
Testing DNN-based Autonomous Driving Systems under
Critical Environmental Conditions

Zhong Li 1 2 Minxue Pan 1 3 Tian Zhang 1 2 Xuandong Li 1 2

Abstract
Due to the increasing usage of Deep Neural Net-
work (DNN) based autonomous driving systems
(ADS) where erroneous or unexpected behaviours
can lead to catastrophic accidents, testing such
systems is of growing importance. Existing ap-
proaches often just focus on finding erroneous
behaviours and have not thoroughly studied the
impact of environmental conditions. In this pa-
per, we propose to test DNN-based ADS under
different environmental conditions to identify the
critical ones, that is, the environmental conditions
under which the ADS are more prone to errors.
To tackle the problem of the space of environmen-
tal conditions being extremely large, we present
a novel approach named TACTIC that employs
the search-based method to identify critical envi-
ronmental conditions generated by an image-to-
image translation model. Large-scale experiments
show that TACTIC can effectively identify criti-
cal environmental conditions and produce realis-
tic testing images, and meanwhile, reveal more
erroneous behaviours compared to existing ap-
proaches.

1. Introduction
Autonomous vehicles have achieved tremendous success
over the past decade due to the significant advances in
Deep Neural Networks (DNNs). We have witnessed a num-
ber of successful DNN-based autonomous driving systems
(ADSs) (Grzywaczewski, 2017; Bojarski et al., 2016), where
DNNs directly generate the control decisions (e.g., steer-
ing and braking) for the systems after processing inputs
received from sensors (e.g., camera, Radar, Lidar). Unfortu-
nately, such systems often demonstrate incorrect/unexpected

1State Key Laboratory for Novel Software Technology, Nanjing
University, Nanjing, China 2Department of Computer Science
and Technology, Nanjing University, Nanjing, China 3Software
Institute, Nanjing University, Nanjing, China. Correspondence to:
Minxue Pan <mxp@nju.edu.cn>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1. Testing driving scenes generated by DeepXplore (Pei
et al., 2017), DeepTest (Tian et al., 2018), PreScan (Marketakis
et al., 2009), and our approach TACTIC. Note that the coloured
arrows in Figure 1 (a) and (b) are attached to present the predicted
steering angles. TACTIC produces more realistic driving scenes
compared to the other three approaches.

behaviours that can lead to catastrophic accidents when
deployed in real-world environments, for instance, the
Tesla/Uber autonomous vehicle accidents (Boudette, 2017;
Gibbs, 2018). There is an urgent need for a better approach
to comprehensively and effectively testing these systems.

Recently, various approaches have been proposed for test-
ing DNN-based ADSs which mostly rely on affine image
transformation (Pei et al., 2017; Tian et al., 2018) or high-
fidelity simulation (Marketakis et al., 2009; Abdessalem
et al., 2016; 2018; Fremont et al., 2019) to generate inde-
pendent driving scenes that can cause erroneous behaviours.
However, there is little attention on studying the impact of
environmental conditions (e.g., time-of-day, illumination,
and weather, etc.) for DNN-based ADSs. Since DNN-based
ADSs must be able to conduct proper operations under all
possible environmental conditions in the real world, it is
critical to understand which environmental conditions will

Testing DNN-based ADSs under Critical Environmental Conditions

cause more erroneous behaviours.

In this paper, we first propose the problem of testing DNN-
based ADS under different environmental conditions with
the goal of identifying the critical environmental conditions
under which the ADS are more prone to errors. This is a
difficult problem, since it is infeasible to test ADS under
the many environmental conditions in real-world. Even if
only considering one environmental type, there can be a
huge number of environmental conditions. For example,
for the environmental type of rainy weather, there can be
many different rainy conditions due to the different degrees
of light and amounts of rain, etc. An alternative is to adopt
synthesised test driving scenes. However, the driving scenes
synthesised by most existing approaches can be unrealistic
or even never happen in real-world environments. For in-
stances, Figure 1(a)-(c) show three test scenes generated by
the state-of-the-art testing techniques, i.e., DeepXplore (Pei
et al., 2017), DeepTest (Tian et al., 2018), and PreScan (Mar-
ketakis et al., 2009). We can see that all these scenes lack
the richness and authenticity of real-world images, and can
rarely happen under real-world environments. Besides the
problem of synthesised scenes lacking the authenticity of
real-world scenes, it is difficult to fully specify an environ-
mental condition by configuring the parameters for affine
image transformation or high-fidelity simulation, for an envi-
ronmental condition is very complex in nature. For example,
one cannot exactly specify the accumulation of snow on the
street or the amounts of rain for a driving scene. Even worse,
the critical environmental conditions may be corner cases
and only occupy a small fraction of the whole environmental
condition space, making them difficult to be identified.

We address these challenges and propose TACTIC (Testing
ADS under CriTIcal Conditions), a novel testing frame-
work that can identify critical environmental conditions for
different environmental types and generate the correspond-
ing driving scenes for effectively testing DNN-based ADSs.
To specify the environmental conditions of an environmen-
tal type, instead of using configurations, TACTIC employs
the Multimodal Unsupervised Image-to-Image Translation
(MUNIT) (Huang et al., 2018) to deep-learn the features of
environmental conditions from a set of sample scenes be-
longing to the same environmental type and encode them as
a high-dimensional vector space called style space. A style,
which is a vector in the style space corresponding to an envi-
ronmental condition, contains extremely rich and complex
environmental features. To identify the styles correspond-
ing to the critical environmental conditions in the complex
style space, TACTIC employs the search-based method with
a carefully designed search objective accounting for both
the number and diversity of erroneous behaviours. When
styles are obtained, the style-learning process of MUNIT is
reversed: styles are applied on existing test driving scenes to
synthesise new ones. Because of the richness of styles, the

synthesised scenes are realistic enough (as shown by Fig-
ure 1(d)) to test whether the DNN-based ADS can perform
correctly under the environmental conditions corresponding
to the obtained styles.

To evaluate TACTIC, we conducted a large-scale study on
three well-known open-source DNN-based ADSs. The re-
sults demonstrate that TACTIC is effective in identifying
critical environmental conditions for various environmental
types. The driving scenes synthesised by TACTIC using the
critical environmental conditions are not only more realistic,
but also cause the DNN-based ADSs to produce more seri-
ous erroneous behaviours, compared to other approaches.

Overall, the main contributions of this paper are:

• To our knowledge, this is the first work that proposes
to test DNN-based ADSs with the goal of identifying
critical environmental conditions.

• We propose a novel approach named TACTIC, which
employs the search-based method to effectively iden-
tify critical environmental conditions from the environ-
mental condition space generated by MUNIT model.

• We perform a large-scale evaluation with TACTIC, and
the results show that TACTIC is effective in reveal-
ing more serious erroneous behaviours for DNN-based
ADS with the help of the obtained critical environmen-
tal conditions.

Our implementation of TACTIC and all the experimental
data are publicly available1 to facilitate future studies.

