

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2020-IC-001

2020-IC-001

Deep-Diving into Documentation to Develop Improved

Java-to-Swift API Mapping
Zejun Zhang, Minxue Pan, Tian Zhang, Xinyu Zhou, Xuandong Li

Technical Report 2020

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

Deep-Diving into Documentation to Develop Improved
Java-to-Swift API Mapping

Zejun Zhang
826320663@qq.com

State Key Lab for Novel Software

Technology, Nanjing University

Nanjing, China

Minxue Pan∗

mxp@nju.edu.cn
State Key Lab for Novel Software

Technology, Nanjing University

Nanjing, China

Tian Zhang∗

ztluck@nju.edu.cn
State Key Lab for Novel Software

Technology, Nanjing University

Nanjing, China

Xinyu Zhou
161220181@smail.nju.edu.cn

State Key Lab for Novel Software

Technology, Nanjing University

Nanjing, China

Xuandong Li
lxd@nju.edu.cn

State Key Lab for Novel Software

Technology, Nanjing University

Nanjing, China

ABSTRACT

Application program interface (API) mapping is the key to the suc-

cess of code migration. Leveraging API documentation to map APIs

has been explored by previous studies, and recently, code-based

learning approaches have become the mainstream approach and

shown better results. However, learning approaches often require

a large amount of training data (e.g., projects implemented using

multiple languages or API mapping datasets), which are not widely

available. In contrast, API documentation is usually available, but

we have observed that much information in API documentation has

been underexploited. Therefore, we develop a deep-dive approach

to extensively explore API documentation to create improved API

mapping methods. Our documentation exploration approach in-

volves analyzing the functional description of APIs, and also consid-

ers the parameters and return values. The results of this analysis can

be used to generate not only one-to-one API mapping, but also com-

patible API sequences, thereby enabling one-to-many API mapping.

In addition, parameter-mapping relationships, which have often

been ignored in previous approaches, can be produced. We apply

this approach to map APIs from Java to Swift, and the experimental

results indicate that our deep-dive analysis of API documentation

leads to API mapping results that are superior to those generated

by existing approaches.

KEYWORDS

API mapping, document process, code migration

ACM Reference Format:

Zejun Zhang, Minxue Pan, Tian Zhang, Xinyu Zhou, and Xuandong Li. 2020.

Deep-Diving into Documentation to Develop Improved Java-to-Swift API

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7958-8/20/05. . . $15.00
https://doi.org/10.1145/3387904.3389282

Mapping. In 28th International Conference on Program Comprehension (ICPC

’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3387904.3389282

1 INTRODUCTION

To adapt to a cross-platform and multi-language environment, dif-

ferent versions of software projects are often released. However,

the rapid growth in the amount of software means that it is time-

consuming and laborious to develop multiple versions of software

projects. Therefore, to speed up the development of different ver-

sions of a software project, code-migration tools have been de-

veloped [1, 6, 7, 12, 21, 23, 25, 27, 30, 37, 38, 42]. These tools en-

able grammatical transformation, but they typically have little or

no cross-language API-mapping functionality. For example, Java2-

Csharp [7] transforms Java to C# and requires manually written

application program interface (API)-mapping pairs, j2swift [30]

transforms Java to Swift but does not support API mapping and

transformation, and j2sINFERER [1] transforms Java to Swift and

can support only a small amount of API mapping.

Many studies have been conducted to explore ways to reduce

the manual effort of API mapping [1, 9–11, 17, 20, 26, 28, 34, 35, 40,

41, 43, 44]. Earlier studies were focused on leveraging API docu-

mentation to map APIs, but recent studies have focused on using

code-based learning approaches to obtain better results. However,

these approaches all require a large amount of training data. In

addition, many approaches require bilingual projects, or even bilin-

gual code fragments implementing the same functions as training

data. However, as an experiment in [11] shows, such projects are

only 0.1% of the total collected projects, and to find bilingual code

fragments implementing the same functions can be even more diffi-

cult. Some other approaches [2, 28] require an API-mapping dataset

to generate more mappings. However, currently only Java to C#

API mapping [7] has such a dataset, which renders these other

approaches difficult to utilize to obtain API mapping between other

languages, such as Java and Swift.

Existing state-of-the-art approaches have another limitation, in

that most generate only coarse API mappings: i.e., parameter bind-

ing is not handled or is ignored by the approaches [2, 11, 26, 28], and

the many-to-many API mapping pairs contain much redundancy.

For example, a many-to-many API mapping pair about reading

106

2020 IEEE/ACM 28th International Conference on Program Comprehension (ICPC)

For Research Only

files produced by DeepAM [11] contains multiple file APIs such

as new, open, close and others. For code-migration purposes, this
API-mapping set clearly needs to be modified to a less detailed form,

such as an API mapping for an open operation, which is actually a
one-to-one API mapping.

These challenges cannot easily be addressed by code learning-

based approaches. Specifically, aside from the difficulty of acquiring

sufficient training data and understanding API usage to a high level

of detail, even obtaining the binding data types of APIs can be

difficult when dealing with dynamic programming languages. For

example, we could not extract the binding type information of a

Swift API just by statically parsing the source code, as Swift lacks

type information on the source level.

To address the above challenges, we carefully examined the API

documentation for various programming languages, such as Java,

C# and Swift, and observed that the API documentation authors had

illustrated the method, the parameter and the return descriptions

for an API in detail. Surprisingly, however, this abundant informa-

tion contained in API documentation has not been fully exploited

in documentation-based investigations [17, 34], wherein only the

method description has been considered. Therefore, we hypothesize

that we can also consider the parameter and the return value infor-

mation of API documentation, as well as the method description,

and thereby obtain the same or better API-mapping results relative

to those obtained from code-based approaches. This approach has

two advantages, namely that by also considering the parameter and

the return value information, inaccurate or incomplete method de-

scriptions may be avoided, and that by consideration of parameter

information we can implement parameter mapping.

Thus, in this study we use a deep-dive approach to examine

API documentation to achieve one-to-many API mapping. Our

approach first involves extraction of the behavior, input and output

information for an API from the API documentation. Second, we

design a similarity computation to synthesize the total similarity for

API mapping and use the Hungarian algorithm [24] to implement

parameter mapping. Third, to achieve one-to-many API mapping,

we build an API sequence graph (ASG) based on data type, and

subsequently design a dynamic searching algorithm to generate

target API sequences for a source API.

We use our approach to develop API mapping from Java to

Swift, as the current Java to Swift code-migration tools do not offer

manually-madeAPImapping datasets analogous to Java2CSharp [7],

despite Java and Swift being popular programming languages, thus

meaning that API mapping must be generated. We evaluate our

approach on 15 diverse and widely used Java classes, and determine

that the top-10 accuracy of the resulting one-to-one API mapping

and one-to-many API mapping is 76% and 50% respectively. These

are better results than TMAP [34] and SAR [2], and our approach

can also obtain accurate parameter binding. In addition, our ap-

proach identifies many API mappings with different characteristics,

such as one-to-one API mapping with different method names and

one-to-many API mapping with different numbers of parameters.

The main contributions of this paper are as follows:

• We thoroughly examine API documentation to extract three-

dimensional information for API mapping.

• We develop an approach that enables both one-to-one and

one-to-many API mapping, and also the parameter binding.

Figure 1: Approach overview

• Our experiment obtains 259 one-to-one and 28 one-to-many

API mappings, which also contain the parameter-mapping

relation, from Java to Swift. This approach is simpler than

existing approaches, and yet gives superior results.

The rest of the paper is organized as follows: Section 2 presents

the overview and the details of our approach. Section 3 describes

the experimental evaluation. Section 4 discusses limitations and

future work. Section 5 discusses related research. Finally, we give

our conclusions in Section 6.

