

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2022-IC-002

Technical Report 2022

prohibited.

2022-IC-002

VITAS : Guided Model-based VUI Testing of VPA Apps

Suwan Li，Lei Bu，Guangdong Bai，Zhixiu Guo，Kai Chen，Hanlin Wei

Suwan Li
State Key Laboratory for Novel
Software Technology, Nanjing

University
China

VITAS : Guided Model-based VUI Testing of VPA Apps

lisuwan@smail.nju.edu.cn

Lei Bu∗
State Key Laboratory for Novel
Software Technology, Nanjing

University
China

bulei@nju.edu.cn

Guangdong Bai
School of ITEE, University of

Queensland
Australia

g.bai@uq.edu.au

Zhixiu Guo
Institute of Information Engineering,

Chinese Academy of Sciences
China

guozhixiu@iie.ac.cn

Kai Chen
Institute of Information Engineering,

Chinese Academy of Sciences
China

chenkai@iie.ac.cn

Hanlin Wei
School of ITEE, University of

Queensland
Australia

hanlin.wei@uq.edu.au

ABSTRACT
Virtual personal assistant (VPA) services, e.g. Amazon Alexa and
Google Assistant, are becoming increasingly popular recently. Users
interact with them through voice-based apps, e.g. Amazon Alexa
skills and Google Assistant actions. Unlike the desktop and mobile
apps which have visible and intuitive graphical user interface (GUI)
to facilitate interaction, VPA apps convey information purely ver-
bally through the voice user interface (VUI), which is known to
be limited in its invisibility, single mode and high demand of user
attention. This may lead to various problems on the usability and
correctness of VPA apps.

In this work, we propose a model-based framework named Vitas
to handle VUI testing of VPA apps. Vitas interacts with the app VUI,
and during the testing process, it retrieves semantic information
from voice feedbacks by natural language processing. It incremen-
tally constructs the finite state machine (FSM) model of the app
with a weighted exploration strategy guided by key factors such as
the coverage of app functionality. We conduct a large-scale testing
on 41,581 VPA apps (i.e., skills) of Amazon Alexa, the most popular
VPA service, and find that 51.29% of them have weaknesses. They
largely suffer from problems such as unexpected exit/start, privacy
violation and so on. Our work reveals the immaturity of the VUI
designs and implementations in VPA apps, and sheds light on the
improvement of several crucial aspects of VPA apps.

ACM Reference Format:
Suwan Li, Lei Bu, Guangdong Bai, Zhixiu Guo, Kai Chen, and Hanlin Wei.
2022. VITAS : Guided Model-based VUI Testing of VPA Apps. In 37th
IEEE/ACM International Conference on Automated Software Engineering.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3551349.3556957

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Oakland Center, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556957

1 INTRODUCTION
The occurrence of smart devices is producing a revolution in the
traditional graphics-based human computer interaction. They ex-
tensively embed voice-based user interaction to serve users in a
more convenient way than screen tapping or mouse movement.
On these devices, various virtual personal assistant (VPA) services
such as the Amazon Alexa [1] and Google Assistant [2] have be-
come easily accessible. At the same pace, an ecosystem centered
around the VPA services is formulated. The third-party developers
are enabled to create apps and release them through app stores.
The end users can seamlessly invoke the released apps from their
smart devices through verbal inputs. This model greatly stimulates
the boom of VPA apps. The app stores continue flourishing, and
various apps providing a wide range of functionalities from setting
alarms, playing music, gaming, to controlling smart home devices
become available. Taking Amazon Alexa as an example, the number
of its apps (also called skills) has risen from 130 to over 100,000
within three years by September 2019 [6].

Despite the proliferation of VPA apps, the intrinsic invisibility
feature of the voice-based user interaction may raise various con-
cerns on them. On their quality, given that conversation is the
mere way to interact with them, they should provide sufficient
feedback for the users to understand their status. On their security
property, since the apps strongly rely on the speech recognition
algorithms, an attacker can impersonate an app with another that
has a sound-similar invocation name (e.g., “full moon” v.s. “four
moon”), as revealed by recent studies [5, 26]. On their privacy
property, malicious apps may query personal information irrele-
vant to their functionalities, or eavesdrop the user’s conversations
stealthily [20, 34].

To tackle these concerns, some efforts have been committed.
Amazon puts in place a certification process that validates and tests
apps submitted to its app store. The details of this process is not
revealed though, and recent studies show that apps with policy
violations can still pass it [14]. Chatbot is a suitable technique for
VPA app testing [21], given that the app to test is a blackbox from
the perspective of the tester. It only relies on the current output of
the app, and attempts to explore app behaviors by generating in-
puts with natural language processing (NLP) techniques. However,

For Research Only

https://doi.org/10.1145/3551349.3556957
https://doi.org/10.1145/3551349.3556957

ASE ’22, October 10–14, 2022, Oakland Center, MI, USA Suwan Li, Lei Bu, Guangdong Bai, Zhixiu Guo, Kai Chen, and Hanlin Wei

without the context awareness, the generated test cases are often
either redundant or irrelevant to trigger bugs.

In this work, we seek a systematic approach to test VPA apps
and find their potential problems related to either quality, security
or privacy. We focus on automating the voice user interface (VUI)
testing, as much voice-based interaction has to be handled in the app
testing process. A potential technique is the model-based testing,
given that the app is usually designed with an explicit or implicit
model [8]. Model-based testing maintains an abstract model to
represent the internal control flow and behaviors of the system,
and generates targeted test cases based on the current state that
the system is in. The generated test cases can drive the execution
towards preferable testing goals, e.g., a high coverage or locations
deep in the system.

Despite thematurity ofmodel-based testing and its demonstrated
power in various domains, such as binary testing [29], real-time
systems testing [28] and graphical user interface (GUI) testing [25,
31], new challenges arising from applying it to VUI testing are
at least threefold. First, how to construct a model to represent the
behaviors of the app? In traditional domains, clear and informative
signals are available for the tester to determine the current state,
such as the program counter and valuation of state variables in
program testing, and the visible GUI elements in GUI testing. In
contrast, a VUI tester has to fully rely on the audio outputs to
determine the current state of the app. Second, how to generate
relevant test cases? In traditional domains, the tester is often offered
intuitive options to proceed, for example, the clickable buttons in
the GUI testing. In VUI testing, the tester has to interpret the audio
response and understand the context of the current state, in order
to generate relevant inputs. Third, how to handle the notorious path-
explosion problem? For a complex VPA app, there may be multiple
possible inputs in each of its states, and thus to enumerate all of
them is impractical. Without a proper reduction or guidance, the
tester may easily sink into the endless exploration.

To address these challenges, we propose a guided model-based
testing framework named Vitas. Vitas builds an FSMmodel to repre-
sent the behaviors of the VPA app under testing, and takes a strategy
of on-the-fly model construction. It starts with a small number of
inputs learnt from the app document using NLP techniques. During
the app execution, it constructs states from the audio outputs, so
as to expand the FSM model of the app. It also expands its input set
by generating new inputs based on the responses of the app, which
in turns are fed to the app to discover new states. The inputs Vitas
gives to the app include not only functionality-level inputs (e.g.,
start the game, and play some music, but also system-level
inputs (e.g., pause, stop, and resume). We design a weighted ex-
ploration strategy to guide the state exploration. The weight takes
into consideration the input type, covering new functionalities /
states and invocation times. The weighted exploration leads to a
high coverage of the state space in an efficient manner.