2. Related Work
Testing of DNN-based ADS Recently, there are various
works emerging on testing DNN-based ADS (Pei et al.,
2017; Tian et al., 2018; Zhang et al., 2018; Li et al., 2019;
Huang et al., 2019; Odena et al., 2019; Zhou et al., 2020).
DeepXplore (Pei et al., 2017) utilises a gradient-based dif-
ferential testing techniques to detect behaviour inconsis-
tencies among multiple DNN-based ADSs with neuron
coverage guidance. As a following work of DeepXplore,
DeepTest (Tian et al., 2018) further leverages neuron cov-
erage to guide test generation for DNN-based ADS, which
adopts domain-specific image transformations on driving
scenes. DeepRoad (Zhang et al., 2018) proposes a GAN-
based approach to generate realistic driving scenes for test-
ing DNN-based ADS. DeepBillboard (Zhou et al., 2020)
designs an algorithm to generate printable adversarial bill-
board that can trigger erroneous behaviours of DNN-based
ADS. However, these works mainly focus on introducing er-
roneous behaviours to prove that the ADS under test contain

1https://github.com/SEG-DENSE/TACTIC

https://github.com/SEG-DENSE/TACTIC

Testing DNN-based ADSs under Critical Environmental Conditions

defects. They do not study the environmental conditions
which may be the root causes for the erroneous behaviours.
Differently, the goal of TACTIC is to identify critical en-
vironmental conditions under which the DNN-based ADS
are prone to errors, and generate the corresponding driving
scenes to such conditions for testing.

DNN Coverage Criteria. A variety of testing coverage
criteria for DNNs have been proposed in order to guide test
generation (Pei et al., 2017; Ma et al., 2018; Sun et al., 2018;
Ma et al., 2019; Du et al., 2019; Odena et al., 2019). For
example, DeepXplore (Pei et al., 2017) designs neuron cov-
erage for DNNs to measure the percentage of neurons that
are activated by a given set of test data. DeepGauge (Ma
et al., 2018) generalises the concept of neuron coverage
and proposes a set of multi-granularity coverage criteria
which take the distribution of training data into considera-
tion. TensorFuzz (Odena et al., 2019) debugs DNNs with
coverage-guided fuzzing, which is to find adversarial inputs
by mainly adding independent noise to individual inputs. It
proposes to measure whether coverage has increased on a
given test input by using an approximate nearest neighbour
(ANN) algorithm to check how far away the nearest neigh-
bour of the input is. In this work, we use two neuron-level
coverage criteria selected from DeepGauge to measure the
diversity of erroneous behaviours. Note that TACTIC can be
easily generalised to other coverage criteria.

Metamorphic Relations for DNNs. In DNN testing, meta-
morphic relations (Chen et al., 2020) are widely studied to
ameliorate the test oracle problem. A common metamorphic
relation in testing DNN-based ADS is stated as the driving
behaviours of a self-driving car should not change signif-
icantly or stay the same for the transformed images (Tian
et al., 2018; Zhang et al., 2018; Han & Zhou, 2020). In this
work, we leverage a metamorphic relation for steering angle
control as the test oracle for detecting erroneous behaviours,
and further explore its efficacy by preforming a large-scale
study on three open-source DNN-based autonomous driving
models and five real-world environmental types.

3. The TACTIC Approach
In this paper, we aim to test DNN-based ADS under different
environmental conditions with the goal of identifying the
critical environmental conditions under which the ADS are
more prone to erroneous behaviours. We focus on DNN-
based ADSs that perform end-to-end steering angle control,
i.e., the DNN-based ADS can output the steering angles
by taking the driving scenes captured by the car-mounted
camera as inputs. We choose to study the steering angle
control because it is a fundamental function of all kinds of
ADS, and high-quality test datasets constructed and used
by many existing approaches are available for experiments.
TACTIC is not restricted to the steering angle control but can

Environment
Dataset

Original Driving
Scenes

MUNIT
Training

Search-based
Condition Generation

Critical Environmental
Conditions

Testing Driving
Scenes Generation

DNN-based
ADS

MUNIT Model

Training Example
Generation

Tactic Condition Application

Figure 2. The overview of TACTIC. For a subject DNN-based ADS
and a given environmental type, TACTIC first trains a MUNIT
model to encode the environmental condition space of the envi-
ronmental type. Then, TACTIC employs a search-based method,
e.g., (1+1) ES in this work, to identify the critical environmental
conditions based on the MUNIT model. Finally, testing driving
scenes (or more training examples) are generated using the critical
environmental conditions. For details see Section 3.

be extended to support the testing of other functions, e.g.,
car-braking, as discussed in Section 3.2.2.

The workflow of TACTIC is shown in Figure 2. For a subject
DNN-based ADS and a given environmental type, TACTIC
first trains a MUNIT model using two sets of images: the
original driving scenes which are used to synthesise testing
scenes and the environmental dataset which contains driv-
ing scenes belong to the given environmental type. When
the training process completes, the environmental condi-
tion space of the environmental type is encoded as a style
space in the MUNIT model. Details are elaborated in Sec-
tion 3.1. Then TACTIC sets a search objective which is to
maximise the number and diversity of erroneous behaviours
and employs a search-based method, e.g., (1+1) Evolution
Strategy (ES) (Rechenberg, 1978) in this work, to search
the style space for the environmental conditions that reach
the search objective, i.e., the critical environmental condi-
tions. Details are presented in Section 3.2 and Section 3.3.
Finally, the original driving scenes are transformed by the
MUNIT model into synthesised scenes under the critical
environmental conditions, to test whether the subject DNN-
based ADS can output consistent steering angles under the
critical environmental conditions. It is worth mentioning
that besides testing, the critical environmental conditions
of TACTIC can also be used to synthesise more training
examples to improve the performance of DNN-based ADSs
by adversarial training (Pei et al., 2017; Tian et al., 2018),
which we plan to study in future work.

3.1. Environmental Conditions

To encode the environmental condition space of an envi-
ronmental type, we leverage MUNIT, a multimodal unsu-
pervised image-to-image translation framework based on
Generative Adversarial Networks (GAN). One insight of

Testing DNN-based ADSs under Critical Environmental Conditions

x1
E1 c1 c2

s1

E2 x2

s2

X1 C

S1

X2

S2

Figure 3. Structure of MUNIT (Huang et al., 2018). Images in each
domain Xi are encoded to a shared content space C and a domain-
specific style space Si through an encoder Ei. Each encoder has
an inverse decoder Gi omitted from this figure.

MUNIT is that the representation of images can be decom-
posed into a content space that is domain-invariant and a
style space that captures domain-specific characteristics, as
shown in Figure 3. Accordingly, when training a MUNIT
model based on two sets of driving scenes that belong to two
different environmental types, the domain-invariant content
space will encode the information shared by scenes of the
two different environmental types, such as the road infor-
mation like the shapes of road and the roadside trees. The
specific characteristics of each environmental type, e.g., the
unique degrees of illumination, amounts of rain, and cloud
patterns for the rainy weather type, would be encoded by
the style space. Therefore, we can use the style space of
an environmental type in a well-trained MUNIT model to
represent the environmental condition space of the type.

