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Data-Parallel Computation
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Xuandong Li, and Yihua Huang

Abstract—Static program analysis has been widely applied along the whole process of the program development for bug detection,

code optimization, testing, etc. Although researchers have made significant work in static program analysis, it is still challenging to

perform sophisticated interprocedural analysis on large-scale modern software. The underlying reason is that interprocedural analysis

for large-scalemodern software is highly computation- andmemory-intensive, leading to poor efficiency and scalability. In this article, we

introduce an efficient distributed and scalable solution for sophisticated static analysis. Specifically, we propose a data-parallel algorithm

and a join-process-filter computationmodel for the CFL-reachability-based interprocedural analysis. Based on that, an efficient

distributed static analysis engine called BigSpa is developed, which is composed of an offline batch static program analysis system and

an online incremental static program analysis system. The BigSpa system has high generality and can support all kinds of static analysis

tasks that can be expressed as CFL reachability problems. The performance of BigSpa is evaluated on real-world large-scale software

datasets. Our experiments show that the offline batch system can exceed an order of magnitude compared with themost advanced

analysis tools available on performance, and for incremental analysis with small batch updates on the same data sets, the online analysis

system can achieve near real-time response, which is very fast and flexible.

Index Terms—Interprocedural static analysis, distributed systems, data-parallel computation

Ç

1 INTRODUCTION

IN THE entire process of software development, interproce-
dural static program analyses are widely used for tasks

such as bug detection, code optimization, testing, debug-
ging and so on.

Motivation. Nowadays, people apply the simple pattern-
based or intraprocedural analysis to uncover various software
problems in practice ([1], [2], [3]). However, due to the lack of
considering adequately rich/complete semantics informa-
tion, such simple analyses suffer from severely low accuracy
(30-100 percent false positive rate [4]), leading to dead poor
applicability [5]. For the sake of precise and thus useful analy-
sis results, sophisticated interprocedural analyses are essen-
tial, e.g., interprocedural context-, path-, flow-, field-sensitive
analysis. Different from the imprecise but efficient intraproce-
dural analysis, interprocedural analyses take into account
more semantics information, resulting in high analysis com-
plexity. For instance, in a context-sensitive interprocedural
analysis, the number of calling contexts can easily exceed
millions [6], making the analysis both computation- and

memory-intensive. In addition, as the sizes of modern soft-
ware grow, performing precise analysis on real-world mod-
ern software systems like Linux kernel, becomes more and
more challenging. It is reported that in a context-sensitive
interprocedural alias analysis for Linux kernel (more than
16M lines of code), there are more than 1 billion edges gener-
ated. None of the state-of-the-art analysis tools can accom-
plish the analysis task due to either analysis time or memory
usage issues [7]. The poor scalability greatly hinders the inter-
procedural analysis beingmorewidely adopted in industry.

From our point of view, the reason of poor scalability is
two-fold. First, the majority of existing interprocedural anal-
ysis systems are usually based on sequential algorithms.
They lack the support for highly efficient parallel and distrib-
uted computing. Second,most state-of-the-art algorithms are
purely memory-based. The limited size of available memory
severely impedes the applicability of static analyses in large-
scale scenarios.

Researchers have been endeavouring to improve the anal-
ysis scalability by proposing approximations, abstractions,
or various heuristics. However, approximations usually
trade off analysis capability for scalability, rendering analy-
sis less precise and useful. Even worse, the analysis with
lower accuracy sometimes still failed to analyze large-scale
systems code. In short, it is still too challenging to efficiently
perform interprocedural analysis on large-scale codebases.

Approach. Previous work [7] introduces the idea of turn-
ing Big Code analysis into Big Data analytics. Unfortu-
nately, as for the sophisticated and large-scale analysis
workloads, it still severely suffers from slow convergence
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and/or execution failure due to the limited scalability of one
single machine. This work offers a more scalable solution by
leveraging the distributed computing facilities. We follow
the direction of “Big Data” solution, employ it under the
distributed setting, and develop a highly scalable system,
thus making a step forward in large-scale static analysis.

Pioneered by [8], [9], we formulate sophisticated inter-
procedural analyses as grammar-guided graph reachability,
particularly the context-free-language (CFL) reachability
problems [10]. Pointer/alias analysis and dataflow analysis
are two typical examples. For instance, in a pointer analysis,
if a variable is reachable from an object instantiated via a
malloc by following certain path in a directed program
graph representation, the variable may point to that object.
Similarly, for a dataflow analysis that uncovers all the
NULL pointer variables in a program, a path from NULL to
a variable indicates the NULL value of the variable. Based
on this insight, we turn programs into graphs and treat the
analyses as graph processing problems.

However, none of the existing big graph processing sys-
tems (e.g., GraphLab [11], GraphX [12], GraphChi [13],
RStream [14]) supports this type of tasks well as explained
in [7] due to the unique characteristic the CFL reachability
possesses: dynamically computing reachability by repeat-
edly adding transitive edges into the graph. In addition,
considering the memory cost and performance, such itera-
tive computation usually requires customized data struc-
ture, which is difficult to be implemented with a high-level
vertex-centric programming model.

Contributions. In this work, we make the following
contributions:

� We devise a data-parallel algorithm and a join-pro-
cess-filter computation model for CFL-reachability
based interprocedural analysis. Based on that, a dis-
tributed offline batch static program analysis system
is implemented. To further improve performance,
we propose both algorithm- and system-level opti-
mizations, including computation closure to reduce
iteration rounds, finer-grained partitioning for load
balancing, and pre-shuffle to save network traffics.
We also design a data structure with compression
effect and manage to reduce the memory usage to
one-third of the original.

� Further, to deal with mini-batch code updating sce-
narios, an online incremental static program analysis
system supporting small batches of code update is
designed and implemented. A triangle counting
method together with an improved data structure for
online analysis is proposed to support the continuous
updating of the graph topology. Considering the
occurrence of large-scale computation triggered by a
small batch update, we design a mechanism for the
computation scale prediction and automatic compu-
tationmode switching.

� Based on the big data processing platform Spark, dis-
tributed file system HDFS and distributed in-memory
database Redis, we implement a system and frame-
work called BigSpa, integrating computation, storage
and query for large-scale static program analysis. The
system has high generality and can support all kinds

of static analysis tasks that can be expressed as CFL
reachability problems. We have made BigSpa publicly
available at https://github.com/PasaLab/BigSpa.

� We empirically validate the BigSpa’s performance
with extensive experiments over real-world large-
scale software datasets. The experimental results
show that compared with existing state-of-the-art
analysis tools, our offline batch static program analy-
sis system is one or more orders of magnitude faster.
Also, for small batch updates, the online analysis
system can make a near real-time response in sec-
onds, which is very fast and flexible.

The rest of this article is organized as follows. Section 2
introduces the background of this article. Section 3 revisits
the static analysis problem from the “Big Data” angle and
proposes a scalable data-parallel solution. Section 4 introdu-
ces the design and optimization details of the offline batch
program static analysis system. Section 5 further extends the
previous section and designs an online incremental system.
Section 6 introduces the design and usage details of the entire
framework. The performance evaluation results are pre-
sented and analyzed in Section 7. We discuss related work in
Section 8, and concludes the article in Section 9 finally.

2 BACKGROUND

This section provides the necessary background about CFL-
reachability based static analysis. We demonstrate how two
typical analysis examples (i.e., pointer/alias analysis and
dataflow analysis) are formulated as CFL reachability prob-
lems, and introduce the traditional worklist algorithm for
CFL reachability.

2.1 CFL Reachability

CFL-reachability is initially proposed by Yannakakis [15] for
Datalog query evaluation. Later, a large body of program
analysis problems [8], [9], [16] are formulated as CFL reach-
ability instances.

