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a b s t r a c t 

The last decade has seen a vast proliferation of mobile apps. To improve the reliability of such apps, 

various techniques have been developed to automatically generate tests for them. While such techniques 

have been proven to be useful in producing test suites that achieve significant levels of code coverage, 

there is still enormous demand for techniques that effectively generate tests to exercise more code and 

detect more bugs of apps. 

We propose in this paper the Adamant approach to automated Android app testing. Adamant utilizes 

models that incorporate valuable human knowledge about the behaviours of the app under consideration 

to guide effective test generation, and the models are encoded in an extended version of the Interaction 

Flow Modeling Language (IFML). 

In an experimental evaluation on 10 open source Android apps, Adamant generated over 130 test 

actions per minute, achieved around 68% code coverage, and exposed 8 real bugs, significantly outper- 

forming other test generation tools like Monkey , AndroidRipper , and Gator in terms of code covered 

and bugs detected. 

© 2019 Elsevier Inc. All rights reserved. 

1. Introduction 

The past few years have seen a rapid growth in the popular- 

ity of mobile devices and applications running on them, or mo- 

bile apps ( de Cleva Farto and Endo, 2015 ). To ensure the relia- 

bility of mobile apps, developers conduct various quality assur- 

ance activities, among which testing is the most frequently per- 

formed ( Muccini et al., 2012; Amalfitano et al., 2015a; 2015b ). For 

testing to be effective, tests of good quality are essential, but man- 

ual construction of those tests can be tedious and highly time con- 

suming, leading to increased costs for mobile app testing. 

In view of that, researchers developed many techniques and 

tools over the years to automatically generate tests for mobile 

apps. Most of such works target the Android platform, mainly 

due to its open-source nature and the fact that it has the largest 

share of the mobile market ( Choudhary et al., 2015 ). For instance, 

Monkey Google is a representative of the state-of-the-art Android 

test generation techniques. Monkey implements a random strat- 

egy to automatically generate test scripts, and it is more effec- 

˚
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tive than most other Android test generation tools that are pub- 

licly available ( Choudhary et al., 2015 ). Relying solely on computer 

automation, Monkey is good at having simple interactions with 

the app under testing. It, however, lacks a good knowledge of the 

app and has limited power in exercising important and complex 

functionalities of the app. As a result, code coverage achieved by 

test scripts produced by Monkey is often insufficient: Less than 

50% of the code was covered in an experiment on 68 open-source 

apps ( Choudhary et al., 2015 ), and lower code coverage was re- 

ported in another experiment with an industrial-level app ( Zeng 

et al., 2016 ). 

We argue that human knowledge should be incorporated into 

test generation to make the process more effective, and models 

that explicitly encode the knowledge provide a good means of 

such incorporation. In this work, we propose the Adamant ap- 

proach that conveys, through an input model, valuable knowl- 

edge of the app at hand to the test generation process cost- 

effectively. Guided by such knowledge, Adamant can then generate 

test scripts that exercise more code and detect more bugs of the 

app. 

The input model is encoded in an extended version of the In- 

teraction Flow Modeling Language (IFML) ( Brambilla and Frater- 

nali, 2014 ), a graphical modeling language originally designed for 

“expressing the content, user interaction and control behaviour of 

https://doi.org/10.1016/j.jss.2019.110433 
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Fig. 1. An IFML model specifying a user login procedure. 

the front-end of software applications”. 1 Graphical modeling lan- 

guages, with intuitive notations and rigorous semantics, have been 

proven successful in modeling traditional desktop applications, but 

the same success has not been witnessed on the Android plat- 

form. Compared with desktop applications, Android apps’ execu- 

tions highly rely on the graphical user interfaces (GUIs) of apps, 

hence it is more straightforward for engineers to treat GUI ele- 

ments as first-class citizens, while events as associated to GUI el- 

ements and therefore auxiliary, in modeling apps. However, exist- 

ing modeling mechanisms like event-flow graphs ( Amalfitano et al., 

2015b ) and finite-state machines ( Yang et al., 2013 ) focus more on 

events or actions firing the events, rather than GUI elements. 

As a newly standardized graphical language for modeling user 

interactions, IFML provides already mechanisms to model most as- 

pects of mobile app GUIs, however it also suffers from a few limi- 

tations that make modeling Android apps less straightforward and 

IFML models less useful for Android test generation. For exam- 

ple, the modeling of Android-specific GUI elements like Notifica- 

tionAreas and events like SwipeEvent and PinchEvent is not read- 

ily supported by IFML. More importantly, the language does not 

support the modeling of updates to GUI-related application states. 

Adamant extends IFML accordingly to address the limitations. 

Given the model for an Android app in extended IFML (E-IFML), 

Adamant traverses the model to produce event sequences for the 

app, with the feasibility of each event sequence constrained by a 

group of conditions on the inputs to the model. Adamant then em- 

ploys a constraint solver to find appropriate values for the inputs 

so that the conditions are satisfied, and translates each event se- 

quence with the corresponding input values into a test script. 

We implemented the approach into a tool, also called Adamant , 

that offers a graphical front-end for E-IFML model construction and 

a back-end for Android test generation and execution. To evalu- 

ate the performance of Adamant , we applied it to generate test 

scripts for 10 open source Android apps. Adamant generated over 

130 test actions per minute on average, and the produced test 

scripts managed to cover around 68% of the code and reveal 8 real 

bugs. We also applied other state-of-the-art test generation tools 

like Monkey Google , AndroidRipper ( Amalfitano et al., 2012 ), and 

Gator ( Yang et al., 2015 ) to the same apps. Experimental results 

show that Adamant significantly outperformed all the three tools 

in terms of both statement coverage achieved and number of bugs 

detected. In another small-scale controlled experiment, we com- 

pared test generation using Adamant and manually. As the result, 

the two approaches achieved comparable cost-effectiveness. 

1 http://www.ifml.org/ . 

While Adamant expects as the input E-IFML models for the 

apps under testing and the construction of those models takes ad- 

ditional time, the benefits of adopting a model-driven testing ap- 

proach like Adamant are multifold and beyond just test genera- 

tion. Precise modeling forces developers to devise an explicit de- 

sign for an app, which is one of the key ingredients for successful 

software development ( Whittle et al., 2013 ). Besides, models can 

also improve the development process, e.g., by fostering the sepa- 

ration of concerns ( Brambilla et al., 2014 ), improving the communi- 

cation between participants in a project ( Hailpern and Tarr, 2006 ), 

enabling the analysis, verification, and validation of the apps at de- 

sign time ( Karsai et al., 2003; Marland and Kim, 2018 ), and acceler- 

ating the development of apps through code generation ( Marland 

and Kim, 2018 ). Such benefits also add extra value to the Adamant 

approach. 

The contributions of this paper can be summarized as follows: 

• Theory : To the best of our knowledge, E-IFML is the first exten- 

sion of IFML that enables the generation of concrete test scripts 

for Android apps; 
• Tool : We implemented the Adamant technique into a tool, also 

named Adamant , that automatically generates test scripts for 

Android apps based on models in E-IFML. The tool is publicly 

available at: https://github.com/ADAMANT2018/ADAMANT . 
• Experiments : We empirically evaluated Adamant on 10 open 

source Android apps; The generated test scripts achieved high 

code coverage on object apps and detected real bugs. 

The remainder of this paper is organized as follows. 

Section 2 uses an example to introduce the core concepts in 

IFML. Section 3 introduces the extensions to IFML for facilitating 

Android GUI modeling. Section 4 formally defines E-IFML models. 

Section 5 presents the detailed process of Android test genera- 

tion based on E-IFML models. Section 6 evaluates Adamant with 

real-world apps. Section 7 reviews related work and Section 8 con- 

cludes the paper. 

2. The Interaction Flow Modeling Language 

The Interaction Flow Modeling Language (IFML) supports the 

modeling of user interfaces for applications on various types of 

platforms by defining both a set of generic core concepts that are 

common to those user interfaces and extension mechanisms to al- 

low the refinement of the semantics of those concepts. This section 

briefly introduces IFML concepts that are essential in modeling An- 

droid app GUIs. An IFML model specifying the user login procedure 

through a GUI is presented in Fig. 1 as a running example. 

In IFML, ViewContainer s are used to help organize elements 

on GUIs. A ViewContainer may comprise other ViewContainers or 
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ViewContainer

AndroidAppContainer AndroidSystemContainer

Drawer Screen ToolBar Web NotificationArea

Fig. 2. The extension to ViewContainer. 

Fig. 3. The extension to ViewComponent. 

ViewComponent s that display contents and support user interac- 

tions. 

In the example, a ViewContainer UserLogin contains three 

ViewComponents, among which Username and Password are 

used for accepting textual inputs from the user. To facilitate the 

reference to those inputs in other parts of the model, two typed 

Parameter s username and password are associated to the two 

components. ViewContainers and ViewComponents are collectively 

referred to as view elements in this work. 

Event s, denoted using small circles, can be triggered on view 

elements and handled by Action s, denoted using hexagons. An ac- 

tion represents a possibly parameterized piece of business logic. 

Actions are connected with their corresponding events through In- 

teractionFlow s, denoted using directed lines pointing from the lat- 

ter to the former, and their parameters are associated with the 

related InteractionFlows. In IFML, input-output dependencies be- 

tween view elements or between view elements and actions are 

represented by ParameterBinding s; A ParameterBindingGroup is sim- 

ply a group of ParameterBindings. For a simple event only caus- 

ing a view transition, an InteractionFlow can also be used to di- 

rectly connect the event and the destination view. In the example, 

when a touch event is triggered on ViewComponent Login , action 

Authentication will be executed to handle the event. The Param- 

eterBindingGroup associated with the corresponding Interaction- 

Flow binds parameters username and password of UserLogin 

to those with the same names in the action. 2 Action Authenti- 

cation then decides whether the credentials are valid or not and 

triggers an ActionEvent , i.e., a specific type of event, upon its com- 

pletion. There are two InteractionFlows associated with the Action- 

Event, which one to follow is decided by the evaluation result of 

the ActionEvent’s Interaction Flow Expression , denoted using a rect- 

angle. Following one of the two InteractionFlows, either ViewCon- 

2 Parameters are all unique, even though they apparently share the same name. 

tainer LoginFail or ViewContainer LoginSuccess will be shown. 