After obtaining a MUNIT model, driving scenes under dif-
ferent environmental conditions of an environmental type
can be realistically generated. Specifically, suppose that
we have a MUNIT model M trained on two sets of driv-
ing scenes that belong to two environmental types: the
environmental type X1 and the environmental type X2. To
transform a driving scene x1 in X1 to a driving scene x2
in X2, the MUNIT model M first uses the encoder E1 of
X1 to decompose x1 into a content vector c1 and a style
vector s1, i.e., (c1, s1) = E1(x1). Then, to produce x2, M
recombines the content c1 with a style vector s2 sampled
from the style space S2 of X2 by the decoder G2 of X2,
i.e., x2 = G2(c1, s2). In the above transformation process,
by using another style vector s′2, we can generate a driving
scene x′2, i.e., x′2 = G2(c1, s

′
2), which has the same content

as x2 but a different environmental condition. Furthermore,
we can also transform the entire set of driving scenes un-
der different environmental conditions into those under the
same environmental condition by using the same style vec-
tor. More specifically, let X1 = {x1, x2, ..., xn} be a set
of diving scenes under different environmental conditions
of X1. Through the encoder E1, each scene xi ∈ X1 is de-

composed into a content vector ci and a style vector si, i.e.,
(ci, si) = E1(xi). Then, we recombine each content vector
ci with the same style vector s sampled from the style space
S2 of X2 by the decoder G2 of X2 to generate a driving
scene x′i, i.e., x′i = G2(ci, s). Finally, we obtain a set of
driving scenes under the same environmental condition of
X2, i.e., a set X2 = {x′1, x′2, ..., x′n}. Figure 4 shows some
driving scenes synthesised by respectively using the above
two types of transformations, based on the MUNIT models
used in TACTIC. More details about MUNIT can be found
in Appendix A.

3.2. Search Objective for Critical Environmental
Conditions

As introduced in Section 3.1, TACTIC uses the style space
in a MUNIT model to represent the environmental condition
space of a target environmental type. However, identifying
the critical environmental conditions (i.e., critical style vec-
tors) from the style space is still challenging. First, the style
space in MUNIT is a high-dimensional vector space, and
hence, a style vector in the style space is difficult for inter-
pretation. For example, when transforming a sunny scene to
a rainy scene, a style vector may encode information about
the light effects, amounts of rain, cloud patterns, and even
a mixture of all of them and many more, unlike the con-
figurations in simulators where each configurable variable
controls a certain simulation object. Second, the critical
environmental conditions may be the corner cases which
only occupy a small fraction of the entire space.

To alleviate these challenges, we use the search-based ap-
proach, which is proven to be effective for complex opti-
misation problems, to search the style space for the critical
style vectors. The key to the success of the search is a proper
fitness function that measures the fitness of the style vectors.
The number of erroneous behaviours is certainly important
metrics, since it indicates that the ADS are prone to errors.
However, using such metrics alone may lead to the same
type of errors repeatedly happening. Therefore, we design
the fitness function for the style search to consider both the
number and the types of errors, i.e., it is the combination of
two effectiveness measures: (1) the ability to detect more
diverse erroneous behaviours; and (2) the ability to detect
more erroneous behaviours.

3.2.1. TESTING COVERAGE CRITERIA

In this work, we employ DNN coverage criteria to measure
the ability of a style vector to detect diverse erroneous be-
haviours. Prior work has proved that increasing the DNN
coverage can lead to more diverse behaviours (Pei et al.,
2017; Tian et al., 2018; Xie et al., 2019; Huang et al., 2019),
which, consequently, can increase the chance to detect more
diverse erroneous behaviours. Therefore, a style vector is

Testing DNN-based ADSs under Critical Environmental Conditions

Rain Snow in Daytime Snow in DaytimeRainOriginal Scene Original SceneRain Snow in Daytime Snow in DaytimeRainOriginal Scene Original Scene

Figure 4. Driving scenes synthesised using MUNIT. Left: We transform one original driving scene to driving scenes under different
environmental conditions of an environmental type by using different styles. Right: We transform two driving scenes that have different
environmental conditions to those under the same environmental condition of an environmental type by using the same style.

considered to have the potential to find defects of more di-
versity, if the driving scenes obtained by applying this style
vector have higher DNN coverage measures. Many different
DNN coverage metrics have been proposed. Since we need
to distinguish a large number of style vectors by coverage,
we carefully select two fine-grained coverage metrics on the
sub-neuron level (Ma et al., 2018) for TACTIC to support,
i.e., k-multisection Neuron Coverage (KMNC) and Neuron
Boundary Coverage (NBC). It is worth mentioning, how-
ever, TACTIC is not bound to any specific metrics and new
metrics can be easily supported.

Let O be a set of neurons of a DNN. Let φ(x, o) be the
output value of neuron o ∈ O for input x. When pro-
viding the training dataset Dtrain to the DNN model, the
range of the observed neuron activation values of a neu-
ron o ∈ O is represented as [lowo, higho], where lowo =
minx∈Dtrain

φ(x, o) and higho = maxx∈Dtrain
φ(x, o).

Moreover, we refer the value range out of [lowo, higho],
i.e., (−∞, lowo)∪(higho,+∞), as the corner-case regions
of the neuron o. Then, KMNC and NBC are defined as
follows:

KMNC. Given a neuron o ∈ O, the KMNC measures
how thoroughly the given input set T covers the range
[lowo, higho]. To quantify this, the range [lowo, higho]
is divided into k equal sections (i.e., k-multisections), for
k > 0. Let So

i be the i-th section with 1≤i≤k. Then if
φ(x, o) ∈ So

i , the i-th section is covered by at least one
input x ∈ T . Therefore, the KMNC of a DNN obtained by
the test input set T is defined as:

KMNC =

∑
o∈O |{So

i |∃x ∈ T : φ(x, o) ∈ So
i }|

k × |O|

NBC. Given a neuron o ∈ O, the NBC shows to what ex-
tent the corner-case regions are covered by the given input
set T . If φ(x, o) belongs to (−∞, lowo) or (higho,+∞),
the corresponding corner-case region is covered by at

least one input x ∈ T . Therefore, given the test in-
put set T , let UpperCornerNeuron = {o ∈ O|∃x ∈ T :
φ(x, o) ∈ (higho,+∞)} and LowerCornerNeuron = {o ∈
O|∃x ∈ T : φ(x, o) ∈ (−∞, lowo)} be the sets of neurons
that ever fall into the corner case regions, respectively. The
NBC of a DNN achieved by the test input set T is defined
as:

NBC =
|UpperCornerNeuron|+ |LowerCornerNeuron|

2× |O|

Moreover, we respectively denote the regions that KMNC
targets as KMNC regions and the regions that NBC targets
as NBC regions in the rest of the paper.

3.2.2. METAMORPHIC ERROR ANALYSIS.

Following the existing work (Tian et al., 2018), we also
adopt Metamorphic Relation (MR) (Chen et al., 2020) as
the test oracle to determine whether a system behaviour
is correct or not. In particular, the MR used in TACTIC
is defined as that the steering angles should be consistent
among the driving scenes transformed from the same ones
by applying different style vectors, i.e., retain behaviour
consistency. However, such an MR is too strong to be
practical since the acceptable steering angle for a driving
scene can be within a range (Tian et al., 2018). Therefore,
the MR is further relaxed to a steering angle divergence
within an error bound. Formally, let xo be an original driving
scene and xt be a newly generated driving scene synthesised
based on xo in a target environmental type. The θo and θt
represent the steering angles for xo and xt, respectively.
Then the MR is defined as |θo − θt| < ε, where the ε is a
user-defined error bound.