2 APPROACH IN ACTION

2.1 Approach Overview

We restrict API mapping to one-to-one and one-to-many in our

study. Given a source API 𝑆 , and a sequence 𝑇 joined with several

APIs of the target language, the < 𝑆,𝑇 > is called an API mapping

if it satisfies three conditions: (1) The 𝑆 and 𝑇 implement the same

functionality; (2) The mapped parameters1 represent the same en-

tity; and (3) The final-states of the mapped parameters of 𝑆 and 𝑇
are the same, and the outputs of 𝑆 and 𝑇 represent the same entity.

Our approach comprises two phases, as shown in Figure 1. The

first phase involves building the API information model of the

source and target of APIs; this preprocesses API documentation

and then extracts API information models. The second phase is to

generate the API mapping; thus, a similarity computation is used

to synthesize the similarity of an API mapping, and API sequence-

generation is then used to manage one-to-many API mapping. Fi-

nally, we rank the generated API mappings.

We illustrate our approach, based on the above overview, by

using an API mapping example from Java to Swift in Figure 2.

For the API mapping < 𝑆 ,𝑇 > in the example, 𝑆 is a Java API

"startsWith(String prefix, int toffset)" of String class.
The 𝑇 is Swift API sequences consisting of two APIs, which are

"suffix (from start: String.Index) -> Substring" and

"starts (with possiblePrefix: Sequence) -> Bool" of String
class. API mapping involves returning whether the substring start-

ing at the specified index has the specified prefix. Figure 2 shows

part of the documentation of Java API S. There are three key parts

to our approach, as outlined below.

The first step is to extract three dimensional information

of the behavior, input and output from the informative API

documentation. We observe that developers often refer to the

method name, parameter list and return value type of an API sig-

nature to write behavior, input and output semantic information.

1The receiver of an API is considered as an implicit parameter.

107

For Research Only

Figure 2: An illustrating example

Therefore, we use the API signature as a guide to extract the API

information model. API method names encountered in the process

of behavioral information extraction provide key information, so

we use the names of all the API methods in the documentation as a

keyword bag from which behavioral information originates. In Fig-

ure 2, the keyword list of the method information is [’start’, ’spec’,

’prefix’, ’string’, ’subst’, ’begin’, ’test’, ’index’]. The input information

comprises parameter type and parameter semantic information

denoted by "Para_sem" box and "Para_type" box in Figure 2. Recall

that the first parameter is the “this” object since the API is not

static. When extracting semantic information of parameters, we

find that the parameter name generally represents an entity. The

parameter descriptions and method descriptions offer other key-

words to further explain the meaning of this entity, so each piece of

semantic parameter information can be represented by a two-tuple

which consists of a parameter name and a modifying word for it.

For example, a semantic unit of the parameter prefix is [prefix,
start]. The extraction of the output information is similar to that of

the input information. The details of this are given in Section 2.3.

The second step is to compute the similarity betweenAPIs

using the API informationmodel.Here, the texts are converted

to vector representations, and then the distance measure is used

to compute the similarity of two short texts. The Word2Vec [22]

is a simple and effective approach for word representation, and

its vector representation exhibits a linear structure, so we are able

to use simple vector arithmetic to represent a sentence. Thus, we

choose Word2Vec and cosine similarity to calculate the similarity of

each piece of dimensional information. Finally, we use a weighted

summation method to synthesize the total similarity. Parameter

mapping is solved using the Hungarian algorithm. In Figure 2, the

total similarity is 0.605 and is denoted by the "Total" box, and the

parameter-mapping relation is obtained, shown in the "Parameter

binding" box. The details of this are given in Section 2.4.

The third step shows how to obtain the one-to-manymap-

ping. That is, given a source API 𝑆 , we need to find a reasonable
and finite API sequence 𝑇 in the target API set to ensure it is as

equivalent as possible to 𝑆 . We observe that API call sequences

often exhibit data dependency, so we refer to these to build an ASG,

and traverse the ASG to search for API sequences. Specifically, we

need to determine a finite 𝑇 corresponding to 𝑆 . As our approach
is to compute the similarity of < 𝑆 ,𝑇 >, we determine whether to
include an API in 𝑇 by comparing the previous and current API

similarity. An API is added to 𝑇 if including it can lead to an in-

crease in the similarity reaching a threshold. The details are given

in Section 2.5.

2.2 Preprocessor

The preprocessor is used to simplify and improve the quality of the

subsequent extracted API information.

2.2.1 Domain Knowledge Preprocessor.

• Datatype Normalization: API documentation comprises

redundant or special data types, and these may influence the

data-type similarity computation. Therefore, we formulate

three rules, based on our observations. The first rule is to

collate all specific array data types into an “Array”. The

second rule is to replace the generic type parameters with

the root class. The third rule is to normalize the lambda

expression into “Function”.

• Parameter Supplementation: A non-static API can be

seen as having an implicit parameter “this” referring to its

owner object. So, if the API modifier does not contain “static”,

we add the class type of the API into the parameter list.

• Member Variable Transformation: A source API may

map to a member-variable of the target API. Therefore, we

formulate a rule to transform the member variable into an

API. Specifically, we take the variable name as the method

name and the data type as the return type, and make the

parameter list empty.

2.2.2 Text Preprocessor. We observe that a word of the API docu-

ment may be a stop word or an aggregation of several words. Also,

the various forms of the same word may influence the similarity

computation. Therefore, we design a text-preprocessing algorithm.

This algorithm first parses the given sentence and then removes

stop words. Next, it removes digital words and splits the remaining

words by a regular expression “[A-Z][ˆA-Z]+”. Splitting a word is

very important, as some words in an API document can be split

into several words. For example, an API method name is “equalsIg-

noreCase” which be split into “equals”, “ignore” and “case”. Finally,

we transform these words into lower case and use Lancaster [32]

to stem words. For example, the word “representing” is converted

to “repres”.

2.3 API Information Extraction

The API signature generally consists of a method name, a parameter

list and a return value. API documentation writers usually refer to

this information to write the method, parameter and return value

108

For Research Only

descriptions. Therefore, we extract three-dimensional information

from the API signature, namely the behavior, input and output

information, to build API information models.

An API information model 𝑎𝑝𝑖 is denoted by a five-tuple (𝑏𝑒ℎ, 𝑝𝑡 ,
𝑝𝑠 , 𝑟𝑡 , 𝑟𝑠), which is defined as follows:

• The behavior information 𝑏𝑒ℎ represents a functional de-

scription of the API. It consists of several keywords.

• The input information consists of the parameter semantic

information and the parameter type information, which are

expressed as 𝑝𝑠 , 𝑝𝑡 . We use a dependency relation2 and a

data type set as the basic unit of 𝑝𝑠 and 𝑝𝑡 , respectively.
• The output information consists of return value semantic

information and return type information, which are denoted

as 𝑟𝑠 , 𝑟𝑡 . We use a keyword set to represent 𝑟𝑠 and 𝑟𝑡 .

2.3.1 Behavior Information Extraction. We find that the method

name of the API signature provides information to concisely repre-

sent the functional behavior, and we use this to design an algorithm.

The algorithm first places all preprocessed API method names into

the keyword bag 𝑆 . Next, it assigns the words of the preprocessed
method name and the first sentence of preprocessed method de-

scriptions3 as the keyword bags 𝑊1 and 𝑊2, respectively, of an

API. Finally, it uses the following operation to obtain the behavior

information:

𝑏𝑒ℎ =𝑊1 ∪ (𝑊2 ∩ 𝑆) .

2.3.2 Input Information Extraction. The input information consists

of parameter semantic information 𝑝𝑠 and parameter type informa-
tion 𝑝𝑡 . We observe that API documentation writers usually write

parameter descriptions based on the parameter names of an API

signature, with these parameter descriptions providing necessary

information to explain parameter names. Therefore, to extract 𝑝𝑠 ,
we represent the specific semantic information with a set of two-

tuples, which consist of a parameter name and a keyword from

the parameter description or method description. The keywords

are determined by dependency relation [19] in NLP such that the

parameter name directly depends on the keyword. This ensures

selection of the most important words and obviates the need for

various complex sentences. For example, Figure 3 shows the de-

pendency relation of the method description of parameter "prefix"

of the Java API "startsWith(String prefix, int toffset)"
of String class. As "prefix" depends on "start", the unit of seman-

tic information of the "prefix" parameter consists of "prefix" and

"start". In particular, if the parameter name does not occur in the

description, we use the parameter name and the first noun or first

verb of the parameter description as the semantic information. To

extract 𝑝𝑡 , we first refer to the parameter type list in API signature,
and then extract additional class type occurred in the parameter

description. Considering that the primitive data types contain much

less information than the non-primitive data types, we only incor-

porate the latter that occur in the parameter descriptions and the

API signature into 𝑝𝑡 .