Informally, the CFL reachability computation is often
guided by a context-free language L over an alphabet S.
Given a graph G, whose edges are labelled with members
of S. A vertex in G is L-reachable from another vertex if and
only if there exists a path between them, the word formed
by concatenating labels along which is a member of L. The
(all-pairs) CFL reachability problem is to determine all pairs
of vertices v, w such that w is L-reachable from v.

2.2 Two Examples

We give two typical analysis examples as CFL reachability
problems in the following.

Alias Analysis. Two variables are aliased if they point to
the same memory location. Alias analysis is used to deter-
mine if two variables are aliases. Alias analysis can be for-
mulated as CFL-reachability under the program expression
graph representation of programs [16]. The analysis we
implement is flow-insensitive in the sense that we do not care
about the program control flow.

Based on the formulation, a program expression graph is
constructed where each pointer expression (reference vari-
able x, dereference expression �x, and address-of expres-
sion &x) corresponds to a graph vertex. Five kinds of three-
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address statements listed below are considered to add
respective edges into the graph

TypeType StmtStmt EdgeEdge

memoryallocation x ¼ mallocðÞ x m A
(1)

assignment x ¼ y x a y (2)

store �x ¼ y �x a y (3)

load x ¼ �y x a �y (4)

address� of x ¼ &y x a &y: (5)

As for a memory allocation, we add the edge from A to x
labeled by m. All other four types of statements would trig-
ger the addition of a edge, accordingly. Moreover, we add
dereference edge (d) from each pointer variable x to �x and
from&x to x

TypeType EdgeEdge

dereference �x d x
(6)

x d &x: (7)

Given a program expression graph, the language adopted
in the alias analysis is as follows:

Object flow OF ::¼ m VF (8)

Value flow VF ::¼ ða MA? j MA? aÞ� (9)

Memory alias MA ::¼ d VF d: (10)

A non-terminal OF represents the points-to relation. One
vertex x in the expression graph which is OF-reachable from
o (i.e., there is a path from o to x, along which the labels form
a word of OF), means that a variable x points to an object o
during execution. The definition of OF is straightforward: it
must start with an alloc (m) edge, followed by a VF path that
propagates the object address to a variable. A VF path is
either a sequence of simple assignment (a) edges or a mix of
assignments edges and MA (memory alias) paths. An MA
path is represented by d VF d. Each edge has an inverse edge

with a “bar” label. If o
d!x occurs in the graph, x

d!o also
exists. d represents the inverse of a dereference and is essen-
tially equivalent to an address-of. d VF d represents the fact
that if we take the address of a variable x, propagate the
address through a VF path to another variable y, and then do
a dereference on y, the result is the same as the value in x.

Fig. 1 shows a simple program and its expression graph.
Solid and dashed edges are original edges in the graph and
they are labeled m, a, or d, respectively. Dotted edges are
transitive edges added by BigSpa into the graph, as dis-
cussed shortly.

In Fig. 1, t points to A3, since the m edge between them
forms an OF path. There is a VF path from &s to p, which
enables an MA path from s to �p due to the balanced paren-
theses d and d. This path then induces an additional VF
path from &n to q, which, in turn, contributes to the forming
of the VF path from n to r, making �n and �r memory ali-
ases. The dotted edges in Fig. 1 show these transitive edges.

Dataflow Analysis. Following Rep et al.’s interprocedural,
finite, distributive, subset (IFDS) framework [8], we have

also formulated a fully context-sensitive dataflow analysis
as a grammar-guided reachability problem. Specifically, we
use this dataflow analysis to track NULL value propagation.
Under the IFDS framework, each dataflow fact corresponds
to one vertex. The dataflow transfer function is represented
as the relation mapping (edges) between vertices at differ-
ent program points. Finally, an exploded supergraph is gen-
erated and the dataflow analysis is equivalent to the
reachability computation on the graph. For more details,
please refer to [8].

One slight difference between the IFDS framework and
our formulation is that we achieve context sensitivity also
by cloning intraprocedural graphs instead of using the sum-
mary-based approach in [8], which has been demon-
strated [6] to fall short in answering many user queries.

2.3 Worklist Algorithm

Most of the state-of-the-art approaches [9], [16] imple-
mented the CFL-reachability in a search fashion. Specifi-
cally, a worklist is maintained to store the reachable
vertices. Each vertex is associated with the path informa-
tion, i.e., the sequence of labels along the path leading to the
vertex. The process is iteratively performed, each time a ver-
tex from the worklist is popped off and the newly reachable
vertices are added into the worklist by computing the path
information. However, this search-based implementation is
inherently unsuitable for parallelism, especially in our case
the traversal is dynamically decided [17], [18]. In addition,
as each path is traversed separately from start to end and
none of the intermediate path information is cached for
reuse, duplicated traversals are caused.

In addition, we reviewed a dynamic programming based
CFL reachability algorithm [19] which all the intermediate
edges are physically added. This algorithm maintains a
graph G and a list W containing new edges. Each time, (1)
one edge e is popped from W ; (2) then it generates new
edges e0 based on edge e and all its adjacent edges in G if
the labels on the edges match a production rule in CFL like
the example shown above in Fig. 1; (3) it determines then if
e0 already exists in G, if not, 4) add e0 into both W and G. It
repeats the 4 steps untilW becomes empty.

However, this dynamic programming based algorithm
has significant drawbacks. First, the traditional algorithm is
sequential, which is difficult to be directly parallelized due
to a large number of read and write operations on shared
variables (list W and graph G). The parallel implementation
bymeans of locks suffers from unacceptable synchronization

Fig. 1. A program and its expression graph: solid, horizontal edges repre-
sent assignments (a- andm- edges); dashed, vertical edges represent der-
eferences (d-edge); dotted, horizontal edges represent transitive edges
labelled with non-terminals.A3 indicates the allocation site at Line 3.
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overheads and is impractical in a distributed environment
due to the massive communication costs across networks.
Second, the worklist algorithm needs to maintain a huge
number of edges in memory. The limited memory size
greatly hinders its applicability in practice.

In this work, we devise a data-parallel algorithm for CFL
reachability, which is highly parallel and can leverage disks
during computation.

3 A DISTRIBUTED SOLUTION

A naive parallel version of the dynamic programming algo-
rithm [19] is to launch multiple threads to deal with multiple
edges in W simultaneously. In this way, we have to achieve
synchronization by aid of locks, resulting in massive syn-
chronization overheads. Even worse, in a distributed envi-
ronment, as the communications are required between tasks,
a great deal of message passing occurs, which leads to pro-
hibitive communication cost. As a matter of fact, each task
only playswith a small portion of the shared data. Fully lock-
ing of the shared variables is not necessary. For the sake of
low synchronization overheads, we are intended to treat the
shared data at a finer granularity.

Algorithm 1. A Data-Parallel Worklist Algorithm

Data: The input graph G (a set of edges)
Result: Updated graph Gwith new edges
1 W  G
2 repeat
3 P  G join W
4 E  map ðP Þ
5 W  distinct ðE diff GÞ
6 G W union G
7 untilW ¼¼ ;
8 return G
9 Function map(P )
10 E  ;
11 foreach edge pair x

A!y
B!z in P do

12 if a production rule C ::= A B exists then

13 e x
C!z

14 E  E [ feg
15 return E

Different from the task-parallel algorithm, we regard the
CFL reachability as a big data problem which is composed
of a large dataset and the simple computation on that data-
set. With proper modeling of this problem, we can then
obtain an efficient solution with good performance and scal-
ability through cluster computing. As such, we propose a
data-parallel algorithm based on Map/Reduce-style opera-
tions, shown as Algorithm 1. Specifically, the process is exe-
cuted in an iterative manner. Each iteration first performs a
join on G and W to produce all the possible edge pairs, e.g.,

x
A!y
B!z (Line 3). Next, a map operation is followed to per-

form the label matching on each edge pair (Lines 11-14)
resulting in a variety of new edges E (Line 4). As the same
edge could be generated in different ways multiple times,
duplicated edges thus exist inE. In order to avoid redundant
computation thereafter, we need to filter out all the dupli-
cates so as to obtain the newly added edgesW (Line 5). These

new edges are merged to the graph G via union for the next
iteration (Line 6). The iterative process continues until no
new edges are produced, i.e.,W is empty (Line 7).