Based on the MR, we can assess the tendency of behaviours
to be erroneous ones. For a style vector, if the new driving
scenes synthesised with this style vector have larger steering

Testing DNN-based ADSs under Critical Environmental Conditions

angle divergences compared with the original driving scenes,
then the style vector is considered to be able to detect more
erroneous behaviours. TACTIC can be easily extended to
test other functions of DNN-based ADS by providing a
specification depicting the erroneous behaviours for those
functions. For example, for the function of car-braking, a
simple way to specify the erroneous behaviours can be that
the two boolean variables indicating whether or not to brake
respectively for the original and synthesised scenes have
different values.

3.2.3. FITNESS FUNCTION DEFINITION.

Now we formally define the two effectiveness measures:

The ability to detect diverse erroneous behaviours of a
style vector is measured by the increase in the testing cov-
erage measured by KMNC or NBC. Let Rt be the set of
uncovered KMNC/NBC regions so far during the search-
based testing process and Rs be the set of regions that will
be newly covered by the synthesised driving scenes using
style vector s. The ability of s to detect diverse erroneous
behaviours is calculated as: Fc(s) =

|Rs|
|Rt| .

The ability to detect more erroneous behaviours of a
style vector is measured by the mean steering angle di-
vergences between the original dataset of driving scenes
and the newly synthesised driving scenes with that style
vector. Formally, let g(x, s) be the function that transforms
a driving scene x into another in the target environmental
type using style vector s, and f(x) be the function that re-
turns the steering angle for the driving scene x. Let Io be
the original dataset of driving scenes, the ability of a style
vector s to detect more erroneous behaviours is calculated
as:

Fd(s) =
1

|Io|
∑
x∈Io

|f(x)− f(g(x, s))|.

Based on the above two effectiveness measures, we design
the fitness function for TACTIC as follows:

F (s) = wc ∗ Fc(s) + wd ∗ norm(Fd(s)),

where s is a style vector, norm(x) = x
x+1 is a normalisation

function (Greer & Ruhe, 2004; Zhang et al., 2008) for nor-
malising the value of Fd in the same magnitude with Fc (i.e.,
within the same range of value [0, 1]), and wc, wd are the
weights assigned to two measure, respectively, which allow
for prioritisation of the measures. In this work, we simply
treat the two measures as equal by setting wc = wd = 1,
and leave the study of weight optimisation for future work.

3.3. Search of Critical Environmental Conditions

We are now ready to present how TACTIC identifies the crit-
ical environmental conditions of a given environmental type

for a subject DNN-based ADS. We choose (1+1) Evolution
Strategy (ES) (Rechenberg, 1978), which has shown to be
effective in previous studies (Ali et al., 2013; Arcuri, 2013;
Ji et al., 2018), as the search algorithm in TACTIC to identify
the critical environmental conditions. TACTIC receives as
inputs the subject DNN-based ADS N , the MUNIT model
M trained for the given environmental type, and a set Io
of the original driving scenes. The output of TACTIC is a
set S of the critical environmental conditions of the given
environmental type.

Specifically, TACTIC iteratively calls the (1+1) ES to iden-
tify a critical environmental condition until a user-defined
number of such conditions are obtained. Each iteration of
TACTIC consists of the following main steps: First, the
(1+1) ES is initialised with an initial individual, which is
a style vector randomly sampled from the style space in
the MUNIT model M. Second, the (1+1) ES evolves the
individual s via selection and reproduction. In particular, a
new individual s′ is firstly generated based on the current
individual s. Then, the fitness values of s and s′ is evaluated
as described in Section 3.2.3. After that, the individual with
higher fitness value is kept as the current individual in the
next evolution. Lastly, the (1+1) ES terminates the evolution
process when the stopping condition is met and the current
individual is added to the set S as a critical environmental
condition. The stopping condition could be many, for exam-
ple, the level of improvement during the evolution process
or maximum time budget, etc. In this work, the stopping
condition is set conservatively to that the fitness value has
no improvement in 100 successive iterations.

TACTIC stops when a user-defined number of critical con-
ditions are obtained, at which point TACTIC returns the
critical environmental condition set S. In this work, we set
the number to be four, as we observed in the experiments
that increasing the number of style vectors when it is already
above four would not result in a significant increase in the
test coverage. Note that this number is related to the number
of the driving scenes in the test dataset, and can be easily
configured when necessary.

4. Experimental Evaluation
In this section, we present the experimental results to demon-
strate the effectiveness of TACTIC. We mainly focus on
evaluating whether TACTIC is able to find critical environ-
mental conditions, which are used to synthesise driving
scenes that can effectively reveal erroneous behaviours in
different environmental types. Additionally, testing ADS
under environmental conditions requires that the synthesised
driving scenes realistically reflect reality, and therefore, we
study the realism of the synthesised driving scenes.

Testing DNN-based ADSs under Critical Environmental Conditions

4.1. Experimental Settings

Datasets and DNN-based ADSs. We conduct experi-
ments on the Udacity dataset (Udacity, 2016). To demon-
strate the effectiveness of TACTIC, we consider three
popular pre-trained DNN-based ADSs, which have been
widely used in previous work (Pei et al., 2017; Tian et al.,
2018; Zhang et al., 2018; Zhou et al., 2020), i.e., Dave-
orig (0bserver07, 2016), Dave-dropout (Navoshta, 2016),
and Chauffeur (Emef, 2016). For each DNN-based ADSs,
we study five environmental types (night, sunshine, rain,
snow in daytime and snow in night) that are representatives
of the runtime environments for DNN-based ADSs. The
corresponding dataset of each environmental type is col-
lected from YouTube. See more details about the datasets
and targeted DNN-based ADSs in Appendix B.

Baselines. We consider two groups of baselines. (1) For
the effectiveness comparison in Section 4.2 , we evaluate
the effectiveness of TACTIC against two methods, i.e., an
approach using randomly sampled environmental conditions
(denoted as Rc) and the state-of-the-art DeepRoad (Zhang
et al., 2018). (2) For the image quality comparison in Sec-
tion 4.3, we compare the realism of the driving scenes
synthesised by TACTIC with three methods, i.e., Deep-
Road (Zhang et al., 2018), DeepTest (Tian et al., 2018),
and PreScan (Marketakis et al., 2009), which are the current
state-of-the-art in testing DNN-based ADSs. Note that we
do not include DeepTest and PreScan in the effectiveness
comparison (c.f., Section 4.2) due to the synthesised driv-
ing scenes by these methods are unrealistic, as shown in
Section 4.3.

Evaluation Metrics We use two metrics to evaluate the
effectiveness of TACTIC: (1) the achieved test coverage
(i.e., KMNC and NBC) and (2) the number of detected
erroneous behaviours. For the achieved coverage, we fo-
cus on measuring the achieved coverage for CNNs used in
the ADSs due to the coverage criteria are less effective on
testing RNNs (Tian et al., 2018) and we set the number k
of KMNC to 1000, consistent with DeepGauge (Ma et al.,
2018). For the number of detected erroneous behaviours, we
present the number of erroneous behaviours detected under
four different error bounds (c.f. Section 3.2.2), which are
consistent with the error bounds used in DeepRoad (Zhang
et al., 2018). Regarding the quality of synthesised driving
scenes, we conduct a user study to evaluate the realism of
the synthesised driving scenes, since currently, user studies
are the most effective standard to evaluate the realism of
objects artificially synthesised.