2.3.3 Output Information Extraction. Output information com-

prises return type information and return semantic information.

2Each dependency relation is a two-tuple.
3Javadoc Comments [31] specifies that the first sentence in Javadoc provides good
explanations for method’s behavior.

Figure 3: Dependency relation

The extraction algorithm is basically the same as that of the input

information extraction 2.3.2. However, to extract the output seman-

tic information we only retain keywords that exhibit a dependency

relation with the "return" keyword.

2.4 Similarity Computation

To clarify the similarity computation of a source API 𝑎𝑝𝑖 𝑗 and a
target API 𝑎𝑝𝑖𝑠 , we first give some basic knowledge.

2.4.1 Vectorization of API Information.

Vectorization of Semantic Information. To generate the word em-

beddings for API information, TMAP (a documentation-based ap-

proach) uses the traditional TF-IDF [18] to vectorize the word. We

employ the more modern technique Word2Vec, an unsupervised

algorithm, to vectorize the API semantic information of behavior,

input and output.

Vectorization of Class Type. The class type is the proper noun,

which does not frequently occur in documentation. Therefore, we

cannot use the Word2Vec to vectorize these. Fortunately, for each

class type, the API documentation provides class description in-

formation for all its APIs. It is thus appropriate to use TF [18], a

statistical method, to vectorize the class type.

2.4.2 Behavior Information Similarity. As the method descriptions

are short texts, we adopt a straightforward method of similarity

computation. The similarity is thus computed by averaging the

embeddings of all keywords of behavior information for an API

method, and then by calculating the cosine similarity between the

averaged embedding for two such methods as follows:

𝑠𝑖𝑚𝑏 = 𝑐𝑜𝑠 (
1

𝑚

𝑚∑
𝑖=1

𝛼 (𝑏 𝑗 [𝑖]),
1

𝑛

𝑛∑
𝑘=1

𝛼 (𝑏𝑠 [𝑘]))

where 𝛼(·) represents the Word2Vec vectorization, cos(·) represents

the cosine similarity, 𝑏 𝑗 is the behavior semantic information of a

source API, the𝑚 is the number of keywords of 𝑏 𝑗 , and 𝑏𝑠 and 𝑛 of

a target API are semantically equal to 𝑏 𝑗 and𝑚.

2.4.3 Input and Output Information Similarities.

Parameters Binding. We now apply the Hungarian algorithm to

the parameter binding. Assuming that we have a complete bipartite

graph𝐺 , where one vertex set contains parameters of a source API,
and the other contains parameters of a target API, an edge thereby

means that two parameters exhibit a mapping relation, where its

weight corresponds to its similarity of parameter mapping. Thus,

we must find the parameter-mapping matrix 𝐵 that satisfies the

maximum-weight matching. Each row of 𝐵 has two elements, 𝑖 and
𝑗 , which means the 𝑖th parameter of a source API must be mapped
to the 𝑗 th parameter of a target API. The 𝑠𝑖𝑚𝑖 is the maximum sum

of parameter similarity. We use the 𝐻𝑖𝑛𝑑 (·) function to obtain the

𝐵 and the 𝐻𝑠𝑖𝑚 (·) function to obtain the 𝑠𝑖𝑚𝑖 .

109

For Research Only

Input Information Similarity. The similarity of input informa-

tion needs to be a combination of the similarity of the input type

with the input semantic information. First, we compute the sim-

ilarity matrices of parameter type 𝐴𝑡 and of parameter semantic

information 𝐴𝑠 . Here, each value in the matrix is computed by the

Hungarian algorithm to get the maximum similarity of the two

parameters. Then, we use the Hungarian algorithm to obtain the

maximum similarity of 𝐴𝑠 and 𝐴𝑡 . Finally, we average the two

similarities to obtain the input information similarity 𝑠𝑖𝑚𝑖 , and

determine parameter mapping 𝐵, as shown in the equation 1.

𝑠𝑖𝑚𝑖 =
1

𝑛
(𝐻𝑠𝑖𝑚 (𝐴𝑡) + 𝐻𝑠𝑖𝑚 (𝐴𝑠))

𝐵 =

{
𝐻𝑖𝑛𝑑 (𝐴𝑡) 𝐻𝑠𝑖𝑚 (𝐴𝑡) ≥ 𝐻𝑠𝑖𝑚 (𝐴𝑠)

𝐻𝑖𝑛𝑑 (𝐴𝑠) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

where 𝑛 is the number of the mapped-parameters whose parameter

similarities are not zero.

Output Information Similarity. The computation of output in-

formation similarity 𝑠𝑖𝑚𝑟 is the same as the computation of input

information similarity.

2.4.4 Total Information Similarity. After computing the similarities

of three dimensional information, we use a weighted summation

to compute the total similarity 𝑠𝑖𝑚 as follows:

𝑠𝑖𝑚 =
1

3
(𝑤𝑏 × 𝑠𝑖𝑚𝑏 +𝑤𝑖 × 𝑠𝑖𝑚𝑖 +𝑤𝑟 × 𝑠𝑖𝑚𝑟),

where 𝑠𝑖𝑚𝑏 , 𝑠𝑖𝑚𝑖 , and 𝑠𝑖𝑚𝑟 represent the behavior, input, and out-

put similarities, and 𝑤𝑏 ,𝑤𝑖 , and 𝑤𝑟 are their weights. The values

of the weights are set to 1.4, 1.0, and 0.3, which are obtained by

experimental evaluation, as discussed in 3.3.1.

This computation is exemplified in Figure 2, in which the box

with "Para_sem" specifies the matrix 𝐴𝑠 and the box with "Para_-

type" specifies the matrix 𝐴𝑡 . Here, 𝐴𝑠 (1, 3) = 1.028, for example,
represents the similarity of the second parameter "prefix" of the

Java API startswith in String class and the fourth parameter

"possiblePrefix" of the Swift API starts in String class. According
to Equation 1, the input information similarity is computed as

(0 + 1.028 + 0.744 + 0.747 + 0.747 + 0)/4 ≈ 0.817 and the parameter-
binding relation corresponds to 𝐵 = [($0, $0), ($1, $3), ($2, $1)]. The
first element (0, 0) in 𝐵 represents that the first parameter "String"

of the Java API is mapped to the first parameter "String" of the Swift

API. The box with "Total" represents the total similarity, which is

computed by 𝑠𝑖𝑚 = (0.713× 1.4 + 0.817× 1.0 + 0× 0.3) × 1
3 ≈ 0.605.

2.5 API Sequences Generation

For generating one-to-many API mapping, we need to find the

target API sequence 𝑇 that maps the 𝑆 . This requires two problems
to be solved: how to determine if two APIs have connectivity, and

how to construct a finite sequence of APIs based on the 𝑆 . We use

the data dependency of APIs to determine their connectivity and

use the validity and similarity of APIs to ensure the finity of the

API sequence. Specifically, we first construct an ASG based on the

data-dependency of APIs. All APIs mostly derive from the top-three

target classes, like the class and the parameter types of 𝑆 . Then, we
design a search algorithm to construct 𝑇 with finity and validity.

