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There is more than a decade-long history of using static analysis to find bugs in systems such as Linux. Most

of the existing static analyses developed for these systems are simple checkers that find bugs based on pat-

tern matching. Despite the presence of many sophisticated interprocedural analyses, few of them have been

employed to improve checkers for systems code due to their complex implementations and poor scalability.

In this article, we revisit the scalability problem of interprocedural static analysis from a “Big Data” perspec-

tive. That is, we turn sophisticated code analysis into Big Data analytics and leverage novel data processing

techniques to solve this traditional programming language problem. We propose Graspan, a disk-based par-

allel graph system that uses an edge-pair centric computation model to compute dynamic transitive closures

on very large program graphs. We develop two backends for Graspan, namely, Graspan-C running on CPUs

and Graspan-G on GPUs, and present their designs in the article. Graspan-C can analyze large-scale systems

code on any commodity PC, while, if GPUs are available, Graspan-G can be readily used to achieve orders of

magnitude speedup by harnessing a GPU’s massive parallelism.

We have implemented fully context-sensitive pointer/alias and dataflow analyses on Graspan. An evalua-

tion of these analyses on large codebases written in multiple languages such as Linux and Apache Hadoop

demonstrates that their Graspan implementations are language-independent, scale to millions of lines of
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code, and are much simpler than their original implementations. Moreover, we show that these analyses can

be used to uncover many real-world bugs in large-scale systems code.

CCS Concepts: • Computer systems organization→ Special purpose systems; Reliability; • Theory of

computation→ Program analysis; • Computing methodologies→Massively parallel algorithms;

Additional Key Words and Phrases: static analysis, graph processing, disk-based systems
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1 INTRODUCTION

Static analysis has been used to find bugs in systemssoftware for more than a decade now [10, 16, 17,
21, 24, 32, 36, 37, 39, 46, 85, 89, 103, 129, 139]. Based on a set of systems rules, a static checker builds
patterns and inspects code statements to perform “pattern matching.” If a code region matches one
of the patterns, then a violation is found and reported. Static checkers have many advantages over
recent, more advanced bug detectors based on SAT solvers or symbolic execution [21]: They are
simple, easy to implement, and scalable. Furthermore, they produce deterministic and easy-to-
understand bug reports compared to, for example, a symbolic execution technique, which often
produces non-deterministic bug reports that are difficult to reason about [35].

1.1 Problems

Unfortunately, the existing static checkers use many heuristics when searching for patterns, re-
sulting in missing bugs and/or reporting false warnings. For example, Chou et al. [30] and Palix
et al. [89] developed nine checkers to find bugs in the Linux kernel. Most of these checkers gener-
ate both false negatives and false positives. For instance, their Null checker tries to identify NULL
pointer dereference bugs by inspecting only the functions that directly return NULL. However, a
NULL value can be generated from the middle of a function and propagated a long way before it
is dereferenced at a statement. Such NULL value propagation will be missed entirely by the Null

checker.
As another example, the Inull/NullRef checker [30, 89] checks whether a pointer dereference

such as a = b−> f is post-dominated by a NULL test on the pointer such as if(b). The heuristic here
is that if the developer checks whetherb can be NULL after dereferencingb, then the dereferencing
can potentially be on a NULL pointer. However, in many cases, the dereferencing occurs in one
of the many control flow paths and in this particular path the pointer can never be NULL. The
developer adds the NULL test simply because the NULL value may flow to the test point from a
different control branch.

Our key observation in reducing the number of false positives and negatives reported by these
checkers is to leverage interprocedural analysis. Among the aforementioned nine checkers, six
that check flow properties can be easily improved (e.g., producing fewer false positives and false
negatives) using an interprocedural analysis, as shown in Table 1.

While using interprocedural analyses to improve bug detection appears to be obvious, there
seems to be a large gap between the state-of-the-art and the state-of-the-practice. On the one
hand, the past decade has seen a large number of sophisticated and powerful analyses developed
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Table 1. A Subset of Checkers Used by References [21, 30, 89] to Find Bugs in the Linux Kernel, their Target

Problems, their Limitations, the Potential Ways to Improve Them Using a Sophisticated Interprocedural

Analysis

Checker Target Problems Limitations Potential Improvement with Interprocedural Analyses

Block Deadlocks Focus on “direct” invocations of Use a pointer/alias analysis to identify indirect invocations via
the blocking functions (Negative) function pointers of the blocking functions

Null NULL pointer derefs Inspect a closure of functions that Use a dataflow analysis to identify functions where NULL can be
return NULL explicitly (Negative) propagated through dataflows to their return variables

Range Use user data as array Only check indices directly Use a dataflow analysis to identify indices coming transitively from
index without checks from user data (Negative) user data as well

Lock/Intr Double acquired locks Identify lock/interrupt objects Use a pointer/alias analysis to understand aliasing relationships
and disabled interrupts by variable names (Negative) among lock objects in different lock sites
not appropriately restored

Free Use of a freed object Identify freed/used objects Use a pointer/alias analysis to check if there is aliasing between
by var names (Negative) objects freed and used afterwards

Size Inconsistent sizes between Only check alloc sites Use a pointer/alias analysis to identify other vars that point to the
an allocated obj and (Negative) same object with an inconsistent type
the type of the RHS var

Inull/NullRef NULL pointer derefs Report all derefs post-dominated Use a dataflow analysis to filter out cases where the involved
by NULL tests (Positive) pointers must not be NULL

Positive/negative indicates whether the limitation can result in false positives/negatives.

by program analysis researchers. On the other hand, none of these techniques are widely used to
find bugs in systems software.

We believe that the reason is two-fold. First, an interprocedural analysis is often not scalable
enough to analyze large codebases such as the Linux kernel. For such an analysis to be useful, it
often needs to be context-sensitive, that is, distinct solutions need to be produced and maintained
for different calling contexts (i.e., a chain of call sites representing a runtime call stack). However,
the number of calling contexts grows exponentially with the size of the program and even a
moderate-sized program can have as large as 1014 distinct contexts [132], making the analysis
both compute- and memory-intensive. Furthermore, most interprocedural analyses are difficult
to parallelize, because they frequently involve decision making based on information discovered
dynamically. Thus, most of the existing implementations of such analyses are entirely sequential.

Second, the sheer implementation complexity scares practitioners away. Much of this complex-
ity stems from optimizing the analysis rather than implementing the base algorithm. For example,
in a widely used Java pointer analysis [116], more than three quarters of the code performs
approximations to make sure some results can be returned before a user-given time budget runs
out. The base algorithm implementation takes a much smaller portion. This level of tuning com-
plexity simply does not align with the “simplest-working-solution” [64] philosophy of systems
builders.

1.2 Insight

Our idea is inspired by the way a graph system enables scalable processing of large graphs. Graph
system support pioneered by Pregel [76] provides a “one-stone-two-birds” solution, in which the
optimization for scalability is mainly achieved by the (distributed or disk-based) system itself,
requiring the developers to only write simple vertex programs using the interfaces provided by
the system.

In this article, we demonstrate a similar “one-stone-two-birds” solution for interprocedural pro-
gram analysis. Our key observation in this work is that many interprocedural analyses can be for-
mulated as a graph reachability problem [95, 96, 105, 116, 142]. Pointer/alias analysis and dataflow
analysis are two typical examples. In a pointer/alias analysis, if an object (e.g., created by a malloc)
can directly or transitively reach a variable on a directed graph representation of the program, then
the variable may point to the object. In a dataflow analysis that tracks NULL pointers, similarly,
a transitive flow from a NULL value to a variable would make NULL propagate to the variable.
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Therefore, we turn the programs into graphs and treat the analyses as graph traversal. This ap-
proach opens up opportunities to leverage parallel graph processing systems to analyze large pro-
grams efficiently.

This direction is particularly promising due to the following three benefits:

• High Scalability: Sophisticated analysis algorithms can be reduced to simple and mechan-
ical data computations that can be automatically parallelized by the underlying system. By
leveraging massive amounts of (CPU, GPU, and disk) resources, the system brings perfor-
mance benefit, automatically, to a wide spectrum of program analysis workloads.
• Easy Implementation: The concern about efficiency and scalability is shifted from anal-

ysis developers’ shoulders to the system. The implementation of a client analysis requires
only the development of simple user-defined functions (UDFs), enabling regular devel-
opers to easily prototype and maintain an analysis without worrying about how to tune its
performance.
• Multilingual Support: The program under analysis is fed to the system as input data. With

appropriate normalization, programs (or different components in the same program) written
in different languages can be transformed into a graph with a unified format, allowing them
to be analyzed by the same analysis implementation.

1.3 Existing Systems

Several graph systems are available today. These systems are either distributed (e.g., GraphLab [73],
PowerGraph [43], or GraphX [44]) or single-machine-based (e.g., GraphChi [62], XStream [101],
GridGraph [156], GraphReducer [106], or GTS [59]). Since program analysis is intended to assist
developers to find bugs in their daily development tasks, their machines are the environments
in which we would like our system to run, so developers can check their code on a regular basis
without needing to access a cluster. Hence, disk-based systems naturally become our choice.

We initially planned to use an existing system to analyze program graphs. We soon realized
that a ground-up redesign (i.e., from the programming model to the engine) is needed to build a
system for analyzing large programs. The main reason is that the graph workload for interproce-
dural analyses is significantly different from a regular graph algorithm (such as PageRank) that
iteratively performs computations on vertex values on a static graph. An interprocedural analysis,
on the contrary, focuses on computing reachability by repeatedly adding transitive edges, rather
than on updating vertex values. For instance, a pointer analysis needs to add an edge from each
allocation vertex to each variable vertex that is transitively reachable from the allocation.

More specifically, many interprocedural analyses are essentially dynamic reachability problems
in the sense that the addition of a new edge is guided by a constraint on the labels of the existing
edges. In a static analysis, the label of an edge often represents the semantics of the edge (e.g., an

assignment or a dereference). For two edges a
l1−→ b and b

l2−→ c , a transitive edge from a to c is
added only if the concatenation of l1 and l2 forms a string of a (context-free) grammar.

This constraint-guided reachability problem, in general, requires dynamic transitive closure
(DTC) computation [51, 98, 141], which has a wide range of applications in program analysis and
other domains. The DTC computation dictates two important abilities of the graph system. First,
at each vertex, all of its incoming and outgoing edges need to be visible to perform label matching

and edge addition. In the above example, when b is processed, both a
l1−→ b and b

l2−→ c need to be
accessed to add the edge from a to c . This requirement immediately excludes edge-centric systems
such as XStream [101] from our consideration, because these systems stream in edges in a random
order and, thus, this pair of edges may not be simultaneously available.
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Second, the system needs to support a large number of edges added dynamically. The added
edges can be even more than the original edges in the graph. While vertex-centric systems such
as GraphChi [62] support dynamic edge addition, this support is very limited. In the presence of a
large number of added edges, it is critical that the system is able to (1) quickly check edge duplicates
and (2) appropriately repartition the graph. Unfortunately, GraphChi supports neither of these
features. Other graph systems including evolving and streaming graph systems [122, 123, 159]
cannot support such features either.

1.4 Our Contributions

This article presents Graspan, the first single machine, disk-based parallel graph processing system
tailored for interprocedural static analyses. Given a program graph and a grammar specification
of an analysis, Graspan offers two major performance and scalability benefits: (1) the core compu-
tation of the analysis is automatically parallelized and (2) out-of-core support is exploited if the
graph is too big to fit in memory. At the heart of Graspan is a parallel edge-pair (EP)-centric com-
putation model that, in each iteration, loads two partitions of edges into memory and “joins” their
edge lists to produce a new edge list. Whenever the size of a partition exceeds a threshold value, its
edges are repartitioned. Graspan supports both in-memory (for small programs) and out-of-core
(for large programs) computation. Joining of two edge lists is fully parallelized, allowing multiple
transitive edges to be simultaneously added.