4.2. Comparison with Baselines on Effectiveness

Setup. We execute TACTIC with two coverage-guiding
strategies: KMNC (denoted as TACTICKMNC) and NBC (de-
noted as TACTICNBC), respectively, on each of the three sub-

ject DNN-based ADSs, under the five environmental types.
In each execution, the entire set of driving scenes from the
Udacity testing dataset is used as the original driving scenes
(i.e., Io in Section 3.3), and 4 critical environmental condi-
tions are generated (c.f. Section 3.3), which are separately
applied on the Udacity testing dataset to synthesise testing
driving scenes (i.e., 4 × 5614 testing driving scenes are
totally generated).

For Rc, when testing the three subject systems, we randomly
sample 4 style vectors (equal to the number of critical style
vectors generated by TACTIC) for each of the environmental
types and separately apply the 4 random style vectors on the
Udacity testing dataset to synthesise testing driving scenes
(i.e., 4× 5614 testing driving scenes are totally generated).
Moreover, to reduce the randomness of (1+1) ES used in
TACTIC and Rc, we conduct 10 runs for each experimental
case and average the results.

For DeepRoad, we use the training datasets of the MUNIT
models in TACTIC for training DeepRoad, and then generate
driving scenes for each of the environmental types. Note
that, given the Udacity testing dataset, DeepRoad can only
generate the same number (5614) of testing driving scenes
as the Udactiy dataset for each environmental type, since
it transforms each driving scene into the other in a deter-
ministic way. Therefore, for TACTIC, we apply just one
critical style on the Udactiy testing dataset each time and
then average the results for a fair comparison.

Due to the space limit, we report the results of NBC-guided
TACTIC on Dave-orig in the main body of the paper. Re-
sults of KMNC-guided TACTIC on Dave-orig and results
of TACTIC on Dave-dropout and Chauffeur can be found
in Appendix C.1. The results on all the coverage-guiding
strategies and the DNN-based ADSs are consistent.

Results. Table 1 and Table 2 summarise the results of
comparing TACTICNBC with Rc and DeepRoad, respectively.
Better results are highlighted with a darker background.
We discuss the results from two aspects: (1) the achieved
test coverage, and (2) the number of detected erroneous be-
haviours. In terms of the achieved coverage, compared with
Rc, TACTIC achieves higher coverage in all environmental
types, demonstrating that TACTIC can detect more diverse
erroneous behaviours than Rc. Compared with DeepRoad,
TACTIC achieves slightly lower coverage in the environ-
mental type of ”Snow in Daytime” while obtaining higher
coverage than DeepRoad in all the other four environmental
types. We leave the analysis about why DeepRoad achieves
higher coverage in Appendix C.1. In terms of the detected
erroneous behaviours, compared with Rc and DeepRoad,
TACTIC detects many more erroneous behaviours in all en-
vironmental types for both four error bounds. Furthermore,
we also observe that, when the error bound increases, Rc and
DeepRoad hardly detects erroneous behaviours while TAC-

Testing DNN-based ADSs under Critical Environmental Conditions

Table 1. Results of comparing NBC-guided TACTIC with Rc on Dave-orig. Better results are highlighted with a darker background.

ENV. TYPE NIGHT SUNSHINE RAIN SNOW IN DAYTIME SNOW IN NIGHT
METHOD TACTIC Rc TACTIC Rc TACTIC Rc TACTIC Rc TACTIC Rc

COVERAGE
KMNC 73.68% 43.55% 56.24% 43.34% 50.71% 42.04% 54.41% 47.15% 72.09% 52.04%
NBC 35.92% 3.18% 13.81% 1.97% 7.30% 2.00% 8.67% 3.88% 33.30% 10.10%

NUMBER OF ERRORS

10◦ 18675.1 2971.2 2629.8 1300.5 9795.2 1484.5 13450.8 3605.2 20879.0 7323.4
20◦ 13790.0 269.7 196.5 103.8 3479.7 44.9 3396.8 197.7 17978.1 2583.0
30◦ 8627.7 25.5 22.7 4.7 1933.8 0.1 845.1 10.6 14561.1 749.7
40◦ 4303.7 1.9 0.7 0.0 687.7 0.0 209.5 0.8 12074.7 72.5

Table 2. Results of comparing NBC-guided TACTIC with DeepRoad on Dave-orig. Better results are highlighted with a darker background.

ENV. TYPE NIGHT SUNSHINE RAIN SNOW IN DAYTIME SNOW IN NIGHT
METHOD TACTIC DEEPROAD TACTIC DEEPROAD TACTIC DEEPROAD TACTIC DEEPROAD TACTIC DEEPROAD

COVERAGE
KMNC 54.59% 40.99% 45.37% 40.97% 40.71% 40.23% 41.80% 45.21% 60.03% 55.66%
NBC 21.72% 5.99% 6.62% 2.05% 2.90% 2.05% 3.34% 3.81% 26.64% 21.50%

NUMBER OF ERRORS

10◦ 4885.0 613.0 708.8 355.0 3035.8 487.0 3708.0 1250.0 5041.0 3189.0
20◦ 3898.3 114.0 41.5 40.0 1442.5 20.0 820.5 90.0 4418.0 1996.0
30◦ 2662.5 33.0 4.8 3.0 816.5 0.0 154.3 2.0 3716.3 802.0
40◦ 1620.5 9.0 0.0 0.0 304.5 0.0 47.3 0.0 2843.0 173.0

TIC still shows strong ability to detect erroneous behaviours.
In summary, TACTIC can effectively identify critical envi-
ronmental conditions, and reveal more diverse and more
serious erroneous behaviours than Rc and DeepRoad.

Time Efficiency. We also analysed the efficiency of TAC-
TIC. Compared to Rc and DeepRoad, TACTIC spent more
time on testing DNN-based ADS, since TACTIC needs to
search the style space to identify the critical environmental
conditions. Specifically, about a total of 15 hours, including
the time cost for driving scenes generation, model prediction
and fitness function calculation, was required to identify a
critical environmental condition in our experimental envi-
ronment. Such a time cost is worthwhile, since TACTIC can
obtain the critical environmental conditions under which
the DNN-based ADS are more prone to errors by a rela-
tively comprehensive exploration of the condition space of
an environmental type. This cannot be done by existing
approaches using synthesised driving scenes, and would
require substantially more time for real-world tests (Kalra
& Paddock, 2016).

4.3. Comparison with Baselines on Image Quality

Setup. We conduct a user study to evaluate the realism of
the testing driving scenes synthesised by TACTIC through
comparing them with the test driving scenes synthesised by
DeepRoad (Zhang et al., 2018), DeepTest (Tian et al., 2018),
and PreScan (Marketakis et al., 2009). Specifically, we
design an online questionnaire consisting of two questions:
(1) ”Which driving scene is more realistic?”, and (2) ”Which
environmental type does the driving scene belong to?”.

In the first questionnaire, 80 image pairs, each containing

one synthesised image and one real image, were shown to
the participants. Among the 80 synthesised images, each of
the four approaches synthesised 20 images. The participants
were asked to choose one of the four choices: the first
image is more realistic, the second image is more realistic,
both are realistic, and both are unrealistic. This question
intends to compare the degrees of realism between the real-
world driving scenes and the ones synthesised by different
approaches.

In the second questionnaire, the same 80 synthesised images
that were used in the first questionnaire were shown to
the participants. The participants were asked to choose
one environmental type for the driving scenes from the
seven choices: rain, sunshine, night, fog, snow in daytime,
snow in night, and image unrealistic. This question intends
to compare the ability to synthesise testing driving scenes
to realistically reflect the environmental conditions. All
participants were given the same image pairs (or images).

