/IDE implementation that pipelines the sub-tasks.

Scalability. WALA [35] offers a memory-efficient bit-vector-
based IFDS implementation. Weiss et al. [36] proposed a
database-backed strategy for IFDS problems. CleanDroid [5]
is an IFDS implementation with semantic garbage collectors.
DiskDroid [4] improves memory scalability through an ad-
hoc disk-swapping strategy. Following the line of systemizing
program analysis, various systems are developed to support
scalable interprocedural analysis. Graspan [19], BigSpa [37],
and Grapple [38] scale the context-sensitive CFL-reachability
analysis in a single machine and distributed environment.
Chianina [39] is an out-of-core system supporting the general
flow- and context-sensitive dataflow analysis.

Our work aims to tackle the poor scalability of the IFDS
framework, especially when analyzing large-scale programs.
Different from the existing approaches, which either rely on
a heuristic-based strategy [4] or lack the dedicated design to

A IFDS problems [18], we propose a systematic streaming-based

ata-parallel DStream framework to improve the memory

S bility. Moreover, thanks to the flexible control of mem-
cOnsumed during computation and fine-grained parallel

accel , DStream significantly outperforms Graspan and
DislfDroiddingfrms of both efficiency and scalability.
VI. CONCLUSION

We have gfOposed DStream, a streaming-based data-parallel
ing the poor scalability of the
mproves the scalability from two
ased out-of-core computation
I/O, cost significantly, and
(2) using fine-grained all putation to improve
computing efficiency. Experime sults show that DStream
can improve the scalability o IFES algorithm in large-
scale programs and can outperform th f-the-art in terms
of both efficiency and scalability.

ACKNOWLEDGMENT

We would like to thank Zhaogui Xu and Peng Di from
Ant Group, and the anonymous reviewers for constructive
comments and thoughtful feedback on earlier drafts. Our
thanks also go to Lian Li from ICT CAS for providing the
code of baselines. This work is supported in part by the
Leading-Edge Technology Program of Jiangsu Natural Sci-
ence Foundation (No. BK20202001) and the National Natural
Science Foundation of China (No0.62232008, No0.62172200,
No.62272217).

2502

(1]

[2]

[3]

[4]

[5]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, 1995, pp. 49-61. [Online]. Available:
http://doi.org/10.1145/199448.199462

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for Android apps,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). ACM, 2014, pp. 259-269. [Online]. Available: https:
//doi.org/10.1145/2594291.2594299

D. He, H. Li, L. Wang, H. Meng, H. Zheng, J. Liu, S. Hu,
L. Li, and J. Xue, “Performance-boosting sparsification of the IFDS
algorithm with applications to taint analysis,” in Proceedings of the
34th IEEE/ACM I ional Conference on Automated Software
“Scaling up the IFDS

4 I’
in Proceedings of thé @

Code Generation and Op

H. Li, H. Meng, H. L. Cao, J. Lu, L. Li, and L. Gao,
with efficient disk-assisted computing,”
ERACM International Symposium on

0). 1EEE, 2021, pp. 236-247.

Software Engineering (ICSE). 1EEE, 20
Available: https://doi.org/10.1109/ICSE43502.
Y. Li, T. Tan, Y. Zhang, and J. Xue, “Progn
sequential criteria,” I
Object-Oriented Programming (ECOOP). Schlo
Zentrum fiir Informatik, 2016, pp. 15:1-15:27.
https://doi.org/10.4230/LIPIcs. ECOOP.2016.15
R. Manevich M. Sridharan S. Adams M. Das,

ProceedmgA of the 12th ACM SIGSOFT Internatlanal Symp 1
Foundations of Software Engineering (FSE). ACM, 2004, pp. 63
[Online]. Available: https://doi.org/10.1145/1029894.1029907

S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A system and language for
building system-specific, static analyses,” in Proceedings of the 23rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM, 2002, pp. 69-82. [Online]. Available:
https://doi.org/10.1145/512529.512539

G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in Proceedings of the 30th ACM/IEEE International
Conference on Software Engineering (ICSE). ACM, 2008, pp.
171-180. [Online]. Available: https://doi.org/10.1145/1368088.1368112
D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding
and detecting evolution-induced compatibility issues in Android apps,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE). ACM, 2018, pp. 167-177.
[Online]. Available: https://doi.org/10.1145/3238147.3238185