The above data-parallel algorithm is distinct from the
task-parallel one in several aspects. First, map/reduce oper-
ations intuitively partition the shared data into multiple
small blocks. The data is processed in a divide-and-conquer
manner, thus reducing synchronization overheads and
achieving high parallelism. Second, we can choose the par-
ticular computation model according to the data locality to
reduce the communication costs in the distributed environ-
ment. Finally, it is readily to utilize disks during computa-
tion by means of the mature distributed file systems.

4 OFFLINE BATCH STATIC PROGRAM ANALYSIS

SYSTEM

We implemented the data-parallel algorithm in Section 3,
and built an offline batch static program analysis system.

4.1 Computation Model

We propose a join-process-filter computation model in our
design illustrated as Fig. 2. The whole computation is proc-
essed iteratively. At the beginning of each iteration, all the
edges in both the graph G and worklist W are partitioned
according to their source and destination vertices. Edges
with the same source or destination vertex (i.e., the key) are
put together into the same partition corresponding to the
rectangle with gray background in Fig. 2. For brevity, we
only use two partitions for each dataset. Note that computa-
tions for different partitions are done in parallel.

Join. Once the partitioning is done, we next join all edge
partitions resulting that two edges are gathered if the source
vertex of one edge is identical to the destination of the other.
As shown in Fig. 2, the edges with the yellow source are
connected together with edges of yellow destination form-
ing multiple pairs of adjacent edges, e.g., hx! y; y! zi.

Process. After joining, we obtain multiple partitions, each
consisting of multiple pairs of adjacent edges. We next per-
form a map to process all the partitions in parallel. The com-
putation required for each partition is simply to generate
new edges by matching edge labels based on the grammar
rules.

Filter. When the map is completed, edges are generated
in each partition shown as E. Duplicates exist in the sense
that the same edge could be generated multiple times. We
need to filter out all these duplicated edges. Our filtering
consists of two phases: (1) global filtering which removes out
from E all the edges already existing in Gwith a distributed
cache system (For example, we can store the edges of G in a
distributed database such as Redis [20] and query the

Fig. 2. Dataflow of BigSpa.
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elements in E from the database. Only those elements with
empty query results will be retained. Redis is an in-memory
key-value store. It is very fast by adopting many advanced
system technologies, including HashMap-based memory
storage model, simple data structure, multiplexing IO, non-
blocking IO and so on.); (2) local filteringwhich gets rid of all
the duplicated edges in E itself via a distinct operation.

After the entire join-process-filter procedure, a set of new
edges E0 is acquired. These new edges are repartitioned and
merged into G. Simultaneously, we replace W with E0 for
the subsequent iteration. The computation terminates until
no new edges are generated (i.e., E0 is empty).

4.2 Data Structure

An edge in the program graph can be defined using a triplet
(src, dst, label), which represents the source node, target node
and label of the edge. However, this straightforward repre-
sentation is not suitable for our computationmodel. First, sim-
ply using triplets to store edges is quite space-inefficient. A
large amount of redundancy exists. Second, at each iteration,
the process part in Section 4.1 involves the join operation and
label matching among edges, which requires expensive
searches among a large number of triplets. Therefore, we
design a compressed data structurewith index optimization.

We use a key-value form to represent the edge set in a par-
tition, with a vertex as the key and the set of edges connected
to the vertex as the value. The basis for compression and opti-
mizationwith indexes is that the symbols in the CFL are finite,
which means there are only a limited number of types of
edges. In practice, we can classify edges from three aspects:

1) Given a vertex, there are two directions for adjacent
edges: incoming and outgoing;

2) According to the calculation state of the edge, there
are two states: active (the edges to be processed) and
silent (the edges that have already been processed);

3) Assuming that there are a total of L terminal and
non-terminal symbols in the CFL, we have L kinds
of labels.

Hence, all the edges associated with a certain vertex can
be classified into 2� 2� L ¼ 4L kinds.

Fig. 3 shows an example of the structure, where the origi-
nal edge set is compressed into two arrays (the indexes of
arrays start from1 in this figure). The array of neighbours con-
tains the nodes adjacent to the intermediate node m. It is
ensured that all the nodes of the same edge type are stored
consecutively, and their starting position in the array is main-
tained respectively in the array of starting indexes. In this

way, when searching for a particular type of edges connected
to m, we are able to achieve an efficient random access by
leveraging the index range information. For example, in Fig. 3
if we are looking for the edges of type ½Lk; outgoing; active�,
we simply look at the ½ðk� 1Þ � 4þ 2þ 1�th element in the
array of starting indexes. Given k ¼ 2, since the 7th element in
the index array is 11 and the following (8th) one is 12, we
know that there is only one outgoing and active edge con-
nected tomwith labelL2, i.e., ðm;v11;L2Þ.

Given that there are 4L types of edges, the length of the
array of starting indexes is 4L. The total storage size of the
two arrays is ð4LþXÞ. Therefore, when there are X edges
and X � 4L, the amount of data stored is reduced from 3X
to X. When the number of edges is large, the storage
amount is reduced to one third (ignoring the platform
implementation difference).

The index-based data structure not only reduces storage
overheads, but also improves computational efficiency: when
matching edges according to grammar rules, we can directly
find the index range of the corresponding label with time
complexityOð1Þ, instead of traversing the entire edge set.

4.3 Optimizations

Load Balancing. Load balancing plays a crucial role in the per-
formance of parallel computing. In our data-parallel algo-
rithm, if the sizes of partitions vary significantly, it probably
arrives at a status that the majority of threads finish the tasks
quickly and become idle waiting for one thread, bringing
about poor performance. In our computationmodel, for each
vertex, all of its incoming and outgoing edges need to be visi-
ble to perform label matching and edge addition. For
instance, when y is processed, both x

A!y and y
B!z need to

be accessed to add the edge from x to z (shown as Line 11 to
14 in Algorithm 1). There perhaps exist some hot vertices
which are associated with a huge number of adjacent edges.
As a consequence, partitionswould be unbalanced.

In order to address load unbalance, we adopt a finer-
grained partitioning scheme. To be clear, we define the
number of Matchable Edge-pairs (MEP) as Formula (11),
where m is the intermediate vertex representing an edge-
pair, and Emðdirection; status; labelÞ is the number of edges
connected to m of a given type

MEP ðmÞ

¼
X

C::¼AB2Production

Emðin; active;AÞ � Emðout; all;BÞ þ
Emðin; silent;AÞ � Emðout; active;BÞ

� �
:

(11)

Fig. 3. Key-value pair data structure with index compression.
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The MEPs are calculated immediately after the join pro-
cess of each iteration. If the MEP of certain vertex is beyond
some threshold, we split it into multiple small partitions. In
practice, the threshold can be set to an empirical value or
the average MEP of all the vertices. Since we conduct the
edge generation and filtering separately in our join-process-
filter model, splitting edge pairs of one vertex into multiple
partitions does not affect the correctness of computation.
The computation time cost on each node shown in Figs. 12
and 13 empirically validated the effectiveness of our load
balancing strategy.

Pre-Shuffle. Pre-shuffle is intended to reduce the network
traffic when a join is performed on two datasets of key-value
pairs. The normal join shuffles all partitions from the two
datasets over the network. The pre-shuffle avoids this net-
work communication by partitioning two datasets with the
same partitioner in advance and joining corresponding parti-
tions directly in the same node without the network traffic. In
BigSpa, the join of old edges and new edges triggers shuffle at
each iteration. We maintain a global partitioner during the
execution and assure that the old edges are always partitioned
by the global partitioner. When new edges are generated, we
partition it with the global partitioner and join it with old
edges via pre-shuffle. The united dataset becoming the old
edges in the next iteration inherits the global partitioner as its
partitioner automatically. In this way, the network communi-
cation is only involved during the repartitioning of the new
edges at each iteration. BigSpa avoids re-shuffling old edges
which become larger and larger, greatly reducing network
traffic.