The questionnaire was distributed online, open to both stu-
dents and industrial practitioners.

Results. We received answers from a total of 34 partic-
ipants of which 12 are from industry and 22 are students.
Figure 5 and Figure 6 present the results of answers to the
first and the second questions, respectively. The results
demonstrate that the testing driving scenes synthesised by
TACTIC are more realistic than the ones synthesised by
affine image transformation (e.g., DeepTest) or high-fidelity
simulation (e.g., PreScan) and can better reflect real envi-
ronments. Specifically, from Figure 5, it can be observed
that there are nearly half of driving scene pairs where the
synthesised driving scenes cannot be distinguished with the

Testing DNN-based ADSs under Critical Environmental Conditions

(a) TACTIC (b) DeepRoad (c) DeepTest (d) PreScan

real-world scene both unrealistic synthesized scene both realistic

Figure 5. Comparison of realism among real-world driving scenes
and synthesised scenes of (a) TACTIC, (b) DeepRoad, (c) DeepTest,
and (d) PreScan. The grey sectors denote the ratios that the real-
world scenes are selected. Therefore, the smaller the grey sectors
are, the more realistic the synthesised scenes are.

(a) TACTIC (b) DeepRoad (c) DeepTest (d) PreScan

unrealistic scene wrong classification correct classification

Figure 6. Ratios of correct classification of the driving scenes syn-
thesised from (a) TACTIC, (b) DeepRoad, (c) DeepTest, and (d)
PreScan. The blue sectors denote the ratios that the synthesised
scenes are correctly classified as their corresponding environmental
types. Therefore, the larger blue sectors suggest that the synthe-
sised scenes can more realistically reflect the environmental types.

real-world ones in human perception for TACTIC (44%) and
DeepRoad (41%). In contrast, for DeepTest and PreScan,
there are on average 94% and 86% driving scene pairs where
the real-world driving scenes are considered more realistic,
respectively. As shown in Figure 6, in general, the testing
driving scenes synthesised by TACTIC and DeepRoad can
more realistically reflect the environmental types compared
to the ones synthesised by DeepTest and PreScan.

Furthermore, we observe that the testing driving scenes
synthesised by TACTIC and DeepRoad have comparable
results for the degrees of realism. The reason is that both
TACTIC and DeepRoad use a type of GAN to generate new
testing driving scenes. However, as shown in Section 4.2,
compared with DeepRoad, TACTIC manages to detect more
diverse and more serious erroneous behaviours.

4.4. Ablation Study

Setup. We perform the ablation study to justify the selec-
tion of (1+1) ES in TACTIC. In particular, we implement a
new version of TACTIC by replacing the search algorithm
(1+1) ES with a random search (RS) and compare the effec-
tiveness of the two versions. Except for the search algorithm,
the other implementation and settings, e.g., the fitness func-
tion, are not changed. For each experimental case, we also

Table 3. Results of comparing the effectiveness of (1+1) ES and
RS in NBC-guided TACTIC on Dave-orig. Better results are high-
lighted with a darker background.

ENV. TYPE METHOD
COVERAGE NUMBER OF ERRORS

KMNC NBC 10◦ 20◦ 30◦ 40◦

NIGHT
(1+1) ES 73.68% 35.92% 18675.1 13790 8627.7 4303.7

RS 53.09% 10.73% 15833.3 4783.0 384.0 9.1

SUNSHINE
(1+1) ES 56.24% 13.81% 2629.8 196.5 22.7 0.7

RS 45.48% 2.85% 1451.4 81.2 5.0 0.0

RAIN
(1+1) ES 50.71% 7.30% 9795.2 3479.7 1993.8 687.7

RS 42.35% 2.00% 3633.9 188.1 3.8 0.0

SNOW IN DAYTIME
(1+1) ES 54.41% 8.67% 13450.8 3396.8 845.1 209.5

RS 51.87% 6.80% 9730.0 748.8 20.0 14.3

SNOW IN NIGH
(1+1) ES 72.09% 33.30% 20879.0 17978.1 14561.1 12074.7

RS 65.45% 25.69% 19341.5 14917.3 9955.4 4966.7

conduct 10 runs and average the results to reduce the ran-
domness in the search. Again, we mainly report the results
of NBC-guided TACTIC on Dave-orig in the main body of
this paper, and leave the complete results to Appendix C.2.

Results. Table 3 summarises the comparison results and
we also discuss the results from the achieved test coverage
and the number of detected erroneous behaviours. For the
achieved test coverage, TACTIC using (1+1) ES achieves
higher coverage than TACTIC using RS in both five environ-
mental types. For the number of the detected erroneous be-
haviours, TACTIC using (1+1) ES obtains significantly more
erroneous behaviours on all environmental types. Addition-
ally, we also observe that the difference between the number
of erroneous behaviours detected by the two approaches
increases with the error bound. Such results demonstrate
that (1+1) ES has better performance in identifying critical
environmental conditions than random search.

5. Conclusion
In this paper, we propose to study the impact of different
environmental conditions on the DNN-based ADS and raise
the problem of identifying the critical environmental con-
ditions that would make the system under test more prone
to erroneous behaviours. We introduce a novel approach
TACTIC, which employs a search-based method to search
the environmental condition space of the given environ-
mental type generated by MUNIT. Large-scale experiments
demonstrate that TACTIC can effectively identify critical
environmental conditions and synthesise realistic testing
driving scenes. Compared to the state-of-the-art approaches,
TACTIC can reveal more diverse and more erroneous be-
haviours for the popular DNN-based ADSs, and meanwhile,
reach a satisfactory testing coverage.

Acknowledgements
This research is supported by the National Natural Science
Foundation of China (Nos. 62032010 and 61972193) and
the Fundamental Research Funds for the Central Universi-
ties of China (No. 14380027).

Testing DNN-based ADSs under Critical Environmental Conditions

References
0bserver07. Nvidia-autopilot-keras: End to end learning

for self-driving cars, 2016. URL https://github.
com/0bserver07/Nvidia-Autopilot-Keras.
[online, accessed 27-May-2021].

Abdessalem, R. B., Nejati, S., Briand, L. C., and Stifter,
T. Testing advanced driver assistance systems using
multi-objective search and neural networks. In Lo,
D., Apel, S., and Khurshid, S. (eds.), Proceedings of
the 31st IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016, pp. 63–74. ACM, 2016. doi: 10.
1145/2970276.2970311. URL https://doi.org/
10.1145/2970276.2970311.

Abdessalem, R. B., Nejati, S., Briand, L. C., and Stifter,
T. Testing vision-based control systems using learnable
evolutionary algorithms. In Chaudron, M., Crnkovic,
I., Chechik, M., and Harman, M. (eds.), Proceedings
of the 40th International Conference on Software En-
gineering, ICSE 2018, Gothenburg, Sweden, May 27 -
June 03, 2018, pp. 1016–1026. ACM, 2018. doi: 10.
1145/3180155.3180160. URL https://doi.org/
10.1145/3180155.3180160.

Ali, S., Iqbal, M. Z. Z., Arcuri, A., and Briand, L. C.
Generating test data from OCL constraints with search
techniques. IEEE Trans. Software Eng., 39(10):1376–
1402, 2013. doi: 10.1109/TSE.2013.17. URL https:
//doi.org/10.1109/TSE.2013.17.