Graspan provides an intuitive programming model, in which the developer only needs to gen-
erate the graph and define the grammar that guides the edge addition, a task orders of magnitude
easier than coming up with a well-tuned implementation of the analysis that would give trouble
to skillful researchers for months.

To understand the performance potential of the proposed idea of “systemized” analyses, we im-
plemented Graspan with two backends, one on CPU (Graspan-C) and a second on GPU (Graspan-
G). Graspan-C analyzes large-scale systems code on a commodity PC, while Graspan-G utilizes
GPU resources for significantly improved efficiency. The differences in the design and implemen-
tation of the two backends are transparent to users.

Recent work shows the effectiveness of backing static analyses with Datalog [20, 132] or Data-
base [131]. While leveraging Datalog makes analysis implementations easier, the existing Datalog
engines are designed in generic ways, i.e., not considering the characteristics of the program anal-
ysis workload. Furthermore, there does not exist any out-of-core Datalog engine that can process
very large graphs on a single machine. For example, the Linux kernel program graph has more than
1B edges. The fastest shared memory Datalog engine SociaLite [63] quickly ran out of memory
while Graspan-C processed it in several hours (cf. Section 6.5). While distributed Datalog engines
such as Myria [125] and BigDatalog [111] are available, it is unrealistic to require developers to
frequently access a cluster in their daily development.

We have implemented three client analyses,1 namely, a fully context-sensitive field-insensitive
pointer/alias analysis, a fully context-sensitive field-sensitive pointer/alias analysis, and a fully
context-sensitive dataflow analysis on Graspan. Context-sensitivity is achieved by making aggres-
sive inlining [107]. That is, we clone the body of a function for every single context leading to
the function. This approach is feasible only because the out-of-core support in Graspan frees us
from worrying about additional memory usage incurred by inlining. We treat the functions in re-
cursions context insensitively by merging the functions in each strongly connected component on
the call graph into one function without cloning function bodies.

1The analyses supported by Graspan are path-insensitive and flow-insensitive except for the IFDS-like [96] dataflow

analysis.
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Results. We have implemented Graspan in three languages: C/C++, Java, and CUDA; these imple-
mentations are all publicly available at https://github.com/Graspan. Graspan can be readily used
as a “backend” analysis engine to enhance the existing static checkers such as BugFinder, PMD, or
Coverity. We have performed a thorough evaluation of Graspan on five programs including the
subjects written in C/C++—Linux kernel, the PostgreSQL database, the Apache httpd server, and
Java subjects—the Hadoop Distributed File System (i.e., HDFS) and the Hadoop MapReduce (i.e.,
Hadoop-MapReduce). Our experiments show very promising results:

(1) Scalability. The three client analyses (i.e., context-sensitive field-insensitive point-
er/alias analysis, context-sensitive field-sensitive pointer/alias analysis and context-sensitive
dataflow analysis) running on top of Graspan scale easily to these systems, while their tra-
ditional implementations crashed in the early stage;

(2) Efficiency. Having the GPUs enabled, our GPU-based version Graspan-G managed to
achieve orders of magnitude speedup against Graspan-C;

(3) Development Effort. In terms of lines of code, the Graspan-based implementations of these
analyses are an order of magnitude simpler than their traditional implementations;

(4) Effectiveness. Using the results of these interprocedural analyses, the static checkers in
Reference [89] have uncovered a total of 85 potential bugs and 1,308 unnecessary NULL
tests in Linux, PostgreSQL and httpd. In addition, four Java bug checkers implemented by
Graspan have discovered totally 103 potential bugs in HDFS and Hadoop-MapReduce.

1.5 Outline

The rest of this article is organized as follows: Section 2 introduces the background information
regarding the graph reachability-based analysis. The “systemized” solution is then discussed in
Section 3. In Section 4, we elaborate the programming model of Graspan, followed by the detailed
descriptions of system design and implementation in Section 5. The evaluations are presented in
Section 6. Finally, we discuss the related work (Section 7) and conclude the article (Section 8).

2 BACKGROUND

While there are many types of interprocedural analyses, this article focuses on a pointer/alias
analysis and a dataflow analysis, both of which are enablers for all other static analyses. This
section discusses necessary background information on how pointer/alias analysis is formulated as
graph reachability problems. Following Reps et al.’s interprocedural, finite, distributive, subset

(IFDS) framework [96], we have also formulated a fully context-sensitive dataflow analysis as a
grammar-guided reachability problem. However, due to space limitations, the discussion of this
formulation is omitted.

2.1 Graph Reachability

Pioneered by Reps et al. [96, 105], there is a large body of work on graph reachability-based pro-
gram analyses [18, 60, 92, 121, 136, 138, 146, 148]. The reachability computation is often guided
by a context-free grammar due to the balanced parentheses property in these analyses. At a high
level, let us suppose each edge is labeled either an open parenthesis ‘(’ or a close parenthesis ‘)’. A
vertex is reachable from another vertex if and only if there exists a path between them, the string
of labels on which has balanced ‘(’ and ‘)’.

The parentheses ‘(’ and ‘)’ have different semantics for different analyses. For example, for a
C pointer analysis, ‘(’ represents an address-of operation & and ‘)’ represents a dereference*. A
pointer variable can point to an object if there is an assignment path between them that has
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balanced & and *. For instance, a string “&&**” has balanced parentheses while “&**&” does not.
This balanced parentheses property can often be captured by a context-free grammar.

2.2 Pointer Analysis

A pointer analysis computes, for each pointer variable, a set of heap objects (represented by alloca-
tion sites) that can flow to the variable. This set of objects is referred to as the variable’s points-to

set. Alias information can be derived from this analysis—if the points-to sets of two variables have
a non-empty intersection, then they may alias.

Our graph formulation of pointer analysis is adapted from a previous formulation in Reference
[153]. This section briefly describes this formulation. The analysis we implement is flow-insensitive

in the sense that we do not consider control flow in the program. A program consists of a set of
pointer assignments. Assignments can execute in any order, any number of times.

Pointer Analysis as Graph Reachability. For simplicity of presentation, the discussion here
focuses on four kinds of three-address statements (which are statements that have at most three
operands):

Type Stmt Edge

memory allocation x =malloc () x
M←−− Alloc (1)

assignment x = y x
A←− y (2)

store ∗x = y ∗x A←− y (3)

load x = ∗y x
A←− ∗y (4)

address-of x = &y x
A←− &y (5)

Complicated statements are often broken down into these three-address statements in the com-
pilation process by introducing temporary variables. As with other analysis implementations,
arithmetic computation conducted on pointers is not considered. To simplify discussion, we do
not distinguish fields in a struct. That is, an expression a→ f is handled in the same way as ∗a,
with offset f being ignored. Field sensitivity can be easily added by following treatments in Refer-
ences [116, 117, 136].

For each function, an expression graph—whose vertices represent C expressions (including
pointer variables, dereference expressions, address-of expressions, and malloc invocations) and
edges represent value flow between expressions—is generated; graphs for different functions are
eventually connected to form a whole-program expression graph. Each vertex on the graph repre-
sents an expression, and each edge is of three kinds:

• Dereference edge (D): for each dereference ∗x , there is a D-edge from x to ∗x ; there is also an
edge from an address-of expression &x to x , because x is a dereference of &x .
• Assignment edge (A): for each assignment x = y, there is an A-edge from y to x ; x and y can

be arbitrary expressions.
• Alloc edge (M): for each assignment x = malloc(), there is an M-edge from a special Alloc

vertex to x .

Figure 1 shows a simple program and its expression graph. Each edge has a label, indicating
its type. Solid and dashed edges are original edges in the graph and they are labeled M , A, or D,
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Fig. 1. A program and its expression graph: solid, horizontal edges represent assignments (A- and M- edges);

dashed, vertical edges represent dereferences (D-edge); dotted, horizontal edges represent transitive edges

labeled non-terminals. A4 indicates the allocation site at Line 4.

respectively. Dotted edges are transitive edges2 added by Graspan into the graph, as discussed
shortly.

Context-free Grammar. The pointer information computation is guided by the following
grammar:

Object f low : OF ::= M VF (6)

Value f low : VF ::= (A MA?)∗ (7)

Memory alias : MA ::= D VA D (8)

Value alias : VA ::= VF MA? VF (9)

This grammar has four non-terminals OF, VF, MA, and VA. For a non-terminal T , a path in the
graph is called a T -path if the sequence of the edge labels on the path is a string that can be
reduced to T . For a variable v to point to an object o (i.e., a malloc), there must exist an OF path
in the expression graph from o to v . The definition of OF is straightforward: It must start with an
alloc (M) edge, followed by a VF path that propagates the object address to a variable. A VF path is
either a sequence of simple assignment (A) edges or a mix of assignments edges and MA (memory
alias) paths.

There are two kinds of aliasing relationships in C: memory aliasing (MA) and value aliasing
(VA). Two lvalue expressions are memory aliases if they may denote the same memory location
while they are value aliases if they may evaluate to the same value.

An MA path is represented by D VA D. Each edge has an inverse edge with a “bar” label. For

example, for each edge x
D−→ y, the edge y

D−→ x exists automatically. D represents the inverse of

a dereference and is essentially equivalent to an address-of. D VA D represents the fact that if (1)
we take the address of a variable x and writes it into a variable y, (2) y is a value alias of another
variable z, and (3) we perform dereferencing on z, the result is the same as the value in x .

A VA path is represented by VF MA? VF . This has the meaning that if (1) two variables x and
y are memory aliases, and (2) the values of x and y are propagated to two other variables z and u,
respectively, through two VF paths, z and u contain the same pointer value. In other words, the

path—z V F x MA y VF u—induces z VA u.

2We use term “transitive edges” to refer to the edges dynamically added to represent non-terminals rather than the transi-

tivity of a relation.
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Note that MA, VA, and VF mutually refer each other. This definition captures the recursive nature

of a flow or alias path. In this grammar, D and D are the open and close parentheses that need to
be balanced.

Example. In Figure 1, e points to A4, since the M edge between them forms an OF path. There
is a VF path from &a to d , which is also a VA path (since VA includes VF ). The VA path enables

an MA path from a to ∗d due to the balanced parentheses D and D. This path then induces two
additional VF/VA paths from b to f and from &c to f , which, in turn, contribute to the forming of
the VF/VA path from c to д, making ∗c and ∗д memory aliases. Hence, there exists a VF path from
e to h, which, together with the M edge at the beginning, forms an OF path from A4 to h. This
path indicates that h points to A4. The dotted edges in Figure 1 show these transitive edges.

2.3 Dataflow Analysis

Following Reps et al.’s interprocedural, finite, distributive, subset (IFDS) framework [96], we
have also formulated a fully context-sensitive dataflow analysis as a grammar-guided reachability
problem. Particularly, we adopt this dataflow analysis to track NULL value propagation. Under the
IFDS formulation, each dataflow fact corresponds to one vertex in a program graph. The dataflow
transfer function performed on dataflow facts is interpreted as the relation mapping (edges) be-
tween vertices. As such, a program graph termed as “exploded supergraph” is finally generated.
Performing the dataflow analysis is equivalent to the reachability computation on the graph. Please
refer to Reference [96] for more technical details.

One slight difference between the IFDS framework and our formulation is that we achieve con-
text sensitivity also by cloning intraprocedural graphs instead of using the summary-based ap-
proach in Reference [96], which has been demonstrated [132] to fall short in answering many user
queries.

3 “BIG DATA” SOLUTION

The traditional way to implement the interprocedural analysis is to maintain a worklist, each ele-
ment of which is a pair of a newly discovered vertex and a stack simulating a pushdown automa-
ton. The implementation loops over the worklist, iteratively retrieving vertices and processing
their edges. The traditional implementation does not add any physical edges into the graph (due
to the fear of memory blowup), but instead, it tracks path information using pushdown automata.
When a CFL-reachable vertex is detected, the vertex is pushed into the worklist together with the
sequence of the labels on the path leading to the vertex. When the vertex is popped off of the list,
the information regarding the reachability from the source to the vertex is discarded.

