Software Engineering Group
Department of Computer Science
Nanjing University
http:/ﬁeg.nju.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2021-1C-001

2021-TC-001

Guider: GUI Structure and Vision Co-Guided Test Script Repair
for Android Apps

Tongtong Xu, Minxue Pan, Yu Pei, Guiyin Li, Xia Zeng, Yuetang Deng, Xuandong Li

Technical Report 2021

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is
prohibited.

GuIDER: GUI Structure and Vision Co-Guided Test Script Repair
for Android Apps

Tongtong Xu, Minxue Pan, Yu Pei, Guiyin Li, Xia Zeng, Yuetang Deng, Xuandong Li

ABSTRACT

GUI testing is an essential-part of regression testing for Android
apps. For regression GUI testing to remain effective, it is important
that obsolete GUI test scripts get repaired after the app has evolved.
In this paper, we pfopose a novel approach named GUIDER to auto-
mated repair of GUI test scripts for.Android apps. The key novelty
of the approach lies in the utilization of both structural and visual
information of widgets on app GUIs to better understand what
widgets of the base version app become in the updated version. A
supporting tool has been implemented for the approach. Experi-
ments conducted on the popular messaging and social media app
WECHAT show that GUIDER is both effective and efficient. Repairs
produced by GUIDER enabled 88.8% and 54.9% more test actions to
run correctly than those produced by existing approaches.to GUI
test repair that rely solely on visual or structural information of
app GUIs.

1 INTRODUCTION

The importance of regression testing for ensuring that changes
to an app do not break existing functionalities has been widely
recognized and is greatly appreciated in mobile app development
industry. Since most mobile apps interact with their users through
rich graphical user interface (GUI), GUI testing has become an
essential part of regression testing for these apps. In GUI testing,
user inputs likes clicks and swipes on the screen are fed to the GUI
of an app and the behaviors of the app are examined to determine
whether they are correct or not [1, 2]. Most GUI tests are crafted
or recorded as scripts to enable automated execution using test
harnesses/tools like Appium [3] and Robotium [4]. In such scripts,
GUI elements, or widgets, to be exercised are selected based on
their positions and/or properties, making those test scripts highly
sensitive to changes to the app GUI. While these test scripts should
be repaired when they become obsolete, doing it manually can
be highly tedious, time-consuming, and expensive. The fact that
mobile developers tend to release new versions of their apps with
new or improved features frequently to retain existing users and
attract new users also renders manual repair of the obsolete test
scripts undesirable, if not infeasible. On the one hand, new versions
often involve changes to the app GUI to make the evolution of the
app more visible to users, which implies that extra time is needed to
repair the affected test scripts. On the other hand, frequent releases
leave relatively shorter time for test script repair and regression
testing.

Various approaches have been proposed to automatically re-
pair the obsolete GUI test scripts for mobile apps. Model-based
approaches like ATom [5] and CHATEM [6] assume the availabil-
ity of a precise behavioral model of the app under consideration
and exploit the model to guide the construction of replacement
test actions for the obsolete ones. Although such approaches can
often produce high quality results when they have access to the

required models, their applicability in practice is limited due to the
challenges involved in constructing and maintaining the models for
real-world apps. Recently, we proposed a computer-vision-based
approach, named METER [7], to GUI test script repair. METER estab-
lishes the matching relation between elements on app GUIs based
on their visual appearance, and it utilizes that relation to better lo-
cate the evolved GUI elements and validate the repaired test scripts.
While METER produced overall good results in repairing test scripts
for open-source mobile apps across iOS and Android platforms, its
effectiveness will become impaired when major changes happen to
the appearances of app GUIs. In this paper, we argue that the static,
structural information about app GUIs, which is easily accessible on
Android, provides valuable guidance on understanding the evolu-
tion of the apps and should be combined with the visual information
of elements on those GUIs to guide test repair. To the best of our
knowledge, structural information has not been utilized in repair-
ing GUI test scripts for Android apps, although similar information
obtained from the DOMs of web pages has been successfully lever-
aged by approaches like WATER [8] and WATERFALL [9] to repair
web application tests.

To obtain a better understanding of the limitations of existing
approaches that are solely based on visual or structural information
in repairing GUI tests for popular Android apps, we conducted an
exploratory study. In the study, we applied METER and an imple-
mentation of WATER On Android, which we refer to as WATEROID, to
repair GUI test scripts for top-ranked Android apps from the Google
Play app store: The repair results show that each tool was actually
successful in a significant percentage of cases where the other tool
failed, which suggests the two approaches can be complementary
in repairing GUI tests.

Based on the findings from the exploratory study, we propose
in this paper a novel approach, naméd Guiper (GUI structure and
vision co-guided test repair), that combines the structural and vi-
sual information about app GUIs to guide effective and efficient test
repair. An important task in GUI test script repair with GUIDER is to
decide which widgets from the base version app are more likely to
have changed and identify, for each of those widgets, which other
widgets from the updated version are more likely to be the results of
the changes. GUIDER classifies widgets of the base version app into
three types by comparing their structural information in the two
versions and applies different strategies in repairing test actions on
different types of widgets. During the process, visual information
of the widgets extracted using computer vision techniques com-
plements the structural information and fine-tunes the priority of
different widgets being used to construct repairs. GUIDER relies on
the behaviors of the input test scripts on the base version app, or
intentions [7], as the reference to decide the correctness of repairs.

We have implemented the GUIDER approach into a tool with the
same name. To evaluate the effectiveness and efficiency of GUIDER,
we applied the tool to repair GUI test scripts for WECHAT. WECHAT

ISSTA’21, July 12-16, 2021, Aarhus, Denmark

is a popular messaging and social media app with over 1.2 billion
monthly active users as of the third quarter of 2020 [10] and the
GUI test scripts used in the experiments were the ones crafted and
maintained by the WEcHAT development team. GUIDER produced
repairs to enable 62.7% and 58.9% more test actions to run success-
fully and correctly according to manual inspection, respectively.
Compared with METER and WATEROID, GUIDER enabled 88.8% and
54.9% more test actions to run correctly after repairing, respectively,
taking a comparable amount of repairing time.
The contributions this paper makes are as the following:

e We conductan exploratory study on 32 popular Android apps
to understand the limitations of existing GUI test script repair
tools that solely rely on structural or visual information
about app GUIs;

e We propose a novel approach called GUIDER to automated
GUI test script repair for Android apps; The approach com-
bines structural and visual information of widgets on app
GUISs to produce high-quality repairs:

e We implement a tool with the same name to support the
easy application of the GUIDER approach;

e We empirically evaluate GUIDER’s effectiveness and effi-
ciency by applying it to repair GUI test scripts for WECHAT.
The evaluation results show that GUIDER is both effective
and efficient in repairing obsolete GUI test actions.

The rest of this paper is organized as the following. Section 3
uses an example to demonstrate how GUIDER works from a user’s
perspective. Section 4 explains in detail how GUIDER relates widgets
on app GUIs and construct repairs for obsolete test actions. Section 5
reports on the experiments we conducted to evaluate the supporting
tool for GUIDER. Section 6 reviews research studies that are closely
related to this work. Section 7 concludes the paper.

2 EXPLORATORY STUDY

To obtain first-hand knowledge about main reasons why existing
approaches that are solely based on visual or structural information
fail to produce correct repairs to Android GUI tests in practice, we
conducted an exploratory study.

2.1 Subject GUI Test Repair Tools

We consider two subject GUI test script repair tools in this study,
namely METER [7] and WATEROID. METER establishes the matching
relation between elements on app GUIs based on their visual ap-
pearance, and utilizes that relation to better locate the evolved GUI
elements and validate the repaired test scripts. WATEROID is our
implementation of the WATER technique [8] on Android. WATER
aims to repair GUI test scripts for web applications. It extracts struc-
tural information about GUI elements from the document object
models (DOMs) of web pages, naively attempts all web elements
that have the same value as the original element for at least one
key property in constructing repairs, and accepts a repair as long
as it can make the test execute further. WATEROID employs the UI
Automator test automation framework ! to retrieve the structural
information about GUI elements of Android apps during run-time,

!https://developer.android.com/training/testing/ui-automator

Tongtong Xu, Minxue Pan, Yu Pei, Guiyin Li, Xia Zeng, Yuetang Deng, Xuandong Li

Table 1: Subject apps used in the exploratory study.

