
0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. *, NO. *, AUGUST 202* 1

PDF: Path-Oriented, Derivative-Free Approach for
Safety Falsification of Nonlinear and

Nondeterministic CPS
Jiawan Wang, Lei Bu, Member, IEEE, Shaopeng Xing, and Xuandong Li

Abstract—Cyber-physical systems (CPS) integrate discrete
computations with continuous physical processes and can be
highly nonlinear and nondeterministic. Unlike the verification of
CPS, which is difficult to handle, the falsification of CPS fulfills
certain requirements from testing by seeking witness behavior
of these systems and is easier to conduct. However, existing
falsification techniques may fail to support the general complex
CPS in practice because they usually focus on certain restricted
classes of systems.

In this paper, we present a path-oriented, derivative-free
approach to falsify safety properties in nonlinear and nonde-
terministic CPS. In our approach, we model the behavior of
CPS by hybrid automata. Then, we enumerate candidate paths
of hybrid automata, transform the feasibility of candidate paths
into optimization problems and solve these optimization problems
by our newly proposed classification-model-based, derivative-
free optimization algorithm. We also provide two novel pruning
techniques to further improve the efficiency and efficacy of our
approach: a nested optimization structure with better model
refinements for continuous search space pruning and a hardly
feasible path prefixes guided backtracking for discrete search
space pruning. We implement our approach into a tool called
PDF. Our experiments showed that PDF supported the safety
falsification of CPS in all of our benchmarks, and it achieved
success rates no lower than 95% in only seconds on 22/28 of the
benchmarks.

Index Terms—Cyber-physical systems (CPS), falsification,
reachability analysis, path-oriented, derivative-free optimization.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPS) are integrations of
computations and physical processes, where physical

processes and computations affect each other through feedback
loops [1]. Most CPS combine both discrete and continuous dy-
namics, and they can be highly nonlinear and nondeterministic.
To formalize the hybrid dynamics of CPS, hybrid automata
(HA) [2] is naturally used as one of their modeling languages.

CPS play an important role in today’s world and are
widely applied in many areas, including safety-critical areas
such as digital medical instruments, aerospace control, and

Manuscript received January 8, 2020; revised May 30, 2020, September
29, 2020, and November 28, 2020; accepted January 16, 2021. This work is
supported in part by the Leading-edge Technology Program of Jiangsu Natural
Science Foundation (No. BK20202001) and the National Natural Science
Foundation of China (No.61632015, No.61690204). (Corresponding author:
Lei Bu.)

The authors are with the State Key Laboratory for Novel Software
Technology, Department of Computer Science and Technology, Nan-
jing University, Nanjing, 210023 China (e-mail: wangjw@smail.nju.edu.cn;
bulei@nju.edu.cn).

autonomous systems. It is important to keep such complex
and dynamic systems working safely. Thus, the critical issue
of the reachability verification of HA has attracted massive
attention over the past two decades [3]–[7]. However, due to
the high complexity of HA’s behavior, the verification of HA
is tough, and the reachability verification problem of HA is
indeed proven to be undecidable [8]. At the current stage,
the verification of nonlinear HA is still a huge obstacle, and
the class of HA that could be verified efficiently is generally
limited to HA with simple dynamics and few or no external
inputs.

As the reachability verification of nonlinear complex HA
is hard to apply in most cases, recent studies have proposed
the falsification of HA as a complementary approach, and
appreciable progress has been achieved. Instead of providing a
rigorous proof, falsification of HA attempts to seek a concrete
counterexample—a simulated witness trajectory that violates
some given properties in systems—by testing. Compared with
verification techniques, testing-based falsification techniques
can be better applied to nonlinear and industrial-scale CPS.
The falsification of HA is conducted in the following two
main directions: motion-planning-based falsification [9]–[12]
and optimization-based falsification [13]–[17]. Besides, other
methods, such as gradient-based ones [18], [19] and the
learning-based one [20], have also been proposed recently.

Motion-planning-based HA falsification explores the sys-
tems’ state space by Rapidly Random Tree (RRT) tech-
niques [21]. Different metrics, such as the coverage degree
of the state space [11] and the robustness of the given safety
property [22], [23], have been utilized to guide the random
simulations during RRT construction [12]. Although RRT
techniques have shown their abilities in robotics and motion
planning, their performance in HA falsification is limited.