This traditional approach has at least two significant drawbacks. First, it does not scale well
when the analysis becomes more sophisticated or the program to be analyzed becomes larger. For
example, when the analysis is made context-sensitive, the grammar needs to be augmented with the
parentheses representing method entries/exists; the checking of the balanced property for these
parentheses also needs to performed. Since the number of distinct calling contexts can be very large
for real-world programs, naïvely traversing all paths is guaranteed to be not scalable in practice.
As a result, various abstractions and tradeoffs [57, 114–116] have been employed, attempting to
improve scalability at the cost of precision as well as implementation straightforwardness.

Second, the worklist-based model is notoriously difficult to parallelize, making it hard to fully
utilize modern computing resources. Even if multiple traversals can be launched simultaneously,
since none of these traversals add transitive edges into the program graph as they are being de-
tected, every traversal performs path discovery completely independently, resulting in a great deal
of wasted efforts.
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Fig. 2. Graspan usage; implementing a particular client analysis requires a specific frontend performing

two tasks, namely, generating program graph and specifying analysis grammar; our Graspan system as the

backend engine takes the generated program graphs and grammar rules as input and conducts analysis;

users can choose either Graspan-C or Graspan-G according to the particular computing facility.

A “Big Data” Perspective. Our key insight here is that adding physical transitive edges into the
program graph makes it possible to devise a Big Data solution to this static analysis problem for
two reasons. First, representing transitive edges explicitly rather than implicitly leads to addition
of a great number of edges (e.g., even larger than the number of edges in the original graph). This
gives us a large (evolving) dataset to process. Second, the computation only needs to match the
labels of consecutive edges with the productions in the grammar and is thus simple enough to
be “systemized.” Of course, dynamically adding many edges can make the computation quickly
exhaust the main memory. However, this should not be a concern, as there are already many
systems [44, 62, 73, 100, 124, 127] built to process very large graphs (e.g., the webgraph for the
whole Internet).

4 GRASPAN’S PROGRAMMING MODEL

In this section, we describe Graspan’s programming model, i.e., the tasks that need to be done by
the programmer to use Graspan. Analogous to declarative program analysis [111, 140, 151], we
separate the computation backend from the client-analysis implementations. Due to the general
support for the efficient CFL-reachability computation Graspan performs, Graspan supports any
client analyses that can be formulated as a CFL-reachability problem [95]. For users to implement a
particular analysis, an analysis frontend is needed. As shown in Figure 2, we have implemented two
frontends, one for dataflow analysis and a second for pointer/alias analysis. Users can customize
their frontends for specific analyses, leaving the backend computation to Graspan. Note that, since
frontends are separated from the backend analysis engine, users are freed from the burden of
worrying about analysis performance or scalability. There are two main tasks for the user to build
a frontend. The first task is to add a pass in a compiler infrastructure to generate the graph. The
second task is to use the Graspan API to specify a grammar. Next, we will elaborate on these
two tasks. Note that the programming model is applicable to both Graspan-C and Graspan-G. The
differences between the two backends are transparent to users, who can compute with either of
them with the same frontend.

Generating Graphs. For Graspan to perform an interprocedural analysis, the user first needs
to generate the Graspan graph, which is a specialized program graph tailored for the analysis, by
modifying a compiler frontend. Note that, since this task is relatively simple, the developer can
generate the Graspan graph in a mechanical way without even thinking about performance and
scalability. In this subsection, we briefly discuss how we generate the Graspan graph in the context
of the pointer/alias analysis. We finish by generalizing graph generation for other interprocedural
analyses.
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For the pointer/alias analysis, we generate the Graspan graph by making two modifications to
the program expression graph described in Section 2. These modifications include (1) inclusion
of inverse edges and (2) context sensitivity achieved through inlining. For the former, we model
inverse edges explicitly. That is, for each edge from a to b labeledX , we create and add to the graph

an edge from b to a labeled X .
For the latter, we perform a bottom-up (i.e., reverse-topological) traversal of the call graph of

the program to inline functions. For each function, we make a clone of its entire expression graph
for each call site that invokes the function. Formal and actual parameters are connected explicitly
with edges. The cloning of a graph not only copies the edges and vertices in one function; it does
so for all edges and vertices in its (direct and transitive) callees.

For recursive functions, we follow the standard treatment [132]—strongly connected compo-

nents (SCC) are computed and then functions in each SCC are collapsed into one single function
and treated context-insensitively. Clearly, the size of the graph grows exponentially as we make
clones and the generated graph is often large. However, the out-of-core support in Graspan guar-
antees that Graspan can analyze even such large graphs effectively. For each copy of a vertex, we
generate a unique ID in a way so we can easily locate the variable its corresponds to and its con-
taining function from the ID. In the Graspan graph, edges carry data (i.e., their labels) but vertices
do not. Finally, the graph is dumped to disk in the form of an edge list.

In general, the approach of aggressive inlining provides complete information that an analysis
intends to uncover. Among all the existing analysis implementations, only Whaley et al. [132]
could handle such aggressive inlining but they only clone variables (not objects) and have to use a
binary decision diagram (BDD) to merge results. In addition, no evidence was shown that their
analysis could process the Linux kernel. On the contrary, Graspan processes the exploded kernel
graph in a few hours on a single machine.

Although this subsection focuses on the generation of pointer analysis graphs, graphs for other
analyses can be generated in a similar manner. Here, we briefly summarize the steps. First, vertices
and edges need to be defined based on a grammar; this step is analysis-specific. Second, if inverse
edges are needed in the grammar, then they need to be explicitly added. Finally, context sensitiv-
ity can be generally achieved by function inlining. The developer can easily control the degree of
context sensitivity by using different inlining criteria. For example, we perform full context sensi-

tivity and thus our inlining goes from the bottom functions all the way up the top functions of the
call graph. But if one wishes to perform only one-level context sensitivity, then each function only
needs to be inlined once.

Specifying Grammar. Once the program graph is generated, the user needs to specify a grammar
that guides the addition of transitive edges at runtime. Unlike any traditional implementation of
the analysis, Graspan adds transitive edges (e.g., dotted edges in Figure 1) to the graph in a parallel
manner. Specifically, for each production in the grammar, if Graspan finds a path whose edge
labels match the RHS terms of the production, then a transitive edge is added covering the path
and labeled with the LHS of the production.

Since Graspan uses the edge-pair-centric model, it focuses on a pair of edges at a time, which
requires each production in the grammar to have no more than two terms on its RHS. In other
words, the length of a path Graspan checks at a time must be ≤ 2.

For example, the above-mentioned pointer analysis grammar cannot be directly used, because
the RHSes of VF, MA, and VA all have more than two terms. This means that to add a new VF

edge, we may need to check more than two consecutive edges, which does not fit into Graspan’s
EP-centric model. Fortunately, every context-free grammar can be normalized into an equivalent
grammar with at most two terms on its RHS [96], similar to the Chomsky normal form. After

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 4. Publication date: July 2021.

For Research Only



4:12 Z. Zuo et al.

normalization, our pointer analysis grammar becomes:

Object f low : OF ::= M VF (10)

Temp : T1 ::= A | A MA (11)

Value f low : VF ::= VF T1 | ϵ (12)

Memory alias : MA ::= T2 D (13)

Temp : T2 ::= D VA (14)

Value alias : VA ::= T3 VF (15)

Temp : T3 ::= VF MA | VF (16)

At the center of Graspan’s programming model is an API:

addConstraint(Label lhs, Label rhs1, Label rhs2),

which can be used by the developer to register each production in the grammar. lhs represents the
LHS non-terminal, while rhs1 and rhs2 represent the two RHS terms. If the RHS has only one term,
then rhs2 should be NULL.

Graspan Applicability. How many interprocedural analyses can be powered by Graspan? First,
we note that pointer analysis and IFDS-like dataflow analysis are already representatives of a
large number of analysis algorithms that can be formulated as a grammar-guided graph reach-
ability problem [95]. Second, work has been done to establish the convertibility from other types
of analysis formulation (e.g., set-constraint [60] and pushdown systems [12, 13, 13]) to context-free
language reachability. Analyses under these other formulations can all be parallelized and made
scalable by Graspan.

Note that Graspan currently does not support analyses that require constraint solving, such as
path-sensitive analysis and symbolic execution. Future work can add support for constraint-based
analyses by encoding constraints into edge values such as Reference [158]. Two edges match if a
satisfiable solution can be found for the conjunction of the constraints they carry. Moreover, Gras-
pan currently only supports IFDS problems; we leave dataflow analyses and other flow-sensitive
analyses that can not be formulated as IFDS problems to future work.

5 GRASPAN DESIGN AND IMPLEMENTATION

At the core of Graspan is an out-of-core algorithm for performing CFL reachability, which is il-
lustrated by Algorithm 1. It consists of three main phases: preprocessing, computation, and post-
processing. A preprocessing step is first launched to divide the input graph into multiple partitions
(Line 3). The main analysis computation is comprised of multiple supersteps. At each superstep
(Lines 5–10), the scheduler is first invoked to decide which two partitions to load and process
(Line 5). The system then loads the specified partitions into memory (Lines 6 and 7) and performs
CFL-reachability computation on them (Line 8), which corresponds to Algorithm 3 or 4. At the end
of the superstep, the updated partitions are written back to disks (Lines 9 and 10). The iterative
process continues until it is terminated by the scheduling algorithm (Line 5)—no new edges can
be generated. Finally, a postprocessing step is performed, after the computation, to parse and report
the analysis results (Line 12).

We have implemented Algorithm 1 on both CPU and GPU. By taking into account the archi-
tectural differences between CPU and GPU, we devise distinct data representations and parallel
operations to support CFG-reachability computation on those devices, resulting in Graspan-C (Sec-
tion 5.3) and Graspan-G (Section 5.4). These backends share the same preprocessing (Section 5.1),
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Fig. 3. (a) An example graph and (b) its partitions.

ALGORITHM 1: An out-of-core algorithm for CFL-reachability computation

1 begin

2 /*Preprocessing*/

3 initializePartitions()

4 /*Iterative computation*/

5 for null � 〈i, j〉 ← schedule() do

6 pi ← load(i) // Disk->Memory

7 pj ← load(j) // Disk->Memory

8 compute(pi , pj)

9 store(pi) // Memory->Disk

10 store(pj) // Memory->Disk

11 /*Postprocessing*/

12 postprocess()

scheduling (Section 5.2) and postprocessing (Section 5.6) steps, although the computing engine
implementations are different.

5.1 Preprocessing

Preprocessing partitions the Graspan graph generated for an analysis. The graph is in the edge-list
format on disk. Similar to graph sharding in GraphChi [62], partitioning in Graspan is done by first
dividing vertices into logical intervals. However, unlike GraphChi, which groups edges based on
their target vertices, one interval in Graspan defines a partition that contains edges whose source

vertices fall into the interval. Edges are sorted on their source vertex IDs and those that have
the same source are stored consecutively and ordered on their target vertex IDs. The fact that the
outgoing edges for each vertex are sorted enables quick edge addition, as we will discuss shortly.
Figure 3(a) shows a simple directed graph. Suppose Graspan splits its vertices into three intervals
0–2, 3–4, and 5–6; Figure 3(b) shows the partition layout.

When a new edge is found during processing, it is always added to the partition to which the
source of the edge belongs. Graspan loads two partitions at a time and joins their edge-lists (Sec-
tion 5.3 and Section 5.4), a process we refer to as a superstep. Given that only two partitions reside
in memory at a given time, the size and hence the total number of partitions are determined auto-
matically by the amount of memory available to Graspan.