To characterize the quality of existing VPA apps, we conduct a
comprehensive study with Vitas on the VPA apps of Amazon Alexa,
the most popular VPA service. We test 41,581 Amazon skills, and
find that 51.29% of them have various weaknesses in their imple-
mentations (e.g., unexpected exit/start), or even violate user privacy.

We also evaluate the Vitas’s performance in terms of accuracy, cov-
erage and efficiency, and reveal that it significantly outperforms
the techniques that are based on random fuzzing and chatbot.
Contributions. The contributions of this work are summarized as
follows.

• Automatic VUI testing techniques. We propose automatic
techniques to handle the voice-based user interaction when test-
ing VPA apps. Our approach works with only publicly available
information of the app under testing, by taking the app as a
blackbox.

• Guided exploration. We propose Vitas, which uses guided
model-based testing to explore the state space of the app. Vi-
tas is designed to feed the app with inputs that are potential to
lead to large state coverage.

• Practical results. We apply our framework to a large-scaled
testing of 41,581 Amazon skills. The experiments demonstrate
its accuracy and efficiency performance. Our work manages to
identify weaknesses from real-world VPA apps.

2 BACKGROUND
VPA services, e.g., Amazon Alexa and Google Assistant, are a class
of software that provides services to users by voice-based interac-
tions. The functionality of a VPA service can be greatly extended
by VPA apps, e.g., skills to Amazon Alexa and actions to Google
Assistant, which are developed by third-party developers.

The AI-enhanced speech recognition capability of the VPA ser-
vice enables a convenient voice-based interaction. Figure 1 uses
an Alexa skill named “90’s Movie Trivia” to demonstrate the in-
teraction between the user and the VPA app. The user says the
invocation name of the skill to Alexa, who recognizes the skill
being invoked and initiates the skill. If the skill is new to her, she
may say the second command “Help” to understand what services
the app provides. Based on the feedback provided by the app, the
user can keep interacting with the skill through voice inputs to
use its services. We can see that each input from the user can trig-
ger the Alexa skill to give an output respectively. Therefore, we
choose to model this interactive behavior using classical finite state
machine (FSM), which will be illustrated in Section 3.1.

Below, we introduce the terms that are frequently used in the
context of VPA apps.

• Execution. The process from initiating the app till the app fully
stops is called a complete execution.

• Inputs. User’s inputs to the VPA apps. The inputs are purely
voice-based natural language, and are converted to texts through
Alexa’s voice recognition.

• Outputs. The outputs are the VPA app’s outputs to the user. A
decent VUI design should provide the user with sufficient context
to come up with effective inputs.

• Questions. The question is a special type of output and it often
expects a different type of input. The questions given by the VPA
app can be roughly categorized into five types, as summarized in
a recent study [21]. They are shown in Table 1.

• Interaction Round. During the execution, one conversation in
which the user gives an input and the app gives an output is
called an interaction round.

For Research Only

VITAS : Guided Model-based VUI Testing of VPA Apps ASE ’22, October 10–14, 2022, Oakland Center, MI, USA

Figure 1: The communication between the user and the “90’s
Movie Trivia” skill.

Table 1: the five types of questions in VPA apps’ outputs

Question
type

Description

Yes-no ques-
tions

A yes-no question usually begins with an auxiliary verb followed by
a subject and the expected inputs are “Yes” or “No”.

Selection
questions

A selection question offers a series of options to choose. The expected
inputs are composed of these options.

Instruction
questions

The verbs like “say” are the sign of instruction questions. The poten-
tial inputs appear after these verbs.

Wh ques-
tions

Wh questions begin with wh words. The keyword (usually the wh
words or nouns) determines the range of possible inputs. A knowledge
database for some keywords is built to get expected inputs to answer
Wh questions.

Mixed ques-
tions

A mixed question is a mixed form of the above four questions. Its
answers can be selected from the answers of above four questions.

3 APP MODEL AND APPROACH OVERVIEW
In this section, we define how the app behaviors are modeled by
Vitas. Then we introduce the overall framework of Vitas.

Figure 2: The Vitas framework.

3.1 VPA app behavior model
Vitas uses the finite state machine (FSM) to represent the behav-
iors of the app. An FSM model is defined as a five-tuple M =

(Q, Σ,δ , s0, F).
• Q represents the set of states.
• Σ represents the set of input events.
• F is the set of final states, and satisfies F ⊆ Q .

• s0 is the initial state and satisfies s0 ∈ Q .
• δ : Q × Σ → Q represents a transition function. The input
event e that triggers the transition from the state s0 to the
states s1 is represented as δ (s0, e) = s1.

Vitas maps the app behavior to an FSM model based on the in-
teraction rounds between the user and the app. In particular, it
recognizes the app’s outputs as states and users’ inputs as input
events. An interaction round, which triggers the app to output
according to an input, can be modeled as a transition.

This straightforward strategy may lead to a large number of
redundant states though. In our running example, the output “To
start a game choose a category, ...” appears in two different interac-
tion rounds, one with welcome messages and the other with some
brief descriptions. Two different states would be created as these
two rounds have different outputs. Nonetheless, both occurrences
mean the same state from the user’s perspective. To alleviate this
problem, we split the outputs into independent sentences, and map
each sentence to a state. In this way, the same sentence appearing
in diverse outputs would reuse the same state.

This simplification leads to another problem. More than one state
is created for an output if the output contains several sentences. To
cope with this, Vitas selects only one sentence to create the state,
so that each (unseen) output leads to only one state regardless of
the length of the output. Our strategy to select the sentence will be
discussed in Section 5.2.

3.2 Approach Overview
Figure 2 shows the overall framework of Vitas. It is composed of five
main steps in two phases: (1) extract important information from
VPA apps’ document, (2) communicate with the app, (3) construct
the on-the-fly model, (4) select a path, and (5) detect problems.
Phase 1: document processing. This phase aims to extract infor-
mation to facilitate the testing (in terms of both user input genera-
tion and guidance) from the app’s document. The app document
usually includes its name, invocation name, and description. The
invocation name is used for launching the app, which is mandated
to be unique. Otherwise, users may open an unexpected app. Taking
Alexa skills as an example, the invocation input is “Alexa, open +
<invocation name>”. The app’s description is usually written by its
developer to give users an introduction on its features, functionali-
ties and usage. Therefore, in this phase, Vitas processes these fields
to retrieve inputs and functionalities of the app. The app document
processing is detailed in Section 4.
Phase 2: model-based testing and problem detection. Vitas
constructs the model on the fly during the testing process. Initially,
it uses the invocation input to launch the app. When receiving
outputs from the app, Vitas analyzes them to extract new states
and transitions, and expand the app’s model. Then, it selects an
input to feed into the app, based on dynamically-adjustable weights
of all possible inputs at that state. The model construction, input
generation and guided exploration are introduced in Section 5.
During the exploration process, Vitas detects five types of problems,
based on pre-defined rules, as presented in Section 6.

For Research Only

ASE ’22, October 10–14, 2022, Oakland Center, MI, USA Suwan Li, Lei Bu, Guangdong Bai, Zhixiu Guo, Kai Chen, and Hanlin Wei

90’sMovie Trivia is a game that will put your movie
knowledge to the test. The game is simple to play, you
pick a category and we put to together a list of 10 movies.
Each trivia question is plot about different the movie, guess
the movie title. Categories are comedy, drama, action and
horror. Season 1 of 90’s Movie Trivia includes 100 trivia
questions, 25 per category. To start just say
“Alexa open nineties movie trivia”. To choose a category say
“comedy” or “category comedy”.