Algorithm 1: recursively generate one sequence

Input: 𝐺 - API sequence graph

𝑎𝑝𝑖 𝑗 - a source API
𝑎𝑝𝑖𝑠 - a target API
𝑓 𝑙𝑎𝑔 - the parameter binding flag
𝑝𝑎𝑡ℎ - a valid API sequence

𝑠𝑖𝑚𝑝 - the parameter similarity

𝑝𝑆𝑒𝑡 - API sequences set
1 if 𝑓 𝑙𝑎𝑔 then
2 for api in 𝐺 [𝑎𝑝𝑖𝑠] do
3 𝑜𝑙𝑑𝑝𝑎𝑡ℎ=𝑝𝑎𝑡ℎ

4 add 𝑎𝑝𝑖 to 𝑝𝑎𝑡ℎ

5 𝑝𝑡=[],𝑝𝑠=[]

6 for api in 𝑝𝑎𝑡ℎ do
7 add the parameter types of 𝑎𝑝𝑖 to 𝑝𝑡
8 add the parameter semantic information of 𝑎𝑝𝑖

to 𝑝𝑠

9 𝑜𝑙𝑑𝑠𝑖𝑚𝑝=𝑠𝑖𝑚𝑝

10 Use equation 1 to get 𝐵 and 𝑠𝑖𝑚𝑝

11 𝑓 𝑙𝑎𝑔=IsValid(𝑝𝑎𝑡ℎ,𝐵)

12 if not 𝑓 𝑙𝑎𝑔 or 𝑠𝑖𝑚𝑝 - 𝑜𝑙𝑑𝑠𝑖𝑚𝑝 < 0.5 then
13 𝑝𝑆𝑒𝑡=𝑝𝑆𝑒𝑡 ∪ 𝑜𝑙𝑑𝑝𝑎𝑡ℎ

14 else

15 GenPath(𝐺 ,𝑎𝑝𝑖 𝑗 ,𝑎𝑝𝑖 ,𝑓 𝑙𝑎𝑔,𝑝𝑎𝑡ℎ,𝑠𝑖𝑚𝑝 ,𝑝𝑆𝑒𝑡)

We first provide some basic concepts of this approach, and then

describe the search algorithm 1.

2.5.1 Build ASG. For an ASG 𝐺 =< 𝑉 , 𝐸 > where 𝑉 is the APIs

set, (𝑎𝑝𝑖1, 𝑎𝑝𝑖2) ∈ 𝐸 ⇔ there exist intersecting data types between

the return type list of the 𝑎𝑝𝑖1 and the parameter type list of the
𝑎𝑝𝑖2.

2.5.2 Validity of the Parameter Binding. For a target API sequence

𝑇 , if there exists an API in 𝑇 having no parameter mapping with 𝑆 ,
then the parameter binding is invalid in 𝑇 . Otherwise, it is valid. It
is denoted by 𝐼𝑠𝑉𝑎𝑖𝑙𝑑 (·).

2.5.3 Generate Valid API Sequences. Algorithm 1 is used to gen-

erate an API sequence set 𝑝𝑆𝑒𝑡 for a source API 𝑎𝑝𝑖 𝑗 . First, we
select an initial point 𝑎𝑝𝑖𝑠 from the top-k target APIs of one-to-one

API mappings. Then, we add its preceding API 𝑎𝑝𝑖 into the API
sequence 𝑝𝑎𝑡ℎ (line2-4). Second, we orderly merge parameter types

and parameter semantic information of each API in 𝑝𝑎𝑡ℎ into a new

parameter type list 𝑝𝑡 and a new parameter semantic information

list 𝑝𝑠 (line5-8). Third, we compute parameter similarity 𝑠𝑖𝑚𝑝 and

parameter binding matrix 𝐵 according to equation 1. If the param-

eter binding is valid and the increment of parameter similarity is

>0.5, we repeat the process by using 𝑎𝑝𝑖 as the start point (line 15);
otherwise we add 𝑜𝑙𝑑𝑝𝑎𝑡ℎ to 𝑝𝑆𝑒𝑡 (line 12-13).

2.5.4 Similarity of One-to-Many API Mapping. To generate top-k

one-to-many API mappings, we need to compute their similarity

with the 𝑆 . The similarity computation is the same as that used in
Section 2.4, but also needs input, output and behavior information.

110

For Research Only

We thus take the output and the behavior information of the last

API in𝑇 as the output and the behavior information of𝑇 . Then, we
orderly combine the parameter type list and the parameter semantic

information of each API in 𝑇 as the input information.

3 EVALUATION

Based on our approach, we conduct experiments to answer the

following questions:

RQ1: What is the effectiveness of our approach in mining the one-

to-one API mapping and the one-to-many API mapping? Specifi-

cally, we consider four metrics: the top-k accuracy of one-to-one

API mappings and of one-to-many API mappings, the accuracy of

parameter binding, and the characteristics of API mapping pairs.

RQ2: Is it necessary to consider the parameter and return-value

information? In other words, is it reasonable that we use the three-

dimensional information for implementing the API mapping?

RQ3: How does the effectiveness of our approach compare with

that of existing documentation-based and code-based approaches?

3.1 Experimental Setup

All experiments are conducted on two computers: an Intel Core

i7-6700, running a Windows OS at 3.40 GHZ with 16 GB RAM,

and an Intel Core i5, running a MacOS at 2.3 GHz with 8 GB RAM.

The Java and Swift API documentation are from Android Devel-

oper [5] and iOS Developer [13], respectively. The Java API is a

public method of Android JDK classes, while the Swift API is a mem-

ber variable or a method of classes in the Swift and Foundation

library. As the Swift API documentation does not provide the list

of all classes, we consider only the classes declared with keywords

"struct|class|enum|protocol".

We select the APIs of 15 Java classes as our subjects. To make

sure these are diverse and frequently used, we first crawl 20 Java

projects with 500∼1000 number of ".java" files based on their star-

rating on Github [15]. Second, we use the Eclipse JDT compiler [14]

to count the Java APIs of each class present in the source code, and

then select the top-100 classes, to ensure that the selected APIs

are frequently used examples. Finally, we orderly remove interface

classes and similar classes such as Integer and Long from the top-

100 classes, and then random select 15 different classes, where these

data classes involve different data structures, i.e., the utility, the

I/O, the time, the system and the throwable, so as to ensure the

diversity of APIs.

To make a convincing API mapping dataset, three people with

Java and Swift programming knowledge separately use Java API

documentation and code examplewebsites such as GeeksforGeeks [39]

and Stack Overflow [16] to examine each example of these 15 classes

of Java API. Then, each person queries the Swift API documentation

and Stack Overflow information to determine if there exists Swift

API sequences that could map the Java API. If so, these Swift API

sequences are used as much as possible, as well as the correspond-

ing parameter mapping. We then write test cases to amend any

inconsistent API mappings that are given by these three people.

Next, we distribute the obtained API mapping pairs to 65 graduate

students who have more than three years of programming expe-

rience to verify the correctness of the dataset once again. Finally,

Table 1: Result of one-to-one API mapping

#C #T
top-1 top-5 top-10

#M Acc #M Acc #M Acc

ArrayList 18 10 0.56 12 0.67 13 0.72

LinkedList 26 13 0.5 20 0.77 20 0.77

HashSet 7 3 0.43 5 0.71 5 0.71

HashMap 13 3 0.23 8 0.62 8 0.62

Calendar 22 8 0.46 12 0.55 15 0.68

Collections 15 5 0.33 10 0.67 13 0.87

Arrays 7 3 0.43 3 0.43 4 0.57

String 41 23 0.56 32 0.78 40 0.98

Integer 28 7 0.25 14 0.50 16 0.57

Throwable 5 1 0.2 4 0.80 4 0.80

Thread 11 5 0.45 7 0.64 8 0.73

Class 11 5 0.45 5 0.45 7 0.64

File 29 3 0.10 11 0.38 21 0.72

PrintStream 23 11 0.48 17 0.74 20 0.87

InputStream 3 2 0.67 3 1.00 3 1.00

Summary 259 102 0.39 163 0.63 197 0.76

we obtain 259 one-to-one API mappings and 28 one-to-many API

mappings.

For the Word2Vec embedding, we adapt Gensim [36] and use a

skip-gram algorithm. The word dimension is 100, the window size

is 5, the other parameters are the default, and the training corpus

consists of all classes, methods, parameters and return descriptions.