Preprocessing also produces three pieces of meta-information: a degree file for each partition,
which records the (incoming and outgoing) degrees of its vertices, a global vertex-interval table
(VIT), which specifies vertex intervals, and a destination distribution map (DDM) for each
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partition p that maps, for each other partition q, the number of edge pairs potentially matched
between p and q. DDM[p, q] is calculated by summing up the outgoing degree of the vertices in
partition q that are out-neighbors of vertices in partition p. The DDM is essentially a matrix, with
each cell containing a count.

Graspan uses the degree file to calculate the size of the array to be created to load a partition.
Without the degree information, a variable-size data structure (e.g., ArrayList) has to be used,
which would incur array resizing and data copying operations. The VIT records the lower and
upper-bounds for each interval (e.g., (0, [0, 10000]), (1, [10001, 23451]), etc.). Graspan maintains the
table because the intervals will be redefined upon repartitioning. The DDM measures the “match-
ing” degree between two partitions and will be used by the Graspan scheduler to determine which
two to load.

Note that Graspan supports both in-memory and out-of-core computations. For small graphs
that can be held in memory, our preprocessing only generates two partitions, both of which are
resident in memory. Since the VIT and the DDM are reasonably small in size, they are kept in
memory throughout the processing.

5.2 Scheduling

When a new superstep starts, two new partitions will be selected by the scheduler to join. Since a
partition on which the computation was done in the previous superstep may be chosen again, Gras-
pan delays the writing of a partition back to disk until the new partitions are chosen by the sched-
uler. If a chosen partition is already in memory, then significant amounts of disk I/O can be saved.

ALGORITHM 2: DDM updating

1 for each partition p ∈ [0,n) do

2 for each partition q ∈ [0,n) do

3 if inMemory(p) & inMemory(q) then

4 if repartition happened then

5 compute the exact number of pairs potential matched

6 else

7 DDM[p,q]← 0

8 else if inMemory(p) & newEdges(p) & onDisk(q) then

9 num← calculate the number of edges in p whose target vertices belong to q

10 DDM[p,q]← num × totalEdges(q)/totalVertices(q)

11 else if onDisk(p) & inMemory(q) & newEdges(q) then

12 if repartitioning has happened on p then

13 DDM[p,q]← DDM[p,q]/numPartitions

14 else if onDisk(p) & onDisk(q) then

15 /*no updating is needed*/

The insight here is that regardless of the order in which supersteps are performed, the total
number of added edges remains identical. To reduce the number of supersteps needed and thus
the I/O cost, the partitions where more edges are likely to be added should be scheduled at a higher
priority.

To this end, we develop a novel scheduling algorithm with two objectives: (1) maximize the
number of edge pairs that can potentially match and (2) favor the reuse of in-memory partitions.
For (1), the scheduler consults the DDM. As mentioned earlier, each cell of the DDM contains
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the number of edge pairs that can match between two partitions. Our scheduler selects a pair of
partitions that have the largest DDM[p,q]+DDM[q,p] score. If multiple pairs of partitions have the
same score (e.g., in a user-defined range), then Graspan picks the one that involves an in-memory
partition.

At the beginning, the DDM is initialized during preprocessing. Given partition p and q,
DDM[p,q] is calculated as follows: For each edge x → y in partition p, if the target vertex y be-
longs to partition q, then the outgoing degree of vertex y in partition q is added to the value stored
in DDM[p,q]. In this way, the initial value of each DDM cell indicates the maximum number of
edges that can possibly match between two partitions. As the computation proceeds, edges in each
partition are changed. The DDM has to be updated at the end of each superstep. Algorithm 2 lists
the pseudo-code that updates the DDM. Essentially, for each partition pair of p and q, four cases
need to be considered, depending on whether the partition is in memory or on disk.

• Both p and q are in memory: If the computation is completed, then DDM[p,q] is set to zero;
if the computation is interrupted due to repartitioning, then the DDM has to be recomputed.
• p is in memory with new edges added and q is on disk: In this case, we are not able to

compute the exact number without loading q into memory. Thus, we estimate the value by
multiplying the number of edges in p whose target vertices belong to q and the average
out-degree of vertices in q.
• p is on disk and q is in memory with new edges added: If p is repartitioned, then we simply

divide DDM[p,q] by the number of partitions.
• Neither p nor q resides in memory: In this case, the current superstep has not performed any

computation on p or q; hence, DDM[p,q] remains the same.

5.3 Edge-pair-centric Computation on CPUs

We devised edge-pair-centric (EP-centric) computation model for iterative edge induction at
each superstep. To accelerate the computation, we leveraged modern parallel computing facilities—
multi-core CPUs and many-core GPUs—and developed two parallel versions, Graspan-C for CPUs
and Graspan-G for GPUs. This section presents the design and implementation details of Graspan-
C with regard to the in-memory data structure for graph representation and the parallel edge
addition. We discuss Graspan-G shortly in Section 5.4.

In-memory Edge Representation. When two partitions are loaded into memory, we need to
design an in-memory data structure for storing these partitions. For program analysis workloads,
the input graphs are (1) large – the Linux kernel program graph has more than one billion edges;
(2) sparse – its density is low; and (3) dynamic – edges are constantly added into graphs. The
representation has to concisely represent the sparse graph with many edges and support efficient
dynamic updates. As such, existing graph representations, such as adjacency matrix (tailored for
dense graphs) or compressed row storage (for static graphs), are inadequate. In Graspan-C, we use
an adjacency list to efficiently represent and manipulate a program graph.

The edge list of a vertex v is represented as two arrays of (vertex, label) pairs, as shown in
Figure 4. The first array (Ov ) contains “old” edges that have been inspected before and the second
(Dv ) contains edges newly added in the current iteration. The goal is to avoid repeatedly matching
edge pairs (discussed shortly).

Parallel Edge Addition. Algorithm 3 shows a BSP-like algorithm for the parallel EP-centric com-
putation. With two partitions p1 and p2 loaded, we first merge them into one single partition with
combined edge lists (Lines 1–2). Initially, for each vertex v , its two arrays Ov and Dv are set to
empty list and the original edge list ofv , respectively (Line 4 and Line 5). The loop between Line 7
and Line 22 creates a separate thread to process each vertex v and its edge list, computing tran-
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Fig. 4. The CPU in-memory representation of edge lists at the end of the first iteration.

sitive edges with two main components. After edge addition, both Ov and Dv are updated. The
entire process is performed iteratively until the fixed point is reached—no new edges can be added
anymore (i.e., Dv is empty for all vertices v).

The first component (Lines 9–15) attempts to match each “old” edge in Ov that goes to vertex u
with each “new” edge of u in Du . The second component (Lines 16–22) matches each “new” edge
in Dv with both “old” and “new” edges in Ou and Du of vertex u. The idea is that we do not need
to match an “old” edge ofv with an “old” edge of u, because this work has been done in a previous
iteration. Ov and Dv are updated at the end of each iteration.

An important question is how to perform edge matching. A straightforward approach is that,

for each edge v
L1−−→ u, we inspect each of u’s outgoing edges u

L2−−→ x , and add an edge v
K−→ x if

a production K ::= L1 L2 exists. However, this simple approach suffers from significant practical
limitations. First, before the edge is added into v’s list, we need to scan v’s outgoing edges one
more time to check if the same edge already exists. Checking and avoiding duplicates is very
important—duplicates may cause the analysis either not to terminate or to suffer from significant
redundancies in both time and space.

Doing a linear scan of the existing edges is expensive—it has an O(|E |2) complexity to add edges
for each vertex, where |E | is the total number of edges loaded. An alternative is to implement an
“offline” checking mechanism that removes duplicates when writing updated partitions to disk.
While this approach eliminates the cost of online checks, it may prevent the computation from
terminating—if the same edge is repeatedly added, missing the online check would make the loop
at Line 7 keep seeing new edges and run indefinitely.

Our algorithm performs quick edge addition and online duplicate checks. Our key insight is that
edge addition can be done in batch much more efficiently than individually. To illustrate, consider
Figure 3(a) where vertex 0 initially has two outgoing edges 0 → 1 and 0 → 4. Adding new edges
for vertex 0 is essentially the same as merging the (outgoing) edges of vertex 1 and 4 into vertex
0’s edge list and then filtering out those that have mismatched labels.

In Algorithm 3, to add edges for vertexv , we first compute setV1 by intersecting the set of target
vertices of the edges in Ov and the set V of all vertices in the loaded partitions (Line 11). V1 thus
contains the vertices whose edge lists need to be merged withv’s edge list. If an out-neighbor ofv
is not inV , then we skip it in the current superstep—this vertex will be processed later in a future
superstep in which its partition is loaded together with v’s partition.

Next, we add Ov into a list listsToMerge together with Du of each vertex u in V1 (Lines 10–13),
and merge these lists into a new sorted list (Line 15). Since all input lists are already sorted, func-
tion MatchAndMergeSortedArrays can be efficiently implemented by repeatedly checking the
grammar, finding the minimum (using an O(log |V |) min-heap algorithm [15]) among the elements
in a slice of the input lists and copying it into the output array. This whole algorithm has an
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ALGORITHM 3: The parallel EP-centric computation on CPUs

Input: Partition p1, Partition p2

1 Combine the vertices of p1 and p2 into V

2 Combine the edge lists of p1 and p2 into E

3 for each edge list v : (e1, e2, . . . , en ) ∈ E do in parallel

4 Set Ov to ()

5 Set Dv to (e1, e2, . . . , en )

6 while there exists at least one vertex v whose Dv is NOT empty do

7 for each vertex v : (Ov ,Dv ) do in parallel

8 mergeResultv ← ()

9 /*Merge Ov with only Dv of other vertices*/

10 List listsToMerge ← {Ov }
11 Let V1 be the intersection of the target vertices of Ov and V

12 foreach vertex u ∈ V1 do

13 Add Du into listsToMerge

14 /*Merge the sorted input lists into a new sorted list*/

15 mergeResultv ←MatchAndMergeSortedArrays(listsToMerge)

16 /*Merge Dv with Ov ∪ Dv of other vertices*/

17 listsToMerge ← {Dv ,mergeResultv }
18 Let V2 be the intersection of the target vertices of Dv and V

19 foreach vertex u ∈ V2 do

20 Add Ou and Du into listsToMerge

21 /*Merge the sorted input lists into a new sorted list*/

22 mergeResultv ←MatchAndMergeSortedArrays(listsToMerge)

23 for each vertex v : (Ov ,Dv ) do in parallel

24 /*Update Ov and Dv */

25 Ov ←MergeSortedArrays(Ov ,Dv )

26 Dv ← mergeResultv −Ov

O(|E |log |V |) complexity, which is more efficient, both theoretically and empirically, than scanning
edges individually (O(|E |2)), because |V | is much smaller than |E |. Furthermore, edge duplicate
checking can be automatically done during the merging—if multiple elements have the same min-
imum value, then only one is copied into the output array. Label matching is performed before
copying—an edge is not copied into the output if it has an inconsistent label.

Lines 16–22 perform the same logic by computing a new set of verticesV2, and merging Dv and
all the edges (i.e.,Ou ∪Du ) of each vertexu ∈ V2. At Line 22, all the new edges to be added to vertex
v are in mergeResultv . Finally, to prepare for the next iteration,Ov and Dv are merged (Line 25) to
form a newOv , which is then updated (Line 26) with the newly added edges (excluding those that
already exist in Ov ). We separate the computation (Lines 7–22) from the updates (Lines 23–26) to
ensure that both Ov and Dv are read only during the parallel computation, avoiding data races.

Example. Figure 4 shows the in-memory edge lists at the end of the first iteration of the loop at
Line 7 in Algorithm 3. In the next iteration, thread t0 would mergeO0 with D1 and D4, and D0 with
O2 ∪ D2 and O3 ∪ D3. O0 and O1 (and O4) do not need to be merged again as this has been done
before.
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Fig. 5. The high-level architecture of Graspan-G.