APP CATEGORY VERSIONS #ACTIONS
BASE UPDATED
ABC Kids Tracing Parenting 1.4.6 159 1
Dianping Food & Drink 10.18.4 10.26.32 2
Duolingo Education 4.89.6 4912 1
ESPN Sports 232 2.3.10 1
Firefox Communication 68.10.1 84.1.1 5
Google Drive Productivity 2.19 2.2 3
Google Earth Travel & Local 9.3.19.8 9.121.0.5 1
Google Fit Health & Fitness 2.45.13 2.46.22 4
Google Kids Kids 5.34.3 5.36.5 1
Google Pay Finance 2117 212 2
GoogleTranslate Tools 6.6.1 6.14 2
Greetings Island Event 1.1.19 1.1.40 1
HD Camera Photography 1.0.4 1.1.0 1
ibis Paint X Art & Design 8.0.1 8.1.1 1
Lark Player Music & Audio 4.12.7 4.133 7
maxim Auto & Vehicles 33.2 3.12.1 9
Microsoft News News & Magazines 20.105.01 20.275.01 2
Microsoft Team Business 2020100901 2020121401 3
MyObservatory Weather 4.17.6 4.17.12 1
Myztherapy Medical 3.31.1 333 2
Pinterest Lifestyle 8.40.0 8.45.0 2
ReadEra Book & Reference 20.07.30 20.12.17 2
Reface Entertainment 1.0.25.2 1.7.3. 1
TroveSkins Beauty 7.4.4 7.5.0 1
Twitter Social 8.25.1 8.73.0 5
Universal TV House & Home 1.0.82 118 1
V380 Libraries & Demo 123 132 7
Wallli Personalization 2.8.1 283 1
Waze Maps & Navigation 4.523.4 4.69.0.3 4
‘Webtoon Comics 258 2.6.1 2
Youtube Video Players & Editors 15.43.32 15.50.35 1
yuu Shopping 1.0.4 1.2.2 1
Overall - - - 78

and if follows the same logic as that of WATER in constructing and
validating GUI test repairs.

2.2 Subject Apps and GUI Tests

For the subject apps used in the study to be representative of a
wide range of Android apps, we collect one popular app from each
category of appsiin the Google Play app store (As of November
1, 2020), each app with two visually differentiable versions. All
apps in Google Play are organized into 36 categories, including,
e.g., Business, Education, and Finance: We exclude apps in cate-
gories Game and Entertainment from our study because the ran-
domness and time-sensitiveness involved in their behaviors and the
non-standard widgets they often use make them unsuitable to be
tested using regular test scripts. We also exclude apps in categories
Google Cast and Wear 0S by Google since théy can only be in-
stalled on specific devices. For each of the remaining 32 categories,
we examine its apps in decreasing order of popularity until we find
one app with two visually differentiable versions from the Apkpure
website?. Apkpure is a third-party app market that provides down-
load for not only the latest but also previous versions of a large
amount of Android apps.

Particularly, given an app, we always consider its latest version
as the updated version and look for a base version from the earlier
versions on Apkpure. To that end, we first use the release notes of
the app as a guidance to look for a most recent version of the app
whose GUI is different from that of the updated version. If such a
version is found, it is used as the base version. If no proper base

Zhttps://apkpure.com/

https://developer.android.com/training/testing/ui-automator
https://apkpure.com/

Guiper: GUI Structure and Vision Co-Guided Test Script Repair for Android Apps

40 - 36

20

20 = 16

N . :
od .

WATERIOD L]

METER L]

I I Intersection Size

© 3 20 10 0
Correct Repair

Figure 1: Partition of the obsolete test actions based on whether they can be
correctly repaired by METER and WATEROID.

version can be identified based on the release notes, e.g., because
the release notes do not provide sufficient information about the
differences between versions, as is often the case with large apps like
Whatsapp and Facebook, we manually examine the earlier versions
of the app in reverse chronological order to spot a version with a
different GUL If such a version is found in no more than 30 minutes,
it is used as the base version. Note that such process is feasible
because the number of available versions for each app on Apkpure
is typically small. If no desirable base version is found for an app at
the end of this process, we move on and examine the next app in
the current category. In this way, we gathered in total 32 popular
apps, each with two versions that are visually different.

Next, for each subject app, we prepare one automated test script
in Appium for its base version and make sure the changed GUI
components are exercised at least once by the tests. 78 actions from
those test scripts turned out to be obsolete when executed on the
updated versions of the apps. In particular, 46 of those test actions
caused crashes or became unexecutable, while the other 32 test
actions, although still executable, exercised different functionalities
than the intended ones.

Table 1 shows basic information about the subject apps used in
this study and the tests we prepared for the apps. For each app (app),
the table lists its category (CATEGORY), the base (BASE) and updated
(UPDATED) versions used in the study, as well as the numbers of test
actions that become obsolete due to the GUI changes (#ACTIONS).

2.3 Study Results

We applied METER and WATEROID to repair the obsolete test actions
in those scripts.

WATEROID considered 32 obsolete test actions that are still exe-
cutable as successful and therefore not needing repairing. For the
other 46 obsolete test actions, it correctly repaired 22 of them and
failed to repair the remaining 24 test actions. Particularly, WATEROID
was not able to find the correct, updated widgets based on their
key properties in 17 of the failed cases, the structural information
returned by UI Automator was incorrect in 4 of those cases (either
because the information was not accessible to UI Automator for
security reasons, e.g., on activities handling payments, or because
the input focus of apps was not correctly configured, causing UI
Automator to return the structural information about a background,
rather than the foreground, activity), and the required repairs were
too large for WATEROID to construct in the remaining 3 cases.

ISSTA’21, July 12-16, 2021, Aarhus, Denmark

In comparison, METER attempted to repair all the 78 obsolete
test actions, correctly repaired 42 of them, and failed to repair the
remaining 36 test actions. Particularly, METER failed to repair 17
obsolete test actions because the GUI changes were too drastic for
METER to find the correct, updated widgets based on screenshots,
it failed to repair 16 obsolete test actions because the environment-
specific contents displayed in the app GUIs prevented the activities
from being matched, even when no changes were made to them
across versions, and it also failed to produce the repairs for 3 test
actions that were too large for METER to construct.

Here, we refer to all contents that are closely related to the test-
ing environment as environment-specific contents. For example,
messages received during testing and images stored on the testing
device are two typical types of environment-specific contents. Un-
less we make sure tests are always executed in exactly the same
environment, computer-vision-based GUI test approaches need to
pay extra attention in handling environment-specific contents dis-
played on app GUIs to prevent such contents from misleading the
repairing process. This requirement has been largely overlooked
by METER and it was underrepresented in METER’s evaluation be-
cause the testing environments used to run METER were carefully
prepared to guarantee each test is always executed in the same
environment. Such preparation, however, may be expensive, unde-
sirable, or even impractical in practice: Always resetting the local
testing environment before each test run can be highly expensive,
always running a test in the same environment may greatly reduce
the number of different behaviors the test may exercise, and con-
trolling,e.g., whether or how many messages the server pushes to
an app during test execution may not always be feasible.

More importantly, METER correctly repaired 36, or 64.3%, of the
56 obsolete test actions where WATEROID was ineffective, while
WATEROID correctly repaired 16, or 44.4%, of the 36 obsolete test
actions where METER was ineffective. Although this study is pre-
liminary and its findings are far from being conclusive, such results
provide clear evidence that visual.and structural information about
app GUIs should be combined to support more effective GUI test
repair.

Fig 1 summarizes the repairing results produced with METER
and WATEROID by partitioning the obsolete test actions based on
whether they can be correctly repaired by each tool. Each vertical
bar measures the number of obsolete test actions that a group of
tools (indicated by connected dots in the lower part of the diagram)
can correctly repair in common while no other tool can. For exam-
ple, the leftmost column indicates that METER can correctly repair
36 obsolete test actions that WATEROID cannot; while the rightmost
column indicates that METER and WATEROID can correctly repair
6 obsolete test actions in common. The horizontal bars on the left
report how many obsolete test actions each tool can repair in total.

3 GUIDER IN ACTION

Based on the findings from the exploratory study, we propose
a novel approach, named GUIDER, to effective GUI test repair for
Android apps. In this section, we demonstrate from a user’s perspec-
tive how GUIDER automatically repairs GUI test scripts for Android
apps. Section 4 describes the approach in detail.

