

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2020-IJ-002

2020-IJ-002

Automatic Detection, Validation, and Repair of Race Conditions

in Interrupt-Driven Embedded Software

Yu Wang, Fengjuan Gao, Linzhang Wang, Tingting Yu, Jianhua Zhao, Xuandong Li

Technical Report 2020

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

Automatic Detection, Validation, and Repair
of Race Conditions in Interrupt-Driven

Embedded Software
YuWang , Fengjuan Gao , Linzhang Wang , Tingting Yu ,Member, IEEE,

Jianhua Zhao, and Xuandong Li

Abstract—Interrupt-driven programs are widely deployed in safety-critical embedded systems to perform hardware and resource

dependent data operation tasks. The frequent use of interrupts in these systems can cause race conditions to occur due to interactions

between application tasks and interrupt handlers (or two interrupt handlers). Numerous program analysis and testing techniques have

been proposed to detect races inmultithreaded programs. Little work, however, has addressed race condition problems related to

hardware interrupts. In this paper, we present SDRacer, an automated framework that can detect, validate and repair race conditions in

interrupt-driven embedded software. It uses a combination of static analysis and symbolic execution to generate input data for exercising

the potential races. It then employs virtual platforms to dynamically validate these races by forcing the interrupts to occur at the potential

racing points. Finally, it provides repair candidates to eliminate the detected races.We evaluate SDRacer on nine real-world embedded

programs written in C language. The results show that SDRacer can precisely detect and successfully fix race conditions.

Index Terms—Embedded software, interrupts, race condition, software testing, repair suggestion

Ç

1 INTRODUCTION

MODERN embedded systems are highly concurrent, mem-
ory, and sensor intensive, and run in resource con-

strained environments. They are often programmed using
interrupts to provide concurrency and allow communication
with peripheral devices. Typically, a peripheral device ini-
tiates a communication by issuing an interrupt that is then
serviced by an interrupt service routine (ISR), which is a pro-
cedure that is invoked when a particular type of interrupt is
issued. The frequent use of interrupts can cause concurrency
faults such as data races to occur due to interactions between
application tasks and ISRs. Such faults are often difficult to
detect, isolate, and correct because they are sensitive to exe-
cution interleavings.

As an example, occurrences of race conditions between
interrupt handlers and applications have been reported in a
previous release of uCLinux [33], a Linux OS designed for
real-time embedded systems. In this particular case, the serial
communication line can be shared by an application through
a device driver and an interrupt handler. In common instan-
ces, the execution of both the driver and the handler would be
correct. However, in an exceptional operating scenario, the

driver would execute a rarely executed path. If an interrupt
occurs at that particular time, simultaneous transmissions of
data is possible (Section 2 provides further details).

Many techniques and algorithms have been proposed to
address concurrency faults, such as race conditions. These
include static analysis [23], [36], [52], [77], [81], dynamic
monitoring [10], [20], [37], [50], schedule exploration [11],
[17], [51], [68], [69], [74], test generation [54], [58] and con-
currency fault repair [34], [38], [43], [44], [73]. These techni-
ques, however, focus on thread-level races. Applying these
directly to interrupt-driven software is not straightforward.
First, interrupt-driven programs employ a different concur-
rency model. The implicit dependencies between asynchro-
nous concurrency events and their priorities complicate the
happens-before relations that are used for detecting races.
Second, controlling interrupts requires fine-grained execu-
tion control; that is, it must be possible to control execution at
the machine code level and not at the program statement
level, which is the granularity at whichmany existing techni-
ques operate. Third, occurrences of interrupts are highly
dependent on hardware states; that is, interrupts can occur
only when hardware components are in certain states. Exist-
ing techniques are often not cognizant of hardware states.
Fourth, repairing race conditions in interrupt-driven embed-
ded systems usually requires disabling and enabling inter-
rupt sources in hardware; this is different from repairing
thread-level concurrency faults.

There are several techniques for testing embedded sys-
tems with a particular focus on interrupt-level concurrency
faults [26], [42], [63]. For example, Higashi et al. [26] improve
random testing via a mechanism that causes interrupts to
occur at all instruction points to detect interrupt related data

� Yu Wang, Fengjuan Gao, Linzhang Wang, Jianhua Zhao, and Xuandong
Li are with the State Key Laboratory of Novel Software Technology,
Nanjing University, Nanjing 210093, China. E-mail: {yuwang_cs, fjgao}
@smail.nju.edu.cn, {lzwang, zhaojh, lxd}@nju.edu.cn.

� Tingting Yu is with the University of Kentucky, Lexington, KY 40506
USA. E-mail: tyu@cs.uky.edu.

Manuscript received 16 June 2019; revised 27Mar. 2020; accepted 17 Apr. 2020.
Date of publication 20 Apr. 2020; date of current version 10 Jan. 2022.
(Corresponding author: Linzhang Wang.)
Recommended for acceptance by P. Eugster.
Digital Object Identifier no. 10.1109/TSE.2020.2989171

346 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 1, JANUARY 2022

0098-5589 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

https://orcid.org/0000-0002-7216-6929
https://orcid.org/0000-0002-7216-6929
https://orcid.org/0000-0002-7216-6929
https://orcid.org/0000-0002-7216-6929
https://orcid.org/0000-0002-7216-6929
https://orcid.org/0000-0001-8185-0573
https://orcid.org/0000-0001-8185-0573
https://orcid.org/0000-0001-8185-0573
https://orcid.org/0000-0001-8185-0573
https://orcid.org/0000-0001-8185-0573
https://orcid.org/0000-0003-4794-1652
https://orcid.org/0000-0003-4794-1652
https://orcid.org/0000-0003-4794-1652
https://orcid.org/0000-0003-4794-1652
https://orcid.org/0000-0003-4794-1652
https://orcid.org/0000-0002-9461-4251
https://orcid.org/0000-0002-9461-4251
https://orcid.org/0000-0002-9461-4251
https://orcid.org/0000-0002-9461-4251
https://orcid.org/0000-0002-9461-4251
mailto:yuwang_cs@smail.nju.edu.cn
mailto:fjgao@smail.nju.edu.cn
mailto:lzwang@nju.edu.cn
mailto:zhaojh@nju.edu.cn
mailto:lxd@nju.edu.cn
mailto:tyu@cs.uky.edu

races. However, these techniques rely on existing test inputs
and could miss races that could otherwise be detected by
other inputs. In addition, these techniques do not account for
the implicit dependencies among tasks and interrupts due to
priorities. Furthermore, none of the existing techniques can
automatically repair race conditions.

This paper presents SDRacer (static and dynamic race
detection), an automated tool that combines static analysis,
symbolic execution, and dynamic simulation to detect, vali-
date and repair race conditions in interrupt-driven embedded
systems. SDRacer first employs static analysis to identify code
locations for potential races. SDRacer then uses symbolic exe-
cution to generate input data and interrupt interleavings for
exercising the potential racing points; a subset of false posi-
tives can be eliminated at this step. To further validate race
warnings, SDRacer leverages the virtual platform’s abilities to
interrupt execution without affecting the states of the virtual-
ized system and to manipulate memory and buses directly to
force interrupts to occur. Finally, SDRacer provides repair
suggestions for each validated race and developers decide
which repair strategy ismore suitable for the race.

To evaluate the effectiveness and efficiency of SDRacer,
we apply the approach to nine embedded system bench-
marks with race conditions. Our results show that SDRacer
precisely detected 190 race conditions and successfully
repaired them without causing deadlocks or excessive
performance degradation. Furthermore, the time taken by
SDRacer to detect, validate and repair races is typically a few
minutes, indicating that it is efficient enough for practical use.

In summary, this paper contributes the following:

� Anautomated framework that can detect, validate and
repair race conditions for interrupt-driven embedded
software systems.

� A practical tool for directly handling the C code of
interrupt-driven embedded software.

� Empirical evidence that the approach can effectively
and efficiently detect and repair race conditions in
real-world interrupt-driven embedded systems.

The rest of this paper is organized as follows. In the next
section we present a motivating example and background.
We then describe SDRacer in Section 3. Our empirical study
follows in Sections 4 and 5, followed by discussion in
Section 6. We present related work in Section 7, and end
with conclusions in Section 8.

2 MOTIVATION AND BACKGROUND

In this section we provide background and use an example
to illustrate the challenges in addressing race conditions in
interrupt-driven embedded software.

2.1 Interrupt-Driven Embedded Systems

In embedded systems, an interrupt alerts the processor to a
high-priority condition requiring the interruption of the cur-
rent code the processor is executing. The processor responds
by suspending its current activities, saving its state, and exe-
cuting a function called an interrupt handler (or an interrupt
service routine, ISR) to deal with the event. This interruption
is temporary, and, after the interrupt handler finishes, the
processor resumes normal activities.

We denote an interrupt-driven program by P = Task k
ISR, where Task is the main program that consists of one
or more tasks (or threads) and ISR = ISR1kISR2k . . . kISRN

indicates interrupt service routines. The subscripts of ISRs
indicate interrupt numbers, with larger numbers denoting
lower priorities. Typically, P receives two types of incoming
data: command inputs as entered by users and sensor inputs
such as data received through specific devices (e.g., a UART
port). An interrupt schedule specifies a sequence of interrupts
occurring at specified program locations. In this work, we
do not consider reentrant interrupts (interrupts that can pre-
empt themselves); these are uncommon and used only in
special situations [63].

2.2 Race Conditions in Interrupt-Driven Programs

A race condition occurs if two events access a shared
resource for which the order of accesses is nondeterministic,
i.e., the accesses may happen in either order or simulta-
neously [53], [76]. It broadly refers to data races (if accessing
the shared resource simultaneous) and order violations (if
accessing the resources in either order). Specifically, in our
context, a race condition is reported when two conditions
are met: 1) the execution of a task or an interrupt handler T
is preempted by another interrupt handler H after a shared
memory access m, and 2) H manipulates the content of m.
More formally

ei ¼ MEMðmi; ai; Ti; pi; siÞ ^ ej ¼ MEMðmj; aj; Tj; pj; sjÞ
^mi ¼ mj ^ ðaj ¼ WRITE _ ai ¼ WRITEÞ

^ si ¼ sj:enabled ^ pj > pi:

MEMðmi; ai; Ti; pi; siÞ denotes a task or an ISR Ti with prior-
ity pi performs an access a 2{WRITE, READ} to memory
location mi while in an hardware state si. The above condi-
tion states that two events ei and ej are in race condition if
they access the same memory location and at least one
access is a write. Here, ei is from a task or an ISR and ej is
from a different ISR, the interrupt of Hj is enabled when ei
happens, and the priority pj is greater than pi.

We consider the definition as a variant of order viola-
tions. Data races [59] are not applicable between a task and
an ISR or between ISRs, because a memory cannot be simul-
taneously accessed by the tasks or the ISRs. That said, a
memory is always accessed by a task (or a low-priority ISR)
and then preempted by an ISR. Interrupts have an asym-
metric preemption relation with the processor’s non-inter-
rupt context: interrupts can preempt non-interrupt activity
(i.e., tasks) but the reverse is not true [63]. Atomicity viola-
tions [45] are not applicable because they require three
shared variable accesses. Traditional order violations [45]
are also not applicable since there is no enforced execution
order. However, we regard it as a variant of order violations
because interrupts have an asymmetric preemption relation
with the processor’s non-interrupt context.

2.3 A Motivating Example

In prior releases of uCLinux version 2.4, there is a particular
race condition that occurs between the UART driver pro-
gram uart start and the UART ISR serial8250 interrupt [33].
We provide the code snippets (slightly modified for ease of

WANG ET AL.: AUTOMATIC DETECTION, VALIDATION, AND REPAIR OF RACE CONDITIONS IN INTERRUPT-DRIVEN EMBEDDED... 347

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

presentation) that illustrate the error in Fig. 1. The variables
marked with bold indicate shared resources accessed by
both tasks and ISRs.

Under normal operating conditions, the interrupt service
routines (ISRs) are always responsible for transmitting data.
There are two ISRs: irq1_handler has a higher priority
than irq2_handler. However, several sources have
shown that problems such as races with other processors on
the system or intermittent port problems can cause the
response from the ISRs to get lost or cause a failure to cor-
rectly install the ISRs, respectively. When that happens, the
port is registered as “buggy” (line 5) and workaround code
based on polling instead of using interrupts is used (line 12-
16). Unfortunately, the enabled irq1_handler is not dis-
abled in the workaround code region so by the time the
workaround code is executed, it is possible that irq1_han-
dler preempts and modifies the shared variable xmit-

>tail (line 14); this causes the serial port to receive the
wrong data (line 15).

The first challenge is that embedded systems use special
operations to control interrupts, some of which may not
even be recognized by existing static and dynamic analysis
techniques. For example, serial_out disables irq2_-

handler by directly flagging an interrupt bit at the hard-
ware level using the variable flags (line 9). Failing to
identify such operations would report false positives. For
example, conservative analysis techniques would falsely
report that there is a race condition between line 14 and line
31 on the variable xmit->tail even if the irq2_handler
is disabled in the task. Therefore, hardware states and oper-
ations must be known when testing for race conditions in
interrupt-driven embedded systems.