Another advantage of this algorithm is that it runs completely in parallel without needing any
synchronization. While the edge list of a vertex may be read by different threads, edge addition
can only be done by one single thread, that is, the one that processes the vertex.

When a superstep is done, the updated edge lists need to be written back to their partition files.
In addition, the degree file is updated with the new vertex degree information. The (in-memory)
DDM needs to be updated with the new edge distribution information.

5.4 Edge-pair-centric Computation on GPUs

We additionally devise a GPU-based backend to accelerate closure computation on machines
equipped with GPUs. The high-level architecture of Graspan-G is shown in Figure 5. Its workflow
follows Algorithm 1, where in each superstep two partitions are loaded from the disk through the
main memory to a GPU. Once the computation finishes on the GPU, the partitions are written back
to the disk through the main memory. The supersteps iterate until the scheduler terminates the
computation. In this design, edge induction is shifted to the GPU, while the CPUs are responsible
for other components including preprocessing, loading/storing, and scheduling. In the following,
we first discuss the necessary background about the microarchitecture of GPUs and then elaborate
the EP-centric model on a GPU.

GPU Architecture. We take the NVIDIA GPU as an example to briefly describe the microarchitec-
ture of modern graphics processors for general purpose computation. A typical general-purpose
GPU consists of multiple identical computation units called streaming multiprocessors (SMs).
Each SM contains the instruction unit for instruction fetching, multiple processing elements

(PE) for parallel execution, and the shared memory (mostly an L1 cache) for data exchange among
threads running on the SM. Within an SM, each PE is able to run an independent thread. One SM
often contains 32 PEs. Thus, a logical group of 32 threads—that constitute a warp—can run simul-
taneously on one SM. To use a GPU, a multi-thread program is partitioned into blocks of threads
that are distributed to SMs. Since PEs on one SM have to share a single instruction unit, they must
either execute the same instruction on individual data items (one per cycle) or wait. If threads in a
warp execute different instructions, e.g., branch divergence occurs, the warp is automatically sub-
divided by the hardware into sets of threads executing the same instruction. These sets are then
serially executed until reconvergence, which often leads to performance degradation.

Another feature that significantly affects performance is memory coalescing. When threads in a
warp simultaneously access words (in the main memory) that are aligned in a single 128-byte seg-
ment, the hardware coalesces the 32 word accesses into one memory transaction that is as fast as
accessing one word. However, if addresses scatter in memory, then multiple memory transactions
have to be launched. In general, the more distributed the addresses are, the lower the throughput.
Such hardware characteristics need to be considered in the design of Graspan-G. In particular, by
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Fig. 6. The sparse bit vector representation of edge lists on GPUs at the end of the first iteration.

tailoring the in-memory data structure and edge addition algorithm for GPUs, Graspan-G mini-
mizes branch divergence and increases memory throughput.

In-memory Edge Representation. Considering GPU’s hardware characteristics, the graph repre-
sentation discussed earlier for Graspan-C is no longer suitable. In Graspan-C, each source vertex is
assigned to a thread responsible for adding new edges associated with that vertex. One naïve way
to leverage this design on GPU is to distribute 32 source vertices to a warp (with 32 GPU threads),
where each thread processes one source vertex (i.e., the whole computation indicated by Lines 7–
22 in Algorithm 3). This is, however, inefficient, because (1) the control flow within each thread
frequently diverges and (2) the edge lists to be merged scatter in memory. An alternative is to let
each merge task (i.e., function MatchAndMergeSortedArrays) executed by a warp. Although
this approach can increase memory throughput, it does not reduce the high frequency of branch
divergence caused by duplicate checks and label matching.

To efficiently use GPU, we need a data structure tailored for its parallelism model. The data struc-
ture should better support fine-grained parallelization with minimized control-flow divergence. To
this end, we propose to use a bit vector to represent an edge list. Moreover, different from the CPU-
based edge representation where edge IDs and labels are stored together, we separate IDs and
labels in this GPU-based representation. For each vertex, its edges are stored in a set of bit vec-
tors, each of which contains edges with the same label. In Figure 6, the grammar has four labels,
and hence each vertex has at most four bit vectors, each corresponding to a label. By putting the
edges with the same label in the same bit vector, we are able to merge these edges efficiently by
performing bit-wise union between vectors, effectively avoiding explicit label checking that leads
to divergence. With this data structure, each warp is given a task that merges multiple bit vectors
via bit-wise operations, as discussed shortly in Algorithm 4.

Although bit vectors are suitable for GPU’s parallelism model, they generally have low space
efficiency especially for sparse graphs (i.e., most elements of a vector are zero). This not only
wastes the GPU cycles, but also introduces significant I/O in our out-of-core design. To tackle this
problem, we use a sparsity-friendly variant, called sparse bit vector [78], that is designed specifically
to represent sparse data. Internally, a sparse bit vector is a linked list of bit vectors, each element
of which consists of three fields: base (indicates the range of integers possibly contained in the
current element), bits (indicates whether a particular integer belongs to the set or not), and next

(a pointer to the next element).
Each sparse bit vector uses 32 words (i.e., 128 bytes)—base and next are of one-word length

each, while the bits part spans 30 words. The assignment of parallel tasks is done in a warp-centric
manner. Each vertex is assigned to a warp. The sparse bit vector associated with the vertex is
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ALGORITHM 4: The parallel EP-centric computation on GPUs

Input: Partition p1, Partition p2

1 Combine the vertices of p1 and p2 into V

2 Combine the edge lists of p1 and p2 into E

3 for each edge list v : (e1, e2, . . . , en ) ∈ E do in parallel

4 Set Ov to ()

5 Set Dv to (e1, e2, . . . , en )

6 while there exists at least one vertex v whose Dv is NOT empty do

7 for each vertex v : (Ov ,Dv ) do in parallel

8 BitVector mergeResultv ← ()

9 /*Merge Ov with only D of other vertices*/

10 foreach each vertex w ∈ Ov .A do /*each edge v->w labeled with A in Ov */

11 if the rule C ::= A B exists then

12 /*bitwise union two bitvectors in parallel by a GPU warp*/

13 merдeResultv .C ← parallel_bitwise_union(merдeResultv .C, Dw .B)

14 /*Merge Dv with O ∪ D of other vertices*/

15 foreach each vertex w ∈ Dv .A do /*each edge v->w labeled with A in Dv */

16 if the rule C ::= A B exists then

17 /*bitwise union bitvectors in parallel by a GPU warp*/

18 merдeResultv .C ← parallel_bitwise_union(merдeResultv .C, Ow .B, Dw .B)

19 for each vertex v : (Ov ,Dv ) do in parallel

20 /*Update Ov and Dv in parallel by a GPU warp*/

21 Ov ← parallel_bitwise_union(Ov , Dv )

22 Dv ← parallel_bitwise_diff (merдeResultv , Ov )

accessed and processed by a warp. The 32-word width fits the GPU architecture well. Loading one
element of the sparse bit vector from the main memory requires only one memory transaction.
Each of the 30 threads (except the first and last thread) in a warp performs the same operation
over each word in the bits field, achieving high thread convergence.

Since a graph often does not exhibit good spatial locality, we further relax the restriction of the
32-word length requirement by using a variable-length sparse bit vector whose element size can be
adjusted to be 2i words based on the number of edges each vertex has in our program graph. Each
vertex is then assigned to a virtual warp [49] for parallel processing, which provides increased
flexibility and efficiency.

Parallel Edge Addition. At the heart of Graspan-G is a GPU-based algorithm for parallel edge
addition. Briefly, under the sparse bit vector data structure, Graspan-G assigns to each warp the
task of merging multiple bit vectors, which can be efficiently implemented via the bit-wise union.
Label matching is done before parallel merging, while duplicate checking is enabled by the union
operation.

Algorithm 4 describes the GPU version of the EP-centric computation. Graspan-G loads two
partitions into GPU’s memory and merges them into a single partition with combined edges lists
(Lines 1–2), similarly to Algorithm 3. For each vertex, we create the “old” (Ov ) and “delta” (Dv )
vectors. The “old” vector is set empty, while the “delta” is initialized to be the original edge list
(Lines 4 and 5). Next, we assign each vertex a virtual warp. During the processing of each vertex
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v , a temporary bit vectormerдeResultv is first instantiated to maintain the newly generated edges
(Line 8). We induce edges in two steps, where the first step attempts to merge the old vector Ov

with the delta vectorsD of other vertices (Lines 10–13), and the second step merges the delta vector
Dv with both the old and delta vectors O ∪ D of other vertices (Lines 15–18).

In each step, we apply all grammar rules for each vertex. For example, given a vertex v and a
rule C ::= A B, we traverse the set of A-neighbors of v (Line 10). The traversal performs decoding
the bit vector representing the outgoing edge list. For each A-neighbor vertex, say w , a bit-wise
union is performed by a warp over the bit vector containing all its B-neighbors (i.e., Dw .B) and
the temporary bit vector (i.e., mergeResultv .C) that stores the newly generated C-neighbors of v
(Line 13). Similarly, the bit-wise union operation is also applied in the second step to generate
new edges in parallel (Line 18). After the edge induction, bothOv and Dv are updated for the next
iteration.Ov and Dv are unioned to become the newOv for the next iteration (Line 21). We replace
Dv with the newly generated bit vector mergeResultv , excluding the old vector Ov (Line 22).

Note that a warp is in charge of the bit-wise union operation over two bit vectors. Due to the
uniform computation logic and the special data layout designed for sequential accesses, Graspan-
G achieves both low thread divergence and high memory throughput. Moreover, the bit-wise diff
operation can be implemented efficiently based on the bit-wise union and bit-wise negation:
parallel_bitwise_diff (a[i],b[i]) = parallel_bitwise_union(a[i], parallel_bitwise_neg(b[i])).

5.5 Repartitioning

If the size of a partition exceeds a threshold (e.g., a parameter), then repartitioning occurs. It is easy
for Graspan to repartition an oversized partition, since the edge lists are sorted. Graspan breaks
the original vertex interval into two small intervals, and edges are automatically restructured. The
goal is to have the two small vertex intervals to have similar numbers of edges, so the resulting
partitions have similar sizes. The VIT needs to be updated with the new interval information.
Repartitioning can also be triggered in the middle of a superstep if too many edges are added in
the superstep and the size of the loaded partitions is close to the memory size.

5.6 Postprocessing

Graspan provides an API for the user to iterate over edges with a certain label. For example, for
the pointer analysis, edges with the OF label indicate a points-to solution, while edges with the
MA and VA label represent aliasing variables. Graspan also provides translation APIs that can be
used to map vertices and edges back to variables and statements in the program.

6 EVALUATION

We have implemented the CPU backend Graspan-C in C++ with approximately 4K lines of code.
Graspan-G is implemented with 1.2K lines of C++ together with around 1K lines of CUDA code,
where the functionalities running on CPUs (e.g., preprocessing, graph reading/writing, and repar-
titioning) are written in C++ and the CUDA code runs GPU computation.

6.1 Experimental Setup

Subject Programs & Analyses. We selected five large-scale software systems, including
Linux kernel,3 PostgreSQL database, Apache httpd server in C/C++, and Apache HDFS, Apache
Hadoop-MapReduce written in Java as our analysis subjects. This set covers programs of different
languages and domains, demonstrating Graspan’s broad generality. We implemented three context-
sensitive interprocedural analyses: field-insensitive Andersen’s inclusion-based pointer/alias

3We focus on the code under x86 architecture.
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Table 2. Characteristics of Subject Programs: Programs Analyzed, their Versions,

Numbers of Lines of Code, Descriptions, and Languages Used

Subject Version #LoC Description Language

Linux 4.4.0-rc5 16M Operating system C/C++
PostgreSQL 8.3.9 700K Database system C/C++
httpd 2.2.18 300K Http web server C/C++
HDFS 2.0.3 546K Distributed file system Java
Hadoop-MapReduce 2.7.5 568K Data processing engine Java

analysis, field-sensitive pointer/alias analysis, and dataflow analysis to track null-pointer propaga-
tion. As the null-pointer analysis is not useful for Java programs where null pointers are explicitly
reported, we ran it only for C/C++ programs. For field-sensitive alias analysis, we only ran it for
Java programs. In Graspan, full context-sensitivity is achieved by cloning function bodies for every
single calling context [107]. Table 2 shows the detailed characteristics of our programs.