3.2 RQ1: Effectiveness of API Mapping

3.2.1 Effectiveness of One-to-One API Mapping. Table 1 shows the

result of the one-to-one API mapping. Column "#C" lists class names

of Java classes. Column "#T" lists total numbers of Java methods

that possess one-to-one API mapping. Subcolumn "#M" lists the

total numbers of Java methods that our approach can successfully

find in the top-k ranked API mappings. Subcolumn "Acc" lists the

top-k accuracy [2]. The last row "Summary" lists the total numbers

for columns "#T" and "#M", and gives the corresponding average

top-k accuracy. From Table 1, it can be seen that the total number

of one-to-one API mappings is 259, the top-1 accuracy is 0.39, the

top-5 accuracy is 0.63 and the top-10 accuracy is 0.76. Therefore,

our approach is proven to find most one-to-one API mappings.

We also conduct a statistical analysis for undiscovered one-to-

one API mappings having "top-10" index rating. Figure 4 gives the

proportion of one-to-one API mappings that our approach cannot

find (for various reasons) to the total undiscovered number, where

the chart label lists the specific reasons for the failure to find a given

API mapping. Here, "behav_loss", "input_loss" and "behav&input_-

loss" represent behavioral similarity, input information similarity

as well as behavioral and input similarity, respectively, which are

reasons for correct one-to-one API mappings being ranked lower

than the wrong top-10 API mappings, and "one_to_many" repre-

sents our approach wrongly finding one-to-many API mappings for

Java APIs that should map one Swift API. First, the "beha_loss" is

>50%. We carefully inspect these wrong API mappings and find that

the Word2Vec cannot distinguish synonyms in the programming

111

For Research Only

Figure 4: Reasons of undiscovered API mappings

language domain. For example, the Java API "toString(int i)"
of Integer class means that "Returns a String object repre-
senting the specified integer", and this should map to the
swift API "description()" of Int class, which means "A textual
representation of this value". However, our approach cannot
identify the semantic identity of "integer" with "value" and "string"

with "textual", and this is the main reason for the accuracy of the

Integer Java class being <60%. Second, the "input_loss" is 21.0%,

mainly due to the gap between the input semantic information and

the data type. Third, the "behav&input_loss" is 16.1%, mainly due

to the integrated reasons of "beha_loss" and "input_loss". Fourth,

our approach finds one-to-many API mappings for supposed one-

to-one API mappings, because addition of a superfluous API leads

to an increase in the similarity of input information. This is the

main reason for the top-10 accuracy of arrays being <60%.

3.2.2 Effectiveness of One-to-Many API Mapping. Table 2 shows

the results of one-to-many API mappings. The column titled "EDR"

metric means the difficulty of modifying the wrong API mapping,

which is computed as

𝐸𝐷𝑅 =

min
𝑆𝑇 ∈𝑇𝑜𝑝−𝑘

𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑆𝑅, 𝑆𝑇)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑇)
.

Here, 𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑆𝑅, 𝑆𝑇) is the editing distance of each API map-
ping pair consisting of the correct Swift API sequence 𝑆𝑅 and the

one resulting API sequence 𝑆𝑇 , which represents the minimum

number of operations developers add/remove a Swift API to trans-

form the wrong API mappings in top-k ranked API mappings into

the correct API mappings. There are 28 one-to-many API mappings

in 15 Java classes, with a top-1 accuracy of 0.21, top-five accuracy

of 0.43 and a top-10 accuracy of 0.5, and thus this approach should

be useful. The average "EDR" of top-1 being <0.4, average "EDR"

of top-five and top-10 is approximately 0.2, meaning that wrong

one-to-many API mappings can be corrected by use of minor op-

erations. Next, we analyze the reasons that our approach fails to

find some of the one-to-many API mappings. First, we find that six

API mappings are lost because not all top-k APIs that are used to

begin searches contain the correct API. Second, there are nine API

mappings not found because an API is absent. In the nine incor-

rect API mappings, there are three Java APIs that have parameters

shared by two objects. For example, Java API "regionMatches(int
toffset, String other, int ooffset, int len)" of String
class means "Tests if two string regions are equal", and the last

Table 2: Result of one-to-many API mapping

#C #T
top-1 top-5 top-10

#M Acc EDR #M Acc EDR #M Acc EDR

ArrayList 2 0 0 0.489 0 0 0.489 0 0 0.489

LinkedList 4 2 0.5 0.145 3 0.75 0.132 3 0.75 0.132

Arrays 3 0 0 0.715 0 0 0.576 0 0 0.546

String 10 1 0.1 0.374 3 0.3 0.231 5 0.5 0.205

Throwable 2 0 0 0.446 0 0 0.446 0 0 0.446

PrintStream 6 2 0.33 0.394 5 0.83 0.051 5 0.83 0.039

InputStream 1 1 1 0 1 1 0 1 1 0

Summary 28 6 0.21 0.398 12 0.43 0.243 14 0.5 0.238

Figure 5: Effectiveness of parameter binding inAPImapping

parameter "len" is shared by two strings, which means an API for

obtaining a substring of a specified length should be used twice.

The absence of the remaining six API mappings is due to the se-

mantic gap in input information; for example, Java API "valueOf
(Array data, int offset, int count)" of String class means
"Returns the string representation of a specific subarray of the char

array argument", and its correct API mapping needs a Swift API 𝑆
"suffix(Int from, Int start)" of Array class. However, the
low semantic vector similarity of "start" and "offset" leads to a 𝑆
loss.

3.2.3 Effectiveness of Parameter Binding. Figure 5 shows the top-

10 result of parameter binding in all correct API mappings. The

horizontal axis lists the numbers of wrong parameter bindings for

an API mapping, and the vertical axis represents the corresponding

number of APIs. In 211 correct API mappings, the number of totally

correct parameter bindings is 174, equating to 82%. One and two

wrong parameter bindings are present in 17 and 16 API mappings,

respectively, equating to <10%. The maximum number of wrong

parameter bindings is three, and occurs in only four instances.

Therefore, our approach is effective for parameter binding.

3.2.4 Characteristic of API Mapping. In this section, we explore

the characteristics of one-to-one API mappings and one-to-many

API mappings from Java to Swift.

Table 3 lists examples of different characteristic one-to-one API

mappings. Column "api_attr" represents different characteristics:

"dif_p_n" are 𝑆 that have a different parameter number with𝑇 , "dif_-
m_n" represents the Levenstein distance of method names of 𝑆 and

𝑇 being <0.5, "constru" represents 𝑇 as a Swift constructor API and

"var" represents a Java API that should map to the Swift member

variable. Column "#T" represents the total number of API mappings

with corresponding characteristics and Column "#M" represents

112

For Research Only

Table 3: Characteristics of API mapping

2 api_attr #T #M % java_api swift_api

dif_p_n 97 65 0.67 ArrayList boolean addAll(Collection<? ex-
tends E> c)

Array insert<C>(contentsOf newElements: C, at i:
Int) where C : Collection, Self.Element == C.Element

dif_m_n 120 78 0.65 HashMap void clear() NSMapTable removeAllObjects()

constru 28 18 0.64 String static String valueOf(double d) String init<Subject>(describing instance: Subject)

var 73 56 0.77 File boolean isDirectory() FileWrapper var isDirectory: Bool { get }

summary 190 134 0.71

Table 4: Part of one-to-many API mapping

java_api swift_api

String boolean startsWith(String prefix,int toffset)
Tests if the substring of this string beginning at the specified index starts with
the specified prefix

String suffix(from start: String.Index) -> Substring;
String starts(Sequencewith:possiblePrefix, by areEquivalent: (Character, PossiblePrefix.Element) throws
-> Bool) rethrows -> Bool where PossiblePrefix : Sequence)-> Bool

String replaceFirst(String regex,String replacement)
Replaces the first substring of this string that matches the given regular expres-
sion with the given replacement