Second, task and interrupt priorities affect the order rela-
tions between concurrency events. For example, the content
of xmit->tail at line 24 cannot be modified by the write
of xmit->tail at line 31 due to the reason that the
irq1_handler has a higher priority than the irq2_han-

dler. Therefore, existing techniques that neglect the effect
of priorities would lead to false positives.

Third, exposing this race condition requires specific input
data from the hardware. For example, only when the IIR reg-
ister is cleared (i.e., iir & UART_IIR_NO_INT is true) and
the port is set to “buggy”will the true branch (line 4) be taken
in the transmit function. Existing techniques on testing
interrupt-driven programs that rely on existing inputs are
inadequate. While automated test case generation techni-
ques, such as symbolic execution can be leveraged, adapting
them to interrupt-driven software is not straightforward. For
example, IIR is a read-only register and thus cannot be
directly manipulated; the value of IIR is controlled by the
interrupt enable register (IER). Therefore, hardware proper-
tiesmust be consideredwhen generating input data.

Fourth, races detected by static analysis or symbolic execu-
tion without considering the change of program control flow
due to interrupts may report false positives. In this example,
static analysis would report there exists a race on xmit-

>tail between line 22 and line 31. But the two lines can
never get executed in the same run. Therefore, controllability
is needed to validate whether a race detected by these techni-
ques are real or not. While several existing approaches have
tried to abstract away scheduling non-determinism in concur-
rent programs to achieve greater execution control (e.g., [69]).
These approaches often control thread scheduling, but cannot
force hardware interrupts to occur at arbitrary point.

Finally, repairing interrupt-related race conditions
requires enforcing synchronization operations that are spe-
cific to interrupts. In this example, the interrupt disable opera-
tion associated with irq1_handler should be inserted
before line 14. However, finding the right place to insert inter-
rupt operations is challenging because the correctness of pro-
gram semantics must be guaranteed. In addition, the length
of a critical section must be considered because a long critical
sectionmay lead to timing or performance violations. Existing
techniques on repairing thread-level concurrency faults can-
not be directly adapted to address this problem.

2.4 Leveraging Virtual Platforms in Testing

Virtual platforms such as Simics provide observability and
fine-grained controllability features sufficient to allow test
engineers to detect faults that occur across the boundary
between software and hardware. SDRacer takes advantage
of many features readily available in many virtual platforms
to tackle the challenges of testing for race conditions in
interrupt-driven embedded software. Particularly, we can
achieve the level of observability and controllability needed
to test such systems by utilizing the virtual platform’s abili-
ties to interrupt execution without affecting the states of the
virtualized system, to monitor function calls, variable values
and system states, and to manipulate memory and buses
directly to force events such as interrupts and traps. As such,
SDRacer is able to stop execution at a point of interest and
force a traditionally non-deterministic event to occur. Our
system then monitors the effects of the event on the system
and determines whether there are any anomalies.

2.5 Comparing to Thread-Level Race Detection
Techniques

Although interrupts are superficially similar to threads (e.g.,
nondeterministic execution), the two abstractions have subtle
semantic differences [64]. As such, thread-level race detection

Fig. 1. Race condition in a UART device driver.

348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

techniques [10], [20], [37], [50], [54], [58] cannot be adapted to
address interrupt-level race conditions.

First, threads can be suspended by the operating system
(OS) and thus the insertion of delays (e.g., sleep or yield
instructions) can be used to control the execution of threads.
The status of each thread is also visible at the application level.
However, interrupts cannot block—they run to completion
unless preempted by other higher-priority interrupts. The
inability to block makes it impossible to use advanced OS
services for controlling the occurrences of interrupts in race
detection. In addition, the internal states of interrupts
are invisible to tasks and other interrupt handlers because of
the non-blocking characteristics. As such, it is impossible to
use code instrumentation for checking the status of interrupts.

Second, threads typically employ symmetrical preemp-
tion relations—they can preempt each other. In contrast,
tasks and interrupt handlers (i.e., task versus ISR and ISR
versus ISR) have asymmetrical preemption relations. Specif-
ically, interrupts cannot be preempted by normal program
routines; instead, they can be preempted only by other
interrupts with higher priority, and this can occur only
when the current interrupt handler is set to be preemptible.
The asymmetric relationship between interrupt handlers
and tasks invalidates the happens-before relations served as
the standard test for detecting thread-level races. Because
their computed happens-before relation will not be precise
if an interrupt is triggered during their computation, but
thread-level methods do not handle interrupts.

Third, the concurrency control mechanisms employed by
interrupts are different. A thread synchronization operation
uses blocking to prevent a thread from passing a given pro-
gram point until the synchronization resource becomes avail-
able. However, concurrency control in interrupts involves
disabling an interrupt from executing in the first place. This
is done by either disabling all interrupts or disabling specific
interrupts that may interfere with another interrupt or task.
As such, thread-level techniques that rely on binary/byte-
code instrumentation [69], [82] to control memory access
ordering between threads cannot be used to control the
occurrences of hardware interrupts. In contrast, interrupt-
level race detection techniques must be able to control hard-
ware states (e.g., registers) to invoke interrupts at specific exe-
cution points [84]. In addition, occurrences of interrupts are
highly dependent on hardware states; that is, interrupts can
occur only when hardware components are in certain states.
Existing thread-level race detection techniques are not cogni-
zant of hardware states.

3 SDRACER APPROACH

We introduce SDRacer whose architecture is shown in
Fig. 2. The rectangular boxes contain the major components.

SDRacer first employs lightweight static analysis (SA) to
identify potential sources of race conditions. The output of
this step is a list of static race warnings, {< ei = (Ti, Li, Ai),
ej= (Tj, Lj, AjÞ > }. However, the event pair < ei; ej > is
unordered and thus SDRacer attempts to force ej to occur
after ei in the following components to validate the race
order. Here, T is a task or an ISR, L is the code location, and
A is the access type. In the example of Fig. 1, the output of
this step is: WN1 = < (transmit, 14, R), (irq1_handler,
22, W)> , WN2 =<transmit, 14, R), (irq2_handler, 31,
W)> , WN3 = <irq2_handler, 31, W), (irq1_handler,
22, R)> , and WN4 = <irq2_handler, 31, W), (irq1_-
handler, 24, R)> .

Next, SDRacer invokes symbolic execution to generate
input data that can reach the code locations of the static race
warnings. In Fig. 1, the input data t1 = {IIR = 0 x 0111, THR
= 0 x 0111, port->bugs = 0} is generated to exercise WN1,
and t2 = {IIR = 0 x 0111, THR = 0x0110, port->bugs = 0}
is generated to exercise WN2 and WN4. This step can also
eliminate infeasible racing pairs. For example, WN3 cannot
be covered due to the conflict path conditions between
irq1_handler and irq2_handler. Therefore, WN3 is a
false positive. The output of symbolic execution is a list of
potential races PR and their corresponding input data.

Then, SDRacer utilizes the virtual platforms to exercise
the inputs on the potential races generated from the sym-
bolic execution and force the interrupts to occur at the
potential racing points. The output of this step is a set of
real races. In the example of Fig. 2, WN1 and WN4 are real
races because we can force the irq1_handler to occur
right after line 14 and the irq2_handler to occur right
after 24. Therefore, WN1 and WN4 are real races, whereas
WN2 is a false positive; irq2_handler cannot be issued
after line 14 because its interrupt line is disabled.

Last, the race repair component repairs races by enforcing
the interrupt disable and enable operations, adding locks or
extending critical sections. It is worth noting that disabling
interrupt will not lead the lost of interrupt because the inter-
rupt is queued and will be saved to execute later [18]. In
order to fix races, SDRacer first determines where to enforce
these operations and then generates patches by static code
transformation. In Fig. 1, to repairWN1, an interrupt disable
operation irq_disable(1) is added right before line 14 to
disable irq1_handler, and an interrupt enable operation
irq_enable(1) is added right after line 14. Likewise, to
repair WN4, irq_disable(1) is added before line 31, and
irq_enable(1) is added right after line 31.

3.1 Static Analysis

In the static analysis phase, SDRacer first identifies shared
resources and interrupt enable and disable operations. It
then analyzes a list of potential racing pairs, i.e., static race

Fig. 2. Overview of SDRacer framework.

WANG ET AL.: AUTOMATIC DETECTION, VALIDATION, AND REPAIR OF RACE CONDITIONS IN INTERRUPT-DRIVEN EMBEDDED... 349

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

warnings. The racing pairs are used for guiding symbolic
execution and dynamic race validation.

Algorithm 1. Shared Resources Identification

Input: Task set Tasks, ISR set ISRs
Output: shared resources set (SRS)
1: /* S denotes all tasks and ISRs. aliasSet is an alias set. */
2: S = Tasks [ISRs, aliasSet = ;
3: /* Whole-program alias analysis */
4: for T 2 S do
5: aliasSet = aliasSet[andersenPointsToAnalysis(T)
6: end for
7: /* Construct inter-procedure aliases in aliasSet. */
8: aliasSet = aliasSet[connectAliases(S, aliasSet)
9: for each ISR 2 ISRs do
10: /* r denotes a variable in ISR */
11: for each r 2 ISR do
12: /* Sglobal denotes all global variables, parmðISRÞ denotes

parameters of ISR */
13: if r =2 Sglobal and 8v 2 parmðISRÞ; ðv; rÞ =2 aliasSet then
14: continue
15: end if
16: if 9T 2 ðS � fISRgÞ; r 2 T or alias 2 T where

ðr; aliasÞ 2 aliasSet, then
17: SRS = SRS [r
18: for each ðr; aliasÞ 2 aliasSet do
19: SRS = SRS [alias
20: end for
21: end if
22: end for
23: end for

3.1.1 Identifying Shared Resources

Race conditions are generally caused by inappropriate syn-
chronized access to shared resources. So precisely detecting
shared resources is key to race detection. In addition to
shared memory that is considered by thread-level race
detection techniques, SDRacer also accounts for hardware
components that are accessible by applications and device
drivers, including device ports and registers.

SDRacer automatically decomposes tasks based on the
specific patterns of device drivers. For example, the first
parameter of kthread create refers to the function name of a
task. Another type of task is the function callback, which is
triggered by a specific device operation (e.g., device read).
Then, we use Algorithm 1 to identify all possible shared
resources. Specifically, we use Andersen’s pointer analysis
[7] to identify resources accessed by at least: 1) two ISRs, or
2) one task and one ISR. For each detected shared resource,
we also add all its aliases to the shared resource set SRS.
We first perform intra-procedure alias analysis for each task
and ISR (at lines 3 to 6). Then, in order to connect alias rela-
tion in tasks/ISRs, we assume interrupt request operations
(e.g., request irq) and task registration operations (e.g.,
kthread create) is called right after its registration. For
example, threadfnðthreadArgÞ; and interruptFNðdevÞ are
called right after kthread createðthreadFn; threadArg; . . .Þ;
and request irqðirqNum; interruptFn; flag; . . .Þ; separately.
Based on the assumption, we perform inter-procedure alias
analysis (at line 8). In this step, we analyze the program

from top to bottom according to its call graph. For each
function, when a variable is used as an argument of a callee,
we record its aliases in the caller, aliases of the parameter in
the callee, and their relation. Therefore, a caller’s alias rela-
tion will be passed to its callees iteratively, and thus the
assumption will not miss possible aliases. Then, we identify
shared resources based on the whole program alias relation.
For each ISR, we only analyze a variable (i.e., r) in the ISR if
it is a global variable (including hardware components like
device ports) or it may be an alias of the ISR’s parameter (at
lines 12 to 15). Finally, for each remaining variable, we add
it and its aliases to SRS if 1), it is also used in other tasks or
ISRs (i.e., r 2 T denotes r is a global variable), or 2) at least
one of its aliases may be used in other tasks or ISRs (i.e.,
alias 2 T where ðr; aliasÞ 2 aliasSet).

Each detected shared resource access SRA is denoted by
a 6-tuple: SRA = {< T;L; V; AV;R;A > }, where T denotes
the name of the task or ISR in which the shared resource
(SR) is accessed, L denotes the code location of the access, V
denotes the name of the SR, AV denotes whether the name
V is an alias (false) or a real name (true) (real name is the
declared name), Rmeans the real name of this resource, and
A denotes the access type—read (denoted by R) or write
(denoted by W).

In the example of Fig. 1, all SRA for the xmit! tail is:
< transmit, 14,xmit! tail, true,xmit! tail, R > ,

<transmit, 22, xmit! tail, true, xmit! tail, W> ,
<irq_handler, 24, xmit! tail, true, xmit! tail, R> ,
and <transmit, 31,xmit! tail, true, xmit! tail,W> .