ICEENRTINS

ISSTA’21, July 12-16, 2021, Aarhus, Denmark

< QRCode

Change Style

Save to Phone

e

Reset QR Code

»de within the frame tc

Cancel

(a) Screen S1

(b) Screen S2

Choose QR Code from Album | B3

Add Shortcut on Home Screen

Cancel

(c) Screen S3

Tongtong Xu, Minxue Pan, Yu Pei, Guiyin Li, Xia Zeng, Yuetang Deng, Xuandong Li

Add Shortcut on Home Screen

Scan Code
. Cancel

J O (m}

(d) Screen S4 (e) Screen S5

Figure 2: Snapshots of WECHAT screens in the base and updated versions.

TS1

driver.
driver.
driver.

find_element_by_description_content('Scan QR Code').click()
find_elements_by_id('openIcon').click()
find_elements_by_id('chooseFromAlbum').click()

Lst. 1: Test script for the base version.

TS1'
driver.
driver.

System.
driver.

find_element_by_description_content('Scan QR Code').click()
find_elements_by_id('moreMenu').click()

press_back()

find_elements_by_id('chooseFromAlbum').click()

Lst. 2: Repaired test script for the updated version.

WECHAT is a popular messaging and social media app with plenty
of other functionalities. In particular, the app has a built-in QR code
scanner that can be used to scan the QR code from an image stored
on the device. Figure 2 shows the screen snapshots of the app in
version 7.0.7 (the base version) and version 7.0.14 (the updated
version) when invoking the functionality.

To scan the QR code from an image in the base version, a user
may 1) tap the button with description content Scan QR Code (marked
as B1) on screen S1, 2) tap the button with id openIcon (marked as
B2) on screen S2, and 3) tap the button with id chooseFromAlbum
(marked as B3) on screen S3. Afterwards, the app will list all the im-
ages from the album for the user to select from. Listing 1 shows the
three test actions corresponding to these steps from a test script TS1
that exercises this functionality. The test script runs successfully
on the base version of WECHAT.

Screens S2 and S3, however, evolved into screens S4 and S5 in
the updated version of the app. Particularly, the id of button B2 was
changed to moreMenu (marked as B4), while the text button B3 was
changed to an image button (marked as B5) and moved to screen
S4, but with its id and functionality unchanged. The revision makes
the test actions on lines 2 and 3 of test script TS1 obsolete, as none
of the two actions can find any button with the desired ids on their
corresponding screens.

Taking both versions of WECHAT and the test script in Listing 1
as the input, GUIDER is able to automatically produce the repaired

i]
i i
; RunTSonApp |!
i i
i i
: Intention !
i i
i i
: Run next action ;
i on App' i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
; i
i i
i GUIDER i

Figure 3: Overview of GUIDER.

test script TS1” as shown in Listing 2¢ While the id of button B2 was
changed to moreMenu, its appearance remains the same as before.
GUIDER is therefore able to identify that button B4 is the updated
version of button B2 and revise the test action to tap the right button
(Line 5 in Listing 2). GUIDER also discovers that there isno button
with id chooseFromAlbum on screen S5, but a new button on screen
S4 has the same id. Hence, the tool treats button B3 as being moved
to screen S4 and becoming button B5, and produces a repair for the
next test action so that first the app is navigated to screen S4 by
pressing the Back button (Line 6 in Listing 2) and then button B5 is
tapped using the right id (Line 7 in Listing 2) to list the images from
the album. Note that it would be much less likely for test repair to
produce such results if relying on just the structural information
or only the visual information of the app GUISs.

4 THE GUIDER APPROACH

Figure 3 illustrates an overview of the GUIDER approach. Given
a base version Android app (App), a group of test scripts for it

Guiper: GUI Structure and Vision Co-Guided Test Script Repair for Android Apps

<hierarchy rotation="0">
<node class="android.widget.FrameLayout" bounds="[0,0][1080,1812]" ...>

<node text="Save to Phone" resource-id="com.tencent.mm:id/gam"
class="android.widget.TextView" ... />

<node text="Scan QR Code" resource-id="com.tencent.mm:id/gam"
class="android.widget.TextView" .../>
</node>
</hierarchy>

Lst. 3: Layout hierarchy extracted for screen S1 shown in Figure 1.

(TS), and an updatéd version of the same app (App’), GUIDER first
records the intended behaviors of each input test script by running
it on the base version app;/Then, for each test action under repair
GuIDER checks if the action preservests intended behavior when
executed on the updated version app. If yes, the test action does not
need repairing; Otherwise, the tést action is obsolete and GUIDER
constructs a replacement for the next one or two test actions: The
execution of the constructed replacement test action(s) on the up-
dated version app should produce screen transitions that match
with the ones triggered by the corresponding input test action(s)
on the base version app. Without loss of generality, we assume all
the input test scripts run successfully on the base version app.
Next, we first introduce the mechanism GUIDER uses.to deter-
mine the matching relation between GUI elements and screens
(Section 4.1), then explain how GUIDER repairs test scripts based
on such matching relation (Section 4.2), and in the end describe the
implementation details of a supporting tool for GUIDER (Section 4.3).

4.1 Widget and Screen Matching

GuUIDER decides whether two test script executions conform to each
other based on a matching relationship between the source and
destination screens of their test actions—a screen of an app refers to
the app’s GUI that is visible to users at a particular point in time, and
it determines the matching relationship between screens based on
the matching relation between widgets on those screens. To strike
a good balance between accuracy and efficiency in establishing the
matching relations, GUIDER exploits both the structural and visual
information of widgets.

GUIDER exploits the Ul Automator framework to extract the
structural and visual information of widgets and screens at run-
time. UI Automator is a Ul testing framework released as part of
the Android SDK, and it features an API to retrieve not only the
layout hierarchy that reflects the relations between widgets but
also the properties of widgets on a screen. Widget properties that
UI Automator can extract include, e.g., a descriptive text, a bound
reflecting the position and size of a widget, a content-desc to help
physically challenged users understand the purpose of a widget, and
a resource-id indicating the resource from which a widget was
instantiated. Listing 3 shows part of the layout hierarchy (in XML)
that UI Automator extracted from screen S1 shown in Figure 2.

4.1.1 Identity Properties of Widgets. Three properties common
to all widgets are especially important for deciding whether two
widgets are matching in GUIDER, namely property resource-id,
property content-desc, and property text, since the Android docu-
mentation recommends that different widgets should have distinct

ISSTA’21, July 12-16, 2021, Aarhus, Denmark

values for these properties® 4 3. We refer to these properties as
identity properties.

Note that property class is not considered an identity property
for two reasons. First, multiple valid values are often acceptable
for the class property of a widget, making its distinguishing power
limited. Second, the number of widgets with a particular class value
can be large. For instance, there often exists dozens of widgets of
class ImageView and/or FrameLayout on a screen.

4.1.2 Three Types of Widget Matches. Given a screen S, of the
base version app and a screen S}, of the updated version app, GUIDER
partitions the widgets on S, into three types, namely a-typed, -
typed, and y-typed, w.r.t. S, based on how much confidence GUIDER
has in finding the right matches for those widgets. Given a widget
w on Sg, w is a-typed if and only if there exists a unique sure match
for it on S/; w is f-typed if and only if it has no sure match, but a
group of close matches, on S/j; w is y-typed if and only if it has only a
group of remote matches, but no sure or close matches, on S/,. Given
Sa, a widget w on Sg, and S}, we use a(Sg, S}, w), B(Sa. Sp, w), and
Y(Sa, Si, w) to denote the sure match, the set of close matches, and
the set of remote matches, when exists, for w on S}, respectively.

Sure Match. We identify sure matches for widgets on S, in two
steps. In the first step, we consider a widget w’ on S/, as a sure match
for w if and only if the following two conditions are satisfied: 1) w
and w’ should have the same value for at least one identity property;
2) Compared with w’, all the other widgets on S, have the same
values as w for strictly fewer identity properties. In other words,
w’ is only considered a sure match for w if it has the same values
for strictly the largest number of identity properties. Satisfying the
two conditions also implies that there exists at most one sure match
on S}, for w.