NSRegularExpression firstMatch(in string: String, options: NSRegularExpression.MatchingOptions = [],
range: NSRange) -> NSTextCheckingResult?;
NSRegularExpression replaceMatches(in string: NSMutableString, options: NSRegularExpres-
sion.MatchingOptions = [], range: NSRange, withTemplate templ: String) -> Int

LinkedList boolean remove(Object o)
Removes the first occurrence of the specified element from this list, if it is present

Array firstIndex(of element: Element) -> Int?;
Array remove(at index: Int) -> Element

FileInputStream int read(byte[] b, int off, int len) throws IOException
Reads up to len bytes of data from this input stream into an array of bytes

Array prefix(through position: Int) -> ArraySlice<Element> ;
InputStream read(_buffer: UnsafeMutablePointer<UInt8> , maxLength len: Int) -> Int

the number of API mappings that our approach can successfully

find. Column "%" represents the percentage, and columns "java_api"

and "swift_api" give an example of a corresponding characteristic

API mapping. The final row, "summary", gives the sum of Column

"#T" and Column "#M", and the average ratio of "%". In 259 one-to-

one API mappings, it can be seen that there are 190 API mappings

with these characteristics; this is a proportion of 73%, meaning that

the API mapping from Java to Swift is complex and diverse. The

most common characteristic is "dif_m_n" and "constru" is the least

common, but the latter proportion >10%, and thus this is not a truly

uncommon characteristic. The lowest and highest proportions of

these characteristic API mappings that our approach successfully

finds are 64% and 77%, respectively, showing that our approach

can effectively perform one-to-one API mapping involving distinct

characteristics.

Table 4 lists examples of different characteristic one-to-many API

mappings. The first example needs an API for the getting substring,

a situation that is widespread in one-to-many API mapping. The

second example is about the operation of regular expressions, and

is due to the class names of 𝑆 and 𝑇 exhibiting a semantic gap.

The third example needs an API to obtain the index of an element

to complete the remove action, and it thus exhibits a parameter

semantic gap. The fourth needs two APIs from different classes to

achieve the one-to-many API mapping.

RQ1 Summary: Our approach can effectively find one-to-one

and one-to-many API mappings. The parameter binding it also

generates is highly accurate. Our approach can also find diverse

characteristic API mappings.

3.3 RQ2: Sensitivity Analysis

3.3.1 Learning Combination Weights. To synthesize total similarity

based on the similarity of the behavior, input and output informa-

tion, we need to learn a weight for the three dimensional infor-

mation. We use the optimization function from [4], and randomly

choose 50 API mapping pairs from 259 API mapping pairs to learn

the weight.

Figure 6: The impact of iteration index on loss and accuracy

Figure 6 shows the value of loss and accuracy as a function of

iteration index. It can be seen that the accuracy increases and the

loss decreases as the iterations increase. When the iteration index

reaches approximately 20, the loss function tends to converge, and

the accuracy is also at a steady state: therefore, at this point the

optimization is correct. Finally, the weights of behavioral, input

and output information are 1.4, 1.0, 0.3, respectively, and the top-10

accuracy of the 259 one-to-one API mappings is 79.5%.

3.3.2 Dimension Information Analysis . As our similarity computa-

tion involves the three dimensions of behavior, input and output

information, we need to validate the effectiveness of the three-

dimensional information.

Table 5 shows the one-to-one API mapping results of involving

one dimensional information. The first row represents dimensional

information names, the second row represents the corresponding

top-10 accuracy, and the third row represents the change in the top-

10 accuracy of individual information compared with that of three-

dimensional information. From Table 5, we can see that the top-10

accuracy decreases by 14.7%, 45.5% and 54.8% if only behavioral,

input and output information is supplied. This result shows that

the behavioral information is most important, followed by input

information, and then output information. It also shows that the

learning weight is reasonable.

113

For Research Only

Table 5: Result of extracting one-dimensional information

beh_info input_info output_info

Top-10 Acc 0.648 0.340 0.247

change -0.147 -0.455 -0.548

Table 6: Result of dropping one-dimensional information

beh_loss input_loss output_loss

Top-10 Acc 0.429 0.660 0.784

change -0.366 -0.135 -0.011

Table 6 shows the result of one-to-one API mapping in the ab-

sence of one dimension information. From the table, we can see

that the top-10 accuracy decreases by 36.6%, 13.5% and 1.1% if our

approach ignores behavioral, input or output information, respec-

tively. Thus, lacking output information has the smallest weight

and thus the least effect on top-10 accuracy.

RQ2 Summary: Thus, the three-dimensional information and

the learning weights we use are reasonable and effective.

3.4 RQ3: Comparison of One-to-One API

Mapping

Previous works mainly focus on one-to-one API mapping, e.g.,

TMAP and SAR can only handle one-to-one API mapping. StaMiner

can generate many-to-many API mapping, however, no enough

bilingual projects written in Java and Swift are found to support

such an approach. Therefore, following existing literature, we only

compare the effectiveness of one-to-one API mapping.

3.4.1 Comparison with TMAP. To the best of our knowledge, we

are the first to manage API mapping from Java to Swift. Other API

mapping methods typically API-map Java to C#.

TMAP also uses a document-based approach to implement API

mappings. We use the source code [33] based on the Apache Lucene

[8] andmodify part of this code to adapt it to the Swift Programming

language. Owing to that TMAP only could handle one-to-one API

mapping, our approach does not perform the one-to-many step

here. The Table 7 shows the top-10 accuracy of the resulting one-

to-one API mappings; overall, the accuracy of every class in our

approach is greater than that of TMAP. For example, TMAP finds

two more APIs in the Thread class than does our method. However,

as TMAP contains more than 10 APIs with the same score and

it ranks the top-10 results by documentID, our results are better

than those of TMAP. More importantly, our top-10 accuracy is 80%,

which is better than the 38% top-10 accuracy of TMAP.

3.4.2 Advantage of the Document Analysis. In recent years, code-

based approaches have afforded good results in API mapping. Un-

fortunately, we find it is difficult to obtain sufficient high-quality

datasets for applying these approaches to API mapping from Java

to Swift, as briefly outlined below.

From the existing literatures, we found that in top-k accuracy,

SAR [2] is better than API2API [28] and StaMiner [26]. For training,

SAR uses 174 API mapping pairs with the same signature name;

however there is only one API mapping pair for Java to Swift with

this characteristic. Therefore, manual API datasets are required.

Table 7: Comparison of one-to-one API mappings between

TMAP and our approach

#C #T
TMAP Our

#M Acc #M Acc

ArrayList 18 12 0.67 15 0.83

LinkedList 26 10 0.38 23 0.88

HashSet 7 2 0.29 5 0.71

HashMap 13 5 0.38 8 0.62

Calendar 22 8 0.36 16 0.72

Collections 15 5 0.33 14 0.93

Arrays 7 1 0.14 6 0.86

String 41 19 0.46 41 1.00

Integer 28 6 0.21 16 0.57

Throwable 5 0 0 4 0.80

Thread 11 10 0.91 8 0.73

Class 11 0 0 7 0.64

File 29 3 0.10 20 0.69

PrintStream 23 16 0.70 20 0.87

InputStream 3 3 1.00 3 1.00

Summary 259 100 0.38 206 0.80

Meanwhile, the top-10 accuracy of our approach is >70% after it

learns the weight of 50 API-mapping datasets. However, SAR needs

174 API mapping pairs to do this. Its best result of top-10 accuracy

using 174 API mapping pairs is 76%, and our best results is 80%.

Therefore, our approach performs slightly better than SAR in terms

of top-10 accuracy. Moreover, our work can also manage the one-

to-many API mapping but SAR cannot.

In P, R, F metrics, DeepAM [11] achieves the best result in R and F

and StaMiner achieve the best result in P. Therefore, we only discuss

these two techniques. Both extract API sequences by statistically

analyzing source code, but as Swift is a dynamic language, we must

dynamically analyze the source code to determine to which class

the API belongs. Therefore, we write an automated script to compile

Swift projects into type-checked ASTs, and then extract the API

class type by parsing the AST.