3.1.2 Identifying Interrupt Operations

To track interrupt status (i.e., disabled or enabled) of a
shared resource, SDRacer identifies interrupt-related syn-
chronization operations, which typically involve interrupt
disable and enable operations. In many embedded systems,
coding interrupt operations can be rather flexible. An inter-
rupt operation can be done by directly manipulating hard-
ware bits (e.g., line 9 of Fig. 1). In addition, these operations
vary across different architectures and OS kernels.

SDRacer considers both explicit and implicit interrupt
operations. For the explicit operations, SDRacer considers
standard Linux interrupt APIs, including disable_ir-

q_all(), disable_irq(int irq), disable_irq_no-
sync(int irq) and enable_irq(int irq), where the
irq parameter indicates the interrupt vector number (i.e.,
the unique ID of an interrupt). For the implicit operations,
SDRacer tracks operations that manipulate interrupt-related
hardware components, such as the interrupt enable registers
(IERs). Since the effect of these operations are often not rec-
ognized by static analysis, SDRacer conservatively assumes
they are equivalent to interrupt enabling (e.g., enable_ir-
q_all()) to avoid false negatives. The consequence is false
positives, which can be validated by the dynamic validation.
In Fig. 1, the hardware write operation at line 9 is considered
to be an interrupt enable operation.

To handle interrupts in different kernels or architectures.
SDRacer provides a configuration file that allows develop-
ers to specify the names of interrupt APIs. The output of
this step is a 4-tuple list: ITRL = {< M;L; I; T > }, where M
denotes the function name, L denotes the code location

350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

where the interrupt operation is called, I denotes the inter-
rupt vector number and T denotes the type of interrupt
operation (i.e., enable or disable). In the example of Fig. 1,
the ITRL is: <transmit, 9, all, enable > , where all
denotes all interrupts are enabled.

3.1.3 Identifying Static Race Warnings

In this step, we identify shared resource access pairs that
may race with each other from all identified shared resour-
ces. These pairs are used as targets for guiding symbolic
execution to generate test input data.

To statically identify potential racing pairs, we first build
a reduced inter-procedural control flow graph (RICFG) for
the task and each of the ISR that contains at least one shared
resource. RICFG prunes branches that do not contain shared
resources in the original inter-procedural control flow graph
(ICFG) in order to reduce the cost of analysis. Additionally,
we use a bit vector INTB to record the interrupt status. For
example, INTB = < 1, 0, 0> indicates that the first interrupt
is disabled and the second and the third interrupts are
enabled. INTB is updated when an interrupt disable/enable
instruction is visited. Note that when visiting an instruction
inside the ISR, the bit associated with the ISR is always set
to 1 because an ISR is non-reentrant. Additionally, it is pos-
sible that an interrupt disabled by a task or an ISR is re-
enabled immediately by another interrupt. In order to avoid
false negatives, for each interrupt disable instruction, we
check all enabled interrupts right after this operation. If
there exists another interrupt that re-enables the disabled
interrupt, we ignore the interrupt disable operation and its
corresponding interrupt enable operation. By this conserva-
tive analysis method, we can avoid disabling interrupts that
can be enabled by other ISRs.

Algorithm 2. Static Race Detection

Input: RICFGs of P
Output: potential racing pairs (PR)
1: for each < Gi;Gj > in RICFGs do
2: for each svi 2 Gi do
3: for each svj 2 Gj do
4: if svi:V == svj:V and (svi:A ==W or svj:A ==W) and

Gi:pri < Gj:pri and INTB.get(svi).contains(Gj) then
5: PR = PR [ðsvi; svjÞ
6: end if
7: end for
8: end for
9: end for

Algorithm 2 describes the computation of potential rac-
ing pairs based on the RICFGs of the program. SDRacer tra-
verses each RICFG by a depth-first search to examine the
interrupt status (i.e., enable or disable) of every instruction.
For each shared resource svi at the location L of a RICFG Gi,
if there exists the same shared resource svj in a RICFG Gj,
at least one shared resource is a write, the priority of Gj is
higher than that of Gi, and the interrupt for Gj is enabled at
L, the pair (svi, svj) forms a potential race condition. For
example, in Fig. 1, the bit vector at line 14 is < 0, 0> , indi-
cating that both irq1 and irq2 are enabled. Also, both irq1
and irq2 have higher priorities than transmit. The bit

vector at line 13 is < 1, 0> , because irq1_handler is
non-reentrant. Therefore, WN1, WN2, WN3, and WN4 are
reported as static race warnings.

About loops, our lightweight static analysis does not
fully analyze loops because we unroll loops twice (i.e.,
transform a loop into two if statements) to balance accuracy
and efficiency. Moreover, the analysis is context-insensitive,
which may lead to false positives because it does not distin-
guish between different calling contexts of a function call.
On the other hand, precise static analysis is more expen-
sive [80]. As future work, we will evaluate cost-effectiveness
by adopting precise static analysis techniques.

3.2 Guided Symbolic Execution

Wepropose a new symbolic execution procedure to generate
input data for exercising static race warnings reported in
static analysis and eliminating a portion of false races. Unlike
traditional guided symbolic execution [22], [49], symbolic
execution on interrupt-driven programs needs to consider
the asymmetrical preemption relations among tasks and
ISRs. The symbolic execution of SDRacer consists of two
steps: 1) identifying entry points that take symbolic inputs;
2) generate inputs that exercise racing pairs reported by
static analysis. Internally, we leverage the KLEE symbolic
virtual machine [12] to implement the goal-directed explora-
tion of the program to traverse the program locations involv-
ing potential races.

3.2.1 Identifying Input Points

Execution paths in embedded systems usually depend on
various entry points that accept inputs from external com-
ponents, such as registers and data buffers [83]. One chal-
lenge for our approach involves dealing with multiple
input points in order to achieve high coverage of the targets.
SDRacer considers two kinds of input points: 1) hardware-
related memories (e.g., registers, DMA), and 2) global data
structures used to pass across components (e.g., buffers for
network packages, global kernel variables that are accessi-
ble by other modules). SDRacer can identify these input
points based on the specific patterns of device drivers—this
is a per-system manual process.

In the example of Fig. 1, The input points include the
UART registers and the UART port. Specifically, the values
in the registers IIR (line 3) and THR (line 21 and line 30)
determine the data and control flow of the program execu-
tion. As such, we make these register variables symbolic.
We also make the data fields of the UART port symbolic
(e.g., port->bug at line 4) because they accept inputs from
users and external components.

3.2.2 Guided Symbolic Execution.

For each static race warning WN = < ei, ej > , SDRacer
calls the guided symbolic execution to generate a test input
to exercise the WN or report that the WN is a false positive.
Since each call to the symbolic execution targets a pair of
events in two different tasks or ISRs, we build an inter-con-
text control flow graph (ICCFG) by connecting the inter-pro-
cedural control flow graphs (ICFGs) of the tasks and ISRs.
For an instruction that is equal to the first racing event ei in
a WN , we add an edge that connects ei to the entry function

WANG ET AL.: AUTOMATIC DETECTION, VALIDATION, AND REPAIR OF RACE CONDITIONS IN INTERRUPT-DRIVEN EMBEDDED... 351

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

of the ICFG inwhich ej exists. In the example of Fig. 1, to gen-
erate inputs for WN1 = < (transmit, 14, R), (irq1_han-
dler, 22, W)> , the entry of irq1_handler is connected to
the instruction right after the xmit->tail read access.

SDRacer guides the symbolic execution toward the two
ordered events of each WN by exploring the ICCFG. Let
e 2 WN denote the current event to be explored, and s
denotes the current program state that symbolic execution
is exploring. A program state [13] is a representation of
symbolic process. For each branch and loop, the program
state will be cloned to explore different paths. Based on s,
we refer to Ss as the set of next program states that symbolic
execution could explore and reach e. Given e and s, Ss can
be analyzed by the backward reachability analysis of
ICCFG. At each step of the symbolic execution procedure,
we select a promising state si 2 Ss, which is likely to reach
e. Internally, SDRacer estimates the distance between each
program state si and e before selecting the next state. Note
that si is a next program state cloned based on branches or
loops. Therefore, each si contains the next instruction to be
explored. We define the distance from si to e to be the mini-
mum number of instructions from the next instruction in si
to the instruction in e according to the ICCFG. Among all
program states in Ss, we select si to be the next program
state that symbolic execution should explore if its next
instruction leads to the shortest path to the target instruc-
tion. If multiple states have the same distance to e, SDRacer
randomly selects one. In this sense, the search strategy of
SDRacer differs from prior symbolic execution techniques
such as state prioritization (e.g., assertion-guided symbolic
execution [25] and coverage-guided symbolic execution [12],
[41], [46]), because they do not target the exploration of
potential racing points.

If no state in stateset can reach e, we check if e is in a
loop. If e is in a loop, we increase the number of loop itera-
tions by a fixed number of times given a timeout threshold
and try again. This will increase our chance of reaching the
goal. The iteration number is increased until reaching the
loop bound Lmax (Lmax = 1000 in our experiments).

Otherwise, we backtrack and search for another path to
the current event. If backtracking is repeated many times,
eventually, it may move back to the first event, indicating
that the current racing pair cannot be exercised. In such
case, we move to the next racing pair. When our symbolic
execution reaches the first event (i.e., ei), the next program
state to explore is the entry instruction in ej. We continue
exploring program states until we reach the second event.
After reaching the second event (i.e., ej), we traverse the
current program path to compute the path condition (PC).
Then, we compute the data input by solving the path condi-
tion using an SMT solver.

The main problem in guided symbolic execution is to
make the procedure practical efficient by exploring the more
“interesting” program paths. Toward this end, we propose
several optimization techniques. Recall the way of construct-
ing RICFG that we statically analyze the source code of the
program to prune away paths that do not reach the shared
resources—they are irrelevant to the potential races. We also
skip computationally expensive constraint solver calls unless
the program path traverses some unexplored potential races.
In addition to these optimizations, we prioritize the path

exploration based on the number of potential races contained
in each path to increase the likelihood of reaching all static
races sooner. Furthermore, we leverage concrete inputs (ran-
domly generated) to help solving complex path constraints.

In the example of Fig. 1, the symbolic execution success-
fully generates input data for exercising WN1 andWN2, and
WN4. For WN3, the symbolic execution explores the two
events at line 31 and line 21 in the ICCFG that connects
irq1_handler and irq2_handler. The path constraint
thr ¼¼ 0x1101 ^ thr 6¼ 0x1101 is unsolvable, so WN3 is a
false positive.

For each static warning, there are three types of output
generated by the symbolic execution. The first type of out-
put is a potential race together with its input data, which
means that this race is possible to be exercised at runtime.
The second type of output is an unreachable message
(unsolvable path constraints), which indicates that the static
warning is a false positive. The third type of output is a mes-
sage related to timeout or crash. The reason could be the
execution time-out, the limitation of constraint solver or the
unknown external functions. In the next phase of dynamic
validation, we validate whether races reported in the first
and third types are real races or not.

3.3 Dynamic Validation of Race Conditions

We propose a hardware-aware dynamic analysis method to
validate the remaining race conditions from the symbolic
execution. In this phase, SDRacer simulates virtual environ-
ment for interrupt-driven programs, which provides an exe-
cution observer and an execution controller. First, it employs
an execution observer to monitor shared resource accesses
and interrupt operations, and then uses an execution control-
ler to force each race condition to occur.

3.3.1 Executing Observer

The Observer records operations that access shared memory
and hardware components. The observer alsomonitors inter-
rupt bits (IER and IIR registers) to track interrupt disabling
and enabling operations. These bit-level operations are then
mapped into the instruction-level statement, because the con-
trol of interrupts happens at the instruction level.

For each shared resource access, SDRacer can retrieve the
current interrupt status of all IRQ lines to check whether it
is possible to force a specific interrupt to occur.

3.3.2 Execution Controller

Simics allows us to issue an interrupt on a specific IRQ line
from the simulator itself. As such, when the Observer
reaches an SV , an interrupt is invoked at a feasible location
after the access to this SV .

We now describe the algorithm of execution controller
(Algorithm 3). Given a potential racing pair s = (ei, ej), The
goal of this algorithm is to force an ISR that contains ej to
occur right after the access to ei. The algorithm first executes
the program under test P (line 6). If the the first shared
resource access ei occurs in a task, the algorithm executes
the input data (generated from the symbolic execution) on
P (line 3). If ei occurs in an ISR, it executes P together with
the interrupt issued at the arbitrary location of P (line 6). If
the execution covers ei, the algorithm forces the interrupt in

352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

which ej exists to occur immediately after ei (line 9). If a race
occurs, it is added to RaceSet (line 15).