On ViewContainer LoginFail , a touch event triggered on ViewCom- 

ponent Retry will transit the app back to UserLogin so that the 

user can try to login again; On ViewContainer LoginSuccess , a 

scroll event will cause the app to refresh the display of ViewCom- 

ponent UserDetailInfo in the container. 

The example demonstrates the usage of core concepts in IFML. 

Given the direct correspondence between those concepts and com- 

mon notions in GUI design, GUI modeling in IFML is natural and 

straightforward in many cases. IFML, however, lacks a good support 

for modeling certain Android view elements, events, and actions, 

which adds to the difficulties in modeling Android apps with IFML 

and makes the resultant models less useful for test generation. In 

the next section, we extend the language so that it can be readily 

used in Android app modeling and test generation. 

3. IFML extension for Android app modeling 

To better model the interactions between users and Android 

apps, we extend existing mechanisms provided by IFML from three 

aspects regarding view elements, events, and user interactions. 

3.1. Extensions to view elements 

In order to improve IFML’s expressiveness in modeling Android 

specific contents, we extend the concepts of ViewContainer and 

ViewComponent as illustrated in Figs. 2 and 3 , respectively. In par- 

ticular, we add two subclasses of ViewContainer called AndroidAp- 

pContainer and AndroidSystemContainer . An AndroidAppContainer 

defines an area on an Android GUI that corresponds to a Screen , 

a ToolBar , a Web , or a navigation Drawer; 3 An AndroidSystemCon- 

tainer defines an area called NotificationArea , which is managed by 

3 A navigation drawer is a sliding panel that can be used to show the app’s nav- 

igation menu. It is hidden when not in use. 
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ViewElementEvent

AndroidElementEvent

TouchEvent DoubleTapEvent LongPressEvent PinchEvent

ScrollEvent SwipeEvent DragDropEvent InputEvent

Fig. 4. The extension to ViewElementEvent. 

the system, instead of by individual apps, and displays notifica- 

tions from the Android system. These specific containers are intro- 

duced to help restrict the components that can appear in certain 

GUI areas and facilitate locating widgets during testing. For exam- 

ple, large images or long texts should not be used in a ToolBar, and 

system notifications should be shown in the NotificationArea. 

The concept of ViewComponent is extended in a similar way. As 

shown in Fig. 3 , we add AndroidAppComponent and AndroidSystem- 

Component for components specific to Android apps and the An- 

droid system, respectively. AndroidAppComponents include com- 

mon components on Android GUIs, such as Button s, Text s, Icon s, 

Image s, ProgressBar s, EditText s, and CompoundButton s. Since a No- 

tificationArea is dedicated to displaying notifications from the An- 

droid system, we introduce Notification as a type of AndroidSys- 

temComponent to model the notification content list in notification 

areas. 

3.2. Extensions to events 

The Android platform supports a rich set of gestures that can 

be performed on view elements, each of which triggers its own 

type of event to be handled separately. Thus, it is necessary to dis- 

tinguish the different types of events when modeling such apps. 

Events resulting from user interactions are modeled using ViewEle- 

mentEvents in IFML, our extension to which is shown in Fig. 4 . 

A subclass AndroidElementEvent is introduced to model the fol- 

lowing types of events: TouchEvent, DoubleTapEvent, LongPressEvent, 

PinchEvent, ScrollEvent, SwipeEvent , and DragDropEvent , each event 

type for modeling a particular type of user gesture. Besides, In- 

putEvent is added to model text input events. We associated at- 

tributes with some event types to accommodate extra information 

about the gestures. For instance, each LongPressEvent has an at- 

tribute called length to specify the duration of the long press ges- 

ture, each SwipeEvent has an attribute called direction to specify 

how the swipe gesture was made, and each ScrollEvent has two 

attributes called startingPoint and endingPoint to specify where the 

scroll gesture starts and ends on the screen. These extended events 

enable us to model gestures on Android apps easily. 

To fully capture the behaviours of an Android app, system 

events must also be considered in the app’s model, since those 

events may occur at different points in time and affect the app’s 

behaviour in various ways. For instance, an event caused by the 

sudden disconnection of Wifi may interrupt the normal use of 

an Android app whose functionality hinges on good network con- 

nection, and an event caused by a change of the device orien- 

tation will result in an adjustment to the current view on the 

screen. As shown in Fig. 5 , we extend SystemEvents with a subclass 

AndroidSystemEvent , which has 5 subclasses itself. A SensorEvent 

occurs when the sensed condition is changed. It can either be 

Fig. 5. The extension to system event. 

a MotionSensorEvent , an EnvironmentSensorEvent , or a PositionSen- 

sorEvent , each of which can be further divided into more spe- 

cific classes. A ConnectionEvent happens when a connection is es- 

tablished or broken, and it can be a BlueToothEvent , a NFCEvent , 

a WifiEvent , a P2Pevent , or a USBEvent . The meaning of the rest 

events, including BatteryEvent, NotificationEvent , and StorageEvent , 

are straightforward. The support for system events is essential for 

modeling Android apps. Most state-of-the-art modeling approaches 

only focus on events that are internal to apps while ignore sys- 

tem events, but system events can also affect apps’ behaviours and 

therefore should not be ignored in modeling. 

3.3. Extensions to expressions and actions 

IFML uses Expressions, Actions, and external models to express 

the internal logic of applications ( Brambilla and Fraternali, 2014 ). 

To figure out the details of an app’s internal logic, one needs to re- 

fer to the corresponding domain models, e.g., in the form of UML 

diagrams. Such design makes the modeling process more error- 

prone and the models harder to comprehend, since the internal 

logic is usually scattered throughout the whole application. To ad- 

dress, at least partially, that problem while without sacrificing the 

user-friendliness of E-IFML, we allow Java expressions to be di- 

rectly used in E-IFML models to encode simple calculation. The 

choice of the Java programming language is motivated by the fact 

that most Android apps are written in Java. In this way, expres- 

sions devised in the design phase can be easily reused to imple- 

ment the logic later, and expressions from the implementation can 

be reused when constructing models, e.g., through reverse engi- 

neering. The extension is sufficient for modeling simple logics be- 

hind many GUI interactions and significantly increases the express- 

ing power of E-IFML. Such extension also enables test generation 

For Research Only
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Fig. 6. An E-IFML model specifying the user login procedure using an Android app. 

to take those logics into account and produce scripts that exercise 

different behaviors of apps, as we describe in Section 5 . 

Similarly, an Action in IFML represents a piece of business 

logic triggered by an Event, while the detailed logic is typically 

described in other behavioural models ( Brambilla and Fraternali, 

2014 ) and stored in its attribute dynamicBehaviour . Accordingly, we 

add an executionExpression attribute to each Action object. An ex- 

ecution expression models the influences of an Action on the app 

GUI, using a group of Java expressions with side-effects (to param- 

eters). Correspondingly, a subclass of Expression called Execution- 

Expression is added. 

3.4. An example E-IFML model 

The above extensions enable us to easily model concrete user 

interactions on Android apps using E-IFML. For example, Fig. 6 

shows the E-IFML model for the user login procedure of an An- 

droid app, as described in Fig. 1 . 

In Fig. 6 , the original ViewContainers and ViewComponents are 

now modeled as Screens, EditTexts, Texts, and Buttons; The three 

events on view elements Login , LoginSuccess and Retry are 

specified as TouchEvent, ScrollEvent, and TouchEvent, respectively; 

The internal business logic of Action Authentication is now rep- 

resented as an ExecutionExpression, which defines how a method 

check is invoked on username and password to decide the va- 

lidity of the credentials. 

Note that the (possibly complex) internal logic of check is en- 

capsulated into a Java method and invoked in the example, which 

showcases the expressiveness of E-IFML expressions. Complex ex- 

pressions or expressions invoking complex computations, however, 

will impose challenges to the constraint solving process ( Section 5 ) 

if the E-IFML model is to be used for generating tests, so it is im- 

portant to build the models at proper abstraction levels in practice 

to facilitate both model construction and model-driven testing. 

The E-IFML model is not only more informative than the corre- 

sponding IFML one, but also more instructive for model-based au- 

tomated test generation. For instance, to locate view element Lo- 

ginSuccess of type Text on Screen LoginSuccess , a test generator 

will only need to check TextViews, but not widgets of other types, 

on the GUI, and the type of an event helps to regulate the type of 

test action that should be generated to trigger the event. 

4. Formal definition of extended IFML models 

This section presents the formal definition and semantics of ex- 

tended IFML (E-IFML) models, based on which Section 5 develops 

techniques that use E-IFML models to guide Android app test gen- 

eration. 

We use T W 

to denote the set of ViewComponent types (includ- 

ing, e.g., T Text , T Button , and T List ), T C to denote the set of View- 

Container types (including, e.g., T Drawer , T Screen , and T Toolbar ), T E 
to denote the set of AndroidElementEvent types (including, e.g., 

T TouchEvent , T ScrollEvent , and T LongPressEvent ), and T S to denote the set of 

AndroidSystemEvent types (including, e.g., T BatteryEvent , T StorageEvent , 

and T SensorEvent ). T “ T E Y T S and T “ T W 

Y T C are then the sets of 

all event types and view types supported in E-IFML, respectively. 

4.1. The model 

An E-IFML model is a 7-tuple x P, E, W, CV, A, E, F y , with its com- 

ponents formally defined as the following. 

P is the set of unique parameters and E “ E A Y E I Y E E is the set 

of expressions in the model, where 1) E A is the set of ActivationEx- 

pressions, 2) E I is the set of InteractionFlowExpressions, and 3) E E is 

the set of ExecutionExpressions. 

W is the set of all atomic views in the model. An atomic view 

(i.e., a ViewComponent) w is a 4-tuple x p, e a , t w 

, c y , where 1) p P P 

is the parameter associated with w ; 2) e a P E A is an ActivationEx- 

pression for w . That is, w is only enabled if e evaluates to true ; 3) 

t w 

P T W 

is the type of w ; 4) c is the composite view that immedi- 

ately contains w . 