Computation Closure. Computation closure is a design
optimization to accelerate the convergence of edge addition
for specific analysis workloads. We check the analysis gram-
mar and find that certain edges labelled by terminal symbols
are static during the iterations. We broadcast these edges to
all the worker nodes so that these edges can be accessed
locally. At each iteration, each node computes a local closure
to generate as much more edges as possible with the help of
the broadcasted static edges. Take the dataflow analysis as
an example, there exists one production rule N ::¼ N e in
the grammar. The edges labelled by terminal e are static. In
other words, no new e edges will be added during computa-

tion. Given a path in the input graph x
N!y

e!z
e!w, we

should get two new edges x
N!z and x

N!w generated in the

end. In our computation model, the new edge x
N!z is first

generated by matching labels on the edge pair x
N!y

e!z
based on the grammar rule. However, the generation of new

edge x
N!w will be postponed until x

N!z and z
e!w are

joined together in the future iteration. In fact, the edges
labelled by e can be broadcasted to all worker nodes at the
very beginning. To this end, we are able to generate as many
new edges as possible locally in fewer iterations.

5 ONLINE INCREMENTAL STATIC PROGRAM

ANALYSIS SYSTEM

In the previous section, we introduced how to process large
scale static program analysis over the entire code dataset in
the batch processing way. In fact, in the real world, software

codebases can be updated day by day, especially for those
popular open source software with large scale developer
communities. In this scenario, when a program to be ana-
lyzed is changed or updated, re-analyzing the entire graph
can be time-consuming and cumbersome.

Instead, the system can perform local analysis on the
updated parts to achieve high efficiency in time and mem-
ory usage. To handle this scenario, we further design an
online incremental static program analysis system.

5.1 Process of Incremental Update

Similarly, edges in the program analysis graph represent the
reachability relationships between vertices, and there are
two types of them: directly reachable (those formed by
directly adding edges to the graph) and indirectly reachable
(those generated by labelmatching based on the CFL syntax).
When adding or deleting edges, the indirect reachability
relationships generated by these edges should be changed
accordingly. Therefore, an update on the graph requires iter-
ative processing until the topology of the graph reaches a sta-
ble state.

In order to improve the performance, we use the mini-
batch update strategy to perform incremental static analy-
sis, that is, multiple edges are added to the graph at the
same time, and then the updated transitive closure is com-
puted. During the mini-batch update process, although the
order of adding and deleting edges may change, the graph
topology of the final update graph is determined. Obvi-
ously, the same topology will lead to the same reachability
relationship. This ensures the correctness of our mini-batch
update method.

5.2 Method for Online Incremental Analysis

5.2.1 Triangle Count

As shown in Fig. 4, the difficulty of deleting edges is that an
indirect edge could be generated on multiple paths. With-
out extra information, we cannot decide whether to delete
that indirect edge or not. Simply storing all the generating
paths will greatly increase the storage and calculation over-
heads (as discussed in Filter part in Section 4.1). To deal
with the edge deletion correctly and efficiently, we propose
a method based on the triangle count (short as tri count). In
this article, we define the triangle count of an edge e as the

Fig. 4. Iterative process of adding and deleting an edge.
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number of triangles with e as one of their sides. Essentially,
triangle count (tri countðx C!yÞ) is the number of 1- or 2-
hop paths from x to y in the reachability graph. Whenever
an edge is deleted, other relevant edges remain if and only
if their respective triangle counts are not decreased to be 0.
The calculation of the triangle count is shown in Formula
(12) (transitive closure is short as TC)

tri countðv1 C!v3Þ
¼ jfv2j9ðv1; v2;AÞ 2 TC&& 9ðv2; v3;BÞ 2 TC&&C ::¼ ABgj:

(12)

Fig. 5 describes the edge addition and deletion process
based on the triangle count method, and the operations are
quite similar. When a new indirect edge is newly generated,
its tri count is initialized to 1. During the iterative calcula-
tion, each time an addition/deletion of an indirect edge is
triggered, the tri count of this edge is increased/decreased

by one. For example, if an edge x
A!y is added, the system

matches edge pairs based on labels and trigger the addition

of an indirect edge x
C!z. When the edge x

A!y is removed,
the same label matching process is performed and we can

find the same indirect edge x
C!z, which was generated by

x
A!y. As one of its generating path is broken by the dele-

tion, the triangle count of x
C!z should therefore be

decreased by 1. An indirect edge is removed from the graph
only when its tri count is reduced to zero. In this way, based
on the edge-pair computation model, BigSpa can simplify
the maintenance of provenance information via triangle
counting. A theoretical proof for the correctness of using tri-

angle counts to determine reachability can be found in the
appendix of our technical report [21].

5.2.2 Online Incremental Computation Algorithm

Algorithm 2 shows the procedure of online incremental anal-
ysis. Compared with Algorithm 1, the main change is that a
new variable Wcount is defined, which stores the new edges
and the number of times they are added or deleted. It is used
to update the triangle counts and generate the edge setW to
be calculated. During each iteration, Wcount is updated to
ensure that it only covers the additions and deletions gener-
ated within the current round of computation, so that no tri-
angles aremissed or double-counted.

Algorithm 2.Online Incremental Computation Algorithm

Data: A batch of updates on graph G, Production set P
Result: TC of G

1 Wcount  count batch
2 W  Wcount diff TC
3 repeat
4 P  TC join W
5 Update TC with Wcount

6 Wcount  map ðP Þ
7 W  Wcount diff TC
8 untilW ¼¼ ;
9 Update TC with Wcount

The computation model is thus modified as Fig. 6. In the
online processing system, in order to get a lower response
time for queries and updates, the distributed databases are
utilized not only for filtering, but also for storing and updat-
ing the graph.

5.3 Data Structure

To record the triangle counts of each edge and reach the
requirement of real-time response, we then improve the
data structure introduced in Section 4.2. As shown in Fig. 7,
according to their labels (assuming there are L types of
labels) and directions (inside and out), the adjacent edges of

Fig. 5. Addition and deletion process based on triangle count.

Fig. 6. Dataflow of online incremental analysis system.

Fig. 7. Edge set storage data structure of online incremental analysis system.
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each intermediate node are divided into 2L subsets. Note
that the edge calculation state is not considered here, as
all edges stored in the online system are silent edges
(i.e., the reachable relationships that have already been
calculated).

In general, iterative calculations caused by incremental
updates are local, which means there is no need for the
whole graph or all adjacent edges of a node to be involved
in the calculation. With this fine-grained data structure, the
system can access data on demand when updating the
graph. Besides, there are two more advantages to storing
the adjacent edges separately: first, it can avoid a single
record in the database being too large; second, the system
can directly locate the edges needed for calculation, reduc-
ing the cost for intermediate results.

5.4 Adaptive Computation Mode Switching
Mechanism

The online incremental analysis system is designed to deal
with small batches of update data, which, in most cases,
trigger a small amount of computation. However, in some
scenarios, small batch updates can also trigger large-scale
calculations (as is the case where a large number of indirect
edges are generated, mentioned in Section 4.3). Distributed
platforms are suitable for the latter case, but they can be
greatly slowed down by transmission between computing
nodes in the former case. Considering that, we design an
adaptive mode switching mechanism. Based on the predic-
tion of computation scale, the system can automatically
switch between single-machine multi-threaded computing
mode and distributed computing mode.