Arcuri, A. It really does matter how you normalize the
branch distance in search-based software testing. Softw.
Test. Verification Reliab., 23(2):119–147, 2013. doi: 10.
1002/stvr.457. URL https://doi.org/10.1002/
stvr.457.

Arcuri, A. and Briand, L. C. A hitchhiker’s guide to
statistical tests for assessing randomized algorithms in
software engineering. Softw. Test. Verification Reliab.,
24(3):219–250, 2014. doi: 10.1002/stvr.1486. URL
https://doi.org/10.1002/stvr.1486.

Badvboynofear. Driving in the snow, Mar 2018.
URL https://www.youtube.com/watch?v=
fm5nKWeVNGI. [online, accessed 27-May-2021].

Bojarski, M., Testa, D. D., Dworakowski, D., Firner,
B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M.,
Muller, U., Zhang, J., Zhang, X., Zhao, J., and Zieba,
K. End to end learning for self-driving cars. CoRR,
abs/1604.07316, 2016. URL http://arxiv.org/
abs/1604.07316.

Boudette, N. E. Teslas self-driving system cleared in deadly
crash. The New York Times, 19, 2017.

Capon, J. A. Elementary statistics for the social sciences:
Study guide, 1991.

Chen, T. Y., Cheung, S. C., and Yiu, S. Metamorphic testing:
A new approach for generating next test cases. CoRR,
abs/2002.12543, 2020. URL https://arxiv.org/
abs/2002.12543.

Du, X., Xie, X., Li, Y., Ma, L., Liu, Y., and Zhao, J.
Deepstellar: model-based quantitative analysis of state-
ful deep learning systems. In Dumas, M., Pfahl, D.,
Apel, S., and Russo, A. (eds.), Proceedings of the ACM
Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Es-
tonia, August 26-30, 2019, pp. 477–487. ACM, 2019.
doi: 10.1145/3338906.3338954. URL https://doi.
org/10.1145/3338906.3338954.

Emef. Sdc, 2016. URL https://github.com/emef/
sdc. [online, accessed 27-May-2021].

Fremont, D. J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-
Vincentelli, A. L., and Seshia, S. A. Scenic: a lan-
guage for scenario specification and scene generation.
In McKinley, K. S. and Fisher, K. (eds.), Proceedings
of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019, pp. 63–78. ACM,
2019. doi: 10.1145/3314221.3314633. URL https:
//doi.org/10.1145/3314221.3314633.

Gibbs, S. Ubers self-driving car saw the pedestrian but didnt
swerve–report. The Guardian, 2018.

Greer, D. and Ruhe, G. Software release planning:
an evolutionary and iterative approach. Inf. Softw.
Technol., 46(4):243–253, 2004. doi: 10.1016/j.infsof.
2003.07.002. URL https://doi.org/10.1016/
j.infsof.2003.07.002.

Grzywaczewski, A. Training ai for self-driving vehicles:
the challenge of scale, 2017.

Han, J. C. and Zhou, Z. Q. Metamorphic fuzz testing
of autonomous vehicles. In ICSE ’20: 42nd Inter-
national Conference on Software Engineering, Work-
shops, Seoul, Republic of Korea, 27 June - 19 July,
2020, pp. 380–385. ACM, 2020. doi: 10.1145/
3387940.3392252. URL https://doi.org/10.
1145/3387940.3392252.

Huang, W., Sun, Y., Huang, X., and Sharp, J. testrnn:
Coverage-guided testing on recurrent neural networks.
CoRR, abs/1906.08557, 2019. URL http://arxiv.
org/abs/1906.08557.

https://github.com/0bserver07/Nvidia-Autopilot-Keras
https://github.com/0bserver07/Nvidia-Autopilot-Keras
https://doi.org/10.1145/2970276.2970311
https://doi.org/10.1145/2970276.2970311
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1109/TSE.2013.17
https://doi.org/10.1109/TSE.2013.17
https://doi.org/10.1002/stvr.457
https://doi.org/10.1002/stvr.457
https://doi.org/10.1002/stvr.1486
https://www.youtube.com/watch?v=fm5nKWeVNGI
https://www.youtube.com/watch?v=fm5nKWeVNGI
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/2002.12543
https://arxiv.org/abs/2002.12543
https://doi.org/10.1145/3338906.3338954
https://doi.org/10.1145/3338906.3338954
https://github.com/emef/sdc
https://github.com/emef/sdc
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1016/j.infsof.2003.07.002
https://doi.org/10.1016/j.infsof.2003.07.002
https://doi.org/10.1145/3387940.3392252
https://doi.org/10.1145/3387940.3392252
http://arxiv.org/abs/1906.08557
http://arxiv.org/abs/1906.08557

Testing DNN-based ADSs under Critical Environmental Conditions

Huang, X., Liu, M., Belongie, S. J., and Kautz, J. Mul-
timodal unsupervised image-to-image translation. In
Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss,
Y. (eds.), Computer Vision - ECCV 2018 - 15th Euro-
pean Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part III, volume 11207 of Lecture
Notes in Computer Science, pp. 179–196. Springer, 2018.
doi: 10.1007/978-3-030-01219-9\ 11. URL https://
doi.org/10.1007/978-3-030-01219-9_11.

Ji, R., Li, Z., Chen, S., Pan, M., Zhang, T., Ali, S., Yue, T.,
and Li, X. Uncovering unknown system behaviors in un-
certain networks with model and search-based testing. In
11th IEEE International Conference on Software Testing,
Verification and Validation, ICST 2018, Västerås, Sweden,
April 9-13, 2018, pp. 204–214. IEEE Computer Society,
2018. doi: 10.1109/ICST.2018.00029. URL https:
//doi.org/10.1109/ICST.2018.00029.

Kalra, N. and Paddock, S. M. Driving to safety: How many
miles of driving would it take to demonstrate autonomous
vehicle reliability? Transportation Research Part A:
Policy and Practice, 94:182–193, 2016.

Li, Z., Ma, X., Xu, C., Cao, C., Xu, J., and Lü, J. Boost-
ing operational DNN testing efficiency through con-
ditioning. In Dumas, M., Pfahl, D., Apel, S., and
Russo, A. (eds.), Proceedings of the ACM Joint Meet-
ing on European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, Au-
gust 26-30, 2019, pp. 499–509. ACM, 2019. doi: 10.
1145/3338906.3338930. URL https://doi.org/
10.1145/3338906.3338930.

Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B.,
Chen, C., Su, T., Li, L., Liu, Y., Zhao, J., and Wang, Y.
Deepgauge: multi-granularity testing criteria for deep
learning systems. In Huchard, M., Kästner, C., and
Fraser, G. (eds.), Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software En-
gineering, ASE 2018, Montpellier, France, September
3-7, 2018, pp. 120–131. ACM, 2018. doi: 10.1145/
3238147.3238202. URL https://doi.org/10.
1145/3238147.3238202.

Ma, L., Juefei-Xu, F., Xue, M., Li, B., Li, L., Liu, Y.,
and Zhao, J. Deepct: Tomographic combinatorial test-
ing for deep learning systems. In Wang, X., Lo, D.,
and Shihab, E. (eds.), 26th IEEE International Con-
ference on Software Analysis, Evolution and Reengi-
neering, SANER 2019, Hangzhou, China, February 24-
27, 2019, pp. 614–618. IEEE, 2019. doi: 10.1109/
SANER.2019.8668044. URL https://doi.org/
10.1109/SANER.2019.8668044.