Figure 3: Document of our running example in Figure 1.

4 APP DOCUMENT PROCESSING
As the VPA app is a black-box to Vitas, we leverage its available
documents to retrieve information to facilitate the testing.

4.1 Retrieving inputs
The inputs to the VPA app are in the form of verbal phrases. In
light of this, we extract phrases with subjects related to users from
the document and treat them as potential inputs in our testing.

One direct source of inputs are the phrases with quotation marks,
as developers usually use them to mark examples of valid inputs.
In addition, we resort to NLP techniques to extract inputs. We
use SpaCy [7] to build a dependency-based parse tree for every
sentence in the document, and from that Vitas can extract the part
of speech (pos) and the dependency (dep) of each word. Then, we
identify the verbal phrases in special forms, including subject + verb
and subject + verb + noun(s), and remove decorative phrases like
adjectives. Finally, we check whether the subjects of these verb
phrases are related to users (like “User” or “You”). If so, we add
these verb phrases to the Vitas’s input set. We note that not all
inputs extracted in this way are valid, but they only take a few
percentage of the input set. For example, in our running example,
the invalid inputs only account for 5% of the input set.Meanwhile,
we do not attempt to remove them in Vitas, as invalid inputs during
testing may trigger abnormal behavior of the system if the system
is not well designed. The generation of other types of inputs will
be discussed in Section 5.2.

Figure 3 lists the document of our running example. From it,
Vitas can extract four phrases (underlined) as inputs, and all except
the first one (“pick a category”) are confirmed as valid inputs in the
later execution.

4.2 Extracting app functionalities
Understanding the functionalities of the app could guide the state
exploration towards a direction of higher functionality coverage.
Therefore, we use the TF-IDF [24] method to extract the list of
functionalities from the document. TF-IDF is a statistical method
to compute the importance of words in the document based on a
corpus. In most cases, the keywords of the document can summarize
the functionalities well.We thus obtain the importance of eachword
in the document and treat those words with top TF-IDF rate as the
app’s functionalities. If the frequency of a word is low in the corpus

Algorithm 1: On-the-fly VUI Testing-based VPA Model
Exploration
Input: the outcomes of phase 1: invocation input invoc .
Output: VPA’s model:M = (Q, Σ,δ , s0, F)

1 Initialize a weighted FSMM ′ = (Q = {< start >}, Σ =

{invoc},δ = {}, s0 =< start >, F = {},W = {});
2 for times in 1 to n do
3 s = s0, cand_in = {invoc}, in = invoc;
4 //s: the current state, cand_in: candidate input set, in:

the actual input
5 out = execute(in);
6 repeat
7 s = getSentence(out);
8 if s is an unknown state then
9 cand_in = generateInpt(s);

10 initWeight(cand_in,W);
11 end
12 else
13 cand_in = getInpt(s);
14 end
15 in = getMaxWeight(cand_in,W);
16 out = execute(in);
17 foreach event a0 ∈ cand_in do
18 updateWeight(a0,out ,W);
19 end
20 updateFSM(s, cand_in, in);
21 until VPA app exits | | time limit is met;
22 F = F ∪ out ;
23 end
24 M = M ′.removeWeight();
25 returnM ;

but high in the document, the TF-IDF value of the word will be large,
which means the word is of more importance to the document.

To calculate a word’s TF-IDF value, we have built a corpus com-
posed of the documents of 20 representative apps from 20 different
categories. Each of them is the most popular VPA app in their cate-
gories. In our method, the top five words with the highest TF-IDF
values in an app’s document are selected to represent the function-
alities of the app. For example, in our running example, the words
with top five TF-IDF values are identified (bolded in Figure 3). They
are “category”, “movie”, “trivia”, “game” and “put”, where the top
four words can well summarize the functionalities of this app. These
functionalities represented by these phrases are used to guide the
state space exploration (detailed soon in Section 5).

5 STATE SPACE EXPLORATION
During the testing process, Vitas builds the FSM model of the app
on the fly. In this section, we detail our approach for phase 2.

5.1 Exploration Workflow
To explore as many behaviors as possible, Vitas uses a guided
exploration strategy. We introduce a weight to each candidate input

For Research Only

VITAS : Guided Model-based VUI Testing of VPA Apps ASE ’22, October 10–14, 2022, Oakland Center, MI, USA

in a particular state to indicate its current priority to be invoked. The
weight is dynamically updated to guide the exploration. To facilitate
this weight management process, we extend the FSM defined in
Section 3.1 with the weight, into the weighted FSM represented by
a six-tupleM = (Q, Σ,δ , s0, F ,W), where:

• (Q, Σ,δ , s0, F) is the classical FSM defined in Section 3.1.
• W : Q × Σ → f loat represents the weight of an input
event (detailed in Section 5.3).

Using weighted FSM, Algorithm 1 conducts the model explo-
ration as briefed below.
• A weighted FSMM ′ is initialized and the initial state s0 is set to
< start > (line 1). Vitas uses the invocation input to open the
app, and receives out as the reply (execute, line 5).

• In each round, Vitas selects a sentence to represent the current
state (getSentence) from the out (line 7, detail in Section 5.2).
The state is represented by s .

• If s is an unknown state, Vitas generates candidate inputs
(generateInpt, line 9, detailed in Section 5.2) for s , initializes
their weights, and saves the results toW . (initWeight, line 10,
detailed in Section 5.3). If s is an existing state, it finds the previ-
ously saved candidate inputs for s (getInpt, line 12-14).

• The input with the highest weight (getMaxWeight, line 15) is
selected as the actual input in and Vitas receives the out as the
reply (execute, line 16).

• Vitas modifies the weight of candidate inputs under the state s ac-
cording to the newout , and saves the results toW (updateWeight,
line 17-19, detailed in Section 5.3).

• Then, the model is updated accordingly (updateFSM, line 20).
• A complete execution is over when the VPA app exits or the time
limit is met (line 21). F saves the last outputs of VPA apps (line
22). For the sake of sufficient exploration, we can repeat such
complete execution for n times in testing. According to our expe-
rience in the analysis,n is set to 3 by default to achieve a relatively
satisfying coverage.

• Finally, the weighted FSMM ′ is transferred to a normal FSMM
by removing the last tupleW (line 24- 25).
Figure 4 uses part of the execution of the “90’s Movie Trivia”

skill to demonstrate how our method works. The detail will be
elaborated in the remaining of this section.

5.2 Candidate Inputs Generation
Selecting a sentence from the outputs (function getSentence).
Given the output of the app, Vitas first looks for questions from
it. If any question exists, non-wh questions have higher priorities
to be chosen, considering the expected inputs to these questions
are more restrict than those to wh-questions and more likely to be
accepted. For example, in Figure 4, a non-wh question (selection
question) is located, and Vitas continues its exploration from it. If
there is no question in the output, Vitas selects the last sentence as
the current state.
Generating candidate inputs (function generateInpt). After
the question is determined, Vitas generates an input to interact
with the app. Besides the document-retrieved inputs discussed in
Section 4.1, we have identified another four input types. Below we
sum up these five types of inputs, and show how these inputs can
be generated by Vitas.

• Invocation input. The invocation input is specified by the invo-
cation name in the app’s document. For example, in Alexa skills,
the invocation input is in the form of “Alexa, open <invocation
name>”. Such inputs can only be used to initiate an app, and
cannot be used during the interaction.

• System-level inputs. The system-level inputs are supported
by the VPA service, and independent of a specific app. Most
system-level inputs are related to system behaviors such as the
suspension, restart, and shutdown of the apps, like [“Pause”,
“Resume”, “Restart”, “Reboot”, “Stop”, “Exit”, “Cancel”].