In online incremental processing, after the join operations,
a calculation scale prediction process is performed. Specifi-
cally, we calculate the sum of MEP (defined in Section 4.3) of
all the intermediate nodes, which is the number of new edges
to be generated and can indicate the scale of calculation.
Hence, if the sum of MEP is below a threshold, the map pro-
cess will be performed in the single-machine multi-threaded
mode, otherwise the data to be processed is divided into dif-
ferent partitions and the distributed computingmode is acti-
vated. During each iteration, the system performs the
prediction and switches between the two modes flexibly. In
this way, we can both avoid computational failure due to
insufficient single-machine resources and reduce the
resource waste and timeout due to excessive overheads in
distributed platforms.

6 SYSTEM DESIGN AND USAGE

6.1 System Architecture

The overall system architecture of BigSpa is shown in Fig. 8,
which consists of four layers:

� Analysis Layer: The top layer of the program static
analysis system includes the offline batch and online
incremental analysis system described in Sections 4
and 5.

� API Layer: There are five types of operators to com-
plete specific reading and calculation tasks for appli-
cation usage.

� SystemOptimization Layer: This layer implements the
various optimization measures, such as pre-shuffle,
load balancing, computation closure and computation
mode switchingmechanism.

� Underlying Distributed Platform Layer: This layer
includes a distributed data processing engine, a dis-
tributed file system, and a distributed database. In
implementation, we choose Spark as the data proc-
essing platform, Hadoop HDFS as the distributed
file system, and Redis as the distributed database.

6.2 BigSpa Usage

Fig. 9 demonstrates how to use BigSpa to carry out various
analyses. Analogous to the declarative program analysis
[15], [22], [23], we separated the computation back-end
from the client analysis implementations. As stated earlier,
BigSpa as a general analysis computation engine supports
multiple analyses [10]. In order for users to implement a
particular sophisticated interprocedural analysis, a front-
end is required. As shown in Fig. 9, we implemented two
front-ends, one for dataflow and the other for pointer analy-
sis (both field-insensitive and field-sensitive) in our experi-
ments. Users can develop their own front-ends for specific
client analyses and then leave the computation to BigSpa. In
the following, we discuss the two tasks of which each front-
end is comprised, namely generating the program graph
and specifying the analysis grammar.

Generating Graphs. In order for BigSpa to perform an
interprocedural analysis, users are first required to generate
a specialized program graph tailored for the analysis. In our
graph generation, we first perform intra-graph generation
and call graph generation. We then perform the function
inlining to produce the final input graph.

For intra-graph generation, we implemented each sepa-
rate intra-graph generator for each particular client analysis
based on different infrastructures. Specifically, for programs
written in C/C++, each intra-graph generator is imple-
mented as an analysis pass based on LLVM [24] which takes
the LLVM IR as input and produces an intra-graph for each

Fig. 8. System structure of BigSpa.

Fig. 9. BigSpa usage.
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function according to the particular client analysis. For Java
subjects, our frontend is implemented based on the com-
piler infrastructure Soot [25].

During call graph generation, we launched an existing
lightweight pointer/alias analysis to help track the precise
call relations. Specifically, for C/C++ programs, we used an
inclusion-based context-insensitive pointer analysis with
support for function pointers (available in LLVM). To ana-
lyze Java, we adopted the context-insensitive Spark points-
to analysis [26] in Soot to efficiently construct the (sound
but relatively imprecise) call graph. Specifying Grammar:
Given the graph generated, the front-end needs to specify a
particular grammar guiding the edge addition for the analy-
sis. For example, pointer/alias analysis could take advan-
tage of the grammar similar to the rules 8 - 10 in Section 2.2.

For the purpose of performance, our model is devised to
access at most two adjacent edges for label matching. Such
simple computation logic makes our design easier and leads
to a dynamic programming style algorithm which imposes
lower complexity. To this end, each production rule in the
grammar needs to be normalized so that it has no more
than two terms on its right-hand-side (RHS). The transfor-
mation can be done by introducing new non-terminal sym-
bols in linear time, and causes a linear increase in the size of
the grammar [19]. The normalized grammars for field-
insensitive pointer/alias analysis and dataflow analysis can
be found in the appendix of our technical report [21].

7 EVALUATION

This section presents an empirical evaluation of BigSpa. We
focus on three research questions:

� Q1: What is the performance of BigSpa?
� Q2: How does BigSpa compare to the state-of-the-art

single-machine analysis system?
� Q3: How does BigSpa compare to other state-of-the-

art distributed systems for analysis workloads?
Hardware and Software Environment. Unless otherwise

specified, experiments presented in this article were con-
ducted in a cluster with 17 nodes (1 master node + 16
worker nodes). Each node was equipped with two Intel
Xeon E5620 CPUs (2.4 GHz/12 MB Cache, 12 physical cores
and 24 logical cores in total), 16 GB available memory and 3
TB HDD RAID0 disk storage. All nodes were connected via
1 Gbps Ethernet. Our system was implemented with
Apache Spark 2.2.0 and used Apache Hadoop 2.7.2 to pro-
vide HDFS and Yarn. Redis 3.2.0 was employed as the dis-
tributed database. We compiled and ran all the programs
with JDK 1.8.0 and Scala 2.11.8 on the RHEL 7 64-bit OS
with Linux kernel v3.10.0.

Subject Programs & Analyses. We selected five large-scale
real-world codebases namely Linux kernel, PostgreSQL
database, Apache HTTP server, Apache HDFS, and Apache
Hadoop MapReduce (Hadoop-MR or Hadoop in short) as
our analysis subjects. Table 1shows the detailed characteris-
tics of the subjects including the version information, the
numbers of lines of code, the description and implementa-
tion language.

Three interprocedural analyses were mainly performed,
namely context-sensitive field-insensitive Andersen’s inclu-
sion-based pointer/alias analysis, context-sensitive field-
sensitive pointer/alias analysis, and dataflow analysis for
null-pointer propagation, which are denoted in abbrevia-
tion as pointer/alias analysis, field-sensitive pointer/alias
analysis and dataflow analysis, respectively. We focused on
these three client analyses since they are the well-known
representatives of a wide range of analyses that can be for-
mulated as a grammar-guided graph reachability problem
[10]. As the null-pointer does not make much sense for Java
programs, we ignored the dataflow analysis for the subjects
HDFS and Hadoop-MapReduce. Similarly, we mainly eval-
uated the field-sensitive analysis on Java subjects. We
achieved the fully context sensitivity by cloning function
bodies for every single context [27].

Table 2 lists the number of nodes with different degrees
in the input graphs. All of these graphs have over millions
of edges and some of them are heavily skewed.

Since the analyses in our experiments have considered the
highest level of context sensitivity, and the precision together
with the effectiveness of such analyses has been already vali-
dated in prior work [7], [28], we mainly focus on the effi-
ciency and scalability of BigSpa in our evaluations.

Due to space limit, in some experiments, only the data of
some representative subjects are shown. Additional data is
available in our technical report [21], including the CPU/
Memory usage, cost time distribution, the normalized gram-
mar, etc.

7.1 Evaluation of Offline Batch System

We first evaluate the performance of the offline batch
system.

7.1.1 Performance Analysis

Performance and Scalability. Table 3 reports the performance
data of BigSpa. The columns #V(M), #EB(M), #EA(M), #Ite.,
PT(mins), CT(mins), and TT(mins) correspond to the number

TABLE 1
Characteristics of Subject Programs

Subject Version #LoC Description Language

Linux 4.4.0-rc5 16M Operating system C/C++
PostgreSQL 8.3.9 700K Database C/C++
httpd 2.2.18 300K Web server C/C++
HDFS 2.0.3 546K Distributed file system Java
Hadoop�MR 2.7.5 568K Data processing platform Java

TABLE 2
Degree Distribution of Input Graphs
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of vertices, number of edges before computation, number of
edges after computation, the number of iterations, the prepro-
cessing time, the computation time and the total time, respec-
tively. All the numbers of vertices and edges reported are in
millions and the time costs are in minutes. The preprocessing
time is mainly taken by loading graphs and grammars into
the distributed file system (HDFS) and the cache system
(Redis), while the computation time shows the time cost for
edge addition.