CV is the set of all composite views in the model. A compos- 

ite view (i.e., a ViewContainer) c is a 4-tuple x W c , P c , t c , c c y , where 

1) W c ĎW is the set of atomic views within c ; 2) P c ĎP is the set 

of parameters associated with c ; 3) t c P T C is the type of c ; 4) 

c c is the composite view that immediately contains c . A compos- 

ite view c contains another composite view c 1 , denoted as c 1 Î c, 

if and only if c 1 .w c 1 Ď c.w c ; c immediately contains c 1 , denoted as 

c 1 ăc , if c 1 Î c and no composite view c 2 ( c 2 R { c, c 1 }) exists such 

that c 1 Î c 2 ^ c 2 Î c. The contains and immediately-contains rela- 

tion can be easily extended to work also between composite views 

and atomic views. 

Consider the example in Fig. 6 . Let c u be the composite view 

for ViewContainer UserLogin , w u and w p be the atomic views 

for ViewComponents username and password , c u .p u and c u .p p 
be the parameters associated with w u and w p . 

4 We have w u “

x c u .p u , true, T EditText , c u y and c u “ xt w u , w p u , t c u .p u , c u .p p u , T x Screen , 

NULL y . 

A is the set of actions in the model. An action a is a pair x P a , 

E a y , where 1) P a ĎP is the set of parameters associated with a ; 2) 

E a ĎE E is the set of expressions that will be evaluated when a is 

executed. 

Composite views and actions are collectively referred to as event 

contexts , since events can be triggered on both composite views 

and actions. That is, the set EC of event contexts is equal to CV Y A . 

Given an expression e defined in an event context ec P EC , we de- 

note the evaluation result of e w.r.t. ec as � e � ec . 

4 We refer to a parameter p defined in context c as c.p . 

For Research Only
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E is the set of all events in the model. An event ε is a 6- 

tuple x ec ε , t ε , d ε , ae ε , e ε , F εy , where 1) ec ε P EC is the event con- 

text on which ε is triggered; 2) t ε P T is the type of ε; 3) d ε is 

the data associated with ε, whose meaning is determined by t ε ; 

For example, information like durationTime will be stored in d ε if 

t ε “ T LongPressEvent . 4) ae ε P E A is the ActivationExpression associated 

with ε; Similar to the case for view components, ε is only enabled 

if ae ε evaluates to true ; 5) e ε P E I is the InteractionFlowExpression 

of ε, if any; 6) F ε is the set of interaction flows starting from ε. The 

flow to be executed is determined based on the evaluation result 

of e ε and available flows in F ε ; 

F is the set of all interaction flows in the model. An interac- 

tion flow f is a 4-tuple x εf , c f , ec f , B f y , where 1) ε f P E is the event 

initiating f ; 2) c f is a constant value; f is only executed if the in- 

teraction flow expression of its initiating event εf . e evaluates to c f . 

3) ec f P EC is the destination context of f ; We refer to the triggering 

context of f ’s initiating event, i.e., εf . ec , as the source context of f. 

B f ĎP ̂ P is the group of parameter bindings for f . 

Continue with the example in Fig. 6 . Action Authentication 

can be denoted as α “ xt α.p u , α.p p u , Hy . The event triggering the 

action is εα “ x c u , T TouchEvent , null, true, null , { f α} y , where f α “

x εα, true, α, t c u .p u Ñ α.p u , c u .p p Ñ α.p p uy is the interaction flow 

connecting εα and α. Here we use Ñ to denote the binding re- 

lation between parameters. 

Based on these definitions, the behaviors of an app, driven by 

events triggered by users or generated by the system, can then 

be modeled as paths of a finite automaton M “ t �, S , t s 0 u , T , F u , 

where 

• � “ E ̂ F is the set of event and interaction flow pairs in the 

app; 
• S “ EC “ CV Y A is the set of event contexts in the app; 
• s 0 P CV is the initial composite view of the app; 
• T ĎS ̂ � ˆ S is the set of transitions between event contexts; 
• F “ CV is the set of composite views where the handling of 

user interactions terminates. 

Note that we regard all composite views, but no action, as ac- 

ceptable final states of the automaton, since a user may decide to 

exit an app at any view of the app, while an app should always be 

able to arrive at a composite view after finishing the execution of 

an action. 

4.2. Well-formedness and feasibility of paths 

Given a transition τ “ x ec b , x ε, f y , ec e y P T , τ is well-formed if 

the following conditions are satisfied: 

C1. Event ε can be triggered on ec b . More specifically, if ec b P CV , 

then the event context on which ε is triggered is within ec b , 

i.e., ε.ec Î ec b ; If ec b P A , then ε. t should be of type Action- 

Event ; 

C2. f starts from ε, i.e., f P ε. F ; and 

C3. The destination event context of f is ec e , i.e., f .ec f “ ec e . 

Due to the constraints imposed, e.g., by activation expressions 

on atomic views, a well-formed transition τ may not be actually 

feasible during app executions. Particularly, τ is feasible if and only 

if there exists a function α: P Ñ V that assigns a concrete value 

α( p ) to each input parameter p P P such that the following condi- 

tions are satisfied: 

C4. Event ε is enabled in context ec b , i.e., � ε.ae � ec b 
“ true ; 

C5. the interaction flow expression ε. e evaluates to f.c in context 

ec b and therefore f is activated, i.e., � ε.e � ec b 
“ f .c. 

Correspondingly, a sequence ρ “ ρ1 , ρ2 , . . . , ρn of transitions 

( ρ i P T , 1 ď i ď n ) constitutes a well-formed path on M if and only 

if 1) ρ1 .src “ s 0 , 2) ρi .dest “ ρi ̀ 1 .src (1 ď i ă n ), and 3) each ρ j 

(1 ď j ď n ) is well-formed ; a well-formed path ρ is feasible if and 

only if there exists a function α: P Ñ V that renders all transitions 

on ρ feasible. 

To decide whether a well-formed path ρ is feasible or not, we 

collect the group G ρ of constraints along ρ on M ’s parameters, 

and find solutions to the constraints using an off-the-shelf solver. 

Execution expressions and parameter binding are processed in a 

similar way during this feasibility analysis as in symbolic execu- 

tion ( King, 1976 ). The constraints can be used not only to deter- 

mine the feasibility of a path, but also to find out actual assign- 

ments to the input parameters that will realize the path, if it is 

decided to be feasible. 

5. Test generation based on E-IFML models 

Based on the above definitions, we propose the Adamant ap- 

proach for automated Android app testing based on E-IFML mod- 

els. A high-level overview of Adamant is depicted in Fig. 7 . Tak- 

ing the E-IFML model of an Android app as the input, Adamant 

constructs the corresponding finite state automaton M , traverses 

the automaton in a depth-first manner to generate paths of M 

with constraints G for their feasibility. Adamant then employs 

an off-the-shelf constraint solver to find solutions to G , i.e., as- 

signments to parameters in M . If successful, Adamant then com- 

bines the paths and corresponding assignments to produce con- 

crete test scripts, which are then passed to script automators such 

as Robotium ( Github.RobotiumTech, 0 0 0 0 ) to be executed on An- 

droid apps. 

5.1. Path generation 

Algorithm 1 outlines the main logic of path construction. Re- 

cursive function traverse takes four arguments: the current con- 

text of traversal, (symbolic or concrete) values of the parameters in 

the model, the path under construction, and all the feasible paths 

constructed. 

During the execution of traverse , if path should be extended 

(Line 2), we get the set of candidate events from context (Line 3) 

and, for each event and its associated interaction flow (Lines 3 

and 4), Adamant symbolically triggers the event and follows the 

interaction flow (Line 5), causing updates to values (Line 5) and 

Algorithm 1: Algorithm for path generation. 

1 Function traverse ( context, v alues , path , paths ) : 

2 if shouldExtend ( path ) then 

3 foreach e v ent P getEvents p contextq do 

4 foreach f P e v ent.F do 

5 v al ues 1 Ð eval p context, v al ues, e v ent, f q ; 

6 path 1 Ð path ̈ x context , e v ent , f .ecy ; 

7 traverse ( f .ec, v alues 1 , path 1 , Paths ); 

8 end 

9 end 

10 else 

11 if hasNewEvent ( path , paths ) then 

12 const raint s Ð path.get Const raint s pq ; 

13 solution Ð solve p constraints q ; 

14 if solution ‰ null then 

15 paths. add p path, solution q ; 

16 end 

17 end 

18 end 

19 return paths 

20 end 
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Fig. 7. The overview of ADAMANT. 

Listing 1. Sample sequence of events. 

path to be extended to path 1 (Line 6). Afterwards, the recursion 

continues using the updated context, values , and path (Line 7). Once 

the algorithm decides the current path no longer needs to be ex- 

tended, path is checked against all paths from Paths to find out if 

it exercises any new event (Line 11. When yes, the constraints col- 

lected along path is send to a solver (Lines 12 and 13). If a solution 

can be found for the constraints, path is feasible and gets added to 

Paths (Line 15). 

To get all the feasible concrete paths on M , we call function 

traverse with arguments context “ s 0 , v alues “ H , path “ r s (i.e., 

an empty sequence), and paths “ tu (i.e., an empty map). The re- 

turn value contains paths that start from the initial composite view 

s 0 and satisfy the requirements regarding path constitution, as de- 

scribed below. 

To strike a balance between cost and effectiveness, we adopt 

event coverage as our test adequacy criterion in path generation. 

A path is considered useful only if it can help increase the overall 

event coverage, i.e., if it contains events that were not covered by 

other paths. For that, we use two parameters Maximum Events and 

Maximum Duplicate Events to restrict the length of each path: 

• Maximum Events specifies the maximum number of events that 

are fired in a path. This parameter directly restricts the length 

of each path. 
• Maximum Duplicate Events specifies the maximum number of 

duplicate events that are fired in a path. 

5.2. Test script generation 

When generating test cases from paths of M , only events are 

needed, while event contexts can be ignored, since they corre- 

spond to the expected results of handling the events. Events in a 

path can be transformed in order into actions of test scripts, which 

can be executed later by testing tools such as Robotium . 

Listing 1 shows a sample sequence of events generated by the 

technique described in Section 5.1 . Every event in a path has two 

sub-elements: component and operation . A component pinpoints 

a target UI widget or UI component by specifying the type, id 

and text , while an operation provides the type and parameter in- 

formation about the action to be applied on the component. In 

the example, the first two events (Lines 2–9) are triggered by in- 

putting “2018ADAMANT” and “qwerty123456” in the EditTexts of 

index 0 and 1, the third event(Lines 10–13) is triggered by touch- 

ing on the Button with text “Login” to submit the inputs, the 

last event (Lines 14–17) is triggered by scrolling down the screen. 