Algorithm 3. Execution Controller

Input: PRaceSet, P , S
Output: RaceSet
1: for each s = (ei, ej) 2 PRaceSet do
2: if ei in T then
3: E = Execute(P, ts)
4: end if
5: if ei inH then
6: E = Execute(P, ei:H, ts)
7: end if
8: if E covers ei then
9: if ISR_enabled(ej.H) is true then
10: raise interrupt ej:H
11: else
12: find another possible location
13: end if
14: if ej:H accesses ej then
15: RaceSet = RaceSet [s /*race occurs*/
16: end if
17: if Output(P, S) 6¼ O then
18: print “Error: fault found”
19: end if
20: end if
21: end for

Note that our algorithm can also force the interrupt to
trigger immediately before ei. In fact, the effect of triggering
an interrupt immediately after the first event covers that of
triggering an interrupt before the first event because a fail-
ure is usually caused by reading the incorrect value modi-
fied by the interrupt handler. It is not critical to choose
either case because if we can trigger the second event right
after the first event, then we can also trigger the second
event right before the first event.

Because it may not be possible to raise an interrupt
immediately (e.g., if the interrupt is currently disabled), the
algorithm checks the current state of the interrupt associ-
ated with ej (line 9) before raising an interrupt. The algo-
rithm also checks outputs on termination of the events
(lines 17-18) to determine whether a fault has been identi-
fied. If the interrupt (S) cannot be raised immediately after
the shared resource access ei in P (lines 9-10), the algorithm
postpones ei:H (the ISR in which ej exists) until it can feasi-
bly be raised, or until the entry instruction of the operation
in another potential race pair is reached.

To illustrate the algorithm’s operation, using Fig. 1 as an
example. Considering WN1, given the input t1, the trans-

mit covers the read of xmit! tail at line 14. Thus, the
algorithm forces irq1_handler to be raised right after the
read of xmit! tail at line 14, In this scenario, xmit!
tail is modified by the irq1_handler, causing trans-

mit to read the wrong value. As a result, WN1 is real and
harmful.

It is not always realistic to invoke an interrupt whenever
we want. For example, the interrupt enables register and
possibly other control registers have to be set to enable inter-
rupts. In the example of Fig. 1, before invoking an interrupt,
the interrupt enable register IER of the UART must be set

while the interrupt identification register IIR must be
cleared. Interrupts can be temporarily disabled even if they
are enabled. Algorithm 4 is the routine in the Controller used
to determine whether it is possible to issue an interrupt.

Algorithm 4. Algorithm to Determine Whether it is
Possible to Issue an Interrupt: ISR_enabled(int p)

Input: P, p /* p is the pin number for a certain interrupt */
Output: enabled
1: if eflags½9] != 0 and ioapic.redirection[p] == 0 and

ioapic.pin_raised[p] == LOW then
2: returntrue
3: end if
4: return false

There are two general steps that our system takes prior to
invoking a controlled interrupt. First, the controller module
checks the status of the local and global interrupt bits to see if
interrupts are enabled. In an X86 architecture, the global
interrupt bit is the ninth bit of the eflags register (line 1 in
Algorithm 4). When this bit is set to 1 the global interrupt is
disabled, otherwise it is enabled. For local interrupts, Simics
uses the Advanced Programmable Interrupt Controller
(APIC) as its interrupt controller. As such, our system checks
whether the bit controlling theUARTdevice ismasked or not.

3.4 Race Conditions Repair Suggestions

Once a race condition is validated, the next step is to repair
it. Before designing repair suggestions for race condition,
we conduct an empirical study about the real-world repair
methods for data race and race condition.

3.4.1 Learning From Practice

The repair of race condition requires strong domain knowl-
edge and technical background. At present, it relies mainly
on the manual repair by developers, which is time-consum-
ing and laborious, and is also prone to errors. In order to
explore and summarize the successful repair patterns that
can be reused or can be automated, we conduct a lightweight
empirical study to analyze how developers repair the race
condition. Then we summarize the repair insight and pat-
terns, in order to guide the developers for their future race
repair as a reference.

To survey the repair strategies, we choose two data sour-
ces, the industry collaborators for embedding programs and
the Linux kernel community. The industry collaborators
provide their commonly used repair strategies in interrupt-
driven programs. About collecting data in the Linux kernel,
we inspect 532 bugs collected by Shi et al. [71] from 2011 to
2015 and validate 387 of them. Among the 387 races, 59 of
them are related to interrupts since a part of races in the ker-
nel are task-level races. The remaining bugs are not race
conditions or too complex to identify their repair strategies.
The reason for choosing Linux kernel as the subject of the
empirical study is that it is the closest project that consists
of many interrupt-driven programs (e.g., drivers).

Table 1 shows the result of race condition repair strate-
gies. For each repair strategy, we describe how the method
achieves eliminating races (column 2), along with examples
(column 3). The fourth column indicates whether this type

WANG ET AL.: AUTOMATIC DETECTION, VALIDATION, AND REPAIR OF RACE CONDITIONS IN INTERRUPT-DRIVEN EMBEDDED... 353

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

of repair strategy is used by our industry collaborators. The
fifth and sixth columns are collected from the Linux kernel,
we provide the number of occurrence for each repair method
and the corresponding percentage among task-level races
(i.e., Task) and interrupt-level races (i.e., Int). The last column
discusses the conditions of applying repair suggestions. NA
in the last row denotes that the two fields are not applicable.

3.4.2 Repair Suggestions

As shown in Table 1, in order to repair the race condition,
developers can add code snippets, remove code snippets,
and modify code snippets at specific locations to eliminate
the root causes of the race condition.

In real-world repair, the race condition repair requires the
location of shared resources, the location of their read and
write operations, the interleaving of interrupts and tasks,
which are very complicated. Moreover, in some embedded
systems, the race condition repair method may consider the
state of devices, in order to give a specific and ad hoc fix.

As far as we know, it is impossible to fully automate the
repair process without programmers’ participation [39].
Therefore, developers can choose repair strategies accord-
ing to Table 1 and repair the program manually by them-
selves or automatically by SDRacer.

Based on Table 1, we can see that only a few of them are
general purpose repair strategies, including AL, AAI, IDE,
Sync and AMB. Others depend on semantics and pattern of
the race. Among the top 5 repair strategies, AL and IDE are
applicable to automatic repair. In comparison, COO and AAC

depend on the semantics of the program and thus are more
difficult to be done fully automatically. AAI only provides a
limited set of operations, and often these operations are not
enough to synthesize more complicated operations effi-
ciently. It is worth noting that among all interrupt-level races,
44.1 percent of them are fixed by IDE. Among the remaining
strategies, Sync and AMB are relatively uncommon and
others depend on the pattern of races. Therefore, we focus on
AL and IDE considering difficulty, practicality and universal-
ity.We leave other repair strategies as futurework.

Interrupt Disable and Enable Strategy (IDE). This strategy
automatically enforces interrupt disable and enable opera-
tions (e.g., disable_irq(int irq) and enable_irq

(int irq)) on tasks or ISRs to avoid triggering the inter-
rupt that can result in races. Note that we only disable and
enable the interrupt line leads to races. Moreover, without
loss of generality, we assume the interrupt disable operation
waits for any pending IRQ handlers for this interrupt to
complete before returning [4].

The main challenge of applying disabling/enabling
interrupts strategy is that improper use of interrupt disable
operation may lead to deadlock. For example, when a task
disables an interrupt while holding a mutual exclusion
shared resource (e.g., spin_lock [3]) the interrupt handler
also needs to hold. Then the interrupt has to wait for the
resource, but it leads to deadlock since the task that holds
the resource also has to wait for the interrupt to return.

Given a racing pair ({< ei = (Ti, Li, Ai), ej= (Tj, Lj,
AjÞ > }.), Equation (1) is a sufficient condition to insert an

TABLE 1
Summary of Repair Strategies From the Industry and Linux Kernel

Repair strategy Description Example From ind.
From Linux Application

conditionTask Int

Change operation
orders (COO)

Change the order of operations
so that the racing operations
happen in separate timing

ei ^ ej ¼ false

Move codes to a position
where interrupts are finished

@ 88 26.8% 17 28.8% The separate timing
is available

Add additional
checks (AAC)

Add additional checks to
check program states to avoid

race ei ^ ej ¼ false

if (!dev_initialized())
wait_until_init();

• 85 25.9% 5 8.5% There is an available and
race-free program state

Add locks (AL) Add additional locks and
unlocks ei ^ ej ¼ false

spin_lock/ spin_unlock @ 81 24.7% 0 0% It will not introduce
deadlocks

Interrupt disable and
enable (IDE)

Disable and enable interrupts
disable ^ ej ¼ false

disable_irq/ enable_irq @ 0 0% 26 44.1% It will not introduce
deadlocks

Add atomic instructions
(AAI)

Add atomic instructions
ei ^ ej ¼ false

atomic_set • 19 5.8% 4 6.8% Its corresponding atomic
instruction is available

Synchronization (Sync) Synchronization
ei ^ ej ¼ false

Read-copy update,
memory barrier

@ 23 7.0% 0 0% It should be used judiciously
to avoid impeding

performance

Remove race codes (RRC) Remove race codes
remove ei or ej

Remove unnecessary but
buggy codes

• 12 3.7% 2 3.4% The racy code is no longer
needed

Extend critical sections
(ECS)

Extend critical sections
ei ^ ej ¼ false

Move spin_unlock after the
racing code.

• 10 3.0% 4 6.8% It will not introduce
deadlocks

Minimize the use of
shared resources (MinUse)

Minimize the use of shared
resourcesmi 6¼ mj

Use bit operation instead of
value assignment

• 3 0.9% 0 0% Some SV accesses are
redundant

Add try-again marks
(ATM)

Retry interrupted tasks
9ei ^ ej ¼ false

T(){if(flag==0)...} ISR()
{flag=1;...}

@ 2 0.6% 0 0% Performance insensitive
tasks or interrupt handlers

Restrict users (ResUser) Restrict users by documents or
user manual ei ^ ej ¼ false

Forbid user sending requests
right after starting a device.

@ 0 0% 0 0% A general method

Change priorities of tasks
or interrupts (ChgPrio)

Change priorities of tasks or
interrupts pj > pi ¼ false

Reverse priorities of two
interrupts

@ 0 0% 0 0% It will not lead to
other races

Ad hoc repairs (Others) Mostly ei ^ ej ¼ false NA • 5 1.5% 1 1.7% NA

354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

interrupt disable operation right before instruction Id while
avoiding this kind of deadlock. Because there is no mutual
exclusion shared resource between Id and Tj. Id is an
instruction in Ti, indicating the location of inserting an inter-
rupt disable operation. ITj is a set of all instructions in Tj.
holdðiÞ denotes all possible mutual exclusion shared resour-
ces (e.g., spin_lock) that instruction i may hold and not
released. holdðiÞ is calculated based on the alias analysis in
Algorithm 1. First, we analyze all mutual exclusion shared
resources that instruction i holds, and add it to holdðiÞ. For
example, a spin_lock is in holdðiÞ if and only if it is acquired
before i and released after i according to RICFG. Second, for
each resource in holdðiÞ, we analyze its aliases based on the
alias analysis result and add them to holdðiÞ

holdðIdÞ \
[

k2ITj
holdðkÞ

0
@

1
A ¼ ;: (1)

Then, let PredsðiÞ be all predecessors of the instruction i
(inclusive) in RICFG and let Ii be the instruction at Li. Based
on the equation, we identify Id if 1) Id 2 PredsðIiÞ, 2) Id meets
Equation (1), and 3) 8Ij 2 PredsðIiÞ; disðId; IiÞ � disðIj; IiÞ.
disði; jÞ is theminimumnumber of instructions from instruc-
tion i to j in RICFG.

After locating Id, to identify the instruction of inserting
interrupt enable operation (denoted as Ie), we analyze Ti to
find an instruction Ie s.t. 1) Sd ¼ post-domðIdÞ;Se ¼ domðIeÞ
in RICFG, 2) Id 2 Se, Ie 2 Sd, and 3) 8Ik 2 Sd; disðIe; IdÞ �
disðIk; IdÞ. In otherwords, Ie post-dominates Id, Id dominates
Ie and Ie is the closest location to Id. If we cannot find Ie or Id,
then we report this race pair is unable to repair by this strat-
egy. Finally, we insert an interrupt disable instruction right
before Id and an interrupt enable instruction right after Ie.

In the example of Fig. 1, to repair the race WN1, SDRacer
first inserts an disable_irq(1) right before line 14. Then
the enable_irq(1) is inserted right after line 14.

Add Locks Strategy (AL) and Extend Critical Sections (ECS).
The core idea of this repair strategy is to automatically create
or extend a critical section that protects shared variables. The

principle is that keeping the order of existing locks will not
introduce deadlock problem [14].