In the second step, we build upon the identified sure match
relation from the first step and exploit more structural information
to extend the relationso that it also includes other pairs of widgets,
using the following two policies:Policy-A: If 1) w is a component
widget of a list item m on 54, 2) w’ is a component widget of a
list item m’ on S/, and 3) w’ is the sure match of w, m’ is the sure
match for m. Policy-B: If 1) a list item m’ on S/, is the sure match
for list item m on S, and 2)a.component widget wi of m and a
component widget w] of m” have the same valué for at least one
identity property, wj is the sure match for'wy.Intuitively, Policy-A
states that one list item should be comnsidered the sure match for
another list item if the two list items contain component widgets
that surely match, while Policy-B states that, if two list items surely
match, their component widgets with the same values for at least
one identity property should surely match. The two policies enable
us to reasonably extend the sure match relation to cover component
widgets of list items that are closely related sure matches. According
to experimental results reported in Section 5, the two policies work
quite well on screens without nested lists or multiple lists of the
same type. We leave the design of more sophisticated policies to
identify sure matches for future work.

One widget having another widget as its sure match is a strong
indication that the former has evolved to become the latter, and
Shttps://developer.android.com/guide/topics/resources/providing-resources

*https://developer.android.com/guide/topics/ui/accessibility/principles
Shttps://developer.android.com/reference/androidx/test/uiautomator/UiSelector

ISSTA’21, July 12-16, 2021, Aarhus, Denmark

therefore both widgets will be excluded from being considered in
potential matching relations with other widgets.

Close Matches. Compared with the sure match, a close match of a
widget also has the same values for some identity properties, but it
is not more likely to be the right match than the others. Specifically,
we consider w as f-typed and regard a widget w’ on S}, as a close
match for w when the following conditions are satisfied: 1) w is
not a-typed, 2) w’ is not the sure match of any widget on S,; and
3) w and w’ have the same value for at least one identity property.

Remote Matches: a-typed and f-typed widgets correspond to
widgets on S, that are not drastically changed, in the sense that
at least one of their identity properties remains intact. It, however,
may happen that the revision to awidget is so great that none of
the widget’s identity properties-has its original value. Let 1 be the
set of widgets on S, that has no.sure or close match on S}, r; be
the set of widgets on S/, that share no values foridentity properties
with any widget on S,. Each widget in ry is‘-typed and it has all
widgets in ry as its remote matches.

Sorting Close and Remote Matches. There can be many close or
remote matches for a widget, making it difficult to find the right
match. Fortunately, widgets undertaking the same functionality in
one app usually have similar appearance. To better distinguish the
close and remote matches, GUIDER resorts to the visual information
of w and w’s potential matches. As explained at the beginning of
Section 4.1, the layout hierarchy extracted by Ul Automator from
a screen contains a property named bounds for each widget on
the screen that reflects the position and size of the widget. Using
this information and the screenshot of the screen, the image of
each widget on the screen can be easily obtained. GUIDER therefore
retrieves the image of each widget on S, and S;, and applies the SIFT
technique [11, 12] to extract feature descriptors from the image,
as was done in [7]. The visual similarity between two widgets is
then computed as the percentage of feature descriptors they have
in common, and widgets in $(Sq, w, S}) and y(Sg, w, S),) are sorted
in decreasing order of their visual similarities to w.

4.1.3 Screen Matching. Given screen S, from the base version
app and screen S, from the updated version app, GUIDER calculates
the similarity between S; and S/, based on numbers of three types
of widgets discovered on S, w.r.t. S;. In particular, let cs, ¢, and
¢y be the numbers of a-typed, -typed, and y-typed widgets on
Sq w.r.t. Sj, respectively. The similarity between S, and S/, is then
calculated as sim(Sq, S;) = (cs+cc)/(cs+cc+cr). GUIDER considers
Sq and S}, as matching, denoted as S; ~ S}, if their similarity is
greater than a threshold value 6;. 0; is empirically set to 0.5 by
default in GUIDER.

4.14 Falling back on Computer-Vision-Based Matching. We no-
ticed from the exploratory study that in two situations UI Automa-
tor may fail to retrieve the correct structural information about a
screen. First, for security reasons, it may fail on activities that handle
credential information. Second, it may return incorrect information
if the input focus of an app is placed on a background, rather than
the foreground, screen. Correspondingly, if GUIDER cannot retrieve
any structural information about a screen or it detects mismatch
between the retrieved structural information and the actual screen

Tongtong Xu, Minxue Pan, Yu Pei, Guiyin Li, Xia Zeng, Yuetang Deng, Xuandong Li

appearance, it will fall back on pure computer-vision-based widget
and screen matching, as implemented in METER [7].

4.2 Intention-Based Test Repair

In this work, we use a pair (loc, evt) to denote a test action a,
where loc is an element locator to be used to pinpoint a particular
GUI element on a given context screen, and evt is an event to be
triggered on that element when a is executed. Following the practice
in previous work [7, 13], we define a test script as a sequence
K =ay,a,...,a , where each a; (1 <i < n) is a test action.

Test Action Intention. Successfully executing a test action a =
(loc, evt) on a screen S involves first applying the locator loc to
identify on S a target GUI element to interact with, then triggering
the event evt on the element, and in the end transiting the app to a
(possibly different) destination screen. We denote the screen tran-
sition caused by the successful execution of a as a pair (src, dest),
where src and dest are the source and destination screens of the
transition, respectively. If the successfully terminated execution
is also correct, or as expected, the transition characterizes the in-
tended behavior of the test action, and we refer to the transition
as the intention of the test action. A transition 7 = (srcy, dest;)
matches an intention 1 = (srcg, destz), denoted as ¢ ~» 1, if and
only if src; ~ srca A dest; ~ desty, i.e., their source screens and
destination screens match respectively.

The Repair Algorithm. Algorithm 1 explains how GUIDER repairs
a test script so that as many intentions of its test actions are pre-
served aspossible. The algorithm takes the base version app P, the
updated version app $’, and a test script K to repair as the input,
and it produces a map that relates sequences of K’s test actions to
their repairs, with-the intention of each test action sequence being
preserved by the corresponding repair. The algorithm repairs the
test actions from K in'an iterative manner. Given the next test ac-
tion al (Line 3) and the current screen cur$ of P’ (Line 4), GUIDER
first retrieves the original intention i1 of a1 (Line 5) and the original
widget ¢ that al operates (Line 6) on £, and then obtains the widget
¢’ that al will operate on'curS (Line 7) and the screen curD that al
will transit the app to (Line 8). on the updated version. All potential
matches for € on curS are also stored into matches (Line 9). Next, if
¢’ is the best match for ¢ and the Screen it transits the app to match
with 11.dest, al can be retained as is without affecting its intention
(Lines 10 through 12). Otherwise, GUIDER choose different strategy
to repair al based on whether it is a-, -, or y-typed.

In case ¢ is a-typed (Line 13), GUIDER first checks whether al’s
sure match a’ on curS (Line 14) is a proper repair (Lines 15 and
16). If yes, the repair is registered at M and the process continues
(Lines 17 and 18). Otherwise, if there exists another test action x
that could be applied after a’ to transit £’ to a screen that matches
with i1.dest (Line 19), GUIDER constructs a repair using a’ and x for
al (Lines 20 and 21). Or, if the transition achieved by a’ preserves
the overall intention of al and the test action a2 that follows it
(Lines 24 and 25), GUIDER uses a’ as the repair for test actions al
and a2 (Line 26). If all these attempts fail, al cannot be successfully
repaired and GUIDER proceeds to repair the next test script (Line 29).
The rationale behind such design is: Since there is strong evidence
that al has evolved into a’, a’ should always be part of the repair;

Guiper: GUI Structure and Vision Co-Guided Test Script Repair for Android Apps

Algorithm 1: Intention-based test script repairing.