For the StaMiner-based approach, we reimplement the source

code based on the paper [26] and build Groum [29] for the Java and

the Swift programming language, where this requires 9 bilingual

projects and collects aligning methods according to the similar-

ity of method names. We use the 11 bilingual projects offered by

j2sINFERER [1]. The number of aligned methods is 1288, which is

much smaller than the thousands of aligned methods in StaMiner.

This is due to the relatively small scale of bilingual projects and

the fact that some functional code is not yet implemented in Swift

projects. After extracting API sequences based on Groum, only 384

aligned API sequences remain because of loss of API call sites or

compilation failures. This is far fewer than the 34,628 API sequences

of Java-to-C#. For the dataset, StaMiner could only find one correct

one-to-one API mapping, i.e., that being the Java API "valueof"
of String class and the Swift API "init" of String class.
DeepAM needs millions of <API sequences and descriptions>

pairs. These API sequences are API call sequences of the codes of

individual function, and the descriptions are function-level code

comments. We crawl 1000 projects for Java and Swift separately

114

For Research Only

based on their star-rating on Github, and find that the numbers of

<API sequences, description> of Java projects and Swift projects are

321,469 and 1,674, respectively. We can see that the <API sequence
and description> numbers of Java projects are hundreds of times

more than for Swift projects. This is due to Swift projects having

fewer methods and comments than Java projects, and to the fact

that the Swift method lacks API call sites or has existing syntax

errors. Therefore, the difference between Java and Swift is too large

for processing: i.e., it is impossible to collect the millions of <API
sequences and description> pairs to obtain a good result.

RQ3 Summary: Our document-based approach performs bet-

ter and is simpler than previous document-based and code-based

approaches.

4 LIMITATIONS

Although our document-based approach avoids different semantic

spaces in different programming languages, our result may be in-

fluenced by the quality of API documentation. However, given the

development of standardized API documents, we believe that our

approach has great promise. Our approach also involves the setting

of parameters, and thus even if the multi-dimensional information

we use does improve the effectiveness of the API mapping, it faces

the problem of weight-selection across three dimensions. However,

as well as our approach being able to learn a weight through train-

ing, it can also adapt to the API mapping of other programming

languages and only require a small dataset to fine-tune the weight

to achieve an optimal result. We alleviate possible faults in our API

mapping dataset by writing test cases, which are verified by 65

graduate students with more than three years of programming ex-

perience. In the future, we will write complete test cases and invite

professional Java and Swift developers to check these to ensure

correctness.

5 RELATEDWORK

There are many related studies of API mapping. These can be di-

vided into three approaches: code-based, documentation-based and

code-comment-based approaches.

In terms of code-basedworks,MAM [44] collects bilingual projects

from Java to C#. First, this method finds matching functional code

fragments by comparing similarities of method names, and then

builds ATG (API Transformation Graph) ATG for these. Second,

it compares similarities of node names and types in two ATGs to

realize many-to-many API mappings. However, MAM can only find

API mappings with relatively high-similarity API method names.

StaMiner [26] uses the same dataset as MAM, but, uniquely, uses

statistical machine translation to achieve many-to-many API map-

ping. However, StaMiner usually produces coarse many-to-many

API mappings. Rosetta [9] also collects bilingual projects from Java

ME to Android and the same functional code fragments, and then

uses probabilistic inference to extract likely one-to-two mappings.

However, Rosetta only supports API mapping with up to two APIs.

The API2API [28] does not need bilingual projects of Java and C#.

It uses API embeddings for API usages and then learns a transfor-

mation matrix to realize the API mapping. However, it needs many

API mapping pairs as the dataset. SAR [2] avoids the prepared API

mapping datasets and collects API pairs based on the same API

signatures. It uses GAN (generative adversarial networks) to further

learn a better transformation matrix 𝑇 , and then makes refinement
to learn an optimal 𝑇 . However, API2API and SAR can only find

one-to-one API mapping and cannot manage parameter mapping.

Finally, J2sINFERER [1] can find minor API mappings from Java to

Swift because it focuses only on syntactic transformation. Our ap-

proach is better than all of the above approaches, as it does not need

parallel or large numbers of projects, and it can manage parameter

mapping.

TMAP [34] is the main approach similar to ours, in that it is

based on API documentation. Thus, TMAP first extracts necessary

information to build an Indexer for each API, and then extracts

top-k keywords based on TF-IDF to build a Query. Finally, for any

API 𝐼 , the Searcher asks the Query for all APIs having the same
keywords as 𝐼 , and then ranks them according to cosine similarity.

Our approach also uses API documentation to realize API mapping,

but extracts three-dimensional information for an API, and achieves

a better API mapping result than TMAP.

The last group of related works are DeepAM [11] and the ap-

proach of Chen et al. [3]. DeepAM first collects a large number

of <API sequences and descriptions> as a dataset. Next, it uses a

sequence-to-sequence framework to encode API sequences into

semantic vectors and then calculates cosine similarity to implement

alignment of API sequences. It uses the same algorithm as StaMiner

to handle the many-to-many API mapping. However, its many-to-

many API mappings are coarse, like those of StaMiner. The method

of Chen et al. [3] collects <API sequences, descriptions and method
names> as the dataset. It then determines the likelihood of analogi-

cal API mappings by combining API usage, name and document

similarities. However, this approach can only manage one-to-one

API mapping across third-party libraries.

6 CONCLUSION

In this paper, we conduct a deep-dive examination of API docu-

mentation to enable Java-to-Swift API mapping. We use a novel,

in-depth approach to analyze API documentation to extract three-

dimensional information, and use the Hungarian algorithm to im-

plement one-to-one API mapping. Our approach can also find one-

to-many API mappings by building API sequence graphs.

Compared to code-based approaches, our document-based ap-

proach requires less selective datasets (e.g., no need of bilingual

projects or a large number of projects and API mapping pairs) than

those required for code-based approaches. Meanwhile, it is also

superior to other document-based approaches, as it can achieve

one-to-many API mapping and implement parameter-binding, with

the latter being ignored by the previous methods. The successful

application of our approach to 15 diverse Java classes underscores

its effectiveness.

ACKNOWLEDGMENTS

This research is supported by the National Key R&DProgram (Grant

No. 2017YFB1001801), the National Natural Science Foundation

(Nos. 61690204, 61972193), the Jiangsu Provincial Key R&D Program

(No. BE2017004-4), and the Fundamental Research Funds for the

Central Universities (Nos. 14380020, 14380022) of China.

115

For Research Only

REFERENCES
[1] Kijin An, Na Meng, and Eli Tilevich. 2018. Automatic inference of Java-to-

swift translation rules for porting mobile applications. In Proceedings of the
5th International Conference on Mobile Software Engineering and Systems, MO-
BILESoft@ICSE 2018, Gothenburg, Sweden, May 27 - 28, 2018. 180–190. https:
//doi.org/10.1145/3197231.3197240

[2] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2019. SAR: Learning Cross-language
API Mappings with Little Knowledge. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2019). ACM, 796–806. https:
//doi.org/10.1145/3338906.3338924

[3] C. Chen, Z. Xing, Y. Liu, and K. L. X. Ong. 2019. Mining Likely Analogical
APIs across Third-Party Libraries via Large-Scale Unsupervised API Semantics
Embedding. IEEE Transactions on Software Engineering (2019), 1–1. https:
//doi.org/10.1109/TSE.2019.2896123

[4] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare,
Mark Marron, Sailesh R, and Subhajit Roy. 2016. Program synthesis using
natural language. In Proceedings of the 38th International Conference on Soft-
ware Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016. 345–356. https:
//doi.org/10.1145/2884781.2884786

[5] Google Developers. 2019. Android API Documentation. https://
developer.android.com/reference/. Accessed Nov. 4, 2019.

[6] Mohammad El-Ramly, Rihab Eltayeb, and Hisham Alla. 2006. An Experiment
in Automatic Conversion of Legacy Java Programs to C#. IEEE International
Conference on Computer Systems and Applications, 2006 2006, 1037–1045. https:
//doi.org/10.1109/AICCSA.2006.205215

[7] Alexandre FAU and Christian Mauceri. 2019. Java 2 CSharp Translator for Eclipse.
http://sourceforge.net/projects/j2cstranslator/. Accessed Nov. 4, 2019.