Here string literals like “2018ADAMANT” and “qwerty123456” are 

provided as optional values for the EditTexts in the model. Be- 

sides looking for valid inputs through constraint solving, Adamant 

also utilizes such information, if available, when generating 

paths. 

Adamant translates the sequence of events in Listing 1 into the 

test script shown in Listing 2 . In particular, Lines 7–10 in method 

testcase001 correspond to the four events from Listing 1 , 
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Listing 2. ROBOTIUM test script. 

respectively. Test scripts like these can be fed to test automation 

frameworks like Robotium to drive the execution of the target app. 

If the execution of test script fails, Robotium records informa- 

tion about the exception causing the failure, which can be used 

together with Android’s logcat mechanism to facilitate the debug- 

ging process. Adamant also records screenshots of the app during 

testing, which can be used by test engineers, e.g., to manually con- 

firm if a script tests interesting behaviours. 

5.3. Tool implementation 

We implemented the approach into a tool also called Adamant , 

based on the Eclipse Modeling Framework (EMF) and the Sirius 

API Sirius . In this way, the Eclipse diagram editor can be leveraged 

as the graphical E-IFML model editor, and the conversion from 

user-built models to XML files can be easily supported using Sir- 

ius. The backend of Adamant takes the XML files as the input and 

generates test scripts. 

As Section 3.2 shows, Adamant supports the modeling of most 

Android events. However, whether it can produce the correspond- 

ing gestures to these different types of events depends on the 

capability of the script executor. In the current implementation, 

Adamant uses Robotium as the script executor, since Robotium 

supports most types of events, such as click, scroll and rotation. For 

certain types of events with attributes, besides using Adamant ’s 

default attribute values, users can also provide their own values 

to customize the corresponding gestures. For example, the scroll 

gesture corresponding to a ScrollEvent is augmented with two at- 

tributes startingPoint and endingPoint encoding the positions where 

the gesture starts and ends, respectively. The handling of time 

duration between consecutive events is delegated to Robotium . 

Robotium has a “wait or time-out” mechanism to execute events. 

After triggering an event, it would wait for a given time until the 

component on which the next event should be activated is visible. 

An error occurs if the time is up before the component becomes 

visible. Adamant also allows a user to set a customized waiting 

time before/after executing an event. As the experimental evalu- 

ation in Section 6 shows, using default settings of Adamant can 

achieve good performance. 

Adamant employs the Z3 constraint solver ( De Moura and 

Bjørner, 2008 ) to find solutions to path constraints. Since con- 

straint solving can be highly time-consuming, Adamant caches the 

constraints and their solutions for better performance. The basic 

idea is that it identifies sub-groups of constraints that are inde- 

pendent from the others. If a sub-group of constraints were never 

solved before, Z3 is invoked to find solutions for the constraints, 

and the results (including whether there exists a solution and, 

when yes, what the solutions are) are stored together with the 

constraints into a map. If a sub-group of constraints was already 

solved before, the results are directly retrieved from the map. 

Since many events in E-IFML models depend on a fixed number 

of parameters, executions that differ only in other parameters then 

share the independent sub-groups of constraints related to those 

events. As the result, the number of constraint combinations asso- 

ciated with different paths is mush smaller than that of all possible 

combinations, and reusing constraint solving solutions significantly 

improves the overall performance of Adamant , as demonstrated by 

the experimental evaluation of the tool in Section 6 . 

6. Evaluation 

The experimental evaluation of Adamant assesses to what ex- 

tent Adamant facilitates test generation for Android apps, and it 

aims to address the following research questions: 

• RQ1: How effective is Adamant ? 
• RQ2: How efficient is Adamant ? 

In RQ1 and RQ2, we evaluate the effectiveness and efficiency of 

Adamant in Android test generation from a user’s perspective. 
• RQ3: How does Adamant compare with other Android test gen- 

eration tools? 

In RQ3, we compare Adamant with three state-of-the-art 

tools for Android test generation: Monkey , AndroidRipper , and 

Gator . Monkey randomly generates event sequences for An- 

droid apps and, although simple, it outperforms most other ex- 

isting tools that are publicly available in the area ( Choudhary 

et al., 2015 ); AndroidRipper implements an opposite strategy 

by extending a tool that automatically explores an app’s GUI 

to generate tests that exercise the app in a structured man- 

ner ( Amalfitano et al., 2012 ). Unlike Monkey or AndroidRipper 

that build test scripts via dynamic analysis, Gator ( Yang et al., 

2015 ) employs static analysis to model GUI related objects and 

events of Android apps, and it has been applied to Android test 

generation ( Yang et al., 2018 ). 
• RQ4: How does constraint and solution caching impact 

Adamant ’s efficiency? 

Constraint solving is time-consuming and can greatly degrade 

Adamant ’s efficiency if not used sparingly. In view of that, 

Adamant employs constraint and solution caching when gen- 

erating execution paths from E-IFML models ( Section 5.3 ). In 

RQ4, we zoom in on this design choice of Adamant and study 

whether and to what extent constraint and solution caching 

helps improve Adamant ’s efficiency. 

6.1. Experimental objects 

To collect the apps to be used in the experiments, we first sum- 

marized apps from two lists of open source Android apps, one on 
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Table 1 

Apps used as objects in the experiments. 

App Ver Category LOC #Act 

Bookdash 2.6.0 Education 7501 6 

Connectbot 1.9.2–80 Communication 28,791 12 

Goodweather 4.4 Weather 5262 7 

I2P 0.9.32 Security 24,106 11 

Kiwix 2.2 Reading 11,270 8 

Lightning 4.4.0.24 Browser 21,017 8 

Omninotes 5.4.1 Productivity 20,305 9 

Nextcloud 2.0.1 Other 72,862 12 

Ringdroid 2.7.4 Multimedia 5295 4 

Talalarmo 3.9 Tool 1224 2 

Total 197,633 79 

Wikipedia Wiki and the other on GitHub Github.pcqpcq , into 10 

categories: Browser, Communication, Security, Multimedia, Read- 

ing, Education, Tool, Weather, Productivity and Other. Then, we 

randomly select one app from each category that 

1) has been released in Google Play, FDroid or GitHub, and 2) 

has at least 100 stars in GitHub, and use the latest versions of the 

selected apps (as of September 2018) as our objects. Such selec- 

tion process is to ensure the diversity of objects. Table 1 lists, for 

each object, the name (App), the version (Ver), the category (Cate- 

gory), the size in lines of code (LOC), and the number of Activities 

(#Act). The app size ranges from about just one thousand to over 

70 thousand lines of code, which illustrates from another aspect 

the diversity of experimental objects. 

6.2. Experimental subjects 

We recruit ten third-year undergraduate students majoring in 

Software Engineering to build E-IFML models for the selected ob- 

ject apps. All these students gained basic knowledge in mobile de- 

velopment and UML from their previous studies, but received no 

exposure to IFML before participating in the experiments. Such se- 

lection of subjects is acceptable, since previous study found out 

that students and professionals perform similarly on approaches 

that are new to them ( Salman et al., 2015 ), while the task of con- 

structing E-IFML models is new for both these students and pro- 

fessional developers. 

6.3. Measures 

In this work, we categorize test actions from a generated test 

script into four groups: successful, bug revealing, inexecutable, and 

unreachable: A test action is considered successful , if it can be ex- 

ecuted during testing, its execution successfully triggers an event, 

and the handling of the event is completed with no problem; A 

test action is bug revealing if, while it can be executed during test- 

ing and its execution can successfully trigger an event, the han- 

dling of the event either terminates prematurely or hangs; A test 

action is inexecutable , if it will be attempted during testing but fails 

to trigger any event, e.g., because the GUI element that action op- 

erates on cannot be located in the context activity or its intended 

event is not supported on the target GUI element; A test action 

is unreachable , if it is located after a bug revealing or inexecutable 

action in a test script, and therefore it is never attempted during 

testing. We refer to test actions that are either successful or bug 

revealing as executable actions, and those that are either bug re- 

vealing or inexecutable as unsuccessful actions. 

Test generation techniques like Monkey and AndroidRipper in- 

crementally construct test scripts via dynamic analysis, and each 

test action they generate is always executable. In contrast, tech- 

niques like Adamant and Gator first build a model for the app 

under testing and then utilize the model to guide test script gener- 

ation. In case the model does not comply with the app, generated 

test actions may 1) be inexecutable, 2) reveal bugs in either the 

app or the model, and/or 3) leave actions in the same script but 

after them unreachable. 

Let #A, #A s , #A b , #A i , #A u , and #A e be the number of all, suc- 

cessful, bug revealing, inexecutable, unreachable, and executable 

test actions in a test suite, respectively. We have #A e “ #A s +#A b 

and #A “#A e +#A i +#A u . 

To evaluate the effectiveness of a test generation approach from 

a user’s perspective, we assess the size and quality of the test 

suites produced by the approach in terms of four commonly used 

measures ( Choudhary et al., 2015 ): 

#K: the number of test scripts they contain; 

#A: the number of test actions they contain; 

#B: the number of unique bugs they reveal; 

%C: the statement coverage they achieve. 

During the experiments, we record the time T g in minutes that 

each tool takes to generate the tests. Note that, for test genera- 

tion based on dynamic analysis, generated tests are executed along 

the way, so T g includes the test execution time. For test genera- 

tion based on static analysis, test execution, however, is typically 

not part of the generation process. We therefore record in addition 

the time T e in minutes that is required for the tests generated by 

a static tool to execute. Besides T g and T e , we also measure the 

efficiency of test generation using the following metrics: 

APM: the number of test actions generated per minute, i.e., 

#A/T g ; 

%E: the percentage of generated test actions that are exe- 

cutable, i.e., #A e /#A. 

In the case of Adamant , since the construction of its input mod- 

els requires considerable manual effort, we also measure the size 

of the E-IFML models used as the input for running Adamant in 

terms of: the number #Cn of containers, the number #Cm of com- 

ponents, the number #Ev of events, the number #IF of interaction 

flows, the number #Ex of expressions, the number #Ac of actions, 

and the time cost T m 

in minutes for preparing them. We use #E 

to denote the total number of elements an E-IFML model contains, 

i.e., #E “#Cn+#Cm+#Ev+#IF+#Ex+#Ac. 