Input: Base version app #; Updated version app P’; A test script K to be
repaired, with each test action associated with its intention on P;
Output: Map M from sequences of test actions in K to triples of form
(1, src, dest), where 7 is the list of test actions derived from the
sequence for P’ and it transits $’ from screen src to screen dest.
1 init(M);
2 fori=0;i < K.length();i++:

3 al « KJ[i];

4 curS «— M(al.pre).dest ;

5 11 « al.intention();

6 ¢ < ELE(1l.src, al.loc);

7 ¢ «— eLe(curS, al.loe) ;

8 curD « pest(curS, al);

9 matches < GETMATCHES(11:87¢, eurS, ¢) ;

10 if ¢ == matches.pop() A'il.dest ~ curD:

11 M([al]) « ([all,eurS,curD) ;

12 ‘ continue;

13 if 1SALPHATYPED (11.57¢, cursS, €):

14 a’ « act(matches.pop())s

15 curD’ « pEst(curS,d’);

16 if i1.dest ~ curD’:

17 M([al]) « ([d'],curS, curD’) ;

18 ‘ continue;

19 if 3x : pEsT(curD’, x) ~ 1l.dest:

20 newD « pEsT(curD’, x) ;

21 M([al]) « ([d,x],curS, newD) ;
22 continue;

23 if i < K.length() —1:

24 a2 «— K[i+1] ;12 « a2.intention();
25 if 12.dest ~ curD:

26 M([al,a2]) « ([d’],curS,curD’) ;
27 ie—i+1;

28 continue;

29 else: break;

30 isSuccessful « false;

31 for j =0;j < 6, A j < matches.length(); j + +:
32 w «— matches[j];

33 a « act(w);

34 curD « pest(curS,d’) ;

35 if 11.dest ~ curD:

36 M([al]) « ([d'],curS, curD) ;

37 isSuccessful « true;

38 break;

39 if isSuccessful: continue;

10 if 1IsGAMMATYPED(11.s7¢, curS, €):

a1 foreach y € actions(curS),z € y(pest(curS, y)):
12 curD’ « pEsT(DEST(curS, y), act(z)) ;
43 if curD’ ~ il.dest:

44 M([a1]) « ([y,act(2)], curS, curD") ;
15 isSuccessful « true;

16 break;

47 if isSuccessful: continue;

48 else: break;

GuIDER therefore explores different possibilities regarding which
and how other test actions are involved in the repair.

In case ¢ is not a-typed, GUIDER iterates through the first 6,
widgets from &’s candidate matches on curS (Line 31). If there exists
one match that can preserve al’s intention (Line 35), the match
is used to construct the repair for al (Line 36) and the repair of
the current test script continues (Lines 37 through 39). Recall that
all matches for - and y-typed widgets are sorted in decreasing
order of their similarity to the original widget. Matching widgets
with greater similarity values are therefore attempted by GUIDER
earlier during repair. 0 is empirically set to 5 by default in GUIDER.
We evaluate the impact of this choice on GUIDER’s effectiveness in
Section 5.

ISSTA’21, July 12-16, 2021, Aarhus, Denmark

When no single action on a matching widget could preserve al’s
intention and al is y-typed (Line 40), GUIDER also checks whether
¢ has evolved into a widget z on another screen that is reachable
from cur$ in one action. If two test actions can be constructed to
first navigate the app to where z is located and then transit to a
screen that matches with 11.dest (Lines 41 through 43), the two test
actions are used as the repair for al (Line 44), and the repair of
the current test script continues (Lines 45 through 47). Otherwise,
GUIDER cannot repair al and it proceeds to repair the next test
script (Line 48).

4.3 Implementation

We have implemented the approach described above into a tool,
also named GUIDER, to automate the repair of GUI test scripts for
Android apps. As explained in Section 4.1, GUIDER exploits the UI
Automator framework to extract the structural and visual informa-
tion of widgets and screens at runtime. For contour detection and
optical character recognition (OCR) used in pure computer-vision-
based matching, GUIDER uses the OpenCV library (Version 3.1)
[14] and the Tencent OCR AP, respectively. It, however, is worth
noting that, GUIDER has been designed to support easy switch be-
tween libraries, and it should be easy for GUIDER to adopt future
developments in computer vision and OCR techniques for better
performance.

The tool has been integrated with the Appium testing framework
and Tencent’s dedicated testing infrastructure for WECHAT (more
about the infrastructure in Section 5.1), respectively, and the result
of the former integration is available for download at

https://github.com/SEG-DENSE/Guider.
Since GUIDER is only loosely coupled with the underlying testing
facilities, we can easily add support for other testing frameworks
or infrastructures to-the tool in the future.

5 EVALUATION

To evaluate, and put in perspective, the effectiveness and efficiency
of GUIDER, we conducted experiments that apply GUIDER to repair
GUI test scripts for WECHAT. We address the following research
questions based on the experimental results:

RQ1: How effective and efficient is GUIDER in repairing GUI tests
scripts?

RQ2: How does GUIDER compare with existing test repair ap-
proaches like METER and WATEROID that rely solely on
visual or structural information of app GUIs?

RQ3: How do values of parameters 03 and 6 affect GUIDER’s
effectiveness?

5.1 Experimental Subjects

To understand how GUIDER works on complex, commercial An-
droid apps in practice, we use WECHAT—a popular messaging and
social media app—as our subject app. In particular, we choose
WECHAT 7.0.7, released about 12 months before this writing, as
the base version, and versions 7.0.14, 7.0.15, 7.0.16, 7.0.17 and 7.0.18
as the updated versions. The reason for not using adjacent versions
as the base and updated versions is that, the task of GUI test repair
is likely more challenging in such settings since GUI differences

https://github.com/SEG-DENSE/Guider

ISSTA’21, July 12-16, 2021, Aarhus, Denmark

between versions further away are likely greater, and we are inter-
ested to find out how GUIDER performs in tackling the challenging
tasks.

In total, 277 GUI test scripts were crafted and maintained on the
base version app by WECHAT developers, and all these test scripts
can run automatically on Tencent’s dedicated testing infrastructure
for WecHAT®. There is one thing that is particularly interesting
about these tests and their executions on the testing infrastructure:
The execution of each WEGHAT test script typically involves running
multiple WECHAT instances in parallel and checking the interactions
between those instarces, and the testing infrastructure will launch
those instances on mobile devices that are randomly selected from
a pool when starting the test script. Although the randomness
introduced by such design allows WECHAT to be exercised in more
diverse ways during testing, differént running mobile devices and/or
leading interactions with other WECHAT instances may cause the
internal states of the app in which a test action is triggered to vary
across test executions, and such variations will add to the challenges
GUIDER faces in repairing the test scripts.We include all these test
scripts in our experiments.

Table 2 shows, for each pair of WECHAT versions, the base (V},)
and updated (V;,) version numbers, the number of/test scripts af-
fected when executed on the updated versions (#K), and the number
of test actions contained in those test scripts (#A). In particular, a
total number of 171 test scripts with 3322 test actions were affected
on the updated versions of WECHAT. Note that the size of WECHAT
is omitted from the table for confidentiality reasons.

5.2 Experimental Protocol

To answer RQ1, we apply GUIDER to repair GUI test scripts for all
updated versions of WECHAT. Each experiment targets a particular
pair of base and updated versions of WECHAT, and the inputs to
GuIDER include the base and updated versions of WECHAT, denoted
as P and P’, respectively, and the set K of test scripts written for
#. Particularly, we first run % on # and record the structural and
visual information about the screens before and after the execution
of each test action from K, then apply GUIDER to get the repaired
set K’ of test scripts as a derivation of %, and finally ask five
test engineers in Tencent to manually review and check the repair
results to determine the numbers of transitions and test actions that
fully preserve the test intentions. All the test engineers have more
than five-year experience in mobile testing. A repair is considered
to be intention-preserving only when all the five test engineers
have a consensus on that.

To answer RQ2, on the one hand, we apply METER and Wa-
TEROID to repair the same test scripts for WECHAT, respectively,
and compare their repairing results with that produced by GUIDER;
On the other hand, we modified GUIDER to produce GUIDER-, which
works the same as GUIDER except that it does not make any use
of visual information about app GUIs. Recall that, GUIDER falls
back on computer-vision-based widget and screen matching when
structural information about app GUISs is inaccessible or incorrect.
We repeat the same experiments using GUIDER- and compare the
effectiveness of WATEROID and GUIDER-. We hope such compar-
ison will help us understand better the differences between the

“WeTest (https://wetest.qq.com).

Tongtong Xu, Minxue Pan, Yu Pei, Guiyin Li, Xia Zeng, Yuetang Deng, Xuandong Li

two structural-information-based GUI test repair approaches as
implemented in WATEROID and GUIDER.

In GUIDER’s current implementation, two screens are considered
matching if their similarity is greater than a threshold value 6; = 0.5,
and GUIDER at most examines the first 6, = 5 elements from a
widget’s potential matches. To find out whether and how these
parameters’ values affect GUIDER’s effectiveness and answer RQ3,
we modify one parameter’s value at a time, rerun the experiments
on WECHAT, and study how changing each parameter influences
the repairing results.

During each experiment, we record the following information:

#¥s: The number of test scripts that can execute successfully, i.e.,
without failures, to their completion after being repaired.