BigSpa managed to finish most of the analyses within 20
minutes in our experiments. Even for the biggest graph
with more than a billion edges, BigSpa only took around
half an hour to complete the computation. In the field-sensi-
tive pointer/alias analysis, as each of the grammars con-
tains thousands of symbols, the intermediate results take up
extremely large amount of memory even with our com-
pressed data structure. We increased the available memory
of each node to 30 GB and completed the analysis of HDFS
and Hadoop with 25 nodes and 32 nodes respectively. It
took BigSpa tens of minutes to finish the analyses. By con-
trast, the cutting-edge single machine systems like Graspan
[7] were unable to process neither of the above two work-
loads, because they greatly exceed the processing capability
of one single machine.

Table 4 shows the proportion of time spent on updating
database, shuffling data between machines and Java’s gar-
bage collection on the representative subjects. For pointer/
alias analysis, the computation time dominated the overall
time cost. The communication was mainly spent on updat-
ing Redis, as the new edges generated in each iteration were
written into the database. As for dataflow analysis, the pre-
processing time became comparable with the computation
time. The preprocessing time was mainly spent on broad-
casting edges which is required by the closure optimization

strategy discussed in Section 4.3. This also greatly reduced
the number of edges that need to be written into Redis. GC
took much more time when analyzing large or heavily-
skewed graphs, since the computation process generates
more intermediate objects.

Fig. 10 plots the analysis time of BigSpa running on a
cluster with varying number of nodes. We present here the
results of two analyses which can be finished in reasonable
time even on a single node. The detailed data for all subject
analyses can be checked shortly in Table 6. We can read
from the trend that BigSpa scales well (near linear) with the
number of nodes available.

CPU and Memory Usage. Fig. 11 illustrates the CPU and
memory usage of a node when we ran BigSpa in a cluster
for PostgreSQL. The memory occupied by each machine
was composed of three parts: (1) Spark RDD memory,
which stores the edge set and the intermediate results; (2)
Redis memory, which stores the transitive closure for the
filter process; (3) other memory reserved by Hadoop and
Yarn, etc.

For pointer/alias analysis, the CPU utilization is relatively
low and the memory consumption increases as BigSpa iter-
ates. This is consistent with Fig. 15 in the sense that the map
stage contributes little to the overall cost. It further confirms
that the pointer/alias analysis is network-communication

TABLE 4
Proportion of Time Spent on Communications

and Garbage Collection

Fig. 10. Scalability analysis.

TABLE 3
The Performance of BigSpa in Batch Processing

Fig. 11. CPU utilization and memory consumption for PostgreSQL.
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intensive in BigSpa. For dataflow analysis, the memory con-
sumption is steady since the number of new edges generated
in the dataflow analysis is relatively small. Besides, in data-
flow analysis Redis occupies only a small amount of memory.
This is because only a few new edges are generated in the
dataflow analysis and the Redis overhead allocated to each
machine is minimal. The CPU utilization varies a lot, which
has a strong correlation with the number of new edges added
at each iteration. We only show the data for PostgreSQL here.
Other subjects have the similar trends.

Load Balancing. We measured the execution time of map
phase (i.e., computation) at each node in the cluster. The
MEP threshold for node splitting was set to 1E6 in our
experiments. Fig. 12 presents the data for pointer/alias anal-
ysis on Linux kernel. The results for other analyses show
similar trend. X axis denotes the computing node ID in the
cluster, while Y axis shows the execution time in seconds.
The dashed line corresponds to the average time (56.21 sec-
onds) across the whole cluster. We computed the standard
deviation which is as low as 1.4 percent (0.81 / 56.21).
Fig. 13 provides box-plots showing the distribution of the
mean CPU usage of all cores of a node. It can be seen that
during each iteration, the 24 CPU cores on the same node
have no obvious load difference and the maximum CPU
usage difference is about 10 percent. These results empiri-
cally validate that our load balancing strategy works well
on both node level and thread level.

Optimizations. In this part, we evaluate the efficiency of
the optimizations described in Section 4.3. Different optimi-
zations work for different scenarios: the pre-shuffle and
load balancing optimizations are tailored for pointer/alias
analysis, while the closure optimization is for dataflow
analysis.

Fig. 14 illustrates the effects of pre-shuffle and load bal-
ancing on the total analysis time. The optimizations can sig-
nificantly lower the end-to-end time cost in general because
the pre-shuffle strategy greatly reduces data transfer over-
head, especially when a large number of new edges are gen-
erated. Apart from this, the node splitting operation can
prevent too many computing tasks from being assigned to a
single node. The improvement brought by load balancing is

particularly obvious on some extremely skewed graphs like
HDFS. Without this, it leads to much longer processing time
or even failures. The only exception is pointer/alias analysis
on Hadoop, where the optimizations introduce an addi-
tional time cost (about 30 seconds). Since the scale of graphs
for this benchmark is small, the optimizations can only
make a relatively small improvement but still introduce a
little extra cost.

Table 5 lists the effect of closure optimization on data-
flow analysis. Although the dataflow analysis generates a
relatively small number of edges compared with pointer/
alias analysis, it requires much more iterations and thus
takes much longer computation time. The optimization of
computation closure can greatly reduce the number of itera-
tions needed, especially on the Linux dataset, where the
number of iterations is reduced from 6,636 to 112 (a reduc-
tion of 98.31 percent).

Time Cost Distribution. We monitored the time cost distri-
bution and number of edges added at each iteration of Big-
Spa for each analysis shown as Fig. 15. Within each
iteration, the time cost comes from five stages, namely join,
map, filter, distinct, and union corresponding to each stage
in our computation model (Fig. 2).

For pointer/alias analysis (Fig. 15a), the time cost at each
iteration ascends to a peak and then descends. After the
peak, there is a long tail to converge. In addition, as shown
in the plots, there exists a high correlation between the time
cost and the number of edges added at each iteration. The
trend of the join time verifies the efficiency of the pre-shuffle
optimization discussed in Section 4.3. As BigSpa iterates,
the total number of edges increases and the time spent on
join should also increase. The pre-shuffle optimization
makes BigSpa only shuffle newly added edges at each itera-
tion, thus stabilizing the time cost at the join stage. Note
that although the join time cost does not increase as the
computation proceeds, it still dominates the total time cost
in pointer/alias analysis.

The dataflow analysis (Fig. 15b) has the similar trend to
the pointer/alias analysis but with the peaks appearing at
the beginning. As the dataflow analysis exploits the compu-
tation closure optimization, a large number of new edges
are quickly added in the first few iterations. Note that there

Fig. 12. Execution time for each computing node in the cluster.

Fig. 13. Distribution of the mean CPU usage of all cores of a node.

Fig. 14. Effect of pre-shuffle and load balancing.

TABLE 5
Effect of Computation Closure Optimization

Analysis Subject #Ite.Before #Ite.After Runtime
Before(mins)

Runtime
After(mins)

dataflow
Linux 6,636 112 933.31 15.31
PSQL 721 59 58.93 9.98
httpd 181 23 8.55 3.42
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is a peak of computation time in iteration 50. This is because
a lot of edges are generated in this iteration but most of
them are duplicated and as a result, the total number of
edges does not change significantly.