6.4. Experimental protocol 

Before the ten undergraduate students start to build E-IFML 

models for the object apps, a 90 min training session is provided 

to help them get familiar with E-IFML modeling. After the training 

is finished, each student is assigned an app randomly and asked to 

build an E-IFML model for the app from a user’s perspective. Each 

model produced is then independently reviewed by two other stu- 

dents from the ten to ensure the correctness. The students are also 

required to record the time they spend in both model construction 

and review. 

Next, Adamant is applied to the E-IFML models to generate test 

scripts for the ten object apps, and the generated tests are exe- 

cuted on the apps using Robotium . When the execution of a test 

action fails to start or run to its completion, Robotium will log the 

problem. We analyze the log and the corresponding test script to 

determine whether the test action is bug revealing or inexecutable: 

We conservatively mark the action as bug revealing only if the 

problematic behavior has been confirmed as an issue on GitHub. 

Constraint and solution caching, as presented in Section 5.2 , is 

enabled by default in the experiments described above, and the re- 

sults are used to answer the first three research questions; To an- 

swer RQ4, we repeat the experiments with constraint and solution 

caching disabled. In both cases, the value of Maximum Duplicate 
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Table 2 

Experimental results from applying Adamant on the ten apps. 

App #K #A %C #B T g T e APM %E E-IFML Model T m 

#Cn #Cm #Ev #IF #Ex #Ac #E 

Bookdash 19 180 84 0 0.2 7.0 900.0 100 21 32 40 41 19 5 158 240 

ConnectBot 71 483 54 0 1.9 32.7 254.2 96 52 112 149 154 49 22 538 1080 

Goodweather 28 174 84 1 0.5 7.9 348.0 99 28 59 60 61 10 4 222 360 

I2P 41 451 70 0 0.5 39.7 902.0 100 67 97 108 113 36 14 435 660 

Kiwix 35 252 78 1 0.5 16.8 504.0 100 38 121 108 115 63 33 478 600 

Lightning 76 532 69 0 10.8 28.2 49.3 100 47 146 137 166 40 22 558 900 

Omninotes 66 594 71 1 2.3 45.9 258.3 100 58 121 167 172 70 35 623 960 

NextCloud 82 648 57 5 9.7 34.4 66.8 98 65 136 195 203 72 53 724 1500 

Ringdroid 28 210 82 0 0.7 9.3 300.0 100 15 52 57 61 19 8 212 360 

Talalarmo 11 55 92 0 0.1 5.0 550.0 100 10 17 21 24 6 3 81 120 

Overall 457 3579 68 8 27.2 226.9 131.6 99 401 893 1042 1110 384 199 4029 6780 

Events used in path generation (defined in Section 5.1 ) by Adamant 

is empirically set to 2, while Maximum Events is set ranging from 

5 to 11, respectively. A more thorough investigation on how these 

values affect the effectiveness and efficiency of Adamant is left for 

future work. 

To make the comparison among test generation techniques 

more straightforward, Monkey , AndroidRipper , and Gator are ap- 

plied to the same set of objects: Monkey runs on each app for 

at least the same amount of time as used by Adamant , and no 

less than 10 min. The reason is that, Monkey was reported to hit 

its maximum code coverage within 5–10 min ( Choudhary et al., 

2015 ). Besides, since Monkey implements a random strategy for 

test generation, we repeat the experiment on each app using Mon- 

key for 3 times and use the average of the results for comparison; 

AndroidRipper is configured to perform a breath-first search and 

allowed to run until its natural termination, with the time inter- 

val between two consecutive events being set to 1 second; Gator 

is also configured to run until its natural termination. Given the 

Window Transition Graph (WTG) produced at the end of a Gator 

run, we construct sequences of GUI events via a depth-first search, 

which are then translated to test scripts in the Robotium format. 

The default value for the maximum number of events each path 

may have is set to 3, as was done in Yang et al. (2018) . All tests 

generated by each technique are considered in the comparison. 

A home-brewed tool based on the Eclipse Java Development 

Tools (JDT) Foundation is utilized to collect the statement cover- 

age information of all the tests generated by each approach. 

All experiments were conducted on a DELL laptop, running 64- 

bit Windows 10 Home on a 4-core, 2.6 GHz, I7 CPU and 8GB RAM. 

Android apps were run in an emulator configured with 4GB RAM, 

X86_64 ABI image, and Android Lollipop (SDK 5.1.1, API level 22). 

6.5. Experimental results 

This section reports on the results of the experiments and an- 

swers the research questions. 

6.5.1. RQ1: Effectiveness. 

Table 2 reports on the results from applying Adamant on the 

ten object apps. For each app, the table lists the measures for ef- 

fectiveness as defined in Section 6.3 . Overall, Adamant generated 

for the apps 11 to 82 scripts with 55 to 648 test actions, averaging 

to 46 scripts and 358 actions for each app. 

Statement coverage. The statement coverage achieved by the 

generated tests varies between 54% and 92% on individual apps, 

amounting to 68% over all the ten apps, which suggests that 

Adamant is effective in exercising most code of the apps. 

The highest coverage was achieved on app Talalarmo , which 

is the smallest in size among all the objects: Smaller apps tend 

to have fewer functionalities and are often easier to build com- 

prehensive models for. The lowest coverage was observed on app 

Connectbot . While this app is not the largest in LOC, it has the 

most activities and a significant portion of its code is only exer- 

cised upon inputting strings in certain formats, which increases the 

difficulties in testing more of its code. 

Bug detection. In total, 8 unique bugs in the object apps were 

revealed by 22 unsuccessful test actions, among which 9 caused 

crashes and the other 13 were inexecutable. Specifically, 7 out of 

the 9 crashes happened due to bugs hidden in apps, while the 

other 2 were caused by the crash of Robotium when test cases 

tried to restart the object apps. Among the 13 failures caused by 

inexecutable test actions, 5 were due to unexpected conditions 

such as no response from remote servers caused by unreliable net- 

work, while the rest 8 happened when the target GUI elements 

cannot be found on the corresponding app activities, which indi- 

cates that there are discrepancies between the E-IFML models built 

by students and the actual app implementations. A closer look at 

the discrepancies reveals that 3 expressions were incorrectly spec- 

ified. Recall that all the models contain in total 384 expressions 

( Table 2 ). While a systematic study on the quality of the expres- 

sions is beyond the scope of this paper and we leave it for future 

work, existing evidence suggests users can correctly write most ex- 

pressions with reasonable effort. 

Table 3 lists for each bug its ID (ID), the app it belongs 

to (App), its symptom (Sym), and a short description (De- 

scription). In column Sym, NPE stands for NullPointerException, 

CCE stands for ClassCastException, INC stands for Inconsistency, 

ISE stands for IllegalStateException, and SC stands for service 

crash. 

Bugs B1, B2, B3, B4, B6, and B8 caused apps to crash during the 

execution of test scripts, while bugs B5 and B7 caused test execu- 

tion to hang. In particular, Bug B5 was revealed in the popular file 

sharing app named NextCloud by a test script that opens a di- 

rectoy dir in the app, performs a file search, exits from the search, 

and then selects a file from dir . The test was generated, since the 

model of the app suggests that, when exiting from a search, the 

app should return to the state before the search, which is quite 

reasonable. However, the app failed to clear the search result and 

show the contents of directory dir when exiting from the search, 

making the selection of a file from dir infeasible and causing the 

test execution to hang. Bug B7 was found in a note taking app 

named Omninotes . To delete a locked note in Omninotes , a user 

needs to log in first. Adamant , however, was able to generate a test 

script that circumvents the rule by first clicking on the “password 

forgotten” button on the login dialog and pressing the BACK but- 

ton, and then deletes the locked note without logging in. With the 

note deleted, a following action that operates on the note becomes 

inexecutable and the execution of the test script hangs. The app 
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Table 3 

Bugs found by Adamant . 

ID App Bug 

Sym Description 

B1 Goodweather ISE provider doesn’t exist: network 

B2 Nextcloud NPE Method ’java.lang.String.toCharArray()’ is invoked on a null object reference. 

B3 Nextcloud NPE Method ’com.owncloud.android.lib.common.operations.Re-moteOperationResult.isSuccess()’ is invoked on a 

null object reference. 

B4 Nextcloud NPE Method ’android.view.View.getImportantForAccessibility()’ is invoked on a null object reference. 

B5 Nextcloud INC When exiting or going back from searching, the file list is cleared not refreshed. 

B6 Nextcloud CCE com.owncloud.android.ui.activity.FolderPickerActivity cannot be cast to 

com.owncloud.android.ui.activity.FileDisplay-Activity. 

B7 Omninotes INC User authentication can be bypassed by clicking on the “password forgotten” button on the login activity 

and then the BACK button. 

B8 Kiwix SC Service Pico TTS crashes with error message “Fatal signal 11 (SIGSEGV), code 1, fault addr 0x7f0dda-291970 

in tid 14926(com.svox.pico)”. 

behaviors related to bugs B5 and B7 are both marked as buggy by 

the app developers on GitHub 5 

Since bugs like B5 and B7 do not cause any crashes, they 

will not attract any attention even if tools like Monkey and An- 

droidRipper are employed. Adamant , however, can also help dis- 

cover such bugs if they cause behaviors that contradict users’ ex- 

pectations. 

Adamant effectively generated test scripts to exercise 68% of the 
object apps’ statements and discover 8 unique bugs. 

6.5.2. RQ2: Efficiency. 

Table 2 also lists for each object app the measures for 

Adamant ’s efficiency, the size information about the correspond- 

ing E-IFML model, and the time students spent to construct and 

review the model. 

It took Adamant 27.2 min in total to generate all the test scripts 

for the object apps, with the average being 2.7 min for each app, 

which suggests the time cost for running Adamant is moderate in 

most cases. Only two out of the ten apps had longer test genera- 

tion time than the average: Lightning and NextCloud . Both apps 

are larger and more complex than the others: NextCloud is the 

largest, in terms of both the number of activities and lines of code, 

among all the object apps, and its E-IFML model is also the most 

complex among the ten: the model has by far the largest num- 

ber of events, information flows, and expressions, and the longest 

construction and review time; While Lightning is not as large or 

complex, it has by far the largest number of paths to examine dur- 

ing path generation ( Section 5.1 ), and it takes quite some time for 

Adamant to construct and then process those paths. As expected, 

it takes longer to execute, than to generate, the tests. The execution 

time of all the generated tests amounts to 226.9 min, averaging to 

0.5 min per test script and 3.8 s per test action. 