• Document-retrieved inputs. The document-retrieved inputs
are extracted from the app’s document (detailed in Section 4.1).

• Embedded-help inputs. The embedded-help inputs are embed-
ded by the app developer as the introduction to the usage of the
app’s functionalities. They typically follow the format of instruc-
tion questions (see Table 1), e.g., “You can say Stop to stop”. Vitas
obtains them by giving the input “Help” to the app, and then
derives embedded-help inputs specific to this app using the chat
bot solution of Skillexplorer [21].

• Context-related inputs. The context-related inputs are created
dynamically during the interaction with the app. They are com-
posed of expected inputs that are generated according to the VPA
app’s questions. We can use off-the-shelf chat bot-style solutions,
e.g., Skillexplorer [21], to understand the question and generate
corresponding inputs.

5.3 Input Weight Management
Mutation based on weighted stochastic and probabilistic finite state
machine [22] has been widely applied in the testing and explo-
ration of complex software, especially in testing of the GUI and
web pages [31]. In existing studies, testers have clear view of the
current state of the system under testing and a deterministic set of
operations to take.

In our problem domain of VUI testing, the interaction is con-
ducted purely verbally, making it non-trivial to maintain state space
and determine suitable inputs. To address this challenge, we design
our weighted FSM based mutation method to guide the exploration
of VUI apps. As we mentioned in Section 5.1, the weight of each
candidate input in a particular state indicates its current priority
to be invoked. In this section, we discuss the weight management
strategies.
Initializingweights for candidate inputs (function initWeight).
Once candidate inputs are generated, Vitas needs to select one to
input to the app. To avoid repeatedly testing the same paths, a
weight is introduced for each input to indicate its priority. We adopt
different strategies to initialize weights based on the types of inputs.

• System-level inputs. Giving the app a system-level input at the
beginning or halfway during the testing will affect the normal
testing process. Therefore, a suitable invocation time for a system-
level input is near the end of the testing. Thus, their weights
should be very low at initial, and we set them to be 0.1.

• Document-retrieved inputs. If the document-retrieved inputs
is quoted in the document, Vitas sets a high initial weight of
them as 0.8 as they are usually useful inputs. Otherwise, the
input comes from verbal phrases in the document. The initial
weight of these verbal phrases depend on the importance of verbs.

For Research Only

ASE ’22, October 10–14, 2022, Oakland Center, MI, USA Suwan Li, Lei Bu, Guangdong Bai, Zhixiu Guo, Kai Chen, and Hanlin Wei

Figure 4: An example that demonstrates the algorithm using part of the execution of the “90’s Movie Trivia” skill. (1) Vitas
chooses the sentence (“To start a game ...”) from the current outputs because it is a selection question. (2) Candidate inputs
are generated for the sentence selected in (1). The generation of document-retrieved inputs are discussed in 4.1, and the other
inputs are detailed in 5.2. (3) Weights are initialized (if not exist) for all candidate inputs found in (2). (4) The input with the
highest weight (i.e., horror) is selected and sent to the VPA app, and the next outputs are received. (5) Based on the newly
received outputs, Vitas updates the weights of all candidate inputs found in (2). (6) The FSM is updated according to the newly
discovered states, inputs and transitions.

We set a list of typical VPA verbs that often appear, e.g., “play”
and “get”. We use SpaCy [7] again to calculate the similarity of
the verb in the phrase with the verbs in our list, and directly
use the highest similarity value as the initial weight. In this way,
most invalid inputs are assigned with a low weight of about 0.5
to make sure they will not be invoked frequently.

• Embedded-help inputs. Embedded-help inputs are composed
of expected inputs to VPA app’s questions when user asks for
“Help”. The initial weight of embedded-help inputs is 0.7.

• Context-related inputs. The context-related inputs are often
more closely related to the current state and are more likely to
guide the discovery of new states. Therefore, the context-related
inputs are initialized with the highest initial weight of 1.0.

Updatingweights of candidate inputs (function updateWeight).
To avoid the same paths being selected repeatedly, dynamically
maintaining the candidate inputs’ weights is of great importance
to the exploration. We summarize four elements that can affect the
weight updating as follows.

• Input type. The context-related inputs and embedded-help in-
puts have the highest priority because they are more related to
the context and app functionality. Document-retrieved inputs
are extracted from the document and they may not be valid, so
they have a lower priority.

• Covering a new functionality/state. Covering a new state
means that the VPA app’s outputs contain a new sentence, and
covering a new functionality means that the newly discovered
state contains a word that represents certain functionality (see
Section 4.2). If an input can trigger the app to cover a new func-
tionality or a new state, it has the potential to explore more
unknown states. Therefore, we increase its weight accordingly.

• Number of invocation times. The number of invocation times
of an input is inversely proportional to its weight. The reason is
that if Vitas has already executed one input for many times, the
possibility that it can still lead to a new state is low.
Suppose we are at a state si , and we express the input set of si as

C∗
i = {C1

i ,C
2
i , ...C

n
i } (n is the current size ofC∗

i). After selecting the
p-th input Cpi from C∗

i as the input, we reach a state si+1. Now, we
update the weights of every candidate inputCki fromC∗

i (1 ≤ k ≤ n),
represented asW (si ,C

k
i), by equation 1.

W (si ,C
k
i) =

αT (si ,C
k
i) + βV (si ,C

k
i)

γN (si ,C
k
i)

(1)

Here, T represents the input type factor. Context-sensitive and
system-level inputs have the highest weight as the system is more
likely to have meaningful responses to them. As we mentioned
in Section 4.1, document-retrieved inputs are assigned with a rel-
atively low weight as they can contain some invalid inputs. In
order to prevent frequent interruptions in the execution, we set the
minimum weight for system-level inputs.

T (si ,C
k
i) =



0.8 Cki is a document-retrieved input

0.4 Cki is a system-level input

1.0 Cki is a context-related input

1.0 Cki is a embedded-help input

(2)

V represents the covering new states / functionalities factor.
V (si ,C

k
i) is initialized to be 1.0. Denoting the value ofV (si ,C

k
i) be-

fore executing the inputCpi asV ′(si ,C
k
i), the new value ofV (si ,C

k
i)

is calculated as follows:

For Research Only

VITAS : Guided Model-based VUI Testing of VPA Apps ASE ’22, October 10–14, 2022, Oakland Center, MI, USA

(a) First visit. Vitas selects the input with
the highest weight (e.g., “horror”) as the
actual input.

(b) Second visit. The weight of “horror”
was updated after the first visit, but still
the highest.

(c) Third visit. The weight of “horror”
was updated after the second visit. Now
“drama” has the highest weight.

(d) Fourth visit. The weight of “drama”
was updated after the third visit, but still
the highest.

Figure 5: Adjustment of weights in each visit of the same
states.