A. Gotsman, J. Berdine, and B. Cook, “Interprocedural shape
analysis with separated heap abstractions,” in Proceedings of the 13th
International Symposium on Static Analysis (SAS). Springer, 2006,
pp- 240-260. [Online]. Available: https://doi.org/10.1007/11823230_16
S. Arzt and E. Bodden, “Reviser: Efficiently updating IDE-/IFDS-based
data-flow analyses in response to incremental program changes,”
in Proceedings of the 36th International Conference on Software
Engineering (ICSE). ACM, 2014, pp. 288-298. [Online]. Available:
http://doi.org/10.1145/2568225.2568243

J. Rodriguez and O. Lhotdk, “Actor-based parallel dataflow analysis,”
in Proceedings of the 20th International Conference on Compiler
Construction (CC). Springer, 2011, pp. 179-197. [Online]. Available:
http://doi.org/10.1007/978-3-642-19861-8_11

Q. Shi and C. Zhang, “Pipelining bottom-up data flow analysis,”
in Proceedings of the 42nd ACM/IEEE International Conference on
Software Engineering (ICSE). ACM, 2020, pp. 835-847. [Online].
Available: https://doi.org/10.1145/3377811.3380425

D. Helm, F Kiibler, J. T. Kolzer, P. Haller, M. Eichberg,
G. Salvaneschi, and M. Mezini, “A programming model for semi-
implicit parallelization of static analyses,” in Proceedings of the 29th

2503

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). ACM, 2020, pp. 428-439. [Online]. Available:
https://doi.org/10.1145/3395363.3397367
V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proceedings of the 37th IEEE/ACM International Conference on
Software Engineering (ICSE). 1EEE, 2015, pp. 426-436. [Online].
Available: https://doi.org/10.1109/ICSE.2015.61
E. Bodden, “Inter-procedural data-flow analysis with IFDS/IDE and
Soot,” in Proceedings of the 1st ACM SIGPLAN International Workshop
on State of the Art in Java Program Analysis (SOAP). ACM, 2012,
pp. 3-8. [Online]. Available: https://doi.org/10.1145/2259051.2259052
K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani, “Graspan:
A single-machine disk-based graph system for interprocedural static
analyses of large-scale systems code,” in Proceedings of the 22nd
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2017, pp.
389-404. [Online]. Available: https://doi.org/10.1145/3037697.3037744
Z. Zuo, K. Wang, A. Hussain, A. A. Sani, Y. Zhang, S. Lu, W. Dou,
L. Wang, X. Li, C. Wang, and G. H. Xu, “Systemizing interprocedural
static analysis of large-scale systems code with Graspan,” ACM
Transactions on Computer Systems (TOCS), vol. 38, no. 1-2, pp.
4:1-4:39, 2021. [Online]. Available: https://doi.org/10.1145/3466820
M. Sharir and A. Pnueli, “Two approaches to interprocedural data flow
analysis,” in Program Flow Analysis: Theory and Application. Prentice
Hall, 1981, pp. 189-233.
T. Reps, “Shape analysis as a generalized path problem,” in Proceedings
of the 1995 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM). ACM, 1995, pp.
1-11. [Online]. Available: https://doi.org/10.1145/215465.215466
M. Sridharan, D. Gopan, L. Shan, and R. Bodik, “Demand-driven
points-to analysis for Java,” in Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). ACM, 2005, pp. 59-76.
[Online]. Available: https://doi.org/10.1145/1094811.1094817
X. Zheng and R. Rugina, “Demand-driven alias analysis for C,” in
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). ACM, 2008, pp.
197-208. [Online]. Available: https://doi.org/10.1145/1328438.1328464
G. Valiant, “A bridging model for parallel computation,”
munications of the ACM (CACM), vol. 33, no. 8, pp. 103-111,
1990. [Online]. Available: https://doi.org/10.1145/79173.79181
, H. Jordan, P. Suboti¢, and T. Westmann, “On fast large-scale
is in datalog,” in Proceedings of the 25th International
Compiler Construction (CC). ACM, 2016, pp. 196-206.