#As: The number of test actions that can execute successfully
after repairing. This number includes test actions that
are not affected by the changes and therefore need no
repairing, test actions that are affected by the changes and
successfully repaired, and test actions that can execute
successfully after others being repaired.

#¥.: The number of test scripts that can execute correctly to
their completions after being repaired, as manually con-
firmed by programmers.

#A.: The number of test actions that execute correctly after
being repaired, as manually confirmed by programmers.

T: The overall wall-clock repairing time in minutes.

5.3 Experimental Results

This section reports on the results from experiments.

5.3.1 RQI: Effectiveness and Efficiency. Table 2 reports, for each
experiment conducted with GUIDER on a pair of WECHAT versions,
the recorded measures.

To put the numbers in perspective, the table also lists, for each
experiment, the same measures produced by a null test repair tool
(NuLL). A null testrepair tool returns the same test action for each
input test action. Therefore; the repairing results produced by a null
test repair tool reflects how the test scripts execute on the updated
version apps as they are. Measure T reported for the null test repair
tool reflects the execution time of the test scripts.

Before being repaired, while 1790 of the 3322 test actions from
171 affected test scripts can still execute without causing any fail-
ures, only 1745 of them actually execute correctly. GUIDER was
able to help make 101 test scripts and 2844 test actions execute suc-
cessfully, and it made 100 test scripts and 2839 test actions execute
correctly. In other words, GUIDER managed to increase the numbers
of test actions that can execute successfully and correctly by 58.9%
(=1054/1790) and 62.7% (=1094/1745). We attribute the high preci-
sion of GUIDER’s repair results to both the adoption of intentions
as the oracle for test action correctness and the combination of
structural and visual information of widgets in repair construction
and validation.

Five test actions were incorrectly repaired by GUIDER, all for the
same reason. Specifically, the expected behaviors of those five test
actions were to select specific elements from lists of environment-
specific contents based on indexes. Since GUIDER always makes
the selections based on the appearances of the list items, it tends
to produce incorrect repairs in such cases, and because intention

https://wetest.qq.com

Guiper: GUI Structure and Vision Co-Guided Test Script Repair for Android Apps

ISSTA’21, July 12-16, 2021, Aarhus, Denmark

Table 2: Experimental subjects and results.

WECHAT #K #A NULL WATEROID METER GUIDER- GUIDER
Vs Vg #Ks #As #Ke #Ac T(m) #Ks #As #Ke #Ac T(m) #Ks #As #Ke #Ac T(m) #Ks #As #Ke #Ac T(m) #Ks #As #Ke #Ac T(m)
7.0.7 7.0.14 20 392 0 259 0 254 56.4 15 334 3 239 47.9 8 232 4 35 47.2 7 277 6 268 53.2 9 321 8 320 55.7
7.0.7 7.0.15 30 550 0 291 0 283 55.9 21 504 2 292 50.2 12 303 7 285 48.5 14 438 14 428 87.5 17 479 17 478 89
7.0.7 7.0.16 30 550 0 2% 0 288 49 22 505 3 294 49.6 10 280 6 255 47.1 14 433 14 424 90.6 17 444 17 443 106.3
7.0.7 7.0.17 40 798 0 412 0 404 1071 29 714 10 450 56.9 14 497 8 446 95.9 23 649 23 639 91.8 25 697 25 696 101.7
7.0.7 7.0.18 51 1032 0 532 0 516 69.1 37 888 8 558 63.1 13 536 7 483 58.4 29 837 29 823 120.8 33 903 33 902 135.1
Overall 171 3322 0 1790 0 1745 3375 124 2045 26 1833 2677 57 1848 32 1504 297.1 &7 2634 86 2582 4439 101 2844 100 2830 4878
Average 342 6644 0 4358 0 349 675 248 589 52 3666 5354 114 3696 64 3008 5942 17.4 5268 172 5164 8878 202 5688 20 5678 97.56
0 = .. .
> not suffer from a prolonged repairing process mainly because the
g 30 4 B
a Tencent OCR API can often return results instantly.
s) . ; ;
£ 9 l = - GUIDER produced repairs to help 58.9% and 62.7% more test actions
L
°" - — execute successfully and correctly, respectively. Test repairing time
WATERIOD L] . . .
- with GUIDER and the test execution time have the same order of
- . magnitude.
I I 0

—_ T
60 40 20 o

Correct Repair

Figure 4: Partition of the obsolete test actions in the exploratory study based
on whether they can be correctly repaired by METER, WATEROID, and GUIDER.

is just weak oracle for the correctness of test actions, GUIDER can
seldom detect the problems with those repairs.

In total, GUIDER failed to produce any repair for 70 test actions,
leaving 478 test actions from the input test scripts no longer exe-
cutable. We discovered two reasons for the failures. First, GUIDER
was not able to locate the widgets required by the correct repairs
for 35 test actions. Particularly, the reason why GUIDER produced
the 5 incorrect repairs also caused the tool to miss the right widgets
in repairing 14 test actions, and GUIDER was unable to find the right
widgets in repairing 21 test actions because the changes to the wid-
gets, w.r.t. their property values and appearances, were too large.
Second, although GUIDER managed to identify the right widgets in
repairing the other 35 test actions, the constructed repairs all failed
to satisfy GUIDER’s oracle for repair correctness because of the
drastic changes occurred to the app GUIs. To overcome such limita-
tions, we need mechanisms to enable us to communicate the actual
intention of test actions to repair tools and novel techniques to help
us better understand GUI changes and their impacts. We leave the
design and implementation of such mechanisms and techniques for
future work.

We have also applied GUIDER to the apps and GUI tests investi-
gated in the exploratory study (Section 2). GUIDER correctly repaired
65, or 83.3%, of the 78 obsolete test actions, significantly outper-
forming METER and WATEROID, which correctly repaired 42 and 22
test actions, respectively. Such results provide initial evidence that
GUIDER is also effective in repairing GUI tests for other Android
apps. Fig 4 shows the updated partition of the obsolete test actions
investigated in the exploratory study after incorporating GUIDER’s
repairing results into Fig 1.

The overall repairing time with GUIDER is less than twice of
the execution time of those test scripts. We therefore consider that
GUIDER is efficient in producing the repairs. While computer vision
techniques are often considered expensive to apply, GUIDER does

5.3.2 RQ2: Comparison. Table 2 also lists the same measures
achieved by METER, WATEROID, and GUIDER- in the experiments.

METER was able to help make 57 test scripts and 1848 test actions
execute successfully, and it made 32 test scripts and 1504 test actions
execute correctly. In comparison, GUIDER was able to make 44, or
77.2%, more test scripts and 996, or 53.9%, more test actions run
successfully, and it made 68, or 213%, more test scripts and 1335, or
88.8%, more test actions run correctly. We manually examined the
repairing results produced by METER and discovered that METER’s
limited capability to handle environment-specific contents is the
primary reason for its ineffectiveness in repairing tests for WECHAT.
As explained in Section 2, both the running mobile device and
the leading interactions with other WECHAT instances may vary
for a test action across executions in our experiments, but METER
was unprepated for handling the discrepancies in GUIs caused by
environmental factors at all and was therefore often ineffective.
Given the challenges involved in always preparing the identical
testing environment in practice, the comparison result between
Guiper and METER highlights that structural information about app
GUIs is an essential supplement tovisual information in achieving
practical, effective GUI test repair.

WATEROID enabled 124 test sctipts and 2945 test actions to run
successfully, and it enabled 26 test scriptsiand 1833 test actions
to run correctly. In comparison, GUIDER was able to make 23, or
22.8%, fewer test scripts and 101, or 3.6%, fewer test-actions run
successfully. Meanwhile, GUIDER made 74, or 285%, more test scripts
and 1006, or 54.9%, more test actions run correctly than WATEROID.
WaATEROID produced a large number of incorrect repairs because the
oracle it adopts for repair correctness is much weaker than GUIDERs
intention-based oracle: WATEROID considers a repair correct if it
does not trigger any error at run-time. WATEROID's primitive way of
finding widget matches by simply comparing their property values
also contributed in part to the high number of incorrect repairs.

Compared with WATEROID, GUIDER- was able to make 37, or
42.5%, fewer test scripts and 311, or 11.8%, fewer test actions run
successfully, but it made 60, or 231%, more test scripts and 749, or
40.9%, more test actions run correctly. Such results suggest the uti-
lization of structural GUI information in GUIDER is more effective

ISSTA’21, July 12-16, 2021, Aarhus, Denmark

Table 3: GUIDER effectiveness with different values for 6;.