V (si ,C
k
i) =

{
V ′(si ,C

k
i) + ∆ Cki = C

p
i

V ′(si ,C
k
i) Cki , C

p
i

(3)

∆ =


0.2 both a new state and a new functionality are covered
0.1 only a new state is covered

−0.3 si = si+1, it is a self loop
−0.2 si+1 has been visited before

(4)
N represents the invocation times factor. N (si ,C

k
i) is set to a

constant numberM for all the inputs in the initialization. N (si ,C
k
i)

is increased when Cki is executed, and the N of other system-level
inputs under si is decreased to make sure that the system-level
inputs have a chance to be invoked near the end of the execution.
Denoting the previous value of N (si ,C

k
i) before C

p
i is executed as

N ′(si ,C
k
i), the value of N (s0,Cki) can be calculated as follows:

N (s0,C
k
i) = N ′(s0,C

k
i) + θ (5)

θ =


1 Cki = C

p
i

−1 Cki is a system-level input under si
0 other

(6)

Figure 5 shows the change of the app model after each of four
visits of the same states. The expansion of the model benefits from
the proper adjustment of the candidate inputs’ weights. In Figure 6,
we demonstrate the “complete” model of “90’s Movie Trivia” built
by Vitas after executing and exploring the skill for three times. It is
worth to note that since we only explore the skill for three times,
this model does not cover all the potential states.

Figure 6: The FSMmodel of “90’s Movie Trivia” generated by
Vitas at last.

6 PROBLEM DETECTION
During the exploration, Vitas detects weaknesses from the app
under testing. Every time new outputs are received, Vitas checks
the outputs to detect problems. It mainly focuses on the following
five types of problems that we summarize from the literature [21,
26, 32, 33] and our experience.
Problem 1: unexpected exit. This problem occurs when an app
exits unexpectedly during the interaction, when no obvious exit
signal is given.
Oracle of P1:When Vitas detects that the app is not alive—the app
does not output within a time limit after being given an input—it
checks its previous output. If there is no clear exit signs to remind
the user, such as “goodbye” and “thank you”, it raises an alert.
Problem 2: privacy violation. This problem occurs when an app
asks the user for privacy information, e.g., name and address, as
reported by Skillexplorer [21].
Oracle of P2: Vitas matches keywords related to privacy in the
app outputs, such as “your name”, “email”, “gender”, “address”, etc.
To reduce false positives, e.g., “we will email you the steps”, it reports
only when a keyword appears in the form of a noun. It also filters
out the access that is included by the app’s privacy permission.
Problem 3: unstoppable app. This problem occurs when the user
gives a input of “Stop”, “Cancel” or “Exit”, the app does not exit.
This problem is also targeted by Zhang et al. [33].
Oracle of P3: Vitas gives inputs accepted only by the VPA service,
e.g., “What’s the time?”, following a termination input to the app.
If the respondent is still the app, it reports an alert. Vitas will start
another execution after detecting this problem.
Problem 4: unexpected app started. This problem occurs when
some apps share the same invocation name, or multiple apps have
confused invocation names, as reported by Kumar et al. [26]. This

For Research Only

ASE ’22, October 10–14, 2022, Oakland Center, MI, USA Suwan Li, Lei Bu, Guangdong Bai, Zhixiu Guo, Kai Chen, and Hanlin Wei

problem leads the user to opening unexpected apps.
Oracle of P4: Vitas relies on the prompts from the VPA services
to detect this problem. When opening an Alexa skill for the first
time, Alexa prompts for the name of the opened skill, such as “Ok,
Here is <skill’s name>”, or “Here is the skill <skill’s name>, by
<developer name>”. Vitas uses the name of the opened VPA app
to check whether an unexpected app is started. Vitas will stop the
testing of this skill immediately after detecting this problem.
Problem 5: unstartable VPA app. This problem occurs when the
invocation input is given, the called app is not started.
Oracle of P5: Vitas reports an alert when two situations occur.
First, a series of alternative apps are provided, but none of them is
the expected one. Second, the VPA service directly informs Vitas
that the invocation input is not recognizable, although the app is
listed in the app store. Vitas will also stop the testing of this skill
immediately after detecting this problem.

7 EVALUATION
In this section, Vitas is evaluated on its coverage, efficiency, and ac-
curacy of problem detection. To characterize the quality of existing
VPA apps, we conduct a comprehensive study on Amazon skills,
the apps of most popular VPA service. We also show that Vitas is
applicable to other VPA apps such as Google Actions.

7.1 Settings
Settings. Since the speech-to-text and text-to-speech process is
time-consuming andmay bring additional errors. In our experiment,
we use the simulator of skill [3], which is provided by Amazon, to in-
teract with skills using texts instead of speech. The main difference
between the simulator and the real machine is that the simulator
also takes texts as inputs, but does not support flash-briefing skills.
Dataset. In the evaluation, we prepare two data sets. One is a Land-
scape set of Amazon skills online. Amazon skills are classified into
20 categories [4] (23 in Amazon store but three of them are cov-
ered by other 20). Since the skill simulator does not support the
processing of skills in the flash-briefing category, we skip this cate-
gory in our testing. We obtain all documents (e.g., name, invocation
name, and description) of the rest skills into a large-scale data set.
We randomly select 150 skills from our dataset as the benchmark
dataset, on which we evaluate the performance of Vitas. In addition,
to evaluate applicability of Vitas on other VPA apps, we also collect
150 Google Actions and apply Vitas on them.
Baselines.We compare Vitas with mainly two techniques includ-
ing random testing, and Skillexplorer [21].

• Random testing. This strategy uses the same input set and
model construction as Vitas, but selects input randomly at
each state.

• Skillexplorer [21]. Skillexplorer is a state-of-the-art model-
free chatbot-style VPA app testing tool. It uses NLP-based
input generation. It has no guidance during testing, and uses
a pure DFS traversal.

The evaluation was run on the Ubuntu 18.04.5 machines with
AMD EPYC 7702P 64-Core Processor CPU@1.996GHz and 2GB
RAM. We make the source code and complete experimental results
online, to faciliate future researh in VUI testing [10].

Figure 7: Comparison of state space coverage between Vitas
and random testing.

Figure 8: Comparison of state space coverage between Vitas
and Skillexplorer.

7.2 The evaluation of Vitas
Our evaluation aims to answer the following research questions.
RQ1: Coverage. How large is the state space covered by Vitas’s
guided exploration strategy, compared with the baselines?
RQ2: Efficiency. How long does it take for Vitas to test an app on
average? How many interaction rounds does it require for Vitas to
achieve the same state space coverage compared with the baselines?
RQ3: Accuracy.How is the accuracy performance of Vitas in prob-
lems detection?
RQ4: Scalability. How large are the models generated by Vitas’s
state space exploration?
RQ5: Landscape.What is the status quo of the quality of existing
skills?
RQ6: Applicability. Is Vitas applicable to other VPA apps?

In the following experiments, we set the value of variables men-
tioned in Section 5.3 as α = 0.4, β = 0.6, γ = 0.1 andM = 10.

7.2.1 Study 1: Coverage of state space. To show the state space
coverage of Vitas, we compare the size of the state space obtained by
Vitas with the random testing and Skillexplorer on the benchmark
dataset. In this experiment, we set a time limit of 10 minutes for the
testing of each app as Skillexplorer [21] reports that the average
testing time of a skill is about 627 seconds.

Figure 7 and 8 show the comparison of state space coverage
between Vitas and baselines. Vitas reaches equal or higher coverage
than random testing and Skillexplorer in 81.6% and 73.5% skills
respectively1.

1Due to issues like stability of internet connection and availability of specific apps, some
apps may fail to be executed during testing. Therefore, we conduct the comparison on
the set of apps that are successfully tested by all three techniques.

For Research Only

VITAS : Guided Model-based VUI Testing of VPA Apps ASE ’22, October 10–14, 2022, Oakland Center, MI, USA

Figure 9: Average state coverage achieved bymanual testing,
Vitas, random testing, and Skillexplorer

As VPA apps are black-box services, it is difficult to obtain the
exact size of their state space. We read the document of each app
in our benchmark dataset, and manually test them for multiple
times till it no longer gives new outputs. Then, we take the union of
unique states that are generated by manual testing, Vitas, random
testing, and Skillexplorer into a complete set. We take this set as
the ground truth. We then report the average state space coverage
of each technique in Fig. 9.