[8] The Apache Software Foundation. 2019. Apache Lucene Core. http://
lucene.apache.org/core/. Accessed Nov. 4, 2019.

[9] Amruta Gokhale, Vinod Ganapathy, and Yogesh Padmanaban. 2013. Inferring
Likely Mappings between APIs. In Proceedings of the 2013 International Conference
on Software Engineering (ICSE ’13). IEEE Press, 82–91.

[10] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016. 631–642. https://doi.org/10.1145/2950290.2950334

[11] XiaodongGu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017. DeepAM:
Migrate APIs with Multi-Modal Sequence to Sequence Learning. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence (IJCAI’17). AAAI
Press, 3675–3681.

[12] Ahmed E. Hassan and Richard C. Holt. 2005. A lightweight approach formigrating
web frameworks. Information & Software Technology 47, 8 (2005), 521–532. https:
//doi.org/10.1016/j.infsof .2004.10.002

[13] Apple Inc. 2019. iOS API Documentation. https://developer.apple.com/
documentation/. Accessed Nov. 4, 2019.

[14] Eclipse Foundation Inc. 2019. Eclipse JDT. http://www.eclipse.org/jdt/. Accessed
Nov. 4, 2019.

[15] GitHub Inc. 2019. GitHub. https://github.com. Accessed Nov. 4, 2019.
[16] Stack Exchange Inc. 2019. Stack Overflow. https://stackoverflow.com/. Accessed

Nov. 4, 2019.
[17] Yangyang Lu, Ge Li, Zelong Zhao, Linfeng Wen, and Zhi Jin. 2017. Learning

to Infer API Mappings from API Documents. In Knowledge Science, Engineering
and Management - 10th International Conference, KSEM 2017, Melbourne, VIC,
Australia, August 19-20, 2017, Proceedings. 237–248. https://doi.org/10.1007/978-
3-319-63558-3_20

[18] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to Information Retrieval. Cambridge University Press.

[19] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations. 55–60. http://www.aclweb.org/anthology/P/P14/P14-5010

[20] Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. 2012. A history-based
matching approach to identification of framework evolution. In 34th International
Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland.
353–363. https://doi.org/10.1109/ICSE.2012.6227179

[21] Bertrand Meyer, Luciano Baresi, and Mira Mezini (Eds.). 2013. Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian
Federation, August 18-26, 2013. ACM. http://dl.acm.org/citation.cfm?id=2491411

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composi-
tionality. In Proceedings of 27th Annual Conference on Neural Information Pro-
cessing Systems. December 5-8, 2013, Lake Tahoe, Nevada, United States. 3111–
3119. http://papers.nips.cc/paper/5021-distributed-representations-of-words-
and-phrases-and-their-compositionality

[23] MaximMossienko. 2003. Automated Cobol to Java Recycling. In 7th European Con-
ference on Software Maintenance and Reengineering (CSMR 2003), 26-28 March 2003,

Benevento, Italy, Proceedings. 40. https://doi.org/10.1109/CSMR.2003.1192409
[24] James Munkres. 1957. Algorithms for the assignment and transportation prob-

lems. Journal of the society for industrial and applied mathematics 5, 1 (1957),
32–38.

[25] Nguyen, Anh Tuan, Nguyen, Tung Thanh, and Tien N. Nguyen. 2013. Lexical
Statistical Machine Translation for Language Migration. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013).
ACM, New York, NY, USA, 651–654. https://doi.org/10.1145/2491411.2494584

[26] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N.
Nguyen. 2014. Statistical learning approach for mining API usage mappings
for code migration. In ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014. 457–468.
https://doi.org/10.1145/2642937.2643010

[27] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. 2014. Migrating
code with statistical machine translation. In 36th International Conference on
Software Engineering, ICSE ’14, Companion Proceedings, Hyderabad, India, May 31
- June 07, 2014. 544–547. https://doi.org/10.1145/2591062.2591072

[28] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen.
2017. Exploring API embedding for API usages and applications. In Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017. 438–449. https://doi.org/10.1109/ICSE.2017.47

[29] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and
Tien N. Nguyen. 2009. Graph-Based Mining of Multiple Object Usage Patterns.
In Proceedings of the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC/FSE ’09). Association for Computing Machinery, New York,
NY, USA, 383–392. https://doi.org/10.1145/1595696.1595767

[30] Patrick Niemeyer. 2019. j2swift. https://github.com/patniemeyer/j2swift. Ac-
cessed Nov. 4, 2019.

[31] Oracle. 2019. Javadoc Comments. https://docs.oracle.com/javase/8/docs/
technotes/tools/windows/javadoc.html#overviewcomment. Accessed Nov. 4,
2019.

[32] Chris D. Paice. 1990. Another Stemmer. SIGIR Forum 24, 3 (Nov. 1990), 56–61.
https://doi.org/10.1145/101306.101310

[33] Rahul Pandita, Raoul Praful Jetley, Sithu D Sudarsan, and Laurie Williams. 2019.
APISIM. https://sites.google.com/a/ncsu.edu/apisim/. Accessed Nov. 4, 2019.

[34] Rahul Pandita, Raoul Praful Jetley, Sithu D. Sudarsan, and Laurie A. Williams.
2015. Discovering likely mappings between APIs using text mining. In 15th
IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2015, Bremen, Germany, September 27-28, 2015. 231–240. https://doi.org/
10.1109/SCAM.2015.7335419

[35] Hung Dang Phan, Anh Tuan Nguyen, Trong Duc Nguyen, and Tien N. Nguyen.
2017. Statistical migration of API usages. In Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28,
2017 - Companion Volume. 47–50. https://doi.org/10.1109/ICSE-C.2017.17

[36] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, 45–50. http://is.muni.cz/publication/
884893/en.

[37] Harry M. Sneed. 2010. Migrating from COBOL to Java. In 26th IEEE International
Conference on Software Maintenance (ICSM 2010), September 12-18, 2010, Timisoara,
Romania. 1–7. https://doi.org/10.1109/ICSM.2010.5609583

[38] Marco Trudel, Carlo A. Furia, Martin Nordio, Bertrand Meyer, and Manuel Oriol.
2012. C to O-O Translation: Beyond the Easy Stuff. In 19th Working Conference
on Reverse Engineering, WCRE 2012, Kingston, ON, Canada, October 15-18, 2012.
19–28. https://doi.org/10.1109/WCRE.2012.12

[39] PRAYAGRAJ Uttar Pradesh Public Service Commission(UPPSC). 2019. Geeks-
forGeeks. https://www.geeksforgeeks.org/. Accessed Nov. 4, 2019.

[40] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Miryung Kim. 2010.
AURA: a hybrid approach to identify framework evolution. In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE
2010, Cape Town, South Africa, 1-8 May 2010. 325–334. https://doi.org/10.1145/
1806799.1806848

[41] Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: inference and application
of API migration edits. In Proceedings of the 27th International Conference on
Program Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31, 2019. 335–
346. https://dl.acm.org/citation.cfm?id=3339128

[42] Kazuki Yasumatsu and Norihisa Doi. 1995. SPiCE: A System for Translating
Smalltalk Programs Into a C Environment. IEEE Trans. Software Eng. 21, 11 (1995),
902–912. https://doi.org/10.1109/32.473219

[43] Hao Zhong, Suresh Thummalapenta, and Tao Xie. 2013. Exposing Behavioral Dif-
ferences in Cross-Language APIMapping Relations. In Fundamental Approaches to
Software Engineering - 16th International Conference, FASE 2013, Rome, Italy, March
16-24, 2013. Proceedings. 130–145. https://doi.org/10.1007/978-3-642-37057-1_10

[44] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. 2010.
Mining API mapping for language migration. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,
South Africa, 1-8 May 2010. 195–204. https://doi.org/10.1145/1806799.1806831

116

For Research Only