First, we define the lock order. If a task or an ISR first
acquires a lock li and then acquires another lock lj, there is a
lock order from lock li to lock lj, denoted by ðli; ljÞ. There is a
special case that, if a task or an ISR acquires two locks lm and
ln at the same time (e.g., aliases), then the two locks have the
same lock order. For example, if lm and ln are acquired at
the same time after acquiring lj, then the lock order is
ðli; lj; lm=lnÞ. The lock order is computed by traversing the
IRCFG of a program, recording each lock acquire operation.
Given a racing pair (ei, ej), assume the order of acquiring
locks for ei is LSi ¼ ðli1; . . . ; likÞ. Similarly, the relation for ej
is LSj ¼ ðlj1; . . . ; ljmÞ. Rule 2 is a sufficient condition to iden-
tify deadlocks because it avoids any inconsistent lock order
between LSi and LSj. li ! lj denotes that lock li is acquired
before holding lj. Unlike ðli; ljÞ, li ! lj indicates that there
may be one or more locks between li and lj

8li; lj 2 LSi and li ! lj; if li 2 LSj and lj 2 LSj;

then li ! lj also holds in LSj:
(2)

Based on the rule, we propose two ways of repair, 1) add-
ing new locks and 2) extending the lock scope. We first try
to repair a race by adding a new lock. If the lock order of the
program violates Rule 2, we will try to extend the lock scope
instead of adding new locks. Otherwise, we insert a lock
operation right before Li and Lj, and also insert an unlock
operation right after Li and Lj. Then we validate the lock
orders of the repaired program according to Rule 2. If the
new lock meets the rule, we try to fix other races. task1
and ISR1 in Fig. 3 show a race repaired by adding a new
lock. If Rule 2 is violated, we try to extend the lock scope. In
order to meet Rule 2, we first locate the closest locks after Li

and Lj, which are denoted as lii and ljj. Then, we extend
one of the locks in LScand ¼ ðli1; . . . ; liiÞ \ ðlj1; . . . ; ljjÞ, such
that ei and ej can be protected by the same lock and meet
Rule 2. If LScand is empty, we report this race pair is unable
to repair by ECS. task2 and ISR2 in Fig. 4 show a race
repaired by extending a critical section.

Fig. 3. An example of adding locks.

Fig. 4. An example of extending critical sections.

WANG ET AL.: AUTOMATIC DETECTION, VALIDATION, AND REPAIR OF RACE CONDITIONS IN INTERRUPT-DRIVEN EMBEDDED... 355

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

3.4.3 Race Repair Process

To repair a validated race, we propose a human-computer
corporation based repair process. The overall procedure is
shown in Algorithm 5. First, it analyzes the race report to
locate its source lines (at line 1). After that, for each vali-
dated race warning, the algorithm chooses feasible repair
strategies based on Table 1 and conducts the repair (at lines
3 to 6). Previous works claim that the majority of the pro-
grams patched by generate-and-validate patch generation
systems do not produce acceptable outputs [60]. Therefore,
we propose an additional subcomponent, which validates
repaired programs, in order to avoid such situations. In this
subcomponent, the algorithm validates the fixed program,
either by the validation component from SDRacer or man-
ual code review from developers (at lines 7 to 9). Then, the
algorithm tries to extend critical sections for unfixed races
(at line 8). Finally, it reduces repair operations by merging
critical sections (at line 10). Next, we discuss how to validate
repaired programs and reduce repair operations.

Algorithm 5. Race Repair and Validation

Input: P ,WNSet
Output: P 0

1: locateLine(WNSet)
2: P 0 = P /* Backup P */
3: for eachWN 2WNSet do
4: chooseRepairStrategies(WNSet)
5: P 0 = repairProg(P 0,WN)
6: end for
7: while validation(P 0) is not passed do
8: extendCriticalSection(P 0)
9: end while
10: mergeFix(P 0)

Repaired Program Validation. To validate repaired pro-
grams, we reuse the first three components (i.e., static analy-
sis, guided symbolic execution and dynamic validation) of
SDRacer. Each generated patch is validated by SDRacer to
check whether the bug has been fixed. Specifically, we
checkwhether the dynamic validation component still reports
the race.

Note that patches generated by SDRacer are still required
to be validated. The reason for validation is that the position
of inserting locks (or interrupt controlling operations) are
lines nearest the racing points. Although it can repair the
races defined in Section 2.2, it is not enough to repair atomic-
ity violations [45], which are the combination of two or more
races of the same shared resource. For example, there are two
races and one atomicity violation in the code Task()

{write(sv);read(sv);} ISR(){write(sv);}. Add-
ing locks to create separate critical sections can fix the races
but cannot fix the atomicity violation. Therefore, after repair-
ing, we generate a patched program and validate it by the
dynamic validation phase. If we can still detect races or fail-
ures, wewill gradually enlarge the corresponding critical sec-
tions according to the repair algorithms until no bugs and no
failures. In this way, extending critical sections could fix the
atomicity violation in the example. The repaired program is
Task(){lock(l);write(sv);read(sv);unlock

(l);} ISR(){lock(l);write(sv);unlock(l);}.

Reduce Repair Operations. After repairing all races, we
analyze critical sections created by IDE, AL or ECS. Then,
we merge two critical sections if one of the following condi-
tions are met: 1) the two critical sections have overlap. 2)
there is no instruction between two critical sections. We
only merge critical sections with the same IRQ if they are
created by IDE. When merging critical sections created by
AL or ECS, we replace two locks with the same lock. Merg-
ing critical sections reduces the number of repair operations
by removing redundant operations.

3.5 Implementation

The static analysis component of SDRacer was implemented
using the Clang Tool 3.4 [6]. Our alias analysis leveraged the
algorithm in [7] to handle the alias of shared resources. Our
guided symbolic execution was implemented based on
KLEE 1.2 [1] with STP solver [5] and KLEE-uClibc [2]. Since
most kernel functions are not supported by KLEE and
KLEE-uClibc, we have extended KLEE-uClibc to support
kernel functions such as request_irq(). In order to guide the
symbolic execution toward specific targets (i.e., potential rac-
ing points), we modified KLEE to only gather constraints
related to the paths that are generated by static analysis. We
used Simics virtual platforms with a simulated X86 CPU to
implement the dynamic validation phase. Simics provides
APIs that can be accessed via Python scripts to monitor con-
currency events and to manipulate memory and buses
directly to force interrupts to occur. Finally, our automatic
race repair component was implemented in Python to repair
races from the dynamic validation phase.

4 EMPIRICAL STUDY

To evaluate SDRacer we consider three research questions:

RQ1. How effective is SDRACER at detecting interrupt-level
race conditions?

RQ2. How efficient is SDRACER at detecting interrupt-level
race conditions?

RQ3. How effective and efficient is SDRACER at repairing
interrupt-level race conditions?

RQ1 allows us to evaluate the effectiveness of our
approach in terms of the number of races detected at different
phases, and their abilities to reduce false positives. RQ2 lets
us consider the efficiency of our approach in terms of analy-
sis/testing time and platform overhead. RQ3 examines
whether our repair strategy is effective and efficient.

4.1 Objects of Analysis

As objects of analysis, we chose both open source projects
and industrial products. First, we selected 118 device driver
programs that can be compiled into LLVM bitcode from four
versions of Linux Kernel. We next eliminated from consider-
ation those drivers that could not execute in Simics environ-
ment; this process left us with four drivers: keyboard,
mpu401_uart, i2c-pca-isa, and mv643_eth. The 114 drivers
were not executable because their corresponding device
models were not available in Simics—they need to be pro-
vided by developers. As part of the future work, we will
develop new device models for Simics in order to study
more device driver programs.

356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

We also selected two driver programs from LDD [18]:
short and shortprint. To create more subjects, we manually
seeded a concurrency fault to each of the two LDD pro-
grams. Specifically, we injected a shared variable incre-
ment operation and a decrement operation in their
interrupt handlers. The fault injection did not change the
semantics of the original programs but induced new races
to these programs. The two programs are denoted as short
(EI) and shortprint (EI).

The other three subjects are real embedded software from
China Academy of Space Technology. Module1 is an UART
device driver. Module2 is a driver for the lower computer.
Module3 is used to control the power of engine. Table 2 lists
all eleven programs, the number of lines of non-comment
code they contain, the number of interrupts (with different
priorities), the number of functions, the number of shared
resources, and the number of basic blocks. The number of
basic blocks indicates the complexity of symbolic execution.
The size of the benchmarks is consistent with a prior study of
concurrency bugs in device driver programs [75], which
ranges from less than a hundred line of code to thousands of
lines of code.

All our experiments were performed on a PC with 4-core
Intel Core CPU i5-2400 (3.10 GHz) and 8GB RAM on
Ubuntu Linux 12.04. For the simulation, the Host OS was
Ubuntu 12.04 and the guest OS was 10.04. Simulation was
based on real-time mode and conducted without VMP (In
order to run Intel Architecture (IA) targets quickly on IA-
based hosts.). The timeout for symbolic execution was set to
10 minutes.

4.2 Dependent Variables

We consider several measures (i.e., dependent variables) to
answer our research questions. Our first dependent variable
measures technique effectiveness in terms of the number of
races detected. We measure the number of races detected in
each of the three phases. Similar to data races in multi-thread
programs, the race condition we detect also has benign races
and harmful races. We also inspected all of the reported real
races (from the dynamic validation phase) that did not result
in detectable failures to determine whether they were harm-
ful or benign.

To assess the efficiency of techniques we rely on four
dependent variables, each of which measures one facet of
efficiency. The first dependent variable measures the analy-
sis and testing time required by SDRacer across the three

phases. Although measuring time is undesirable in cases in
which there are nondeterministic shared resource accesses
among processes, this is not a problem in our case because
we use a VM that behaves in a deterministic manner.

Our second variable regarding efficiency measures the
extra platform overhead associated with SDRacer. This is
important because using virtual platforms such as Simics
for testing can increase costs, since virtualization times can
be longer than execution times on real systems. We calculate
platform overhead by dividing the average runtime per test
run on Simics by the runtime per test on the real machine.
Note that judging whether races are harmful is not taken
into account when computing the overhead of SDRacer
because it is independent of techniques for locating harmful
races.

To measure the effectiveness of repair, we patch the pro-
gram as suggested by SDRacer and run its test cases (gener-
ated from symbolic execution). We consider a repair is valid
if it does not fail any test case in the dynamic validation. To
measure the efficiency of repair, we compare the program
execution time without the patch to the execution time with
the patched applied.

4.3 Threats to Validity

The primary threat to external validity for this study
involves the representativeness of our programs and faults.
Other programs may exhibit different behaviors and cost-
benefit tradeoffs, as may other forms of test suites. How-
ever, the programs we investigate are widely used and the
races we consider are real (except the seeded races on the
two LDD programs).

The primary threat to internal validity for this study is pos-
sible faults in the implementation of our approach and in the
tools that we use to perform evaluation.We controlled for this
threat by extensively testing our tools and verifying their
results against smaller programs for which we can manually
determine the correct results. We also chose to use popular
and established tools (e.g., Simics and KLEE) to implement
the various modules in our approach. As an additional threat
to internal validity, race manifestation can be influenced by
the underlying hardware [56], [72]. For example, microproc-
essors that provide virtualization support may be able to pre-
vent certain races from occurring due to fewer system calls.
Our work uses SIMICS, a full platform simulator to provide us
with the necessary controllability and observability to cause
races. Simics has been widely used to expose difficult-to-
reproduce faults including races [21]. The version of SIMICS

that we used does not simulate the later Intel processors with
hardware virtualization support—a feature that can affect our
ability to produce races. Nonetheless, our system was able to
detect previously documented races existing in our experi-
mental subjects. Therefore, the execution patterns seen using
SIMICS should be comparable to those that would be observed
in the real systems.

Where construct validity is concerned, numbers of races
detected are just one variable of interest where effectiveness
is concerned. Other metrics such as the cost of manual analy-
sis could be valuable. Furthermore, the performance also
depends on the experiment setup, such as the time of unroll-
ing loops, symbolic execution timeout, maximum repair
attempts, etc.

TABLE 2
Objects of Analysis

Program name LOC #INT # Func #SR #BB

keyboard_ driver 84 1 4 5 45
mpu401_ uart 630 1 16 2 316
i2c-pca-isa 225 1 11 9 111
mv643xx _eth.c 3256 1 29 7 1076
short 704 5 18 20 315
shortprint 531 1 11 22 266
short (EI) 707 5 18 20 317
shortprint (EI) 530 1 11 22 266
module1 168 1 3 1 55
module2 154 2 7 4 62
module3 99 2 8 1 40

WANG ET AL.: AUTOMATIC DETECTION, VALIDATION, AND REPAIR OF RACE CONDITIONS IN INTERRUPT-DRIVEN EMBEDDED... 357

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

5 RESULTS AND ANALYSIS

Table 3 reports the effectiveness and efficiency results
observed in our study; we use this table to address our
research questions.

5.1 RQ1: Effectiveness of SDRacer

Columns 2-5 in Table 3 show the number of races reported
by static analysis, the number of races remained after sym-
bolic execution, the number of real races reported by the
dynamic validation across all 11 subjects, and the number
of true races validated manually by us. We reported the
detected races in the 9 subjects to developers and 4 of them
were confirmed (i.e., keyboard_driver, module1, module2
and module3). Others are waiting for the confirmation.
Note that we do not report bugs in the 2 subjects with
injected races because they are introduced to evaluate the
effectiveness of SDRacer.