For programs in C/C++, we built our frontend based on LLVM Clang. Our graph generators
for the pointer/alias and dataflow analysis have 1.2K and 800 lines of C++ code, respectively.
We first performed the pointer analysis. The dataflow analysis was designed specifically to track
NULL value propagation. It was built based on the pointer analysis, because it needs to query
pointer analysis results when analyzing heap loads and stores. For Java programs, we wrote about
700 lines of Java code to develop a graph generator based on the Soot compiler infrastructure.4

Our grammar was adapted from References [117, 136] for both field-insensitive and field-sensitive
alias analyses. In the field-insensitive analysis, we treated all fields as the same; whereas in
the field-sensitive analysis, we distinguished loads and stores if they are performed on different
fields.

We used a pre-computed call graph to perform inlining. For C/C++ programs, their call graphs
are generated by using an inclusion-based context-insensitive flow-insensitive pointer analysis
with support for function pointers (available in LLVM). The Java call graph is generated based on
the Spark context-insensitive points-to analysis [66] available in Soot.

Hardware and Software Environment. Since our goal is to enable developers to use Graspan on
development machines, we ran Graspan on a Dell desktop, with a quad-core 3.6 GHZ Intel Xeon
W-2123 CPU, 8 GB memory, and a Samsung 860 EVO 1 TB SSD, running Ubuntu 16.04 LTS. The
GPUs used on the machine is an Nvidia GeForce GTX 1080Ti with 28 SMs, 3,584 CUDA cores in
total, and 11 GB memory, supported by the CUDA Toolkit 10.2.

Research Questions. Our evaluation focuses on the understanding of the following four research
questions:

• Q1: Can the analyses we implemented find new bugs in large-scale systems? (Section 6.2)
• Q2: How does Graspan perform in terms of time and space and how much does the GPU-

version speed up the computation? (Section 6.3)
• Q3: How do Graspan-based analysis implementations compare with other analysis imple-

mentations in terms of development effort and performance? (Section 6.4)
• Q4: How does Graspan compare with other backend systems when processing analysis work-

loads? (Section 6.5)

Since our analyses have already achieved the highest level of context sensitivity, we did not
compare their precision with that of existing analyses. The main goal of this evaluation is to

4https://sable.github.io/soot/.
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Fig. 7. Two representative bugs in the Linux kernel 4.4.0-rc5 that were missed by the baseline checkers.

(1) demonstrate the usefulness of these interprocedural analyses through the detection of new
bugs and (2) show the efficiency and scalability of Graspan when performing such expensive anal-
yses that would be extremely difficult to make scalable otherwise.

6.2 Effectiveness of Interprocedural Analyses

To understand the effectiveness of our interprocedural analyses, we re-implemented the seven
static checkers listed in Table 1 in Clang. We used these existing checkers as the baseline to under-
stand whether the combination of interprocedural pointer/alias and dataflow analyses are able to
improve them in finding new bugs or reducing false positives (as described in Table 1 in Section 1).
Note that our interprocedural analyses are not limited to these checkers; they can be used in a
much broader context to find other types of bugs as well (e.g., data races, deadlocks). We would
also like to evaluate our analyses on commercial static checkers such as Coverity and GrammaT-
ech. Unfortunately, we could not obtain a license that allows us to publish the comparisons, and
hence, we had to develop these checkers from scratch.

We have added a new interprocedural checker UNTest that aims to find unnecessary, over-
protective NULL tests—tests on pointers that must have non-NULL values—before dereferencing
these pointers. Although these checks are not bugs, they create unnecessary code-level basic blocks
that prevent compiler from performing many optimizations such as common sub-expression elim-
ination or copy propagation, leading to performance degradation. Hence, these checks should be
removed for compiler to fully optimize the program. To this end, we implemented an interprocedu-
ral Must-Not-NULL dataflow analysis. At each NULL test point, the analysis checks if the pointer
involved must not be NULL.

We manually checked all bug reports from both the baseline checkers and our analyses (except
those reported by UNTest as described shortly) to determine whether a reported bug is a real
bug. Since some of these checkers (such as Block, Range, and Lock) are specifically designed for
Linux, Table 3 only reports information w.r.t. the Linux kernel. For checkers that check generic
properties (i.e., Null and UNTest), we have also run them on the two other programs; their results
are described later in this section.

For the first six baseline checkers that found many real bugs in older versions of the kernel
(used by Reference [89] in 2011 to check Linux 2.6.x and by Chou et al. [30] in 2001 to check
Linux 2.4.x), they could find only two real bugs in Linux 4.4.0-r5 (with the Size checker). This is
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Table 3. Checkers Implemented, their Numbers of

Bugs Reported by the Baseline Checkers (BL), and

New Bugs Reported by Our Graspan Analyses (GR) on

Top of the BL Checkers on the Linux Kernel 4.4.0-r5

Checker BL(4.4.0) GR(4.4.0) BL(2.6.1)

RE FP RE FP RE

Block 0 0 0 0 43

Null 20 20 +108 23 98

Free 14 14 +4 4 21

Range 1 1 0 0 11

Lock 15 15 +3 3 5

Size 25 23 +11 11 3

UNTest N/A N/A +1127 0 N/A

RE shows total numbers of bugs reported while FP shows

numbers of false positives determined manually; to provide a

reference of how bugs evolve over the past decade, we include

an additional section BL(2.6.1) with numbers of true bugs

reported by the same checkers in 2011 on the Kernel version

2.6.1 from Reference [89].

UNTest is a new interprocedural checker we implemented to

identify unnecessary NULL tests; “+” means new problems

found.

not surprising, because they were designed to target very simple bug patterns. Given that many
static bug checkers have been developed in the past decade (including both commercial and open
source), it is likely that most of these simple bugs have been fixed in this (relatively) new version
of Linux. For example, the Null checker detected most of the bugs in References [89] and [30]. In
this current version, while it reported 20 potential bugs, a manual inspection confirmed that all of
them were false positives.

Unnecessary NULL Tests. We used our interprocedural analyses to identify NULL tests (i.e.,
if(p)) in which the pointers checked must not be NULL. We have identified a total of 1,127 un-
necessary NULL tests in Linux, 149 in PostgreSQL, 32 in httpd. These are over-protective actions
in coding and may result in performance degradation. Because these warnings are too many to
inspect manually, we took a sample of 100 warnings and found these tests are truly unnecessary.
This is the first time that unnecessary NULL tests in the Linux kernel are identified and reported.

New Bugs Found. Our analyses reported 108 new NULL pointer dereference bugs in Linux, among
which 23 are false positives. All of these 85 new bugs involve complicated value propagation logic
that cannot be detected by intraprocedural checkers. Figure 7 shows two example bugs.

In Figure 7(a), function probe_kthread_data invokes probe_kthread_read to initialize pointer
data. However, in probe_kthread_read, if a certain condition holds, then an error code (-EFAULT)
is returned and the pointer never gets initialized. Function probe_kthread_data then returns
data directly without any check and the pointer gets dereferenced immediately after the function
returns to its caller. In Figure 7(b), page_private may dereference a NULL pointer, since function
vmalloc_to_page may return NULL. This bug was missed by the baseline because the origin of
the NULL value and the statement that dereferences it are in separate functions. These types of
bugs can only be found by interprocedural analyses. In fact, we show these two bugs because they
are relatively simple and easy to understand; most of our bugs involve more than three functions
and more complicated logic.
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Table 4. Statistics of Bugs Found by Our Checkers in Java Programs

Subjects I/O misuse lock misuse socket misuse except. mishandle total

HDFS 1 (1) 1 (1) 4 (4) 43 (9) 49 (15)
Hadoop-MR 0 (1) 0 0 54 (9) 54 (10)

Numbers of false positives in parentheses.

Table 5. A Breakdown of New Linux Bugs Found by Our Analyses

Modules NULL pointer derefs Unnecessary NULL tests

arch 0 75
crypto 0 15
init 0 1
kernel 4 (2) 65
mm 3 (0) 84
security 0 78
block 6 (2) 31
fs 19 (3) 84
ipc 0 17
lib 0 39
net 10 (8) 269
sound 15 (5) 83
drivers 25 (3) 286

Total 108 (23) 1,127

Numbers of false positives in parentheses.

For PostgreSQL and httpd, we detected 33 and 14 new NULL pointer bugs; our manual validation
did not find any false positives among them.

To further validate the effectiveness of Graspan in bug detection, in addition to the checkers
shown in Table 1 for C/C++ program, we implemented four other bug checkers for Java programs,
targeting typestate-related bugs (i.e., I/O misuse, lock misuse, and socket misuse) [38, 118] and ex-
ception mishandling bugs [143]. In Graspan, we formulated these checkers as finite-state property
verification problems, and implemented each as a context-sensitive dataflow analysis [31]. We ran
these checkers on HDFS and Hadoop-MapReduce to report warnings. We manually inspected all
warnings reported to determine if it is a real bug or a false positive warning. Table 4 demonstrates
the statistics of bugs discovered. For the Java I/O checker, one bug was found in HDFS due to miss-
ing of a close. Two false positives were reported due to lack of support for the try-with-resource

language feature. The socket checker reported 8 warnings in total, of which 4 are real bugs. The
other 4 false positives were reported due to either our lack of path-sensitivity or misrecognition of
socket initialization. The exception-handler checker, which detects mishandling of exceptions, suc-
cessfully identified more than 100 cases where explicitly thrown exceptions never have handlers.
Meanwhile, 25 false warnings were reported because of our lack of path-sensitivity.

Linux Bug Breakdown. Table 5 lists the new bugs and NULL tests in Linux into modules. We
make two observations on this breakdown. First, the code quality of the Linux kernel has been
improved significantly over the past decade. Note that the bugs we found are all complicated bugs
detected by our interprocedural analyses; the baseline checkers could not find any (shallow) bug
in this version of the kernel. Second, consistent with the observations made in both References
[30] and [89], drivers is still the directory that contains most (NULL Pointer) bugs. This is not
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Table 6. Graspan Performance Reported are the Numbers of Vertices and Edges before (IS)

and after (PS) being Processed by Graspan, Numbers of Partitions Eventually (#P), Numbers

of Supersteps Taken (#SS), and Total Running Time (T)

(a) Field-Insensitive Pointer/Alias Analysis

Program IS=(E,V) PS=(E,V) Graspan-C Graspan-G

#P #SS T #P #SS T

Linux (249.5M, 52.9M) (1.1B, 52.9M) 12 20 1.1 hrs 14 32 10.9 mins
PostgreSQL (25.0M, 5.2M) (862.2M, 5.2M) 8 9 4.4 hrs 8 10 3.3 mins
httpd (8.2M, 1.7M) (904.3M, 1.7M) 6 9 2.6 hrs 7 10 1.5 mins
HDFS (10.2M, 5.3M) (1.8B, 5.3M) 9 13 9.9 hrs 7 8 55 secs
Hadoop-MR (41.9M, 20.5M) (99.2M, 20.5M) 4 8 6.9 mins 5 6 2.0 mins

(b) Field-Sensitive Pointer/Alias Analysis

Program IS=(E,V) PS=(E,V) Graspan-C Graspan-G

#P #SS T #P #SS T

HDFS (13.5M, 7.2M) (741.8M, 7.2M) 5 7 1.2 hrs 9 6 21.2 mins
Hadoop-MR (10.4M, 6.2M) (297.3M, 6.2M) 4 10 1.0 hrs 7 5 1.8 mins

(c) Dataflow Analysis

Program IS=(E,V) PS=(E,V) Graspan-C Graspan-G

#P #SS T #P #SS T

Linux (69.4M, 63.0M) (137.5M, 63.0M) 10 26 50.9 mins 12 28 3.2 mins
PostgreSQL (34.8M, 29.0M) (56.1M, 29.0M) 4 11 12.7 mins 5 9 2.8 mins
httpd (10.0M, 5.3M) (19.3M, 5.3M) 2 1 60 secs 2 1 14 secs

(a), (b), and (c) report the results for field-insensitive pointer/alias analysis, field-sensitive pointer/alias

analysis, and dataflow analysis, respectively.

surprising, as drivers is still the largest module in the codebase. However, drivers is also the module
of which developers are most cautious (perhaps due to the findings in References [30] and [89]),
demonstrated by the most unnecessary NULL tests it contains.