The APM values on most apps ranged between 250 and 10 0 0, 

which suggests that Adamant is reasonably efficient in generating 

tests for the apps. The lowest APM values were observed on apps 

Lightning and NextCloud , most likely due to the long generation 

time. Overall, Adamant generated 131.6 test actions per minute for 

the apps. 

Measure %E is equal to 100% for 7 of the objects, and is above 

95% for the remaining 3, indicating that most test actions gener- 

ated by Adamant are indeed executable. On the one hand, such 

high values show that the models faithfully capture the behaviors 

of the apps; On the other hand, they also speak well for Adamant ’s 

5 http://www.github.com/federicoiosue/Omni-Notes/issues/372 for bug B5, and 

http://www.github.com/nextcloud/android/issues/1640 for bug B7. 

capability to correctly consume the information provided by the 

models. We further inspected the reasons for the low percentages 

of the 3 apps. For apps GoodWeather and NextCloud , bugs in 

their implementations rendered 1 generated test actions to be in- 

executable and 15 to be unreachable. As for ConnectBot , the rea- 

son, however, lies in bugs in the constructed model: 6 test scripts 

generated for ConnectBot based on the faulty model failed due to 

the bugs, leaving 14 actions unreachable. Overall, 99% of the gen- 

erated test actions are indeed executable. 

To get a better understanding of the overall cost for the applica- 

tion of Adamant , we also examine the time spent in preparing the 

input models. Table 2 shows that considerable manual effort is re- 

quired to construct the E-IFML models in the experiments and the 

modeling time is in proportion to the overall size of the resultant 

models: the average time needed to model a single GUI element 

is around 1.7 min ( “6780/4029) across all objects, and that aver- 

age time for each app varies between 1.3 and 2.1 min. In view of 

such high cost for manually constructing the models, we plan to 

develop techniques to (at least partially) automate the task of E- 

IFML model construction for Android apps in the future. 

On average, Adamant generates 131.6 test actions per minute, 
99% of which are executable. The construction time of E-IFML 
models is in proportion to the size of resultant models, averaging 
to c.a. 1.7 min per GUI element. 

6.5.3. RQ3: Comparison with other techniques. 

Table 4 presents the results of running Monkey , AndroidRip- 

per , and Gator on the same apps. Note that the table does not 

report the values of all measures: 1) Since the number of gener- 

ated test scripts and the length of a test script largely depend on 

the configurations of these tools, the table does not report mea- 

sure #K; Instead, we report the more meaningful measure #A. 2) 

AndroidRipper does not report the total number of generated test 

actions to the user, so we also omit measures #A and APM for An- 

droidRipper in the table; 3) Measure %E is omitted for both Mon- 

key and AndroidRipper , because test actions generated by these 

two tools are always executable, resulting in 100% values for the 

measure; 4) Neither AndroidRipper nor Gator detected any bug 

in the object apps, hence we also leave out column #B for the two 

tools in the table. Besides, AndroidRipper failed to test app Book- 

dash since exceptions were thrown when loading the app, while 

Gator reported OutofMemoryError and failed to generate any test 

cases on apps Nextcloud and Kiwix after running for 5 h. We use 

dashes (-) in the table to indicate that the corresponding measures 

are not available, and we exclude the apps from the computation 

of overall measures for the two tools. 
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Table 4 

Experimental results of Monkey , AndroidRipper , and Gator on the objects. 

App %U 
˚

Monkey AndroidRipper Gator 

#A %C %U #B T g APM %C %U T g #A %C %U T g T e APM %E 

Bookdash 22.0 9500 62 0.9 0 10.0 950 – – – 130 33 0.0 0.2 9.0 650 90 

ConnectBot 17.0 33,500 42 3.2 0 35.0 957 22 4.5 49.3 4413 18 0.0 0.6 232.9 7355 4 

Goodweather 17.7 9500 62 0.8 0 10.0 950 15 0.6 5.3 102 24 0.3 0.1 8.8 1020 91 

I2P 45.4 39,600 27 1.2 0 41.7 950 21 0.0 21.4 609 15 0.1 1.4 38.1 435 12 

Kiwix 18.1 18,000 63 1.2 1 20.0 900 32 0.0 18.5 – – – – – – –

Lightning 9.0 28,000 61 2.7 0 30.0 933 40 3.7 23.2 1191 34 0.7 12.1 82.2 98 21 

Omninotes 26.6 45,000 45 1.5 0 48.3 932 21 0.0 3.1 35,282 22 0.4 74.4 1903.5 474 0 

NextCloud 19.1 35,000 40 4.2 0 36.7 954 25 1.8 11.3 – – – – – – –

Ringdroid 20.5 11,100 58 3.1 0 11.7 949 48 0.3 42.5 5424 51 0.9 0.1 334.6 5424 45 

Talalarmo 25.5 9200 63 0.4 0 10.0 920 39 0.0 2.8 15 39 0.0 0.1 1.0 150 100 

Overall 21.8 238,400 45 2.8 1 253.4 941 25 1.8 177.4 47,166 24 0.3 89.0 2610.1 530 7 

%U 
˚

: %U achieved by Adamant . 

While the numbers of generated test actions vary drastically 

across different tools and objects (#A), the overall statement cov- 

erage achieved by the tools (%C) is in general consistent with 

that reported in a previous study ( Choudhary et al., 2015 ): Mon- 

key achieved an overall coverage of 45%, AndroidRipper 25%, and 

Gator 24%. In comparison, tests generated by Adamant covered 

68% statements of the apps, i.e., 23%, 43%, and 44% more than the 

other three tools. 

Although Monkey generated the most actions and at the high- 

est speed, the statement coverage it achieved was not as high, sug- 

gesting that many such actions are redundant. We conjecture the 

reason is that Monkey has no knowledge about the app’s behavior 

and does not keep track of which behaviors were tested already. 

The coverage achieved by AndroidRipper and Gator was even 

lower. AndroidRipper failed to recognize a considerable number of 

activities, leaving many GUI elements untested. The low coverage 

of AndroidRipper on apps like I2P , Omninotes , and Talalarmo 

was also because the tool crashed from time to time, causing the 

systematic exploration to end prematurely.As for Gator , the low 

statement coverage was mainly due to the fact that only a small 

portion, 7% to be precise (%E), of generated test actions are exe- 

cutable. We inspected the failed test scripts and found the major 

reason for the high failing rate is that, since the extracted WTG 

models are often incomplete and/or incorrect, they provide little 

information regarding app states, e.g. whether a GUI element is 

visible or whether an event is feasible, to facilitate test genera- 

tion. As a result, a large number of test actions generated for apps 

Connectbot and Omninote attempt to select an item from an 

empty list or click on an invisible element. Such problems, how- 

ever, would not occur with Adamant . In E-IFML models, we can 

easily describe preconditions of such test actions using Expres- 

sions, so that list item selection is only actioned when the corre- 

sponding list is not empty. 

Table 4 also lists the percentage of statements that are exclu- 

sively covered by each tool (%U). Monkey , AndroidRipper , and 

Gator achieved an average of 2.8%, 1.8%, and 0.3% in this mea- 

sure. Adamant achieved 21.8%, i.e., 7.8 times as much as Monkey , 

12.1 times as much as AndroidRipper , and 72.7 times as much 

as Gator . Monkey and AndroidRipper achieved unique statements 

coverage over 4.0% on apps Connectbot and Nextcloud , because 

the subjects simplified or omitted some functions when building 

the E-IFML models for the apps. Nevertheless, Adamant signifi- 

cantly outperformed the other three tools from the aspect of state- 

ments coverage. 

Test generation time (T g ) with Adamant and Gator is consid- 

erably shorter than that with Monkey and AndroidRipper . Such 

difference is easily understandable, since test generation using the 

latter two tools involves executing the generated tests, which can 

be quite time-consuming but also ensures all the generate actions 

are executable. In comparison, while a significant percentage of 

test actions generated by Gator are inexecutable, Adamant does 

not suffer from the same problem, thanks to the guidance provided 

by the E-IFML models. The overall time cost of applying the tools 

to test the object apps is of similar magnitude, if both test genera- 

tion time and test execution time is considered. 

Regarding bugs in the objects, only Monkey helped to discover 

bug B8, while neither AndroidRipper nor Gator detected any bug. 

In other words, seven bugs (B1 through B7) were only detected by 

Adamant . In this regard, Adamant also performs much better than 

the other three tools. 

Adamant significantly outperforms Monkey , AndroidRipper , 
and Gator in terms of statement coverage achieved and number 
of bugs discovered. 

6.5.4. RQ4: Constraint and solution caching. 

Table 5 shows the time cost of Adamant in generating tests 

for the apps with or without constraint and solution caching en- 

abled. In particular, the table lists for each app and each configu- 

ration the total time for test generation (Total) and the time spent 

in constraint solving using Z3 (Z3) in seconds, as well as the ra- 

tio between the two (Z3/Total). With caching disabled, the time 

for constraint solving accounts for 88.4% of the total test genera- 

tion time. The high ratio is largely due to frequent invocations to 

the constraint solver when generating test cases. Some events in 

the object apps can only be triggered using user inputs, such as 

text inputs and list item selections, satisfying certain conditions. 

Although there is only a small number of GUI elements associated 

with such events in the object apps, many test scripts contain test 

actions aiming to trigger such events. For the test actions to be ex- 

ecutable, related constraints need to be solved and suitable user 

inputs need to be constructed. 

With constraint and solution caching enabled, a 99% reduction 

of the total Z3 execution time, i.e., from 15281.8 s to 119.6 s, was 

achieved, since only combinations of related constraints for each 

input need to be solved once and just once under such settings. 

The results suggest that caching enables most of the test genera- 

tion processes to finish in about 10 min. 

Constraint and solution caching drastically reduces the test gen- 
eration time with Adamant . 
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Table 5 

Test generation time in seconds with and without Z3 solution caching. 