Our results show that VUI testing of VPA apps is a challenging
task. Even we give manual testing no time limit, it can achieve
only a low (56.1%) state space coverage. The reason might be that
testers tend to give meaningful inputs, while some states can only
be triggered by invalid inputs. We also observe that Vitas achieves
a similar level of state space coverage with manual testing within
only 10 minutes, and it outperforms other tools significantly.

Answer to RQ1: Vitas reaches equal or higher coverage than
random testing and Skillexplorer in 81.6% and 73.5% skills
respectively. This implies that Vitas could efficiently discover
more behaviors of VPA apps than other techniques.

7.2.2 Study 2: Efficiency. In our experiment, we give techniques 10
minutes to test each app, so we skip the comparison on the testing
time. Here we evaluate the efficiency from the aspect of the number
of interaction rounds that are needed to achieve the same state
space coverage for each technique.

Since two techniques may reach different coverage of the same
app in 10minutes’ limit, directly comparing their interaction rounds
may lose fairness. Thus, we only select those apps whose final state
space size obtained by two techniques are within (-10%, 10%) to
compare. Figure 10 and 11 show the number of interaction rounds
required for Vitas and the baselines to achieve a certain state space
coverage. We can see that Vitas needs fewer interaction rounds
to reach the same coverage than other two, and keeps ahead to
the end. Especially, Vitas spend 36.8% less interaction rounds than
Skillexplorer to achieve the same level of coverage.

Answer to RQ2: Vitas requires fewer interaction rounds to
achieve the same percentage of state space coverage than two
baselines.

Figure 10: The number of interaction rounds required to
reach a certain state space coverage between Vitas and ran-
dom testing

Figure 11: The number of interaction rounds required to
reach a certain state space coverage between Vitas and Skill-
explorer

Table 2: The summary of testing results and accuracy on the
benchmark skills

problem
category

p1 p2 p3 p4 p5

simulator 28 3 9 3 2
verification 28 3 1 3 2
accuracy 100% 100% 11.1% 100% 100%

7.2.3 Study 3: Accuracy. After running experiments on the bench-
mark dataset, we record the number of apps that are detected with
problems. We remove the results of those apps that are affected by
network errors. We try to reproduce the results manually on a real
machine to validate the results Vitas gets on the simulator. Table 2
is a summary of testing results and accuracy on the benchmark.

We can see that except the accuracy rate of p3 (unstoppable
VPA apps) is relatively low, the accuracy of other problems are all
100%. We manually collect a set of apps that cannot exit normally
on the real machine and test them with Vitas. The result shows
that the apps marked as unstoppable by Vitas cover all these truly
unstoppable apps. At the same time, those apps that are mistakenly
recognized as unstoppable are truly unstoppable on the simulator.
Therefore, we conclude that the inconsistency between the real
machine and the simulator is the root cause of the low accuracy in
detecting unstoppable VPA apps.

For Research Only

ASE ’22, October 10–14, 2022, Oakland Center, MI, USA Suwan Li, Lei Bu, Guangdong Bai, Zhixiu Guo, Kai Chen, and Hanlin Wei

Figure 12: Average size of states and transitions of models
constructed by Vitas on skills in different categories

Answer to RQ3: We have high accuracy for most of the prob-
lems detected. The accuracy for p3 (unstoppable VPA app) is
low due to the inconsistent behaviors of the simulator and
real machines, which is not a technical issue in Vitas.

7.2.4 Study 4: The scalability on large-scale dataset. The size of
state space is determined by the number of different sentences of
the skill in its all executions. The transition number is the number
of different events of a user’s input to trigger the transition from
a state to another. The average size of state space and the average
transition number of each category is shown in Fig. 12.

The average sizes of states and transitions vary from different
categories. For the type ‘home’, ‘music’ and ‘weather’, state-space
and transition number are relatively small. In the ‘home’ category,
some skills require linking to a specific device to continue working.
Due to the unavailability of such devices, Vitas terminates testing
in an early stage. For ‘music’ and ‘weather’, the functionalities are
relatively simple. Most skills in ‘music’ play some audio before exit,
and most skills in ‘weather’ exit after reporting the weather.

Answer to RQ4: The average number of state and transition
are 13.56 and 7.28 respectively for models on the large-scale
dataset.

7.2.5 Study 5: Landscape on the large-scale data set. Wehave shown
Vitas’s performance on the state space coverage, efficiency and
accuracy on the benchmark dataset. In this section, we conduct
an experiment on the large-scale dataset to understand the status
quo of the VPA apps in the wild. We remove those results of apps
that may be inaccurate because of network exceptions. We list the
numbers of apps that are detected as flawed by Vitas in Table 3.
Due to space limitation, we release our testing log of each app in
our website [10].

We can see that apps with p1 account for the largest proportion.
Some of those apps quit without any obvious exit signs, but they
complete the claimed functionality before exiting. So we further
divide p1 into two categories, including those completing the task
and those not. From the results, we can see that besides of those
10,881 apps that complete their tasks and exit without giving notices,
8,086 apps quit suddenly even before their tasks are completed.
From our experiments, we find that the developers’ careless designs
may be the root cause for the high problem rate.

Table 3: The summary of problems detected by Vitas in dif-
ferent categories.

category total p
(p1 +
. . . +
p5)

p1 p1
(com-
plete)

p1
(not
com-
plete)

p2 p3 p4 p5

business 2093 893 788 294 494 180 53 15 20
car 123 47 46 15 31 1 1 0 1
education 5549 3134 2866 1632 1234 80 317 109 148
food 1231 674 631 257 374 48 25 7 29
game 5813 2411 2079 973 1106 154 202 97 114
home 882 454 431 56 375 10 7 11 13
kids 3558 1000 646 375 271 14 17 118 298
local 1060 451 411 181 230 44 14 12 16
movie 804 631 602 493 109 10 24 10 15
music 5802 4206 3898 3128 770 12 189 166 151
news 1146 601 538 315 223 47 11 12 19
novel 2698 1731 1631 993 638 17 33 90 54
product 4544 1975 1784 679 1105 76 55 91 57
shop 351 113 105 40 65 16 5 1 3
social 1606 608 547 255 292 34 11 20 23
sports 1201 578 527 260 267 4 18 34 12
travel 1127 389 350 137 213 48 14 12 13
utility 1346 769 610 380 230 31 13 18 9
weather 647 688 477 418 59 4 5 9 6
total 41581 21326 18967 10881 8086 830 1014 832 1001

Table 4: The summary of testing results and accuracy of Vi-
tas on 150 Google Actions.

problem cate-
gory

p1 p2 p3 p4 p5

simulator 10 4 1 0 61
verification 8 4 1 0 60
accuracy 80% 100% 100% - 98.4%

Answer to RQ5: We test a total of 41,581 skills, and find
that 51.29% of them have problems. Most apps suffer from
p1 (expected exit). We further break down the apps with p1
into two types, according to the completeness of their tasks. It
is surprising to see 42.6% of apps with p1 exit their execution
without completing their tasks.

7.2.6 Study 6: The applicability of Vitas on other VPA apps. To eval-
uate the applicability of Vitas for other VPA apps other than Alexa
skills, we apply it on 150 Google Actions randomly downloaded
from the app store. Similarly, we use Google’s “simulator” as the
testing platform [9].