Marketakis, Y., Tzanakis, M., and Tzitzikas, Y. Prescan:
towards automating the preservation of digital objects.
In Chbeir, R., Badr, Y., Kapetanios, E., and Traina, A.
J. M. (eds.), MEDES ’09: International ACM Conference
on Management of Emergent Digital EcoSystems, Lyon,
France, October 27-30, 2009, pp. 404–411. ACM, 2009.
doi: 10.1145/1643823.1643898. URL https://doi.
org/10.1145/1643823.1643898.

McGowan, D. Driving on snow - greenville, nc 1-4-2018
at 7:00am, Jan 2018. URL https://www.youtube.
com/watch?v=ps56tnQG8V0. [online, accessed 27-
May-2021].

Navoshta. Behavioral cloning: End to end learning for self-
driving cars, 2016. URL https://github.com/
navoshta/behavioral-cloning. [online, ac-
cessed 27-May-2021].

Odena, A., Olsson, C., Andersen, D. G., and Goodfel-
low, I. J. Tensorfuzz: Debugging neural networks with
coverage-guided fuzzing. In Chaudhuri, K. and Salakhut-
dinov, R. (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pp. 4901–4911.
PMLR, 2019. URL http://proceedings.mlr.
press/v97/odena19a.html.

Pei, K., Cao, Y., Yang, J., and Jana, S. Deepx-
plore: Automated whitebox testing of deep learning
systems. In Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, Oc-
tober 28-31, 2017, pp. 1–18. ACM, 2017. doi: 10.
1145/3132747.3132785. URL https://doi.org/
10.1145/3132747.3132785.

Rechenberg, I. Evolutionsstrategien. In Simulationsmetho-
den in der Medizin und Biologie, pp. 83–114. Springer,
1978.

Sun, Y., Huang, X., and Kroening, D. Testing deep neural
networks. CoRR, abs/1803.04792, 2018. URL http:
//arxiv.org/abs/1803.04792.

Tian, Y., Pei, K., Jana, S., and Ray, B. Deeptest: automated
testing of deep-neural-network-driven autonomous cars.
In Chaudron, M., Crnkovic, I., Chechik, M., and Harman,
M. (eds.), Proceedings of the 40th International Confer-
ence on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, pp. 303–314. ACM,
2018. doi: 10.1145/3180155.3180220. URL https:
//doi.org/10.1145/3180155.3180220.

Tours, D. C. Driving on california freeway from
calabasas to universal studios hollywood.no music,
Jun 2018. URL https://www.youtube.com/

https://doi.org/10.1007/978-3-030-01219-9_11
https://doi.org/10.1007/978-3-030-01219-9_11
https://doi.org/10.1109/ICST.2018.00029
https://doi.org/10.1109/ICST.2018.00029
https://doi.org/10.1145/3338906.3338930
https://doi.org/10.1145/3338906.3338930
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1109/SANER.2019.8668044
https://doi.org/10.1109/SANER.2019.8668044
https://doi.org/10.1145/1643823.1643898
https://doi.org/10.1145/1643823.1643898
https://www.youtube.com/watch?v=ps56tnQG8V0
https://www.youtube.com/watch?v=ps56tnQG8V0
https://github.com/navoshta/behavioral-cloning
https://github.com/navoshta/behavioral-cloning
http://proceedings.mlr.press/v97/odena19a.html
http://proceedings.mlr.press/v97/odena19a.html
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
http://arxiv.org/abs/1803.04792
http://arxiv.org/abs/1803.04792
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://www.youtube.com/watch?v=01_SVshk-MY
https://www.youtube.com/watch?v=01_SVshk-MY
https://www.youtube.com/watch?v=01_SVshk-MY

Testing DNN-based ADSs under Critical Environmental Conditions

watch?v=01_SVshk-MY. [online, accessed 27-May-
2021].

Udacity. The udacity open source self-driving car project,
2016. URL https://github.com/udacity/
self-driving-car. [online, accessed 27-May-
2021].

Utah, J. Los angeles 4k - night drive, Feb 2019.
URL https://www.youtube.com/watch?v=
lTvYjERVAnY. [online, accessed 27-May-2021].

Vargha, A. and Delaney, H. D. A critique and improvement
of the cl common language effect size statistics of mc-
graw and wong. Journal of Educational and Behavioral
Statistics, 25(2):101–132, 2000.

Vids, A. Rain on a car roof - 1 hour - asmr,
Apr 2014. URL https://www.youtube.com/
watch?v=O88fXBx-Qdg. [online, accessed 27-May-
2021].

Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu,
Y., Zhao, J., Li, B., Yin, J., and See, S. Deephunter: a
coverage-guided fuzz testing framework for deep neu-
ral networks. In Zhang, D. and Møller, A. (eds.), Pro-
ceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA 2019,
Beijing, China, July 15-19, 2019, pp. 146–157. ACM,
2019. doi: 10.1145/3293882.3330579. URL https:
//doi.org/10.1145/3293882.3330579.

Zhang, M., Zhang, Y., Zhang, L., Liu, C., and Khurshid,
S. Deeproad: Gan-based metamorphic testing and input
validation framework for autonomous driving systems. In
Huchard, M., Kästner, C., and Fraser, G. (eds.), Proceed-
ings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpel-
lier, France, September 3-7, 2018, pp. 132–142. ACM,
2018. doi: 10.1145/3238147.3238187. URL https:
//doi.org/10.1145/3238147.3238187.

Zhang, Y., Finkelstein, A., and Harman, M. Search
based requirements optimisation: Existing work and
challenges. In Paech, B. and Rolland, C. (eds.), Re-
quirements Engineering: Foundation for Software Qual-
ity, 14th International Working Conference, REFSQ
2008, Montpellier, France, June 16-17, 2008, Pro-
ceedings, volume 5025 of Lecture Notes in Computer
Science, pp. 88–94. Springer, 2008. doi: 10.1007/
978-3-540-69062-7\ 8. URL https://doi.org/
10.1007/978-3-540-69062-7_8.

Zhou, H., Li, W., Kong, Z., Guo, J., Zhang, Y., Yu, B.,
Zhang, L., and Liu, C. Deepbillboard: systematic
physical-world testing of autonomous driving systems.

In Rothermel, G. and Bae, D. (eds.), ICSE ’20: 42nd In-
ternational Conference on Software Engineering, Seoul,
South Korea, 27 June - 19 July, 2020, pp. 347–358. ACM,
2020. doi: 10.1145/3377811.3380422. URL https:
//doi.org/10.1145/3377811.3380422.

https://www.youtube.com/watch?v=01_SVshk-MY
https://www.youtube.com/watch?v=01_SVshk-MY
https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car
https://www.youtube.com/watch?v=lTvYjERVAnY
https://www.youtube.com/watch?v=lTvYjERVAnY
https://www.youtube.com/watch?v=O88fXBx-Qdg
https://www.youtube.com/watch?v=O88fXBx-Qdg
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1007/978-3-540-69062-7_8
https://doi.org/10.1007/978-3-540-69062-7_8
https://doi.org/10.1145/3377811.3380422
https://doi.org/10.1145/3377811.3380422