7.1.2 Comparison With Graspan [7]

We compared BigSpa against a single-machine disk-based
interprocedural analysis system, called Graspan [7]. BigSpa
was experimented with 1, 2, 4, 8, 16 nodes successively. As
a comparison, we ran C++ version Graspan on one single
node equipped with the same CPU as described before. In
our experiments, Graspan was configured to use 24 threads,
4 initial partitions and 16 GB memory. Since it is an out-of-
core system, we conducted Graspan experiments on both
HDD RAID0 disks and SSD RAID0 disks. Table 6 shows the
detailed running time in minutes and COSN metric.*

Because Graspan’s IO time accounts for only a small pro-
portion of the total cost, andmost of its disk reads and writes
are sequential, using SSD can only bring little acceleration.
With 16 nodes, BigSpa runs one or more orders of magnitude
faster than Graspan in most cases. However, for certain anal-
yses especially with large graphs, the performance of BigSpa
running on a few (1 or 2) nodes is disappointing. The under-
lying reason is that BigSpa based on Apache Spark utilizes
memory as higher priority for efficient computation. Unfor-
tunately, once the memory consumption exceeds certain
limit, heavy Garbage Collection (GC), frequent disk I/O and
data serialization/de-serialization on massive data have to
be involved resulting in unacceptable performance. The
experiment running on a single node reported that, themaxi-
mum I/O could reach 200 MB per second. The GC time even
occupies more than 70 percent of the overall execution time

at late iterations. That explains why a super-linear speedup
appeared when analyzing large-scale pointer analysis
graphs. As more computer nodes become available, memory
pressure is relieved. GC time hence drops dramatically,
achieving superlinear speedup.

Note that BigSpa performs significantly well on dataflow
analysis compared against Graspan. BigSpa running on one
node still outperformsGraspan a lot. The performance advan-
tage mainly gives the credit to the following two design
optimizations. First, BigSpa adopts computation closure opti-
mization to reduce the number of iterations needed. Second,
duplication removal and edge union are implemented in a
more efficient way in BigSpa than Graspan. Graspan applies
themerge operation to filter out duplicated edges and to unite
edges. Even though just a few edges are newly generated,
Graspan still needs to reconsider a great number of old edges.
BigSpa exploits the Redis database to conduct the filter opera-
tion and adopts pre-shuffle technique to join the new edges
with the old ones efficiently. The costs of both operations are
just related to the number of newly added edges.

In the experiments for field-sensitive pointer/alias analy-
sis, BigSpa needed at most 32 nodes to finish processing the
HDFS and Hadoop data sets in dozens of minutes (the
detailed performance data can be found in Table 3). By con-
trast, Graspan failed to run on both HDFS and Hadoop data
sets because the scale of both data sets greatly exceeded the
processing capability of one single machine. Although the
process of parallelizationmakes BigSpa introduce additional
overhead for a single machine, it provides a more scalable
solution for inter-procedural analysis. Users can utilize Big-
Spa to perform large-scale sophisticated analysis tasks sim-
ply by scaling the system to some extent. Moreover, with
additional resources and the optimizations enabled, BigSpa
managed to process the heavily skewed graphs and gener-
atedmillions of edges within a few iterations, demonstrating
the advantages of distributed computing.

7.1.3 Comparisons With Other Distributed Systems

We also conducted the comparisons with other distributed
systems on static analysis workloads, namely BigDatalog
[22], and distributed call graph analysis [30].

Comparison With BigDatalog. BigDatalog [22] is a distrib-
uted datalog-based [15] computation systemwhich supports
efficient static analysis. We compared the performance of
BigDatalog and BigSpa for both pointer/alias and dataflow
analyses on Linux kernel. All experiments done for BigSpa
and BigDatalog were conducted in the same cluster with the
same Spark installation.

Fig. 15. Time cost distribution during analysis for PostgreSQL. The left
and right Y axes denote the wall-clock execution time and # of newly
added edges. The X axis indicates iteration round.

TABLE 6
Performance Comparison With Graspan [7] in Minutes

* Similar to COST proposed by [29], here we use COSN (configura-
tion that outperforms a single node) to indicate the number of nodes
required by BigSpa to outperform Graspan.
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As for dataflow analysis (Fig. 16a), BigSpa outperforms
BigDatalog significantly. The number of iterations BigSpa
needs is much smaller than that of BigDatalog. A large
amount of time is taken by BigDatalog for convergence.
With regard to the pointer/alias analysis, BigSpa outper-
forms BigDatalog with all different number of nodes. Note
that Fig. 16b actually shows the performance results for a
simplified pointer/alias analysis. Due to implementation
issues, BigDatalog cannot support fully-precise pointer
analysis. Runtime errors occurred when compiling rules of
multiple consecutive joins, e.g., M ::¼ d V d. Reluctantly,
we chose a simplified pointer analysis by removing certain
rules for the sake of fair comparisons.

Comparison With Distributed Call Graph Analysis. We also
compared with another distributed actor model-based anal-
ysis tool [30]. We exert ourselves to deploy BigSpa on Micro-
soft Azure cluster, and implemented a front-end for the
inclusion-based Variable Type Analysis [31] to generate the
propagation graph, which was fed into BigSpa to compute
the CFL-reachability results. Hence, the time cost spent by
BigSpa comes from two parts, frontend for propagation
graph generation and backend for reachability computation.
We conducted all the comparison experiments on a Micro-
soft Azure A3 cluster with 1 master and 4 workers, each
equippedwith 4 CPU cores and 7GBmemory. Table 7 shows
performance results for the real programs chosen by [30].
Column “frontend” and “backend” indicate the time cost by
generating propagation graph and computing reachability.

By comparing the total time spent, BigSpa outperforms
Distributed Call Graph Analysis [30] especially on large
graphs (e.g., more than 4 times faster on ILSpy).

7.2 Evaluation of Online Incremental System

In this subsection, we evaluate the performance of the
online incremental static analysis system.

7.2.1 Performance Analysis

We chose the largest Linux and the smallest httpd as the sub-
jects for this experiment. We produced the program graphs
for pointer/alias analysis and data flow analysis, and gener-
ated updating batches in two ways: (1) randomly divide
them into multiple batches of edges, each with 1,000 edges;

(2) add and delete nodes based on commits from the realistic
version control repositories. We refer to these two experi-
ments as uniform update and commit-based update in the
following. For the commit-based update, we collected tens of
thousands of commit records from the GitHub repositories
of Linux and httpd respectively and remove the commits
that do not involve code changes.* Some of these commits
only modify a few lines of code, while some others can cause
thousands of edges to be modified. The details about the
commits can be found in Table 8.

The mini-batches corresponding to both scenarios were
then input into the incremental system. To evaluate the effec-
tiveness of our system under real-time scenarios, we moni-
tored the time taken for each update, and the tasks with
processing time exceeding 60 seconds (can be configured by
users) would be interrupted in our experiments. As can be
seen from Tables 9 and 10, our system has significantly differ-
ent performance on different tasks. The Response Time col-
umn lists the average response time and several upper
quantiles. For example, “0.52” in the first row of Table 9 means
that 90 percent of the updates were completed in 0.52 second.

The system shows good performance for pointer/alias
analysis of Linux dataset, and for dataflow analysis of Linux
and httpd dataset. In these three tasks, thousands of edges are
processed per second on average and all the tasks can be fin-
ishedwithin 15 seconds. However, in other tasks, the through-
put is significantly reduced and timeout interruptions occur.

By monitoring the execution process of the tasks and ana-
lyzing the structure of the input graphs, we found that

1) The tasks with calculation time at millisecond level
generally have fewer edges to update, and are calcu-
lated in the single-machine multi-thread mode.

2) In those tasks completed in seconds, the number of
updated edges is larger, but still less than 100,000. In
this case the system can still finish the calculation by
switching to a distributed computing mode.

3) Overtime tasks often have super-large-scale updates
and “hot vertices”.

4) In general, the system has higher throughput and
lower processing latency in the commit-based exper-
iment. This is because in large projects, most of the
commits only trigger small-scale code updates.

In the above experiments, the system shows poor perfor-
mance when there are a lot of “hot vertices” and tightly con-
nected vertex clusters in the input mini-batches, as is the
case of pointer/alias analysis on httpd. Updating these
mini-batches is similar to updating a full graph ðOðjNj2ÞÞ,

Fig. 16. Performance comparisons between BigSpa and BigDatalog on
Linux.