VERypD 6;=03 6, =04 6; =0.5* 6, =0.6

#Ks #As #Kce #Ac #Ks #As #Kc #Ac #Ks #As #Kce #Ac #Ks #As #Kc #Ac

7.0.14 11 309 9 304 10 314 8 309 9 321 8 320 10 296 8 291
7.0.15 17 463 17 459 18 459 18 458 17 479 17 478 15 462 15 461
7.0.16 16 476 16 475 17 468 17 467 17 444 17 443 12 396 12 395
7.0.17 23 691 23 690 25 715 25 714 25 697 25 696 21 681 21 680
7.0.18 31 899 31 898 35 926 35 925 33 903 33 902 22 736 22 735

Overall 98 2838 96 2826 105 2882 103 2873 101 2844 100 2839 80 2571 78 2562

and reliable than that in WATEROID. Although GUIDER- outper-
formed both WATEROID and METER in our experiments, it failed on
a significant number of test actions that GUIDER correctly repaired:
GUIDER was able to make 14, or 16.3%, more test scripts and 257, or
9.9%, more test actions run correctly. In particular, no structural in-
formation was available when repaiting 17 test actions, so GUIDER
fell back on computer-vision-based widget and screen matching,
and visual information was needed to better rank the candidate
matching widgets in repairing 26 test actions. These cases clearly
demonstrate that visual information is a necessary complement to
structural information in effective GUI test repair.

The overall repairing times with all the tools had the same order
of magnitude and were less than twice the test execution time.
Therefore, we consider all these tools are comparable in-efficiency.

Compared with METER and WATEROID, GUIDER enabled 88.8% and
54.9% more test actions to run correctly, respectively. All the studied
test repair tools were comparable in efficiency.

5.3.3 RQ3: Parameters. Table 3 lists the measures achieved by
GUIDER on each updated version of WECHAT using various values
for 0;. The default value for 6; is marked with an asterisk (*). It is
interesting to note from the table that, extreme 0; values tend to
produce worse repair results, in terms of numbers of test scripts
and test actions repaired (correctly or not). This is understandable,
since both too large and too small 8; values increase the chance for
GUIDER to miss a correct repair for an affected test action, which
also makes it more likely for GUIDER to fail repairing the whole test
script. Such results suggest that 0.5 is an appropriate default value
for the parameter. Depending on whether the differences between
the two versions of the Android app under repairing is large or not,

a larger or smaller value may be adopted to suit the repairing task.

Table 4 lists the measures achieved by GUIDER on each updated
version of WECHAT using different values for 6;. The default value
for 0, is also marked with an asterisk (*). We can observe from
the table that, even with a very small value for 62, GUIDER is able
to produce over 90% of the repairs that it can produce with larger
03 values. This suggests GUIDER is in general highly effective in
identifying the right matches for widgets. We can also observe that,
repair results reach a plateau quickly with larger 6, values. On
the one hand, this suggests the effectiveness of GUIDER is largely
insensitive to 62; On the other hand, it also means certain repairs
cannot be produced by GUIDER even with larger 6 values. In the
future, we will investigate further why this is the case and how to
overcome this limitation.

A moderate 61 value produced the best repair results; A small 6
value was enough to produce good repair results already. The effec-
tiveness of GUIDER was insensitive to increase in 05 values.

Tongtong Xu, Minxue Pan, Yu Pei, Guiyin Li, Xia Zeng, Yuetang Deng, Xuandong Li

Table 4: GUIDER effectiveness with different values for 6,.

= =), = 5%) =
VERSION 6, =1 6, =3 6, =5 6, =7

#Ks #As #Ke #Ac #Ks #As #Ke #Ac #Ks #As #Kce #Ac #Ks #As #Kce #Ac

7.0.14 7 311 6 310 9 321 8 320 9 321 & 320 9 321 & 320
7.0.15 15 469 14 468 17 479 16 478 17 479 16 478 17 479 16 478
7.0.16 15 434 14 433 17 444 16 443 17 444 16 443 17 444 16 443
7.0.17 25 696 24 695 25 697 24 696 25 697 24 696 25 697 24 696
7.0.18 30 886 29 885 33 903 32 902 33 903 32 902 33 903 32 902

Overall 92 2796 87 2791 101 2844 96 2839 101 2844 96 2839 101 2844 96 2839

5.4 Threats to Validity

In this section, we discuss possible threats to the validity of our
study and show how we mitigate them.

Construct validity. In this work, we asked programmers to man-
ually inspect the repair results and label the correct repairs. Pro-
grammers, however, may have different opinions regarding the
correctness of repairs. To mitigate this risk, we conservatively mark
a repair as correct only when all the five programmers reach a
consensus on that.

Internal validity. In our experiments, a major threat to internal
validity is the possible faults in the implementation of our approach
and the integration of external libraries. To address the threat, we
review our code and experimental scripts to ensure their correctness
before conducting the experiments.

External validity. A major threat to external validity is that, the
apps and test scripts used in our experiments may not be good
representatives of Android apps and test scripts people write in
industry. To mitigate this threat, we used WECHAT, a popular app
with a huge number of monthly active users, and its tests as subjects
in our experiments. In the future, we plan to conduct larger scale
experiments to evaluate GUIDER more thoroughly.

6 RELATED WORK

In this section; we review works closely related to GUIDER in general
purpose test repair.and GUI test repair.

6.1 General Purpose Test Repair

Changes made to a software system during its evolution may render
some existing tests for the system obsolete. That is, those tests will
fail on the evolved system not because the system'is buggy, but be-
cause the tests do not embody the changes: To reduce the burden of
updating those obsolete tests for programmers, vatious techniques
have been developed in the past years. Daniel et al. [15] propose
the REASSERT technique to repair obsolete unit tests automatically.
REASSERT monitors the execution of a unit test on a presumably
correct program and uses the information gathered during the exe-
cution to update the assertion methods, assertions or literal values
in the test. To overcome some limitations in REASSERT, Daniel et
al. [16] propose symbolic test repair. Symbolic test repair creates
symbolic values for literals used in the tests and executes the tests
in a symbolic way. The assertions and path conditions gathered
during the execution are then solved by the Z3 constraint solver
[17] and the solutions are used to replace the literals. Deursen et al.
[18] propose techniques to fix compilation errors in tests caused
by refactorings to the program code. Yang et al. [19] propose the
SPECTR technique that repairs tests based on changes to program
specifications rather than implementations.

Guiper: GUI Structure and Vision Co-Guided Test Script Repair for Android Apps

6.2 GUI Test Repair

Compared with general purpose test repair, the problem of GUI
test repair has attracted more attention from researchers. On the
one hand, most software programs interact with their users via
GUI for better user experience, and GUI testing is a popular way
to detect faults in these programs at the system level. On the other
hand, it is common for developers to create GUI test scripts using
record-and-replay testing tools. GUI test scripts, however, are often
more fragile, e.g., than unit tests.

Targeting traditional desktop applications, Memon and Soffa
[20] first propose the idea of GUI test script repair and develop
a model-based approach called GUI Ripper. GUI Ripper assumes
that the application model and user modifications are completely
known, and repairs scripts base on four user-defined transforma-
tions. A few years later, through reverse engineering, Memon [21]
extends GUI Ripper by adding a mechanism to obtain the applica-
tion model. Considering that the model built by GUI Ripper is just
an approximation of the actual application‘and may cause incor-
rect repairs, Huang et al. [22] propose to use a genetic algorithm
to generate new, feasible test cases as repairs to GUI test suites.
Besides model-based approaches, several white box approaches
have also been studied for GUI test script repair. Daniel et al. {23]
propose to record GUI code refactorings as they are conducted
in an IDE and leverage them to repair test scripts. Grechanik et
al. [24] propose a tool to extract information about GUI changes
by analyzing the source code and test scripts, and generate repair
candidates for GUI test scripts to be selected by testers. Based on
static analysis, Fu et al. [25] develop a type-inference technique for
GUI test scripts, which can assist testers to locate type errors in
GUI test scripts. Dynamic and static analyses have also been com-
bined in GUI test script repair for desktop applications. To repair
changed GUI workflows, Zhang et al. [26] combine the information
extracted from dynamic execution of the applications and static
analysis of matching methods to generate recommendations for
replacement actions. Gao et al. [27] study the limitations of existing
approaches and the importance of human knowledge, and propose
a semi-automated approach called SITAR that takes human input to
improve the completeness of extracted models and further repairs
test scripts for desktop applications.