Our testing results for these Actions are shown in Table 4. We
confirm the results manually on the real machine to check the
accuracy. We can see that Vitas is fully applicable to Google Actions.

Answer to RQ6: Vitas is also applicable to other VPA apps
like Google Actions. It achieves a high accuracy of problems
detection on Google Actions.

For Research Only

VITAS : Guided Model-based VUI Testing of VPA Apps ASE ’22, October 10–14, 2022, Oakland Center, MI, USA

7.3 Discussion of Limitation and Threats
On some of the benchmarks, the state space coverage achieved by
Vitas is comparatively low. After investigating this problem, we
find that it is caused by the inaccuracy of detecting question types
and generating inputs. For example, “Ready?” is a Yes-No question,
but the verb and subject are omitted. The complete question should
be “Are you ready?”. Such incomplete sentences make it difficult to
generate inputs, and further, affect the expansion of the state space.
We would explore advanced NLP techniques to help with sentence
understanding in the future work.

The accuracy of problem detection can also be improved. As
mentioned in Section 7.1, we use simulator of skill [3] to interact
with skills. For some skills, the simulator uses a version newer than
the one on the real devices. It is not mature enough such that we find
more problems on the simulator than on real devices. Furthermore,
the simulator sometimes may have network exceptions, so the test
results may be affected.

Last, our model can have redundant states that include different
sentences but are semantically equivalent.Wewill conduct semantic
analysis to simplify the model in future work.

8 RELATEDWORK
Model-based Testing. Model-based testing is a widely used ap-
proach for various testing scenarios [30]. The most important and
challenging task in model-based testing is to extract the model of
the tested system [18]. In this regard, several studies have been con-
ducted to automate the model extraction process. Chow [15] uses
the FSM to model the software internal logic. AndroidRipper [11],
AMOLA [13] and Stoat [31] are typical tools that use the FSM to
represent GUI behavior.

Generating test cases from the built models is another key com-
ponent of model-based testing. Various coverage criteria are exten-
sively used for evaluating the adequacy of tests [27] and selecting
suitable test cases [12]. Instead of randomly generating test cases
that satisfy the coverage criteria [12], Hierons et al. [23] propose
to use a stochastic model and extended mutation testing to model-
based testing. Test cases are generated on the mutated model. Su et
al. [31] also use the stochastic model to describe software behavior,
but the test cases generated from the model are dynamically mu-
tated according to the execution feedback. Besides, W [15], H [19],
SPY [17] and P [16] methods are proposed to generate n-complete
test suits based on a pre-built model.
VPA app Testing. Some recent studies have been conducted on
testing VPA apps. Skillexplorer [21] analyzes the skills’ outputs and
generates potential commands by NLP techniques. After that, it per-
forms a DFS-based exploration of the state space to detect privacy
violations. LipFuzzer [35] is another VPA app tester. It generates
voice commands that are likely to cause a semantic inconsistency
and mutates the voice commands. All these commands are fed to
the VPA apps to test whether the apps can understand them cor-
rectly. Different from these studies, Vitas proposes a model-based
VUI testing method for VPA apps. It conducts model construction
and exploration guided by weights of each command. In addition,
Vitas targets five types of problems in VPA apps.
Security of VPA apps.More studies focus on the security issues
in VPA apps. Kumar et al. [26] discover the skill squatting attack,

with a focus on speech interpretation errors. By leveraging the pre-
dictable speech misinterpretation in the speech recognition process,
users can be routed to a malicious skill. For example, a malicious
skill with name “four moon” can be invoked even if the users expect
to wake up a skill called “full moon”. Zhang et al. [33] propose the
skill masquerading attack. Malicious skills pretend to terminate
execution by saying conclusions like “Bye”, but still eavesdrop on
the users’ conversations. Some studies [20, 34] find that VPA apps
eavesdrop and upload users’ daily conversations. Long et al. [14]
discover the unreliability of the skill certification by successfully
getting 234 (100%) policy-violating skills certified. Recently in 2022,
Skipper [32] reports that skills may collect data types inconsistent
with that declared in the privacy policy. It will be an interesting
work to extend our model-based VUI testing method to handle such
security issues in the future.

9 CONCLUSION
In this paper, we propose Vitas, a guided model-based VUI testing
method to test VPA apps automatically. Vitas retrieves semantic
information from voice feedbacks by natural language processing.
Based on the outputs of the app, it incrementally constructs the
FSM model of the app to represent the app behaviors, and then
employs a weighted exploration strategy guided by key factors such
as the coverage of app functionalities. Our experiments show that
Vitas can achieve higher state coverage than the state-of-the-art
tools in a more efficient manner. We evaluate Vitas on 41,581 Alexa
skills and find 51.29% of them are with problems. Our work reveals
that the current VUI designs and implementations are not mature
enough, and sheds light on the improvement of VPA apps.

ACKNOWLEDGMENTS
We are grateful for the constructive feedback of all the anonymous
reviewers to improve this manuscript. The authors from Nanjing
University are supported in part by the Leading-edge Technology
Program of Jiangsu Natural Science Foundation (No. BK20202001),
the National Natural Science Foundation of China (No. 62172200
and No.62032010) and the Fundamental Research Funds for the
Central Universities (No. 020214380094). The authors from IIE, Chi-
nese Academy of Science, are supported in part by NSFC U1836211,
Beijing Natural Science Foundation (No.M22004), the Anhui De-
partment of Science and Technology under Grant 202103a05020009,
Youth Innovation Promotion Association CAS, Beijing Academy
of Artificial Intelligence (BAAI). The authors from University of
Queensland are supported in part by UQ’s NSRSG grant and Oracle
Labs Australia under the CR grant.

REFERENCES
[1] 2014. Amazon.com: Alexa. https://www.amazon.com/b?node=21576558011.
[2] 2016. Google Assistant, your own personal Google. https://assistant.google.com.
[3] 2017. Alexa Simulator limitations. https://developer.amazon.com/en-US/docs/al

exa/devconsole/test-your-skill.html#use-simulator.
[4] 2017. Amazon.com: Alexa Skills. https://www.amazon.com/s?i=alexa-skills.
[5] 2018. Portland Family Says Their Amazon Alexa Recorded Private Conversa-

tions. https://www.wweek.com/news/2018/05/26/portland-family-says-their-
amazon-alexa-recorded-private-conversations-and-sent-them-to-a-random-
contact-in-seattle/.

[6] 2019. Total number of Amazon Alexa skills from January 2016 to September 2019.
https://www.statista.com/statistics/912856/amazon-alexa-skills-growth.

[7] 2020. Industrial-Strength Natural Language Processings. https://spacy.io

For Research Only

https://www.amazon.com/b?node=21576558011
https://assistant.google.com
https://developer.amazon.com/en-US/docs/alexa/devconsole/test-your-skill.html##use-simulator
https://developer.amazon.com/en-US/docs/alexa/devconsole/test-your-skill.html##use-simulator
https://www.amazon.com/s?i=alexa-skills
https://www.wweek.com/news/2018/05/26/portland-family-says-their-amazon-alexa-recorded-private-conversations-and-sent-them-to-a-random-contact-in-seattle/
https://www.wweek.com/news/2018/05/26/portland-family-says-their-amazon-alexa-recorded-private-conversations-and-sent-them-to-a-random-contact-in-seattle/
https://www.wweek.com/news/2018/05/26/portland-family-says-their-amazon-alexa-recorded-private-conversations-and-sent-them-to-a-random-contact-in-seattle/
https://www.statista.com/statistics/912856/amazon-alexa-skills-growth
https://spacy.io

ASE ’22, October 10–14, 2022, Oakland Center, MI, USA Suwan Li, Lei Bu, Guangdong Bai, Zhixiu Guo, Kai Chen, and Hanlin Wei

[8] 2021. Scenes |Conversational Actions |Google Developers. https://developers.goo
gle.com/assistant/conversational/scenes.