As the results show, the symbolic execution reduced the
number of false positives contained in the sets of static race
warnings by 40.3 percent overall, with reductions ranging
from 0 to 96.6 percent across all 11 subjects. The dynamic val-
idation reduced the number of races reported by symbolic
execution by 36.7 percent overall, with reductions ranging
from 0 to 100 percent. The manual examination revealed that
among all real races (i.e., exclude inject bugs) reported by the
dynamic validation, all races are real and harmful. In total,
SDRacer detected 190 races. Only on shortprint did
SDRacer not detect any races. No false negatives were found
on all programs by themanual inspection.

On two out the 11 subjects, symbolic execution reported
equal number races to the dynamic validation (keyboard_-
driver and module1). In other words, symbolic execution
did not report false positives on the two programs. On the
other nine programs, symbolic execution did report false
positives. By further examining the programs, we found two
reasons that led to the false positives. The first reason is due
to the unknown access type (read andwrite) in external func-
tions. For example, on mpu401_uart, the ISR calls an exter-
nal library (snd_mpu401_input_avail) taking an SV as
the argument. The symbolic execution treats this access as a
write since static analysis incorrectly identifies it as a write.
The second reason is due to the conflict path constraints
between the main task and ISRs, which resulted in time-out.

In this case, the race reported by the static analysis is directly
sent to the dynamic validation phase. The third reason is that
it is incapable of recognizing the implicit interrupt opera-
tions; This case happened to the program short.

5.2 RQ2: Efficiency of SDRacer

Columns 6-8 in Table 3 report the analysis time of static anal-
ysis, symbolic execution, and dynamic validation. On two
programs (mpu401_uart and mv643xx_eth), the symbolic
execution reached the time limit (i.e., 10 minutes) on the two
static warnings of each program due to the unsolvable path
constraints. Therefore, their times of symbolic execution
weremuch higher than the other programs. Overall, the total
testing time spent by SDRacer ranged from 2 seconds to 23
minutes across all 11 subjects. Specifically, the time for static
analysis never exceeded 0.2 second, which accounted for less
than 0.01 percent of total testing time overall. The time spent
on symbolic execution was 235 seconds in arithmetic mean,
accounting for 88.1 percent of total testing time. The remain-
ing (31 seconds) time was spent on dynamic validation,
which accounted for 11.8 percent of total testing time. The
time for symbolic execution and dynamic validation varied
with the number of detected static warnings.

SDRacer incurred platform overhead due to the use of
VMs. Column 9 of Table 3 lists the average platform overhead
associated with SDRacer across all test runs. As the table
shows, the average platform overhead ranged from 64x to
669x. Aswe can see from the result, the less complex a subject
is, the more platform overhead it incurred. This is because
our execution observer was implemented using the callback
functions provided by the Simics VM; it took time for the MV
to trigger callback functions. However, considering the bene-
fits of virtual platforms and the difficulty of detecting inter-
rupt-level race conditions, such overhead is trivial.

5.3 RQ3: Effectiveness and Efficiency
of Automated Repair

We patched the program as suggested by SDRacer and run
its test inputs along with the controlled interrupts. We con-
sider a repair is valid if it does not fail any test case (i.e., no
races are reported by SDRacer). Our results indicate that the
repairs on all eleven programs are valid and did not incur
new races or deadlock. To measure the repair overhead,
we randomly choose three inputs from guided symbolic

TABLE 3
Experimental Results

Programs
Race Detected Execution Time (second)

Sim
Overhead

Dyna
OnlyStatic

Analysis
Symbolic
Execution

Dynamic
Validation

Manual
Checking

Static
Analysis

Symbolic
Execution

Dynamic
Validation

keyboard_driver 4 4 4 4 0.073 1.03 1.65 892x 4
mpu401_ uart 146 129 47 47 0.088 1251.83 75.2 245.3x 12
i2c-pca-isa 4 4 1 1 0.078 1.00 42.1 530.1x 1
mv643xx _eth 16 14 10 10 0.183 1207.97 102.2 64.4x 2
short 127 35 18 18 0.109 41.53 26.8 297x 14
shortprint 4 2 0 0 0.088 1.25 21.61 445.6x 0
short (EI) 149 41 24 24 0.106 48.28 24.13 285.6x 18
shortprint (EI) 14 8 6 6 0.091 4.44 49.3 425.8x 6
module1 4 4 4 4 0.076 0.91 1.54 669.2x 4
module2 93 65 64 64 0.075 21.48 1.25 590.1x 64
module3 15 15 12 12 0.073 3.39 1.06 426x 12

358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

execution (including interrupt trigger time) and average the
performance overhead.

Columns 2-3 of Table 4 show the number of new opera-
tions inserted to fix races. The repair for shortprint is not appli-
able since there is no report. The number of new operations is
not very high even for programs with many races. The main
reason is that we merge critical sections to reduce redundant
interrupt or lock operations. For example, there are two races
in Task(){read(x);read(y);}, ISR(){write(x);

write(y);}, which can be fixed by Task(){lock(m);

read(x);read(y);unlock(m);}, ISR(){lock(m);

write(x);write(y);unlock(m);}. Note that there are
only 4 new operations instead of 8 operations. Columns 4-5 of
Table 4 reports the overhead of the repair. On nine out of 11
programs, the overhead was less than 0.09. These overheads
are in the same order of magnitude as that of other thread-
level concurrency fault repair techniques [34], [44]. We con-
sider such small overheads to be negligible. On the other
hand, the overheads on the module1 and the i2c-pca-isa
are much higher. The reason is that after enforcing the inter-
rupt disable and enable operations, it changed the control
flow of the main tasks since it was preempted by ISR, causing
themain tasks to execute longer.

Note that different interrupt request lines induced differ-
ent overhead. In the experiment, we found that the higher
priority interrupt tends to induce higher overhead when
disabling it. We conjecture that disabling higher priority
interrupts are likely to prevent lower priority ISRs from
being executed and thus cause interrupt latencies.

Finally, we report fixed versions of module1, module2
and module3 to the developer and all of them are confirmed.

6 DISCUSSION

In this section, we first summarize our experimental results
and then explore additional observations and limitations
relevant to our study.

6.1 Summary of Results

SDRacer’s static analysis component can detect potential
race conditions with a false positive rate 72.0 percent. Our
static analysis is able to handle nested interrupts with differ-
ent priorities, as opposed to deal with race conditions only
between tasks and ISRs [16]. SDRacer’s symbolic execution

reduced the false positive rate to 49.8 percent. The VM-based
dynamic validation eliminated all false positives. Mean-
while, we manually validated the results from SDRacer and
found that they are all true races. The average testing time is
4.5 minutes on each program. SDRacer’s automated race
repair component effectively repaired all detected race con-
ditions while inducing little overhead. There are only two
exceptions, which are i2c-pca-isa andmodule1. The reason is
that the functions contain race pair is too simple to ignore the
overhead of introducing additional interrupt controlling
operations. Therefore, adding locks is a better choice but
adding interrupt controlling operations is simpler.

If these results generalize to other real objects, then if
engineers wish to target and repair race detection in interrupt-
driven embedded system, SDRacer is a cost-effective technique to
utilize. In the case of non-existing VMs, developers can still
use static analysis and symbolic execution to detect races.

6.2 Further Discussion

Influence of Test Input Generation.There have been techniques
for detecting concurrency faults that occur due to interactions
between application and interrupt handlers [27], [42], [63],
[84]. However, these techniques neither handle nested inter-
rupts nor considers priority constraints among tasks and
ISRs. Also, they do not have the static analysis and symbolic
execution components, which could miss races that can only
be revealed by certain inputs. In addition, these techniques
are not applicable in the case of non-existing VMs or runtime
environment. To further investigate whether the use of static
analysis and symbolic execution can improve the race detec-
tion effectiveness, we disabled the two components and did
see missing races. Columns 10 in Table 3 reports the numbers
of races detected when using only the dynamic validation
component. When only the dynamic validation stage is used,
we regard it as a dynamic testing tool since it can detect races.
We regarded the test subjects as a black box andmanually fed
inputs. As the data shows, in total, it detected only 137
races—28.2 percent less effective than SDRacer.

Atomicity Violations. SDRacer considers one type of defini-
tion of race conditions—order violations. In practice, testers
can adopt different definitions because there is not a single
general definition for the class of race conditions that occur
between an ISR and a task/an ISR. SDRacer maymiss faults
due to atomicity violations. For example, if a read-write
shared variable pair in the main program is supposed to be
atomic, the ISR can read this shared variable before it is
updated in the main program. Since SDRacer does not cap-
ture the read-read access pattern, this fault may bemissed.

Inline Functions. In the dynamic validation phase, we use
memory breakpoints to detect when concurrency events are
executed. However, some simple functions are optimized as
inline functions by compilers. In this case, breakpoints for
these functions cannot be triggered. To handle this case, we
need to disable optimization for these functions.

Dynamic Priority Assignment. Many false positives in the
static analysis phase are caused by nested interrupts, because
SDRacer does not recognize priorities that are dynamic
assigned. These false positives can result in more validation
time in symbolic execution and dynamic simulation. As
part of future work, we will consider operations involving
dynamic priority adjustment.

TABLE 4
Repair Results

Programs #New operations Repair Overhead

IDE AL/ECS IDE AL/ECS

keyboard_driver 2 4 0x 0x
mpu401_uart 28 46 0.04x 0.01x
i2c-pca-isa 2 4 0.75x 0.01x
mv643xx_eth 20 26 0.01x 0x
short 14 28 0.03x 0.01x
shortprint NA NA NA NA
short (EI) 16 30 0.03x 0.01x
shortprint (EI) 6 10 0.05x 0.01x
module1 2 4 0.8x 0.01x
module2 12 18 0.07x 0.01x
module3 4 10 0.08x 0.01x

WANG ET AL.: AUTOMATIC DETECTION, VALIDATION, AND REPAIR OF RACE CONDITIONS IN INTERRUPT-DRIVEN EMBEDDED... 359

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

Complex Repair Strategies. As we can see from the survey
of race repairs, some repair strategies (e.g., changing opera-
tion orders, adding additional checks) depend on semantics
of a program, which is difficult to propose an accurate
repair method to support these strategies. However, among
the top 4 repair strategies, the two semantics-based repair
strategies (i.e., COO and AAC) strategies take 50.4 percent
among all repair methods, which means that both of them
are important and popular repair methods.

Scalability to the Entire System. In our study, the analysis
involves a test program, the interrupt handler that interacts
with the device driver, and the device driver code. The key
point here is that the tester focuses on a specific component1

and how it interacts with the rest of the components. If the
focus changes to a different component, the same analysis
can be applied to test the new component. As such, the pro-
posed approach is more suitable for component testing
instead of testing the entire system at once.

Multi-Core Systems. Our experiment focuses on single-
core systems. When it comes to multi-core systems, our
method can detect races happening across cores because the
way of detecting shared resources in the dynamic validation
phase is to monitor the memory address of shared resour-
ces. As for repairing races in multi-core systems, disabling
interrupts is not a choice because enabling/disabling inter-
rupts is on a per-core basis [24]. Therefore, it is impractical
to globally disable interrupts on all cores. However, adding
locks or extending critical sections can fix this kind of race.

7 RELATED WORK

There has been a great deal of work on analyzing, detecting,
and testing for thread-level data races [8], [15], [19], [29],
[47], [48], [55], [57], [61], [67], [69], [85]. However, as dis-
cussed in Section 2.5, existing techniques on testing for
thread-level concurrency faults have rarely been adapted to
work in scenarios in which concurrency faults occur due to
asynchronous interrupts.

Dynamic Testing in Interrupt-Driven Programs. There are
several techniques for testing embedded systems with a par-
ticular focus on interrupt-level concurrency faults [27], [42],
[63], [84]. For example, Regehr et al. [63] use random testing
to test Tiny OS applications. They propose a technique called
restricted interrupt discipline (RID) to improve naive ran-
dom testing (i.e., firing interrupts at random times) by elimi-
nating aberrant interrupts. However, this technique is not
cognizant of hardware states and may lead to erroneous
interrupts. SimTester [84] leverages VM to address this prob-
lem by firing interrupts conditionally instead of randomly.
Their evaluation shows that conditionally fired interrupts
increase the chances of reducing cost. However, all the fore-
going techniques do not consider interrupt-specific event
constraints (e.g., priorities) and may lead to imprecise
results. In addition, they are incapable of automatically gen-
erating test inputs or repairing race conditions. In contrast,
our approach can cover all feasible shared variables in the
application instead of using arbitrary inputs; this can help
the program execute code regions that aremore race-prone.

Static Analysis in Interrupt-Driven Programs. There has
been somework on using static analysis to verify the correct-
ness of interrupt-driven programs [16], [32], [40], [64]. For
example, Regehr et al. [64] propose amethod to statically ver-
ify interrupt-driven programs. Their work first outlines the
significant ways in which interrupts are different from
threads from the point of view of verifying the absence of
race conditions. It then develops a source-to-source transfor-
mation method to transform an interrupt-driven program
into a semantically equivalent thread-based program so that
a thread-level static race detection tool can be used to find
race conditions, which is the main benefit of their approach.
Comparing to [64], SDRacer has two advantages. First, proof
of the correctness of code transformation is often non-trivial;
[64] does not provide proofs showing the transformation is
correct or scalable. In contrast, SDRacer is transparent and
does not require any source code transformation or instru-
mentation and can be applied to the original source code.
Second, SDRacer uses dynamic analysis to validatewarnings
reported by static race detectors. Our evaluation showed that
SDRacer can eliminate a large portion of false positives pro-
duced by static analysis, whereas Regehr’s work [64] on
seven Tiny OS applications does not evaluate the precision
of their technique.