App Without Caching (s) With Caching (s) 

Total Z3 Z3/Total (%) Total Z3 Z3/Total (%) 

Bookdash 202.0 185.0 91.6 14.5 0.8 5.6 

ConnectBot 295.7 154.1 52.1 110.1 3.4 3.0 

Goodweather 379.4 346.6 91.4 28.9 0.1 0.6 

I2p 160.8 129.1 80.3 25.5 0.6 2.4 

Kiwix 436.9 400.8 91.7 29.9 2.0 6.7 

Lightning 8550.6 7735.0 90.5 634.5 41.3 6.5 

Omninotes 1711.3 1514.0 88.5 143.1 3.7 2.5 

NextCloud 5410.0 4718.8 87.2 556.0 66.9 12.0 

RingDroid 145.8 97.8 67.1 38.1 0.7 1.9 

Talalarmo 0.8 0.6 75.0 0.1 ă 0.1 42.9 

Total 17293.3 15281.8 88.4 1581.6 119.6 7.6 

Table 6 

Results of the controlled experiment to compare Adamant and Manual approaches. 

App Adamant Manual 

S-ID #K #A %C %U S-ID #K #A %C %U 

Bookdash S1 16 65 70 3.6 S1 12 96 70 1.9 

S2 13 73 78 5.3 S2 8 58 75 4.5 

S3 17 86 82 8.2 S3 9 89 78 4.9 

Avg. 15 75 76 5.7 Avg. 10 81 75 3.8 

Goodweather S1 17 40 57 3.0 S2 36 159 59 4.9 

S2 14 41 72 5.1 S2 19 95 74 7.4 

S3 16 57 73 6.0 S3 15 116 80 12.9 

Avg. 16 46 67 4.7 Avg. 23 123 71 8.4 

Ringdroid S1 11 27 69 8.9 S1 10 57 54 2.5 

S2 30 85 73 10.3 S2 6 49 70 3.0 

S3 18 49 74 11.1 S3 12 67 70 3.3 

Avg. 20 54 72 10.1 Avg. 9 58 65 2.9 

Talalarmo S1 11 33 87 2.3 S1 9 47 88 1.1 

S2 14 39 90 2.1 S2 9 78 88 1.8 

S3 15 47 90 2.6 S3 17 69 89 1.4 

Avg. 13 40 89 2.3 Avg. 12 65 88 1.4 

6.6. Test generation using ADAMANT versus manually 

Experiments described above clearly show that, compared with 

tools like Monkey , AndroidRipper , and Gator , Adamant greatly fa- 

cilitates the effective and efficient generation of test scripts for An- 

droid apps. The significant amount of manual effort required for 

constructing Adamant ’s input E-IFML models, however, may raise 

the question that why not invest that effort in directly crafting the 

tests. In view of that, we investigate also the following research 

question: 

• RQ5: How does generating tests using Adamant compare with 

crafting the tests manually in terms of their cost-effectiveness 

ratios? 

To address the research question, we conducted a preliminary 

controlled experiment, where both approaches are applied to a 

group of Android apps to produce test scripts. 

Objects. We select as the objects four apps from Table 1 : Book- 

dash , Goodweather , Ringdroid , and Talalarmo . These four apps 

are the smallest from the 10 objects used in the previous experi- 

ments, and it took the students 2–6 h to model them. We refrained 

from using larger apps in this controlled experiment since a longer 

experiment with multiple sessions would be needed to obtain 

meaningful results on those apps, which, however, will greatly in- 

crease the chance that uncontrolled factors, e.g., breaks between 

the sessions, influence our experimental results. 

Subjects. We recruit as our subjects 12 postgraduate students 

majored in software engineering and with considerable (i.e., be- 

tween 2 and 5 year) experience in mobile app testing. We did not 

ask the undergraduate students from the previous experiments to 

participate in this experiment, since writing tests is no new task 

for professionals, and for such a task, experienced graduate stu- 

dents perform similarly to industry personnel ( Runeson, 2003 ). 

Setup. The controlled experiment is conducted in two phases. 

In phase one, the four objects are randomly assigned to the sub- 

jects so that each object is tested by exactly three subjects. In this 

phase, subjects need to first construct the E-IFML model for their 

assigned apps and then generate tests. In phase two, the four ob- 

jects are randomly assigned to the subjects again, so that each ob- 

ject is tested by exactly three different subjects than in phase one. 

In this phase, subjects need to manually prepare test scripts in 

Robotium format for their assigned apps. Besides, a 4 h training 

was provided to all the subjects before the experiment starts, 2 h 

for test script writing using Robotium and 2 h for E-IFML modeling 

and test generation using Adamant . 

At the end of each phase, all the test scripts produced for each 

object app are collected. At the end of the experiment, we get six 

test suites for each object app, three generated using Adamant and 

the other three crafted manually. Since the two test generation ap- 

proaches were allocated the same amount of time, we compare 

their cost-effectiveness in terms of their effectiveness. 

To avoid imposing too much burden on the subjects, we limit 

the experiment time on each app in either phase to 3 h, resulting 

in a 6-hour test generation time in total for each student. Run- 

ning the produced test scripts for debugging purposes or coverage 

information is allowed during both phases to enable quick feed- 

back. Such settings also ensure that the experiment covers both 

cases where complete E-IFML models can be constructed and cases 

where only partial E-IFML models can be built for test generation. 

Results. Table 6 lists, for each object app (App), each subject 

(S-ID), and each test generation approach, the basic measures as 

explained earlier: the number of test scripts produced (#K), the 
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number of test actions (#A), the statement coverage achieved (%C), 

and the percentage of statements exclusively covered (%U). Note 

that, given an object app and a test generation approach, the re- 

sults from various subjects are listed in increasing order of state- 

ment coverage they achieved, and the average of the three results 

is reported in the table (row Avg.). Also note that, since no bug 

was detected by either approach, partly due to the limited time 

we allocate for conducting the experiment, we do not report the 

number of bugs detected (#B) in the table. 

The two approaches achieved very close average statement cov- 

erage on apps Bookdash and Talalarmo . We conjecture the rea- 

son to be that the two apps are relatively small so that most parts 

of the apps can be tested in 3 h using either approach. On average, 

Adamant produced slightly higher coverage (72%) than the man- 

ual approach (65%) on Ringdroid . A closer look at the app reveals 

that Ringdroid contains several complex activities with many GUI 

elements. For instance, one activity in Ringdroid contains 16 GUI 

widgets, on which 16 events could be triggered, transiting the app 

to 4 dialog screens with another 16 element. In such a case, once 

an E-IFML model has been built for those activities, Adamant will 

traverse the model to generate test scripts exercising the app in a 

systematic way, while it is more likely for a tester to miss some 

possible behaviors during the tedious process of manual test script 

construction. As for GoodWeather , the app is the largest object 

used in this experiment and it contains the largest number of ac- 

tivities. As a result, all the three subjects failed to model all the 

activities within the given time duration, which led to a slightly 

lower coverage by test scripts generated using Adamant , compared 

with the manually constructed ones. The differences between the 

two approaches in terms of %U are in line with those in terms of 

%C. 

Overall, the experimental results suggest that both test genera- 

tion techniques are able to produce tests with high coverage: test 

generation using E-IFML and Adamant is slightly better at thor- 

oughly testing parts of an app, while it is relatively easier for man- 

ual test construction to quickly explore different behaviors involv- 

ing a wide range of components of an app. 

Test generation using Adamant and manually are comparably 
effective in terms of statement coverage achieved. 

While the two approaches seem to have comparable effective- 

ness in statement coverage, we argue there is more to the value 

of E-IFML models for Android apps than just in test generation. 

On the one hand, the E-IFML models can be constructed at an 

early stage (e.g., during detailed design) in mobile development, 

so that they can benefit not only testers but also developers of 

the apps ( Javed et al., 2007 ), while GUI test scripts are typically 

only produced and utilized when significant effort has been in- 

vested in implementing the apps. On the other hand, the cost for 

maintaining GUI test scripts when the app evolves can be so high 

that engineers would rather write new tests than to update the old 

ones ( Grechanik et al., 2009 ). Models, however, can be updated at 

a relatively smaller price, since they involve fewer low level de- 

tails. Besides, models have been used to facilitate the automated 

maintenance of GUI tests ( Li et al., 2017; Chang et al., 2018 ). In the 

future, we also plan to systematically investigate the utilization of 

E-IFML models for the purpose of GUI test maintenance. 

6.7. Threats to validity 

In this section, we discuss possible threats to the validity of our 

findings in the experiments and how we mitigate them. 

6.7.1. Construct validity 

Threats to construct validity mainly concerns whether the mea- 

surements used in the experiment reflect real-world situations. 

An important goal for Android app testing is to find bugs in 

object apps. In this work, we consider test action executions that 

terminate prematurely or hang as bug revealing, and we manually 

check the executions that hang to find out the underlying reasons. 

While most bug revealing actions indicate real bugs in the apps, 

we might have missed actions whose execution terminated nor- 

mally but deviating from the expected behavior. To partially solve 

that problem, next we plan to develop techniques to automatically 

detect mismatches between actual execution traces and expected 

paths on E-IFML models of the generated test scripts. 

To measure the quality of generated test scripts, we used the 

percentage of statements that the tests cover. While statement cov- 

erage is one of the most recognised metrics for measuring test ad- 

equacy, measures based on other metrics may render the experi- 

mental results differently. In the future, we plan to do more exper- 

iments using a larger collection of metrics to get a more compre- 

hensive understanding of the performance of Adamant . 

6.7.2. Internal validity 

Threats to internal validity are mainly concerned with the un- 

controlled factors that may have also contributed to the experi- 

mental results. 

In our experiments, one major threat to internal validity lies 

in the possible faults in the models we construct for the object 

apps or in the implementation of the Adamant tool. To address the 

threat, we provide training to students preparing the E-IFML mod- 

els and review our models and the tool implementation to ensure 

their correctness. 

The short duration of our controlled experiment, as described 

in Section 6.6 , poses a threat to the validity of our findings regard- 

ing the two approaches’ capabilities, therefore we refrained from 

drawing any conclusions quantitatively. To mitigate the threat, the 

subjects should be allowed to work on the assigned tasks in mul- 

tiple sessions and for a longer duration, mimicking the settings of 

real-world modeling processes. We leave such an experiment for 

future work. 

6.7.3. External validity 

Threats to external validity are mainly concerned with whether 

the findings in our experiment are generalisable for other situa- 

tions. 