6.3 Graspan Performance

Overall Performance. Table 6 reports various statistics of Graspan’s executions. Note that there is
a large difference between the initial size and the post-processing size of each graph. For example,
in Linux, the number of edges increases 3–5 times after the computation, while for httpd, the
Graspan graph for pointer analysis increases more than 100 times. The computation time depends
on both program characteristics and analysis type. For example, while the pointer analysis graph
for httpd has a large number of edges added, its dataflow analysis graph does not change as much
and thus Graspan-C finishes the computation quickly in 60 seconds. We found that this is because
our dataflow analysis only tracks NULL values and in httpd the distances over which NULL can
flow are often short.

We have also attempted to run these graphs in memory on the desktop we used, and all of them
except the dataflow analysis of httpd ran out of memory. While the initial size of each graph is
relatively small, when edges are added dynamically, the graph soon becomes very big and Graspan
needs to repartition it many times to prevent the computation from running out of memory.
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Fig. 8. The breakdown of Graspan’s running time into preprocessing, computation, and I/O (i.e., disk read-

s/writes): (a) and (b) report results for Graspan-C and Graspan-G, respectively. P and D represent field-

insensitive pointer/alias analysis and dataflow analysis.

Breakdown. Figure 8 reports the breakdown of Graspan’s running time into preprocessing, com-
putation, and I/O (i.e., disk writes/reads). For Graspan-C (Figure 8(a)), the EP-centric computation
clearly dominates the execution. While Graspan leverages disk support, the I/O cost is generally
low, because (1) the optimization is conducted to minimize the number of partition reads/writes;
(2) most disk accesses are sequential accesses. The I/O time in pointer analysis of Linux (Linux-P)
takes 5.4% of the total time, as it needs more supersteps for completion. Preprocessing is generally
efficient; the highest value 4.0% comes from the pointer analysis on Hadoop-MapReduce (Hadoop-

P) because Hadoop-P has a large input graph before computation.
Figure 8(b) demonstrates the performance breakdown of Graspan-G. Although the computation

is still the largest contributor, its percentage decreases compared to that of Graspan-C. This can
be easily understood, as the computation time is significantly reduced while other parts almost
remain. In fact, the I/O time even slightly increases, as bit vectors may consume more space for
sparse graphs. The time spent on preprocessing does not change much. Since the total running
time decreases, the relative percentage of preprocessing becomes higher.

Graspan-C vs. Graspan-G. The Speedup section of Table 7 reports the speedups achieved by
Graspan-G over Graspan-C on each analysis workload. With GPUs enabled, Graspan runs orders
of magnitude faster. For example, for the field-insensitive pointer analysis of HDFS (HDFS-P),
Graspan-G takes less than a minute to add more than a billion new edges; Graspan-C, in contrast,
takes almost 10 hours.
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Table 7. A Comparison on the Performance of Graspan, On-demand Pointer Analysis (ODA) [153]

Implemented in Standard Ways, as Well as SociaLite [63] and Soufflé [56] Processing Our Program

Graphs in Datalog, and Doop [20]

Analysis Graspan-C Graspan-G Speedup ODA [153] SociaLite [63] Soufflé [56] Doop [20]
Linux-P 68.4 mins 10.9 mins 6.3 OOM OOM OOM -
PostgreSQL-P 265.3 mins 3.3 mins 80.4 > 1 day OOM OOM -
httpd-P 156.0 mins 1.5 mins 104.0 > 1 day > 1 day OOM -
HDFS-P 594.8 mins 55 secs 648.9 - OOM OOM OOM
Hadoop-P 6.9 mins 2.0 mins 3.5 - > 1 day 32 secs OOM
Linux-D 50.9 mins 3.2 mins 15.9 - OOM 2.2 mins -
PostgreSQL-D 12.7 mins 2.8 mins 4.5 - OOM 41 secs -
httpd-D 60 secs 14 secs 4.3 - 4 hrs 11 secs -

P and D represent field-insensitive pointer/alias analysis and dataflow analysis, respectively. OOM means out of

memory.

Fig. 9. Percentages of added edges across supersteps. P and D represent field-insensitive pointer/alias anal-

ysis and dataflow analysis, respectively. For the dataflow analysis of httpd (httpd-D), only one superstep is

needed; 100% edges are added within the first superstep.

Edges Added. Figure 9 depicts the percentages of added edges across supersteps, measured as the
number of added edges divided by the number of edges in each original graph for Graspan-C. In
general, an extremely large number of edges are added within the first 10 supersteps (e.g., more
than 500M for Linux), and as the computation progresses, fewer edges are added.

6.4 Comparisons with Other Analysis Implementations

Data Structure Analysis [65]. To understand whether Graspan-based analyses are more scal-
able and efficient than traditional analysis implementations, we wanted to compare our analyses
with existing context-sensitive pointer/alias and dataflow analyses. While we had spent much time
looking for publicly available implementations, we could not find anything available except the
data-structure analysis (DSA) [65] in LLVM itself. DSA (implemented in 2007) is much more
complicated than our pointer/alias analysis implementation—it has more than 10K lines of code,
while our pointer/alias analysis (i.e., the graph generation part) only has 1.2K lines of code. Accord-
ing to a response from the LLVM mailing list [7], DSA was buggy and removed from LLVM since
version 3.3. We tried to use LLVM 3.2, but it could not compile any version of the Linux kernel due
to lack of patches.

On-demand Pointer Analysis [153]. As no other implementations were available, we imple-
mented the context-sensitive version of Zheng and Rugina’s C pointer analysis [153] ourselves.
We took the expression graph generated by our frontend and used a worklist-based algorithm to
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compute transitive closures, following closely the original algorithm described in Reference [153].
The ODA section of Table 7 reports its performance. For all but httpd, ODA either ran out of mem-
ory or took a very long time (longer than one day) on the same desktop where we ran Graspan.
For example, when processing Linux, it ran out of memory in 13 minutes. When we moved it onto
a server with 32 2.60 GHZ Xeon(R) processors and 32 GB memory, it took this implementation 3.5
days to analyze Linux and it consumed 29 GB out of the 32 GB memory. On the contrary, Graspan
finished processing Linux in a few hours with less than 6 GB memory on the desktop with a much
less powerful CPU.

Doop [20]. Doop is an analysis framework supporting k-limited context-sensitive pointer analysis
for Java programs. It analyzes a program by translating it into relational data facts and leveraging a
Datalog engine to perform the analysis. We ran a 2-callsite-context-sensitive analysis on HDFS and
Hadoop-MapReduce using Doop. As shown in the last column of Table 7, Doop quickly crashed
due to out-of-memory errors. This confirms with the observation made in the program analysis
community: Memory is one of the major bottlenecks for scaling an analysis to large programs [10].

6.5 Comparisons with Other Backend Engines

Datalog. Since Datalog has been used to power static analyses, it is important to understand the
pros/cons of using Graspan vs. a Datalog engine as the analysis backend. While there are many Dat-
alog engines available [6, 63, 111, 125], SociaLite [63], LogicBlox [6], and Soufflé [8] are designed
for shared-memory machines, while others [111, 125] are distributed engines running on large
clusters. Since a distributed engine is often not a choice for code checking in daily development
tasks, we focused our comparison against shared-memory engines. LogicBlox is a commercial tool
that has been previously used to power the Doop pointer analysis framework [20] for Java. How-
ever, it was the same licensing issue that prevented us from publishing comparison results with
LogicBlox. Hence, this subsection compares Graspan only with SociaLite, an early Datalog engine
developed by Stanford, as well as Soufflé [8], the Datalog engine of choice for program analysis
researchers.

The SociaLite section of Table 7 reports SociaLite’s performance on the same desktop. SociaLite
programs were easy to write—it took us less than 50 LoC to implement either analysis. However,
SociaLite clearly could not scale to graphs that cannot fit into memory. For both pointer/alias and
dataflow analysis, it ran out of memory for Linux and PostgreSQL. For httpd, although SociaLite
processed the graphs successfully, it was much slower than Graspan.

The Soufflé section of Table 7 reports the performance of Soufflé under the same configuration.
Soufflé failed to complete pointer analysis for almost all the subjects. For small analysis workloads
where the program data can fit into memory, it outperforms Graspan. This is reasonable, since
Graspan is designed for scaling large-scale analysis workloads. Its out-of-core design inherently
introduces extra costs, e.g., preprocessing, partitioning, and disk I/O.

GraphChi. To understand whether other graph systems can efficiently process the same (program
analysis) workload, we ran GraphChi—a disk-based graph processing system—because GraphChi
is the only available system that supports both out-of-core computation and dynamic edge addition.
GraphChi provides an API add_edge for the developer to add an edge; it maintains a buffer for
newly added edges during computation and uses a threshold to prevent the buffer from growing
aggressively. When the size of the buffer exceeds the threshold, the edge adding thread goes to
sleep and the function always returns false. The thread periodically wakes up and checks whether
the main data processing thread comes to the commit point, at which the edges in the buffer
can be flushed out to disk. GraphChi does not check edge duplicates, and thus its computation
would never terminate on our workloads. We added a naïve support that checks, before an edge
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is added, whether the same edge exists in the buffer. Note that this support does not solve the
entire problem, because it only checks the buffer but duplicates may have been flushed to shards.
Checking duplicates in shards would require a re-design of the whole system.

We ran GraphChi on the same desktop to process the Linux dataflow graph. GraphChi ran into
assertion failures in 133 seconds with around 65M edges added. This is primarily because GraphChi
was not designed for the program analysis workload that needs to add an extremely large number
of edges (with many duplicates) dynamically.

Graph Systems on GPUs. We wanted to compare Graspan-G against existing GPU-based
graph processing systems. However, we could not find a reasonable baseline, because (1) exist-
ing GPU-based systems (e.g., Medusa [154], TOTEM [42], GunRock [130]) focus on in-memory
computation—they cannot process large program graphs that do not fit into the GPU memory;
and (2) these systems are tailored to processing static graphs and can hardly support the dynamic
transitive closure computation in program analysis workloads.

7 RELATED WORK

Static Bug Finding. Static analysis has been used extensively in the systems community to detect
bugs [1, 10, 16, 17, 21, 24, 32, 33, 36–39, 46, 69, 70, 85, 89, 102, 103, 129, 139] and security vulner-
abilities [23, 25, 55]. Engler et al. [37] use a set of nine checkers to empirically study bugs in OS
kernels. Palix et al. [89] implemented the same checkers using Coccinelle [88]. Commercial static
checkers [2–5] are also available for finding bugs and security problems. Most of these checkers
are based on pattern matching. Despite their commendable bug finding efforts, false positive and
negatives are inherent with these checkers.