Compared with desktop applications, research on GUI testing for
web and mobile applications has gained better results. On the one
hand, web or mobile applications tend to have less complex GUIs
than desktop applications. On the other hand, the DOM tree of a
web application’s web page and the layout hierarchy of a mobile
application record detailed information of the widgets on the GUIs,
which, when available, provides extra guidance on how the tests
should be repaired. Raina and Agarwal [21] propose to reduce
the cost of regression testing for web applications by executing
only the tests that cover the modified parts of the applications,
thus, developers are required to maintain only a subset of all test
scripts. In their approach, the modified part of an application are
automatically identified by comparing the DOM trees generated
for the corresponding web pages. Choudhary et al. [8] propose the
WATER technique to repair GUI test scripts for a web application
so that the scripts can run successfully on the updated version
of the same application. WATER only repairs a test action after a

ISSTA’21, July 12-16, 2021, Aarhus, Denmark

failure, naively attempts all web elements that share at least one
key property with the original element, and accepts an element as
the repair as long as it can make the test execute further. Therefore,
WATER tends to produce a large amount of overfitting repairs. Stocco
et al. [28] propose the VisTa technique to repair locator-related test
breakages for web applications. VisTA relies on visual information
to decide the correctness of web element locators utilized in tests
and, when a locator is incorrect, to select the right web element
to access. The XPath information of the selected element is then
extracted from the application DOM to construct the repair locator.
METER [7] leverages computer vision techniques to capture the
intended behaviors test scripts, to detect deviations from those
intentions, and to construct repairs to reduce the deviations as
much as possible. While not requiring any structural information
about the apps under consideration makes METER widely applicable,
failing to make good use of the more precise information about the
apps even when it is available adversely impacts the precision of the
repairing results METER is able to produce. Compared with these
techniques, GUIDER combines structural and visual information of
Android apps to deliver more precise repairs to GUI tests in a more
efficient way.

7 CONCLUSION

In this paper, we propose GUIDER—a novel approach that com-
bines structural and visual GUI information to automatically re-
pairing GUI test scripts for Android apps. Experimental evaluation
of GUIDER on WECHAT shows that GUIDER is both effective and
efficient.

REFERENCES

[1] G. Bae, G. Rothermel, and D.-H. Bae, “Comparing model-based and dynamic
event-extraction‘based gui testing techniques: An empirical study,” Journal of
Systems and Software, vol. 97, pp. 15 — 46, 2014.

[2] A. M. Memon, “An eveni-flow model of gui-based applications for testing: Re-
search articles,” Softw. Test. Verif. Reliab., vol. 17, no. 3, pp. 137-157, Sep. 2007.

[3] “Appium: Mobile’App Automation Made Awesome,” http://appium.io/, 2018,
[Online; accessed 20-March-2018].

[4] “Android UI Testing,” http://www.robotium.org, 2018, [Online; accessed 20-
March-2018].

[5] X.Li, N.Chang, Y. Wang, H. Huang, Y. Pei; L. Wang, and X. Li, “ATOM: automatic
maintenance of GUI test scripts for evolving mobile applications,” in 2017 IEEE
International Conference on Software Testing, Verification and Validation, ICST 2017,
Tokyo, Japan, March 13-17, 2017. IEEE Computer Society, 2017, pp. 161-171.

[6] N.Chang, L. Wang, Y. Pei, S. K. Mondal, and X. Li, “Change-based test script
maintenance for android apps,” in 2018 IEEE International Conference on Software
Quality, Reliability and Security (QRS), July 2018, pp. 215-225.

[7] M.Pan, T. Xu, Y. Pei, Z. Li, T. Zhang, and X. Li; “GUI-guided test script repair for
mobile apps,” IEEE Transactions on Software Engineering, 2020.

[8] S.R. Choudhary, D. Zhao, H. Versee, and A. Orso, “Wateriweb application test
repair,” in International Workshop on End-To-End Test Script Engineering, 2011, pp.
24-29.

[9] M. Hammoudi, G. Rothermel, and A. Stocco, “WATERFALL: An incremental
approach for repairing record-replay tests of web applications,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: ACM, 2016, pp. 751-762.

[10] “Number of monthly active WeChat users from 2nd quarter 2011 to 3rd quar-
ter 2020,” https://www.statista.com/statistics/255778/number-of-active-wechat-
messenger-accounts/, 2020.

[11] D. G. Lowe, “Object recognition from local scale-invariant features,” in ICCV,
1999, pp. 1150-1157.

[12] ——, “Distinctive image features from scale-invariant keypoints,” International

Journal of computer vision, vol. 60, no. 2, pp. 91-110, 2004.

M. Leotta, D. Clerissi, C. Spadaro, and C. Spadaro, “Comparing the maintainability

of selenium webdriver test suites employing different locators: a case study;” in

International Workshop on Joining Academia and Industry Contributions To Testing

Automation, 2013, pp. 53-58.

=
&

ISSTA’21, July 12-16, 2021, Aarhus, Denmark Tongtong Xu, Minxue Pan, Yu Pei, Guiyin Li, Xia Zeng, Yuetang Deng, Xuandong Li

[14] “OpenCV library,” https://opencv.org/, 2018, [Online; accessed 20-March-2018].

[15] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “Reassert: Suggesting repairs
for broken unit tests,” in 2009 IEEE/ACM International Conference on Automated
Software Engineering, Nov 2009, pp. 433-444.

[16] B. Daniel, T. Gvero, and D. Marinov, “On test repair using symbolic execution,”
in Proceedings of the Nineteenth International Symposium on Software Testing and
Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010, 2010, pp. 207-218.

[17] L. M. de Moura and N. Bjerner, “Z3: an efficient SMT solver,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings,
2008, pp. 337-340.

[18] A.Deursen, L. M. Moonen, A. Bergh, and G. Kok, “Refactoring test code,” Ams-
terdam, Netherlands, Tech. Rep., 2001,

[19] G. Yang, S. Khurshid, and M. Kim, “Specification-based test repair using a light-
weight formal method,” in FM 2012: Formal Methods, D. Giannakopoulou and
D. Méry, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 455-470.

[20] A. M. Memon and M. L. Soffa, “Regression testing of guis,” in Proceedings of

the 11th ACM SIGSOFT Symposium on Foundations of Software Engineering 2003

held jointly with 9th European Software Engineering Conference, ESEC/FSE 2003,

Helsinki, Finland, September 1-5, 2003, J. Paakki and P. Inverardi, Eds. ACM,

2003, pp. 118-127.

S. Raina and A. P. Agarwal, “An automated tool for regression testing in web

applications,” SIGSOFT Softw. Eng. Notes, vol. 38, no. 4, pp. 1-4, Jul. 2013.

S. Huang, M. B. Cohen, and A. M. Memon, “Repairing GUI test suites using a

genetic algorithm,” in Third International Conference on Software Testing, Verifi-

cation and Validation, ICST 2010, Paris, France, April 7-9, 2010. IEEE Computer

Society, 2010, pp. 245-254.

B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, and D. Marinoy, “Automated gui

refactoring and test script repair,” in International Workshop on End-To-End Test

Script Engineering, 2011, pp. 38—41.

M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving gui=directed test

scripts,” in 31st International Conference on Software Engineering, ICSE 2009, May.

16-24, 2009, Vancouver, Canada, Proceedings. 1EEE, 2009, pp. 408-418.

[25] C.Fu, M. Grechanik, and Q. Xie, “Inferring types of references to GUI objects in
test scripts,” in Second International Conference on Software Testing Verification
and Validation, ICST 2009, Denver, Colorado, USA, April 1-4, 2009. IEEE Computer
Society, 2009, pp. 1-10.

[26] S.Zhang, H. Lii, and M. D. Ernst, “Automatically repairing broken workflows

for evolving GUI applications,” in International Symposium on Software Testing

and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013, M. Pezzé and

M. Harman, Eds. ACM, 2013, pp. 45-55.

Z. Gao, Z. Chen, Y. Zou, and A. M. Memon, “SITAR: GUI test script repair,” IEEE

Trans. Software Eng., vol. 42, no. 2, pp. 170-186, 2016.

[28] A. Stocco, R. Yandrapally, and A. Mesbah, “Visual web test repair,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp. 503-514.

[21

[22

[23

[24

[27