Adamant aims to automatically generate test scripts for An- 

droid apps, and we used 10 real-world Android apps in our exper- 

iments to evaluate the performance of Adamant . While the apps 

are from different categories and of different sizes, they are all 

open source apps and the total number of object apps is relatively 

small. These apps may not be good representatives of the other 

Android apps, which poses a major threat to the external validity 

of our findings. In the future, we plan to carry out more exten- 

sive experiments on more diversified Android apps to confirm the 

effectiveness of our technique and tool. 

Another threat has to do with the students involved in the ex- 

periments. Due to difficulties in recruiting professionals to par- 

ticipate in the experiments, we selected students from appropri- 

ate backgrounds as our subjects. While previous studies suggest 

these students behave similarly to professionals in conducting the 

tasks assigned to them, extensive experiments involving profes- 

sional programmers/engineers are needed to better support the ex- 

ternal validity of ours findings, e.g., in the context of mobile devel- 

opment in industry. 
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6.8. Discussion 

We discuss in this section lessons learned from this research, 

limitations in E-IFML and the Adamant approach, and future di- 

rections for research. 

We have gathered several important lessons from this research. 

The first lesson is that models encoding valuable human knowl- 

edge about the apps under consideration really make a difference 

in GUI test generation, while not using any models or using mod- 

els of low quality can significantly degrade the generation results. 

To be the most helpful for the test generation process, the models 

need to capture not only the properties and actions of elements 

on an app’s GUI but also parts of the app’s business logic that are 

related to the GUI. Without information about the business logic, 

the models will have only limited power in guiding test genera- 

tion to explore the more involved app behaviors. The second (re- 

lated) lesson is that to make the model-driven approach more ac- 

cessible to practitioners, it is critical to reduce the difficulties in, 

and the cost of, constructing high-quality models. To that end, an 

easy-to-use and expressive-enough modeling language can be of 

great value, while techniques and tools that can effectively help 

improve the models automatically extracted from apps would also 

be highly appreciated. Our extension to IFML, as described in this 

work, constitutes an effort to define such a modeling language. The 

third lesson we learn is that model-based testing is not necessar- 

ily more expensive than manual test preparation. Both techniques 

have their own areas of excellence and can be used together to 

best suit the apps under testing. 

The experimental results reveal two major limitations of E-IFML 

and the Adamant approach to GUI test generation in their current 

state. First, no mechanism is provided to help verify the correct- 

ness of E-IFML models w.r.t. their corresponding apps. The correct- 

ness of the input models is of course extremely important for the 

generation of quality tests with Adamant , but Adamant simply as- 

sumes at the moment that the input models faithfully reflect the 

characteristics of the apps from a user’s perspective. Second, E- 

IFML offers no construct to support the specification of test oracles. 

As a result, all the generated tests essentially resort to the primi- 

tive oracle that none of the executable test actions should cause an 

app to crash or hang. While such oracle managed to help Adamant 

discover interesting bugs in the experiments, it is just weak speci- 

fication and may leave many unexpected behaviors undetected. 

In the future, besides improving both E-IFML and Adamant and 

overcoming the above-mentioned limitations, we also plan to de- 

velop new techniques to make the results of generated tests easier 

to consume. For instance, one problem worth investigating is how 

to locate the problems when a generated test fails. Here, a failure 

can be caused by a bug in the app, a discrepancy in the E-IFML 

model, or both. 

7. Related work 

This section reviews recent works on mobile and GUI interac- 

tion modeling and mobile testing that are closely related to this 

paper. 

7.1. Mobile and GUI interaction modeling 

Model driven engineering (MDE) has been widely used in all 

stages of software development. In recent years, due to the rapid 

growth of mobile devices and applications as well as the unique 

features (e.g., Android fragmentation, short time-to-market, and 

quick technological innovations) of mobile development, many 

model-based development (MDD) methods and tools were adapted 

for mobile platforms. Parada and de Brisolara (2012) propose an 

approach that uses standard UML class and sequence diagrams 

to describe the application structural and behavioral views, re- 

spectively, and generates Android code based on the diagrams. 

Balagtas-Fernandez and Hussmann (2008) present a prototype tool 

named MobiA to facilitate the development of high-level models 

for mobile applications and the transformation of those models to 

platform specific code. Heitkötter et al. (2013) propose the MD 

2 

approach for model-driven cross-platform development of apps. A 

domain specific textual language is used in MD 

2 to define plat- 

form independent models for apps, which are then compiled to 

native projects on Android or iOS. Rieger (2017) proposes a domain 

specific language named MAML for mobile application develop- 

ment. MAML targets non-technical users and can be used to jointly 

model data, views, business logic, and user interactions of mobile 

apps from a process perspective. Moreover, models in MAML can 

be automatically transformed to generate apps for multiple plat- 

forms. These approaches mainly focus on the business modeling 

for mobile apps. 

As GUIs are getting more complex, graphical modeling lan- 

guages that can visually reflect the detailed GUI interactions 

are needed. Researches on modeling with IFML are thus emerg- 

ing ( Brajnik and Harper, 2015; Laaz and Mbarki, 2016 ). Raneburger 

et al. (2013) examine the usefulness of IFML in multi-device GUI 

generation, which involves first creating a platform-independent 

model and then transforming the model to get GUIs for various 

platforms. Frajták et al. (2015a,b) model web applications with 

IFML, transform the models into their front-end test models, and 

generate test cases for automatic front-end testing. Their technique 

focuses on scenario—rather than whole application—modeling and 

testing, and supports only a limited subset of events (such as click- 

ing and form submitting) and view elements (such as lists and 

forms). Brambilla et al. (2014) extend IFML to support the model- 

ing of simple GUI elements, like containers, components, actions, 

and events, to facilitate the generation of web views coded in 

HTML5, CSS3, and JavaScript for mobile apps. 

Few existing research work on GUI modeling investigated the 

use of IFML to facilitate test case generation for Android apps, and, 

due to features of mobile/Android app GUIs, existing model-based 

testing methods and tools are unlikely to be as effective if applied 

directly on mobile apps. In this work, we extend IFML with the 

support for modeling all important aspects of concrete user inter- 

actions with Android apps, and use E-IFML models to guide effec- 

tive automated test script generation. 

7.2. Automated mobile testing 

Automated testing has long been an important topic in mo- 

bile development. In recent years, several successful tools, such as 

Robotium Github.RobotiumTech (0 0 0 0) , Appium Foundation , and 

MonkeyRunner Google , have been developed for automatically ex- 

ecuting test scripts on mobile apps. Meanwhile, many approaches 

have been proposed for the automatic generation of test scripts. 

Machiry et al. (2013) propose the Dynodroid approach that infers 

representative sequences of GUI and system events for apps and 

performs fuzz testing with improved random strategies. Since then, 

random-based automatic testing approaches have bloomed ( Liang 

et al., 2014; Amalfitano et al., 2015a; Song et al., 2017 ). Another 

large body of researches focused on testing mobile applications 

based on program analysis. Mirzaei et al. (2016) present an ap- 

proach called TrimDroid , which relies on program analysis to ex- 

tract formal specifications of apps and reduce equivalent user in- 

puts. Anand et al. (2012) and Mirzaei et al. (2015) employ sym- 

bolic execution techniques to systematically generate test inputs to 

achieve high code coverage on mobile apps. 

Model-based testing (MBT) methods and tools have also been 

developed to generate and execute tests for mobile apps. A 

large body of other research uses dynamic exploration to build 
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models. Representatives of such works include, e.g., AndroidRip- 

per ( Amalfitano et al., 2012 ) and its descendant MobiGUITAR 

( Amalfitano et al., 2015c ), both of which are based on GUI rip- 

ping ( Memon et al., 2003 ). AndroidRipper dynamically analyses 

an app’s GUI and systematically traverses the GUI to construct se- 

quences of fireable events as executable test scripts, while Mobi- 

GUITAR constructs a state machine model of the GUI and utilizes 

the model and test adequacy criteria to guide the generation of 

test scripts. Su et al. (2017) introduce Stoat , an automated model- 

based testing approach that generates a stochastic model based on 

Gibbs sampling from an app and leverages dynamic analysis to ex- 

plore the app’s behaviours. Yang et al. (2013) propose a grey-box 

approach that employs static analysis to extract events from an app 

and implements dynamic crawling to reverse-engineer a model of 

the app by triggering the events on the running app. While these 

approaches have been proved to be useful in producing test suites 

that achieve significant levels of code coverage, none of them uti- 

lizes human knowledge about behaviors of the apps to make test 

generation more effective. 

Jaaskelainen et al. (2009) and Nieminen et al. (2011) propose 

an open-source framework named Tema for online GUI testing of 

mobile apps. Tema automatically generates abstract tests based 

on manually crafted, platform-independent behavioral models of 

apps that focus on abstract user actions and app state changes. 

The abstract tests are then translated to concrete tests by map- 

ping abstract actions to platform-dependent user actions. Li et al. 

(2014) propose the ADAutomation technique that generates test 

scripts for Android and iOS apps by traversing a user provided 

UML activity diagram modeling user behaviors. Amalfitano et al. 

(2019) propose the juGULAR interactive technique that leverages 

recorded sequences of user events to facilitate the testing of GUIs 

that can only “be solicited by specific user input event sequences”, 

or gate GUIs. In comparison, we extend the IFML to support the 

easy and expressive modeling of Android apps and use E-IFML 

models to guide the automated test generation for Android apps 

with Adamant . Experimental results show that test scripts gener- 

ated by Adamant can achieve higher code coverage and detect real 

bugs. 

8. Conclusion 

We present in this paper the Adamant approach to automated 

Android testing based on E-IFML models. E-IFML is tailored to 

support easy and expressive Android app modeling. Implementing 

a path exploration algorithm augmented with constraint solving, 

Adamant can automatically and effectively process E-IFML models 

and generate test scripts for Android apps. 

We conducted experiments on 10 open-source Android apps 

to evaluate the performance of Adamant . The results show that 

Adamant is highly effective in terms of code coverage achieved 

and the number of bugs detected, and that Adamant significantly 

outperforms other state-of-the-art test generation tools like Mon- 

key , AndroidRipper , and Gator . Such results confirm that the in- 

corporation of human knowledge into automated techniques can 

drastically improve the effectiveness of test generation for Android 

apps. 
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