Jonathan et al. [40] first statically translate interrupt-
driven programs into sequential programs by bounding the
number of interrupts, and then use testing to measure execu-
tion time.While static analysis is powerful, it can report false
positives due to imprecise local information and infeasible
paths. In addition, as embedded systems are highly depen-
dent on hardware, it is difficult for static analysis to annotate
all operations on manipulated hardware bits; moreover,
hardware events such as interrupts usually rely on several
operations among different hardware bits. SDRacer lever-
ages the advantages of static analysis to guide precise race
detection. Techniques combined with static and dynamic
method [78] could also detect and verify races. However,
due to the lack of test case generation method, Manually
efforts are required to inspect codes and generate test cases
to reach race points.

Dynamic Testing in Event Driven Programs. There has been
some research on testing for concurrency faults in event-
driven programs, such as mobile applications [9], [30], [31],
[47] and web applications [28], [62]. Although the event exe-
cution models of event-driven and interrupt-driven have
similarities, they are different in several ways. First, unlike
event-driven programs that maintain an event queue as
first-in, first-out (FIFO) basis, interrupt handlers are often
assigned to different priorities and can be preempted. Sec-
ond, interrupts and their priorities can be created and
changed dynamically and such dynamic behaviors can only
be observed at the hardware level. Third, the events in
event-driven programs are employed at a higher-level (e.g.,
code), whereas hardware interrupts happen at a lower-level
(e.g., CPU); interrupts can occur only when hardware com-
ponents are in certain states. The unique characteristics of
interrupts render inapplicable the existing race detection
techniques for event-driven programs.

Hybrid Techniques. There has been some research on com-
bining static analysis and symbolic execution to test and ver-
ify concurrent programs [22], [25], [65], [66], [70], [79]. For

1. A component is a device driver program. The list of components
can be identified by popular Linux commands such as “modprobe”.

360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

example, Samak et al. [66] combine static and dynamic analy-
sis to synthesize concurrent executions to expose concurrency
bugs. Their approach first employs static analysis to identify
the intermediate goals towards failing an assertion and
then uses symbolic constraints extracted from the execution
trace to generate new executions that satisfy pending goals.
Guo et al. [25] use static analysis to identify program paths
that do not lead to any failure and prune them away during
symbolic execution. However, these techniques focus on
multi-threaded programs while ignoring concurrency faults
that occur at the interrupt level. As discussed in Section 2.5,
interrupts are different from threads in many ways. On the
other hand, we can guide SDRacer to systematically explore
interrupt interleavings or to target failing assertions.

Automatic Race Repair Techniques. There have been several
techniques on automatically repairing concurrency faults in
multi-threaded applications [34], [38], [43], [44], [73]. For
example, AFix [34] can fix single-variable atomicity viola-
tions by first detecting atomicity violations, and then con-
struct patches by adding locks.

CFix [35] is designed to havemore general repair capabili-
ties than AFix. CFix addresses the problem of fixing concur-
rency bugs by adding locks or condition variables to
synchronize program actions. HFix [43] is proposed to
address the problem that fixing concurrency bugs by adding
lock operations and condition variables increase the fix com-
plexity in some cases. HFix produces simpler fixes by reus-
ing the code that is already present in the program rather
than generating new code. ARC [38] employs a genetic algo-
rithm without crossover (GAC) to evolve variants of an
incorrect concurrent Java program into a variant that fixes all
known bugs. However, none of existing techniques have
been proposed to repair concurrency faults in interrupt-
driven embedded programs. Surendran et al. [73] present a
technique that focuses on repairing data races in structured
parallel programs. This technique identifies where to insert
additional synchronization statements that can prevent the
discovered data races.

Interrupt-driven programs require dedicated repair strate-
gies (e.g., control interrupts), in order to achieve better perfor-
mance. Moreover, instead of only applying repair strategies
for race instructions, SDRacer also validates fixed programs
to ensure that races are correctly addressed. Although some
techniques (e.g., AFix [34]) also verify their patches, the effec-
tiveness depends on the fault detection tools while the detec-
tion and validation components in SDRacer further improve
the effectiveness.

8 CONCLUSION AND FURTHER WORK

This paper presents SDRacer, an automated tool to detect,
validate and repair race conditions in interrupt-driven
embedded software. SDRacer first employs static analysis
to compute static race warnings. It then uses a guided sym-
bolic execution to generate test inputs for exercising these
warnings and eliminating a portion of false races. Then,
SDRacer leverages the ability of virtual platforms and
employs a dynamic simulation approach to validate the
remaining potential races. Finally, SDRacer automatically
repairs the detected races. We have evaluated SDRacer on
nice real-world embedded programs and showed that it

precisely and efficiently detected both known and unknown
races. Therefore, it is a useful addition to the developers’
toolbox for testing for race conditions in interrupt-driven
programs. It also successfully repaired the detected races
with little performance overhead. In the future, we will fur-
ther improve the accuracy of static analysis. We also intend
to extend our approach to handle other types of concur-
rency faults.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Pro-
gram of China (No. 2017YFA0700604), and the National
Natural Science Foundation of China (No.61632015).

REFERENCES

[1] KLEE LLVM Execution Engine, 2020. [Online]. Available: https://
klee.github.io/

[2] KLEE-uClibc, 2020. [Online]. Available: https://github.com/
klee/klee-uclibc

[3] Lesson 1: Spin locks, 2020. [Online]. Available: https://www.
kernel.org/doc/Documentation/locking/spinlocks.txt

[4] Linux generic IRQ handling — The Linux Kernel documentation,
2020. [Online]. Available: https://www.kernel.org/doc/html/
v4.18/core-api/genericirq.html#c.disable_irq

[5] STP constraint solver, 2020. [Online]. Available: http://stp.github.io/
[6] Using Clang Tools - LLVM, 2020. [Online]. Available: http://clang.

llvm.org/docs/ClangTools.html
[7] L. O. Andersen, “Program analysis and specialization for the C pro-

gramming language,” PhD thesis, Dept. Comput. Sci., Univ.
Cophenhagen, Copenhagen, Denmark, 1994.

[8] D. Aspinall and J. �Sev�c�ık, “Formalising Java’s data race free guar-
antee,” in Proc. Int. Conf. Theorem Proving Higher Order Logics,
2007, pp. 22–37.

[9] P. Bielik, V. Raychev, and M. Vechev, “Scalable race detection for
android applications,” ACM SIGPLAN Notices, vol. 50, pp. 332–348,
2015.

[10] M.D. Bond,K. E. Coons, andK. S.McKinley, “PACER: Proportional
detection of data races,” in Proc. ACM SIGPLAN Symp. Program.
Lang. Des. Implementation, 2010, pp. 255–268.

[11] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
randomized scheduler with probabilistic guarantees of finding
bugs,” in Proc. Int. Conf. Archit. Support Program. Lang. Operating
Syst., 2010, pp. 167–178.

[12] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” in Proc. USENIX Symp. Operating Syst. Des. Implementations,
2008, pp. 209–224.

[13] C. Cadar et al., “KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs,” in Proc.
8th USENIX Conf. Operating Syst. Des. Implementation, 2008,
pp. 209–224.

[14] Y. Cai, L. Cao, and J. Zhao, “Adaptively generating high quality
fixes for atomicity violations,” in Proc. 11th Joint Meet. Found.
Softw. Eng., 2017, pp. 303–314.

[15] D. Callahan, K. Kennedy, and J. Subhlok, “Analysis of event syn-
chronization in a parallel programming tool,” ACM SIGPLAN
Notices, vol. 25, pp. 21–30, 1990.

[16] R. Chen, X. Guo, Y. Duan, B. Gu, and M. Yang, “Static data race
detection for interrupt-driven embedded software,” in Proc. 5th
Int. Conf. Secure Softw. Integr. Rel. Improvement Companion, 2011,
pp. 47–52.

[17] K. E. Coons, S. Burckhardt, and M. Musuvathi, “GAMBIT:
Effective unit testing for concurrency libraries,” in Proc. 15th ACM
SIGPLAN Annu. Symp. Princ. Practice Parallel Program., 2010,
pp. 15–24.

[18] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers.
Sebastopol, CA, USA: O’Reilly Media, Inc., 2005.

[19] E. Duesterwald and M. L. Soffa, “Concurrency analysis in the
presence of procedures using a data-flow framework,” in Proc.
Symp. Testing Anal. Verification, 1991, pp. 36–48.

WANG ET AL.: AUTOMATIC DETECTION, VALIDATION, AND REPAIR OF RACE CONDITIONS IN INTERRUPT-DRIVEN EMBEDDED... 361

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

https://klee.github.io/
https://klee.github.io/
https://github.com/klee/klee-uclibc
https://github.com/klee/klee-uclibc
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/html/v4.18/core-api/genericirq.html#c.disable_irq
https://www.kernel.org/doc/html/v4.18/core-api/genericirq.html#c.disable_irq
http://stp.github.io/
http://clang.llvm.org/docs/ClangTools.html
http://clang.llvm.org/docs/ClangTools.html

[20] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, andH.-J. Boehm,
“IFRit: Interference-free regions for dynamic data-race detection,”
in Proc. Conf. Object-Oriented Program. Syst. Lang. Appl., 2012,
pp. 467–484.

[21] J. Engblom, “Systematically exposing OS kernel races - an inter-
view with Ben Blum,” 2012. [Online]. Available: http://blogs.
windriver.com/tools/2012/09/systematically-exposing-os-
kernel-races-an-interview-with-ben-blum.html

[22] A. Farzan, A. Holzer, N. Razavi, and H. Veith, “Con2colic testing,”
inProc. ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2013, pp. 37–47.

[23] C. Flanagan and S. Qadeer, “A type and effect system for atomicity,”
in Proc. ACM SIGPLAN Symp. Program. Lang. Des. Implementation,
2003, pp. 338–349.

[24] J. Ganguly and M. D. Lemmon, “Theory of clock synchronization
and mutual exclusion in networked control systems,” Univ. Notre
Dame, Notre Dame, IN, USA, Tech. Rep. ISIS-99–007, 1999.

[25] S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta, “Assertion
guided symbolic execution of multithreaded programs,” in Proc.
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2015, pp. 854–865.

[26] M. Higashi, T. Yamamoto, Y. Hayase, T. Ishio, and K. Inoue, “An
effective method to control interrupt handler for data race
detection,” in Proc. Workshop Autom. Softw. Test, 2010, pp. 79–86.

[27] M. Higashi, T. Yamamoto, Y. Hayase, T. Ishio, and K. Inoue, “An
effective method to control interrupt handler for data race
detection,” in Proc. Workshop Autom. Softw. Test, 2010, pp. 79–86.

[28] S. Hong, Y. Park, and M. Kim, “Detecting concurrency errors in
client-side java script web applications,” in Proc. IEEE 7th Int.
Conf. Softw. Testing Verification Validation, 2014, pp. 61–70.

[29] S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel, “Are con-
currency coverage metrics effective for testing: A comprehensive
empirical investigation,” J. Softw. Testing Verification Rel., vol. 25,
no. 4, pp. 334–370, 2015.

[30] C.-H. Hsiao et al., “Race detection for event-driven mobile
applications,” in Proc. 35th ACM SIGPLAN Conf. Program. Lang.
Des. Implementation, 2014, pp. 326–336.

[31] Y. Hu, I. Neamtiu, and A. Alavi, “Automatically verifying and
reproducing event-based races in android apps,” in Proc. 25th Int.
Symp. Softw. Testing Anal., 2016, pp. 377–388.

[32] W. Huo, H. Yu, X. Feng, and Z. Zhang, “Static race detection of
interrupt-driven programs,” J. Comput. Res. Develop., vol. 12, 2011,
Art. no. 016.

[33] I. Jackson, “IRQ handling race and spurious IIR read in 8250.c.”
2020. [Online]. Available: https://lkml.org/lkml/2009/3/12/379

[34] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated
atomicity-violation fixing,” ACM SIGPLAN Notices, vol. 46, no. 6,
pp. 389–400, 2011.

[35] G. Jin, W. Zhang, and D. Deng, “Automated concurrency-bug
fixing,” in Proc. 10th USENIX Symp. Operating Syst. Des. Implemen-
tation, 2012, pp. 221–236.

[36] S. Joshi, S. K. Lahiri, and A. Lal, “Underspecified harnesses and
interleaved bugs,” in Proc. ACM SIGPLAN-SIGACT Symp. Princ.
Program. Lang., 2012, pp. 19–30.