Interprocedural analyses such as pointer and dataflow analysis can significantly improve the
effectiveness of the checkers, but their implementations are often not scalable. There exists a body
of work that makes program analysis declarative [20, 132]—analysis designers specify rules in
Datalog and these rules are automatically translated into analysis implementations. However, the
existing Datalog engines perform generic table joining and do not support disk-based computation
on a single machine. While declarative analyses reduce the development effort, they still suffer
from scalability issues. For example, although the pointer analysis from Whaley et al. [132] can
scale to reasonably large Java programs (e.g., using BDD), it only clones pointer variables, not
objects. Furthermore, there is no evidence that they can perform fully context-sensitive analyses
on codebases as large as the Linux kernel on a commodity PC.

Grammar-guided Reachability. There is a large body of work that can be formulated as a
context-free language (CFL) reachability problem. CFL-recognition was first studied by Yan-
nakakis [140] for Datalog query evaluation. Work by Reps et al. [50, 93, 95–97] proposes to
model realizable paths using a context-free language that treats method calls and returns as
pairs of balanced parentheses. CFL-reachability can be used to formulate a variety of static anal-
yses, such as polymorphic flow analysis [92], shape analysis [94], points-to and alias analy-
sis [18, 26, 116, 117, 117, 121, 136, 138, 146, 148, 153], and information flow analysis [72]. The works
in References [60, 61, 77] study the connection between CFL-reachability and set-constraints, show
the similarity between the two problems, and provide implementation strategies for problems that
can be formulated in this manner. Kodumal et al. [61] extend set constraints to express analyses
involving one context-free and any number of regular reachability properties. CFL-reachability
has also been investigated in the context of recursive state machines [13], streaming XML [12],
and pushdown languages [14]. Recent work uses CFL-reachability to formulate pointer and alias
analysis [18, 116, 117, 121, 136, 138, 146–148, 153] and specification inference [18].
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Context-sensitive Analyses. Generally, there are two dominant approaches to context-sensitive
interprocedural analysis: the summary-based approach and the cloning-based approach [107]. The
summary-based approach constructs a summary (transfer) function for each procedure, and di-
rectly applies the summary to the specific inputs at the call site invoking the function. Wilson
et al. [82, 133] proposes to construct partial transfer functions to represent function summary as
input-output value pairs for each procedure. The output value of a summary function can be di-
rectly exploited when the identical input pattern is encountered again for the same procedure.
However, as a massive number of states need to be maintained, its scalability is still severely lim-
ited by the huge space consumption. Reps et al. proposes the IFDS [96] and IDE [105] dataflow
frameworks, which is a variant of the summary-based approach. They concentrate on a particular
subclass of interprocedural analysis problems, called the interprocedural, finite, distributive,
subset problems (IFDS problems). While these frameworks can be instantiated to solve many
analysis problems, they require the dataflow transfer function to be distributive over the meet
operator (usually set union or intersection). However, most sophisticated analysis problems do
not have such a property, e.g., pointer/alias analysis. Although the summary-based approach is
scalable to certain extent, it suffers from more drawbacks. First, due to the lack of explicit rep-
resentation of calling contexts, the summary-based approach fails to provide complete analysis
information for each particular context. To answer the query like “to which memory locations
does a pointer variable point under a particular context?” it has to recompute the pointer results
along the calling context. Furthermore, it is difficult to precisely model heap effects. The cloning-
based approach [34, 132] provides complete information. However, it requires each procedure to
be re-analyzed under each calling context and hence is hard to scale.

Over the past decade, a body of work has been done to adjust the level of context sensitiv-
ity [52, 53, 67, 68, 74, 80, 114, 115, 135, 137, 149], explore different forms of sensitivity [57, 81], or
leverage pre-processing analysis [87, 109, 113] to find sweet spots between scalability, generality,
and usefulness. These techniques are largely orthogonal with Graspan, which can use them to
perform selective inlining when generating graphs.

Parallel and Distributed Static Analyses. Researchers have proposed parallel and distributed
static analysis algorithms and tools for increased efficiency and scalability. Mendez-Lojo et al. [79]
propose a parallel points-to analysis based on constraint graph rewriting. A follow-up work [78]
proposes a GPU-based algorithm. Nagaraj and Govindarajan [84] extend the graph-rewriting for-
mulation and propose a parallel algorithm for the staged flow-sensitive pointer analysis. By lever-
aging data sharing and query scheduling, Su et al. [120] develop a parallel CFL-based pointer
analysis to avoid redundant graph traversals. Their follow-up work [119] devises an algorithm for
the heterogeneous CPU-GPU environment. Zhao et al. [150] attempt to parallelize an interproce-
dural flow-sensitive points-to analysis in the traditional task-parallel manner. Rodriguez et al. [99]
propose an actor model-based parallel algorithm for dataflow analysis. Albarghouthi et al. [11]
parallelize the demand-driven top-down interprocedural analysis with MapReduce. Garbervetsky
et al. [41] propose a distributed program analysis framework on the basis of actor model where
they implement a call-graph analysis. Blaß and Philippsen [19] describe an approach for paral-
lelizing interprocedural dataflow analysis efficiently on a GPU. Google uses the distributed static
analyses to analyze their large-scale codebase [104]. However, due to the challenges of perform-
ing interprocedural analysis on large-scale codebases, only simple (intra-procedural) analyses are
applied. INFER [27] is a tool developed by Facebook based on bi-abduction to check memory safety
properties for C code. For scalability, INFER only supports interprocedural analysis within each
compilation unit.

Although these techniques were all designed for scalability, they suffer from several drawbacks.
First, they were tailored for specific analysis algorithms and thus are not generally applicable.
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Second, they all assume that memory is sufficient. However, as pointed out in Reference [10],
memory is the major bottleneck for scaling analysis to large programs. Graspan aims to overcome
these challenges, providing general support for sophisticated analysis algorithms without putting
the burden of memory on analysis developers’ shoulders.

Systems for Static Analyses. A recent line of work attempts to develop Big Data systems for
scaling sophisticated static analysis. BDDBDDB [132] and Doop [20] are the early pioneers that
run sophisticated static analysis on Datalog engines. These Datalog engines (even including a
recent one Soufflé [56]) do not provide out-of-core disk support, and they are fundamentally limited
by the size of main memory. None of them were able to scale a fully context-sensitive analysis
to large-scale systems like Linux on the commodity desktop we used. Grapple [158] is a graph
system designed for constraint-based path-sensitive static analysis. Chianina [159] is dedicated to
scaling flow-sensitive analyses. BigSpa [45, 157] supports scalable context-sensitive analyses in a
distributed setting. This work extends our previous work [126] that scales context-free language

(CFL) reachability-based analyses to large programs with disk support. With GPUs enabled, our
system achieves much higher efficiency than the original Graspan system [126] that processes
program graphs only with CPUs.

Graph Systems. State-of-the-art graph systems include disk-based systems, shared-memory sys-
tems, distributed systems, and GPU-based systems.

Single-machine graph processing systems [9, 48, 62, 71, 75, 91, 101, 124, 127, 128, 152, 156] have
recently become popular, because they enable big data to be processed locally, removing develop-
ers’ burden of cluster management and maintenance. A wide set of single-machine systems were
developed, including Ligra [112], Galois [86], GraphChi [62], X-Stream [101], GridGraph [156],
GraphQ [127], MMap [71], FlashGraph [152], TurboGraph [48], Mosaic [75], RStream [128], and
so on. Ligra [112], as a shared-memory system, is suitable for implementing parallel graph traversal
algorithms. For graphs that fit in shared memory, Ligra shows significant performance advantages.
Work from Reference [86] presents the design and implementation of the lightweight Galois in-
frastructure for graph analytics. By leveraging specially designed schedulers and data structures,
Galois achieves excellent performance. GraphChi [62] introduces shards and proposes a parallel
sliding algorithm to reduce disk I/O for out-of-core graph processing. To minimize random disk
accesses, X-Stream [101] adopts an edge-centric model via streaming. GridGraph [156] adopts a
grid representation for large-scale graphs by partitioning vertices and edges to 1D chunks and 2D
blocks, respectively. Work from Reference [124] employs dynamic shards to reduce disk I/O. Flash-
Graph [152] implements a semi-external memory graph system that stores vertices in memory
and edge-lists on SSDs. TurboGraph [48] manages adjacency lists in pages and leverages a cache
to reduce disk I/O. Grapple [158], inspired by Graspan’s design is a disk-based system designed
for scalable constraint-based path-sensitive analysis of large programs.

Pregel [76], as the pioneering work of distributed graph systems, proposes a synchronous
vertex-centric abstraction for large-scale graph processing. Following it, many other distributed
systems [22, 28, 29, 43, 73, 83, 100, 108, 123, 134, 145, 155] have been developed based on the
same graph-parallel abstraction. GraphLab [73] is a distributed framework for performing machine
learning and data-mining algorithms on large-scale graphs. As an extension, PowerGraph [43] con-
siders the structure of power-low graphs, thus achieving efficient graph partitioning and computa-
tion. Cyclops [28] supports synchronously computing over a distributed immutable view, granting
a vertex with read-only access to all its neighboring vertices. Chaos [100] extends the stream-
ing partitions introduced by X-Stream to multiple machines in a cluster and enables the parallel
execution of streaming partitions. PowerLyra [29] is a graph system that differentiates the compu-
tation and partitioning on high-degree and low-degree vertices on skewed graphs. Gemini [155] is
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a distributed system that adapts Ligra’s hybrid push-pull computation model to a distributed form
for computation-centric processing. CUBE [145] presents a new 3D task partitioning algorithm
to reduce network traffic for certain machine learning and data mining applications. Built on top
of Spark [144], GraphX [44] provides the high-level graph abstraction and “think like a vertex”
interface for graph computation using low-level dataflow operators. Moreover, KickStarter [123]
and Naiad [83] are the graph systems focusing on streaming graphs.

Thanks to the massive parallelism provided by a GPU, utilizing GPUs to accelerate graph pro-
cessing has been shown to be a promising direction. Multiple GPU-based graph systems [40, 42,
54, 58, 59, 90, 106, 110, 130, 154] have been developed recently. Medusa [154] is a GPU-based
graph-processing system providing a set of simplified programming interfaces. Since it requires
loading the entire graph into the GPU memory, only small graphs that fit in the device memory can
be processed. TOTEM [42] is a hybrid GPU-CPU system that divides a graph into two parts, as-
signed, respectively, to CPU and GPU for processing. CuSha [58] is a framework that supports
the vertex-centric computation model. It exploits concatenated windows (CW) and g-shards
graph representations to accelerate the computation. GunRock [130] adopts a bulk-synchronous
and data-centric abstraction. It finds a sweet spot between performance and expressiveness by
coupling high-performance GPU computing primitives with a high-level programming model.
Frog [110] is a lightweight asynchronous processing framework with a preprocessing/hybrid col-
oring model. It employs a graph coloring algorithm to ensure that no adjacent vertices are divided
into the same color-chunk. Vertices within each partition can be updated in parallel without mod-
ifying the data in adjacent vertices. In addition, several out-of-GPU-memory graph processing
systems [47, 59, 106] are proposed to overcome the GPU memory capacity limitation, thus scaling
to large-scale graphs.

Note that all of the above graph systems are designed for general-purpose graph applications
mostly focusing on static graphs, while Graspan is a disk-based graph system tailored for dynamic
transitive closure computation with broad applications in program analysis.

8 CONCLUSION

Graspan is the first attempt to turn sophisticated code analysis into scalable Big Data analytics,
opening up a new direction for scaling various sophisticated static program analyses (e.g., symbolic
execution, theorem proving) to large systems. To offer the performance flexibility, we develop two
backends for Graspan, namely, Graspan-C running on CPUs and Graspan-G on GPUs. Graspan-C
can analyze large-scale systems code on any commodity PC, while, if GPUs are available, then
Graspan-G can be readily used to achieve orders of magnitude speedup by harnessing a GPU’s
massive parallelism.
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