TABLE 7
Performance Comparison With Distributed

Call Graph Analysis

BigSpa [30]

Subject frontend backend total total

ShareX 49s 49s 98s 190s
ILSpy 97s 121s 218s 1,063s

TABLE 8
Information of Commits Collected From GitHub Repositories

*. The SHA ids of these commits can be found at https://github.
com/PasaLab/BigSpa/tree/master/data/online_commits
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In contrast, on the Linux dataset, which is the largest one
but has a more uniform distribution of edges, the incremen-
tal system performs excellently in both kinds of analyses.
Therefore, it can be concluded that the online system is suit-
able for analyzing program graphs with uniform distribu-
tion of the transmission edges, and the performance would
be affected when performing incremental analysis of pro-
gram graphs with skew-distributed transmission edges.

From the application scenario, it is not realistic to lower
the time cost of precise analysis of large-scale codebases to
second level. Because of that, a timeout interruption mecha-
nism is employed in our implementation to return only part
of analysis results in time. If the interruption happens, the
users will be informed by the output message which can be
regarded as a signal. In this situation, they can use the off-
line batch analysis system for supplementary calculations to
get the complete and accurate analysis results.

7.2.2 Comparison With Serial Incremental Analysis

For comparison, in this subsection, the same batches were
input into a serial incremental analysis system in a serial
manner.

The results of the comparison experiment are illustrated in
Fig. 17. The horizontal axis indicates the software and analysis
type, and the vertical axis indicates the average processing
time of one batch in seconds. As we can see, the average
response time of our mini-batch incremental system is obvi-
ously lower (less than one-twentieth) than that of the serial
system. That is because there are many iterations in the pro-
cess of incremental analysis, and serial iteration over multiple
edges would result in a huge waste of computing resources.
Besides, in the serial system, the amount of data to be proc-
essed per round is relatively small, therefore the memory can
hardly be fully utilized. The above results show that the
method of distributed mini-batch processing can effectively
handle the incremental updates of program static analysis.
Moreover, in practice, it is more common to update the code-
bases in mini-batches, which means the mini-batch update
method is more suitable for real-world application scenarios.

8 RELATED WORK

Static Bug Detection. Static analysis is widely used to detect
various software defects and security vulnerabilities [1], [2],
[3]. Engler et al. [3] take advantage of the simple pattern-

based analysis to discover a variety of bugs in Linux kernel.
In addition, a series of commercial tools, e.g., Coverity [32],
CodeSonar [33], KlocWork [34], are also developed and
widely used in industries. Most of them are simply based
on patterns or intra-procedural analysis which has low com-
putation complexity, achieving good scalability. However,
pattern-based or intra-procedural analysis suffers from low
accuracy due to the lack of considering rich/complete
semantics information. Some empirical studies show that
the false positive rates reach 30-100 percent [4], leading to
pretty poor applicability [5]. Differently, this work focuses
on the sophisticated inter-procedural analysis. By develop-
ing a scalable inter-procedural analysis engine, we are able
to perform precise sophisticated analysis on large-scale
modern software.

CFL Reachability-Based Static Analysis. CFL-reachability is
originally proposed by Yannakakis [15] for Datalog query
evaluation. Reps [10] later adopt CFL-reachability to formu-
late a series of sophisticated static analysis. A variety of
static analyses [8], [9], [16], [35] can be viewed as the instan-
ces of CFL-reachability problem, e.g., program slicing, inter-
procedural dataflow analysis, pointer and alias analysis,
shape analysis, specification inference, and information
flow analysis. The worst case time complexity for solving
CFL-reachability problems is O(n3), which is called cubic
bottleneck [36]. As a result, it is really tough to perform
highly precise analysis on large-scale software. Researchers
have proposed various optimizations to enhance the analy-
sis efficiency, including compositional analysis [37], sparse
representation-based analysis [6], and demand-driven anal-
ysis [9] etc. The above work is mainly targeted at the opti-
mized sequential and memory-based algorithm whose
scalability is greatly limited.

Incremental Program Analysis. For efficient analysis of fre-
quently changing codebases, researchers have also proposed
many incremental analysis approaches. Reviser [38] checks
the modified version of a code to find the changes of its con-
trol flow graph, and then propagates and updates the analy-
sis results. Souter [39] and Ismail [40] employ specialized
algorithms for incremental call graph reconstructions in IDE.
IncA [41] is a domain-specific language for the definition of
efficient incremental program analyses, which functions in a
declarative way over AST representations of programs. Lu
et al. [42] combine points-to analysis with graph reachability.
They provide a trace-based incremental mechanism that pre-
cisely identifies and recomputes affected paths after a pro-
gram changes. The existing algorithms usually suffer from
the lack of good scalability and generality, while our incre-
mental analysis system can incrementalize analysis of very
large codebases with distributed computing.

TABLE 9
Performance of Online Incremental System in the

Uniform Update Experiments

TABLE 10
Performance of Online Incremental System in the

Commit-Based Update Experiments

Fig. 17. Comparison with a serial incremental analysis implementation.
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Parallel and Distributed Static Analysis. In order to improve
the efficiency of program analysis, researchers have devel-
oped parallel algorithms. For example, Mendez-Lojo et al.
[43] propose a parallel points-to analysis based on constraint
graph rewriting. Su et al. [44] develop a CFL-based parallel
pointer analysis algorithm where they leverage data sharing
and query scheduling to avoid redundant graph traversals.
Graspan [7] is a single-machine disk-based inter-procedural
analysis system using edge-pair centric computation model.
It solves the scalability problem to some extent, but still suf-
fers from the limited scalability due to the resource limitation
of a single machine. [45] and [30] propose actor model-based
parallel algorithms for dataflow analysis and call-graph
analysis respectively. Albarghouthi et al. [46] parallelize the
top-down interprocedural analysis based on MapReduce
paradigm. Different from BigSpa, they focus on the demand-
driven analysis and only implement a parallel version run-
ning on a multi-core machine. Google also implement the
distributed static analyses to analyze their codebase [47], but
only relatively simple (intra-procedural) analyses are consid-
ered due to performance limitations. In addition, Facebook
propose their tool INFER [48] based on bi-abduction to check
the memory safety properties of C code. Blaß et al. [49] pres-
ent a parallel approach for fixpoint-based dataflow analysis
on a GPU. Although the method performs efficiently, it
requires extra accelerators and can hardly scale out. IPA [50]
uses Pointer Assignment Graphs (PAGs) to parallelize incre-
mental Andersen’s pointer analysis.

Although the above studies solve the scalability problem
to some extent, they still have several drawbacks. First, they
usually focus on certain particular analysis and are not
applicable to the general program analysis. Second, some
actor model based algorithms are not scalable enough due
to the big synchronization overheads. Finally, most existing
parallel and distributed algorithms entirely rely on memory
for computation. As stated in [51], the memory would be
the major bottleneck for scaling analysis to large programs.
We have also proposed the parallel offline batch interproce-
dural static program analytic algorithms in the conference
version [52] of this article.

9 CONCLUSION AND FUTURE WORK

In this article, we propose an efficient, distributed interproce-
dural static analysis engine called BigSpa. We improve the
idea of transforming the static analysis problem into a big
data processing problem and devise a particular data-paral-
lel algorithm. Based on that, we develop the scalable BigSpa
system that can handle both offline batch and online incre-
mental static analysis of programs. Specific optimizations for
data structure and processing flow are also designed to
ensure high overall efficiency. By utilizing BigSpa, we read-
ily accomplished a series of precise static analyses for large-
scale modern software.

In the future, we plan to eliminate redundancy in data
storage. Also, we want to explore how to set proper thresh-
olds in the system by using machine learning techniques.
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