[37] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang, “Static data race
detection for concurrent programs with asynchronous calls,” in
Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2009, pp. 13–22.

[38] D. Kelk, K. Jalbert, and J. S. Bradbury, “Automatically repairing
concurrency bugs with ARC,” in Proc. Int. Conf. Multicore Softw.
Eng. Perform. Tools, 2013, pp. 73–84.

[39] S. Khoshnood, M. Kusano, and C. Wang, “ConcBugAssist: Con-
straint solving for diagnosis and repair of concurrency bugs,” in
Proc. Int. Symp. Softw. Testing Anal., 2015, pp. 165–176.

[40] J. Kotker, D. Sadigh, and S. A. Seshia, “Timing analysis of inter-
rupt-driven programs under context bounds,” in Proc. Formal
Method Comput.-Aided Des., 2011, pp. 81–90.

[41] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” in Proc. ACM SIGPLAN Conf.
Program. Lang. Des. Implementation, 2012, pp. 193–204.

[42] Z. Lai, S.-C. Cheung, and W. K. Chan, “Inter-context control-flow
and data-flow test adequacy criteria for NesC applications,” in Proc.
ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2008, pp. 94–104.

[43] H. Liu, Y. Chen, and S. Lu, “Understanding and generating high
quality patches for concurrency bugs,” in Proc. 24th ACM SIGSOFT
Int. Symp. Found. Softw. Eng., 2016, pp. 715–726.

[44] P. Liu and C. Zhang, “Axis: Automatically fixing atomicity viola-
tions through solving control constraints,” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 299–309.

[45] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug character-
istics,” in Proc. 13th Int. Conf. Archit. Support Program. Lang. Operat-
ing Syst., 2008, pp. 329–339.

[46] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed sym-
bolic execution,” in Proc. Int. Static Anal. Symp., 2011, pp. 95–111.

[47] P. Maiya, A. Kanade, and R. Majumdar, “Race detection for
android applications,” in Proc. 35th ACM SIGPLAN Conf. Program.
Lang. Des. Implementation, 2014, pp. 316–325.

[48] J. Manson, W. Pugh, and S. V. Adve, “The java memory model,”
ACM SIGPLAN Notices, vol. 40, pp. 378–391, 2005.

[49] P. D. Marinescu and C. Cadar, “Make test-zesti: A symbolic exe-
cution solution for improving regression testing,” in Proc. Int.
Conf. Softw. Eng., 2012, pp. 716–726.

[50] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace: Effec-
tive sampling for lightweight data-race detection,” inProc. ACMSIG-
PLANSymp. Program. Lang. Des. Implementation, 2009, pp. 134–143.

[51] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu, “Finding and reproducing Heisenbugs in concurrent
programs,” in Proc. USENIX Symp. Operating Syst. Des. Implementa-
tions, 2008, pp. 267–280.

[52] M. Naik, C.-S. Park, K. Sen, and D. Gay, “Effective static deadlock
detection,” in Proc. Int. Conf. Softw. Eng., 2009, pp. 386–396.

[53] R. H. B. Netzer and B. P. Miller, “What are race conditions? Some
issues and formalizations,” ACM Lett. Program. Lang. Syst., vol. 1,
no. 1, pp. 74–88, Mar. 1992.

[54] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov,
“Ballerina: Automatic generation and clustering of efficient ran-
dom unit tests for multithreaded code,” in Proc. Int. Conf. Softw.
Eng., 2012, pp. 727–737.

[55] R. O’callahan and J.-D. Choi, “Hybrid dynamic data race detection,”
ACMSIGPLANNotices, vol. 38, no. 10, pp. 167–178, 2003.

[56] L. Osterman, “Larry gets taken to task on concurrency,” 2005.
[Online]. Available: https://blogs.msdn.microsoft.com/
larryosterman/2005/02/11/larry-gets-taken-to-task-on-concurrency/

[57] E. Pozniansky and A. Schuster, “Efficient on-the-fly data race
detection in multithreaded C++ programs,” in Proc. 9th ACM SIG-
PLAN Symp. Princ. Practice Parallel Program., 2003, pp. 179–190.

[58] M. Pradel and T. R. Gross, “Fully automatic and precise detection
of thread safety violations,” in Proc. ACM SIGPLAN Symp. Pro-
gram. Lang. Des. Implementation, 2012, pp. 521–530.

[59] P. Pratikakis, J. S. Foster, and M. Hicks, “LOCKSMITH: Context-
sensitive correlation analysis for race detection,” ACM SIGPLAN
Notices, vol. 41, no. 6, pp. 320–331, 2006.

[60] Z. Qi, F. Long, S. Achour, andM. Rinard, “An analysis of patch plau-
sibility and correctness for generate-and-validate patch generation
systems,” in Proc. Int. Symp. Softw. Testing Anal., 2015, pp. 24–36.

[61] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Scalable
and precise dynamic datarace detection for structured paral-
lelism,” in Proc. 33rd ACM SIGPLAN Conf. Program. Lang. Des.
Implementation, 2012, pp. 531–542.

[62] V. Raychev, M. Vechev, and M. Sridharan, “Effective race detec-
tion for event-driven programs,” ACM SIGPLAN Notices, vol. 48,
pp. 151–166, 2013.

[63] J. Regehr, “Random testing of interrupt-driven software,” in Proc.
ACM Int. Conf. Embedded Softw., 2005, pp. 290–298.

[64] J. Regehr and N. Cooprider, “Interrupt verification via thread
verification,” Electron. Notes Theor. Comput. Sci., vol. 174, no. 9,
pp. 139–150, 2007.

[65] M. Samak, M. K. Ramanathan, and S. Jagannathan, “Synthesizing
racy tests,” ACM SIGPLAN Notices, vol. 50, pp. 175–185, 2015.

[66] M. Samak, O. Tripp, and M. K. Ramanathan, “Directed synthesis
of failing concurrent executions,” in Proc. ACM SIGPLAN Int.
Conf. Object-Oriented Program. Syst. Lang. Appl., 2016, pp. 430–446.

[67] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector formultithreaded programs,”
ACMTrans. Comput. Syst., vol. 15, no. 4, pp. 391–411, 1997.

[68] K. Sen, “Effective random testing of concurrent programs,” in
Proc. Int. Conf. Automated Softw. Eng., 2007, pp. 323–332.

[69] K. Sen, “Race directed random testing of concurrent programs,” in
Proc. ACM SIGPLAN Symp. Program. Lang. Des. Implementation,
2008, pp. 11–21.

[70] K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools,” in Proc. Int. Conf. Comput.
Aided Verification, 2006, pp. 419–423.

362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

http://blogs.windriver.com/tools/2012/09/systematically-exposing-os-kernel-races-an-interview-with-ben-blum.html
http://blogs.windriver.com/tools/2012/09/systematically-exposing-os-kernel-races-an-interview-with-ben-blum.html
http://blogs.windriver.com/tools/2012/09/systematically-exposing-os-kernel-races-an-interview-with-ben-blum.html
https://lkml.org/lkml/2009/3/12/379
https://blogs.msdn.microsoft.com/larryosterman/2005/02/11/larry-gets-taken-to-task-on-concurrency/
https://blogs.msdn.microsoft.com/larryosterman/2005/02/11/larry-gets-taken-to-task-on-concurrency/

[71] J. Shi, J. I. Weixing, Y. Wang, L. Huang, Y. Guo, and F. Shi, “Linux
kernel data races in recent 5 years,” Chin. J. Electron., vol. 27, no. 3,
pp. 556–560, 2018.

[72] SSE Instructions: Which CPUs can do atomic 16B memory opera-
tions?, 2014. [Online]. Available: http://stackoverflow.com/
questions/7646018/sse-instructions-which-cpus-can-do-atomic-
16b-memory-operations

[73] R. Surendran, R. Raman, S. Chaudhuri, J. Mellor-Crummey, and
V. Sarkar, “Test-driven repair of data races in structured parallel
programs,” ACM SIGPLAN Notices, vol. 49, pp. 15–25, 2014.

[74] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model
checking programs,” Autom. Softw.. Eng., vol. 10, no. 2, pp. 203–232,
2003.

[75] V. Vojdani, K. Apinis, V. R~otov, H. Seidl, V. Vene, and R. Vogler,
“Static race detection for device drivers: The Goblint approach,” in
Proc. IEEE/ACM Int. Conf. Automated Softw. Eng., 2016, pp. 391–402.

[76] C. von Praun, Race Detection Techniques. Boston, MA, USA:
Springer, 2011, pp. 1697–1706.

[77] C. von Praun and T. R. Gross, “Static conflict analysis for multi-
threaded object-oriented programs,” in Proc. ACM SIGPLAN
Symp. Program. Lang. Des. Implementation, 2003, pp. 115–128.

[78] Y. Wang, J. Shi, L. Wang, J. Zhao, and X. Li, “Detecting data races
in interrupt-driven programs based on static analysis and
dynamic simulation,” in Proc. Asia-Pacific Symp. Internetware, 2015,
pp. 199–202.

[79] Y. Wang, L. Wang, T. Yu, J. Zhao, and X. Li, “Automatic detection
and validation of race conditions in interrupt-driven embedded
software,” in Proc. 26th ACM SIGSOFT Int. Symp. Softw. Testing
Anal., 2017, pp. 113–124.

[80] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams,” in Proc. ACM SIG-
PLANConf. Program. Lang. Des. Implementation, 2004, pp. 131–144.

[81] A. Williams, W. Thies, and M. D. Ernst, “Static deadlock detection
for java libraries,” in Proc. Eur. Conf. Object-Oriented Program.,
2005, pp. 602–629.

[82] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A cover-
age-driven testing tool for multithreaded programs,” in Proc. Int.
Conf. Object-Oriented Program. Syst. Lang. Appl., 2012, pp. 485–502.

[83] T. Yu, X. Qu, and M. B. Cohen, “VDTest: An automated frame-
work to support testing for virtual devices,” in Proc. Int. Conf.
Softw. Eng., 2016, pp. 583–594.

[84] T. Yu, W. Srisa-an, and G. Rothermel, “SimTester: A controllable
and observable testing framework for embedded systems,” ACM
SIGPLAN Notices, vol. 47, pp. 51–62, 2012.

[85] Y. Yu, T. Rodeheffer, andW. Chen, “RaceTrack: Efficient detection
of data race conditions via adaptive tracking,” ACM SIGOPS
Operating Syst. Rev., vol. 39, pp. 221–234, 2005.

YuWang received the BS degree in computer sci-
ence from the University of Electronic Science and
Technology of China, Chengdu, China, in 2014.
He is currently working toward the PhD degree at
Nanjing University, Nanjing, China. His research is
in software engineering, with focus on analyzing
concurrent software defects.

Fengjuan Gao received the BS degree in com-
puter science from the University of Electronic Sci-
ence and Technology of China, Chengdu, China,
in 2014. She is currently working toward the PhD
degree at Nanjing University, Nanjing, China. Her
research is in software engineering with focus on
symbolic execution.

Linzhang Wang is a professor with the State Key
Laboratory of Novel Software Technology, Nanjing
University, China. His research interests include
software engineering and software security.

Tingting Yu (Member, IEEE) received the BE
degree in software engineering from Sichuan Uni-
versity, Chengdu, China, in 2008, and the MS and
PhD degrees from the University of Nebraska-Lin-
coln, Lincoln, Nebraska, in 2014. She is an assis-
tant professor of computer science with the
University of Kentucky. Her research is in software
engineering, with focus on developing methods
and tools for improving reliability and security of
complex software systems; testing for sequential
and concurrent software; regression testing; and
performance testing. She is a member of the IEEE
Computer Society.

Jianhua Zhao received the BS, MS, and PhD
degrees in computer science from Nanjing Uni-
versity, Nanjing, China, in 1993, 1996, and 1999,
respectively. He is a professor with Nanjing Uni-
versity. His research interests include formal sup-
port for design and analysis of systems, software
verification.

Xuandong Li received the BS, MS, and PhD
degrees in computer science from Nanjing Uni-
versity, Nanjing, China, in 1985, 1991, and 1994,
respectively. Since 1994, he has been with the
Department of Computer Science and Technol-
ogy, Nanjing University where he is currently a
professor. His research interests include formal
support for design and analysis of reactive, dis-
turbed, real-time, and hybrid systems, software
testing and verification, and model driven soft-
ware development.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WANG ET AL.: AUTOMATIC DETECTION, VALIDATION, AND REPAIR OF RACE CONDITIONS IN INTERRUPT-DRIVEN EMBEDDED... 363

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2022 at 05:14:35 UTC from IEEE Xplore. Restrictions apply.

For Research Only

http://stackoverflow.com/questions/7646018/sse-instructions-which-cpus-can-do-atomic-16b-memory-operations
http://stackoverflow.com/questions/7646018/sse-instructions-which-cpus-can-do-atomic-16b-memory-operations
http://stackoverflow.com/questions/7646018/sse-instructions-which-cpus-can-do-atomic-16b-memory-operations