and Y. Smaragdakls “Smctly declaratlve specification
ated points-to analyses,” in Proceedings of the 24th
eygmn Object Oriented Programming Systems
. ACM, 2009, pp. 243-262.
.org/10.1145/1640089.1640108
non, L. Hendren, P. Lam,

[Online]. Available:
R. Vallée-Rai,
V. Sundaresan,

and

entre for Advanced Studies
M, 1999, pp. 13:1-13:11.
.5555/781995.782008

pomts -to analysis using
nal Conference on

O. Lhotdk and L. Hendren, °
spark,” in Proceedings of the
Compiler Construction (CC). 2003, pp. 153-169.
[Online]. Available: https://doi.org/10s /3—540»36579—6_12

M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural dataflow
analysis with applications to constant propagation,” Theoretical
Computer Science (TCS), vol. 167, no. 1, pp. 131-170, 1996. [Online].
Available: http://doi.org/10.1016/0304-3975(96)00072-2

T. Reps, “Program analysis via graph reachability,” Information and
Software Technology (IST), vol. 40, no. 11, pp. 701-726, 1998.
[Online]. Available: https://doi.org/10.1016/S0950-5849(98)00093-7

N. A. Naeem, O. Lhotédk, and J. Rodriguez, “Practical extensions to the
IFDS algorithm,” in Proceedings of the 19th International Conference
on Compiler Construction (CC). Springer, 2010, pp. 124-144.
[Online]. Available: http://doi.org/10.1007/978-3-642-11970-5_8

J. Lerch, J. Spith, E. Bodden, and M. Mezini, “Access-path Abstraction:
Scaling field-sensitive data-flow analysis with unbounded access paths,”
in Proceedings of the 30th IEEE/ACM International Conference on

(33]

[34]

[35]

[36]

Automated Software Engineering (ASE). 1EEE, 2015, pp. 619-629.
[Online]. Available: https://doi.org/10.1109/ASE.2015.9

P. D. Schubert, B. Hermann, and E. Bodden, “PhASAR: An
inter-procedural static analysis framework for C/C++) in Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS). Springer, 2019, pp. 393-410. [Online]. Available: https:
//doi.org/10.1007/978-3-030-17465-1_22

M. Madsen, M.-H. Yee, and O. Lhotdk, “From Datalog to Flix: A
declarative language for fixed points on lattices,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). ACM, 2016, pp. 194-208. [Online].
Available: http://doi.org/10.1145/2908080.2908096

WALA: T.J. Watson Libraries for Analysis. Accessed: 2022. [Online].
Available: https://github.com/wala/WALA

C. Weiss, C. Rubio-Gonzilez, and B. Liblit, “Database-backed program
analysis for scalable error propagation,” in Proceedings of the
37th IEEE/ACM Interpational Conference on Software Engineering,
Volume 1 (ICSE). , 2015, pp. 586-597. [Online]. Available:
https://doi.org/10.

[37]

[38]

[39]

Z. Zvo, R. Gu, X. Jiang, Z. Wang, Y. Huang, L. Wang, and X. Li,
“BigSpa: An efficient interprocedural static analysis engine in the
cloud,” in Proceedings of the 33rd IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 1EEE, 2019, pp. 771-780.
[Online]. Available: https://doi.org/10.1109/IPDPS.2019.00086

Z. Zuo, J. Thorpe, Y. Wang, Q. Pan, S. Lu, K. Wang, G. H.
Xu, L. Wang, and X. Li, “Grapple: A graph system for static
finite-state property checking of large-scale systems code,” in
Proceedings of the 14th European Conference on Computer Systems
(EuroSys). ACM, 2019, pp. 38:1-38:17. [Online]. Available: https:
//doi.org/10.1145/3302424.3303972

Z. Zuo, Y. Zhang, Q. Pan, S. Lu, Y. Li, L. Wang, X. Li, and G. H. Xu,
“Chianina: An evolving graph system for flow- and context-sensitive
analyses of million lines of C code,” in Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI). ACM, 2021, pp. 914-929. [Online].
Available: https://doi.org/10.1145/3453483.3454085

U

2504

%