[9] 2021. Simulator |Actions console |Google Developers. https://developers.google.
com/assistant/console/simulator.

[10] 2022. Vitas. https://vitas000.github.io/tool/.
[11] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De

Carmine, and Atif M. Memon. 2012. Using GUI ripping for automated testing of
Android applications. In IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE’12, Essen, Germany, September 3-7, 2012, Michael Goedicke,
Tim Menzies, and Motoshi Saeki (Eds.). ACM, 258–261.

[12] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M. Memon. 2015. MobiGUITAR: Automated Model-Based Testing of
Mobile Apps. IEEE Softw. 32, 5 (2015), 53–59.

[13] Young Min Baek and Doo-Hwan Bae. 2016. Automated model-based Android
GUI testing using multi-level GUI comparison criteria. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
Singapore, September 3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.).
ACM, 238–249.

[14] Long Cheng, Christin Wilson, Song Liao, Jeffrey Young, Daniel Dong, and
Hongxin Hu. 2020. Dangerous Skills Got Certified: Measuring the Trustwor-
thiness of Skill Certification in Voice Personal Assistant Platforms. In CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, USA, November 9-13, 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna (Eds.). ACM, 1699–1716.

[15] Tsun S. Chow. 1978. Testing Software Design Modeled by Finite-State Machines.
IEEE Trans. Software Eng. 4, 3 (1978), 178–187.

[16] Adenilso da Silva Simão and Alexandre Petrenko. 2010. Fault Coverage-Driven
Incremental Test Generation. Comput. J. 53, 9 (2010), 1508–1522.

[17] Adenilso da Silva Simão, Alexandre Petrenko, and Nina Yevtushenko. 2009. Gen-
erating Reduced Tests for FSMs with Extra States. In Testing of Software and
Communication Systems, 21st IFIP WG 6.1 International Conference, TESTCOM
2009 and 9th International Workshop, FATES 2009, Eindhoven, The Netherlands,
November 2-4, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5826),
Manuel Núñez, Paul Baker, and Mercedes G. Merayo (Eds.). Springer, 129–145.

[18] Siddhartha R. Dalal, Ashish Jain, Nachimuthu Karunanithi, J. M. Leaton, Christo-
pher M. Lott, Gardner C. Patton, and Bruce M. Horowitz. 1999. Model-Based
Testing in Practice. In Proceedings of the 1999 International Conference on Software
Engineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22, 1999, Barry W. Boehm,
David Garlan, and Jeff Kramer (Eds.). ACM, 285–294.

[19] Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. 2005. An Improved
Conformance TestingMethod. In Formal Techniques for Networked and Distributed
Systems - FORTE 2005, 25th IFIP WG 6.1 International Conference, Taipei, Taiwan,
October 2-5, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3731), Farn
Wang (Ed.). Springer, 204–218.

[20] Marcia Ford and William Palmer. 2019. Alexa, are you listening to me? An
analysis of Alexa voice service network traffic. Pers. Ubiquitous Comput. 23, 1
(2019), 67–79.

[21] Zhixiu Guo, Zijin Lin, Pan Li, and Kai Chen. 2020. SkillExplorer: Understanding
the Behavior of Skills in Large Scale. In 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner (Eds.).
USENIX Association, 2649–2666.

[22] Robert M Hierons and Mercedes G Merayo. 2009. Mutation testing from proba-
bilistic and stochastic finite state machines. Journal of Systems and Software 82,
11 (2009), 1804–1818.

[23] Robert M. Hierons and Mercedes G. Merayo. 2009. Mutation testing from proba-
bilistic and stochastic finite state machines. J. Syst. Softw. 82, 11 (2009), 1804–1818.

[24] Karen Spärck Jones. 2004. A statistical interpretation of term specificity and its
application in retrieval. J. Documentation 60, 5 (2004), 493–502.

[25] Onur Kilinççeker, Alper Silistre, Fevzi Belli, and Moharram Challenger. 2021.
Model-Based Ideal Testing of GUI Programs-Approach and Case Studies. IEEE
Access 9 (2021), 68966–68984.

[26] Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hennenfent, Joshua
Mason, Adam Bates, and Michael Bailey. 2018. Skill Squatting Attacks on Amazon
Alexa. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX
Association, 33–47.

[27] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. 2001. Coverage criteria
for GUI testing. In Proceedings of the 8th European Software Engineering Conference
held jointly with 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering 2001, Vienna, Austria, September 10-14, 2001, A Min Tjoa
and Volker Gruhn (Eds.). ACM, 256–267.

[28] Marius Mikucionis, Kim Guldstrand Larsen, and Brian Nielsen. 2004. T-UPPAAL:
Online Model-based Testing of Real-Time Systems. In 19th IEEE International
Conference on Automated Software Engineering (ASE 2004), 20-25 September 2004,
Linz, Austria. IEEE Computer Society, 396–397.

[29] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2016. Model-based
whitebox fuzzing for program binaries. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, Singapore,

September 3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM,
543–553.

[30] Muhammad Shafique and Yvan Labiche. 2010. A systematic review of model
based testing tool support. SCE Technical Reports (2010).

[31] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017,
Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman (Eds.).
ACM, 245–256.

[32] Fuman Xie, Yanjun Zhang, Chuan Yan, Suwan Li, Lei Bu, Kai Chen, Zi Huang, and
Guangdong Bai. 2022. Scrutinizing Privacy Policy Compliance of Virtual Personal
Assistant Apps. In 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’22).

[33] Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan Tian, and Feng
Qian. 2019. Dangerous Skills: Understanding and Mitigating Security Risks of
Voice-Controlled Third-Party Functions on Virtual Personal Assistant Systems.
In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019. IEEE, 1381–1396.

[34] Nan Zhang, Xianghang Mi, Xuan Feng, Xiao Feng Wang, Yuan Tian, and Feng
Qian. 2019. Dangerous skills: Understanding and mitigating security risks of
voice-controlled third-party functions on virtual personal assistant systems. IEEE
Symposium on Security and Privacy (2019).

[35] Yangyong Zhang, Lei Xu, AbnerMendoza, Guangliang Yang, PhakpoomChinprut-
thiwong, and Guofei Gu. 2019. Life after Speech Recognition: Fuzzing Semantic
Misinterpretation for Voice Assistant Applications. In 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society.

For Research Only

https://developers.google.com/assistant/conversational/scenes
https://developers.google.com/assistant/conversational/scenes
https://developers.google.com/assistant/console/simulator
https://developers.google.com/assistant/console/simulator
https://vitas000.github.io/tool/

	Abstract
	1 Introduction
	2 Background
	3 App Model and Approach Overview
	3.1 VPA app behavior model
	3.2 Approach Overview

	4 App document processing
	4.1 Retrieving inputs
	4.2 Extracting app functionalities

	5 State Space Exploration
	5.1 Exploration Workflow
	5.2 Candidate Inputs Generation
	5.3 Input Weight Management

	6 Problem detection
	7 Evaluation
	7.1 Settings
	7.2 The evaluation of Vitas
	7.3 Discussion of Limitation and Threats

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