Optimization-based HA falsification performs a random
walk by sampling from a parameterized search space. Most of
these optimization-based works assume that the systems under
investigation are with deterministic semantics, which means
that given certain external inputs and initial state, the behavior
of the system is unique and certain. Thus, the search space of
these works typically consists of the external inputs and the
initial state of systems. Optimization-based HA falsification
simulates HA’s behavior with an initial sample generated
from the search space. Various heuristic search methods—such
as Simulated Annealing [15], Ant-Colony [16], and Cross-
Entropy [24]—would be deployed to mutate the current sample
iteratively until a feasible sample is located in the parame-

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. *, NO. *, AUGUST 202*

terized search space. In this line of HA falsification, mature
tools such as S-TaLiRo [14], Breach [13], and FalStar [17]
have been developed. However, the dynamic of many complex
CPS in the real world is nondeterministic, and works in this
line may fail to support the general nondeterministic CPS.
In addition, heuristic search methods used in these works
usually lack sufficient theoretical guarantees and have many
parameters that can greatly affect their performance.

In a nondeterministic hybrid automaton [25] with specific
external inputs and initial state, the behavior of the automaton
can be nondeterministic because of the uncertain choice be-
tween its continuous and discrete dynamics and the uncertain
choice among its multiple enabled discrete dynamics. Thus, to
find a witness behavior in a nondeterministic HA, the search
space of this falsification problem would contain not only the
external inputs and the initial state, but also the answers to
these uncertain choices during the automaton’s evolution.

To handle this large search space, we applied a two-
layered path-oriented framework. Candidate paths of the HA
were enumerated on the bottom layer, and the corresponding
continuous space—consisting of the external inputs, the initial
state, and the exact jumping time of locations in candidate
paths—were searched on the top layer. To search the contin-
uous space, we encoded the feasibility of each candidate path
into an optimization problem, which was then solved by a
classification-model-based derivative-free optimization (DFO)
algorithm rather than by any heuristic search method. Recently,
classification-model-based derivative-free methods have been
proposed for nonlinear optimization [26], [27]. Such methods
scale well to high-dimension tasks. They also have a grounded
theory about the query complexity of the objective function
and the rate of convergence. Thus, a specific classification-
model-based DFO algorithm was designed in this work to
solve the optimization problem on the top layer.

Furthermore, to enhance the efficiency of our approach,
we proposed two light-weight techniques to prune the search
space on the continuous and discrete levels respectively. First,
to prune the continuous search space on the top layer, we
proposed a nested classification-model-based DFO structure.
Under this nested structure, the lower and the upper bounds
of the jumping time of locations along the candidate paths
can be computed, and these jumping time bounds can then
guide better classification-model refinements during the DFO.
Second, to prune the discrete search space on the bottom
layer, we proposed the idea of ‘hardly feasible path prefixes’.
Guided by the hardly feasible path prefixes, backtracking can
be performed during the generation of candidate paths.

All of these techniques have been implemented in a tool
called PDF (Path-Oriented, Derivative-Free Falsification) for
the safety falsification of nonlinear and nondeterministic CPS.
PDF has been evaluated thoroughly by well-known bench-
marks. The current experiments showed that PDF can handle
arbitrary nonlinear HA effectively and efficiently.

The main contributions of this work are:

1. We provided the first path-oriented framework to falsify the
safety properties in nonlinear and nondeterministic HA. To
the best of our knowledge, our falsification framework is

also the first optimization-based one to handle the general
nondeterminism in HA.

2. Instead of using heuristic search methods, we designed a
learning-based DFO algorithm to check the feasibility of
the continuous state space of candidate paths. We also de-
signed two novel pruning algorithms under our framework
to handle the large search space induced by the nondeter-
minism. Experiments showed that our learning-based DFO
algorithm outperformed existing mature heuristic methods
significantly.

3. We implemented a tool called PDF to falsify safety prop-
erties in HA. Experiments showed the effectiveness and
efficiency of PDF, solving all our benchmarks, and achiev-
ing success rates no lower than 95% in only seconds on
22/28 of them .

The rest of this paper is organized as follows. Backgrounds
are given in section II. Descriptions of our two-layered path-
oriented approach and our classification-model-based DFO al-
gorithm are presented in section III. Two search space pruning
techniques are presented in section IV. Implementation details
and experiments are given in section V. We discuss related
works in section VI and conclude in section VII.

II. BACKGROUNDS

A. Problem Formulation

Definition 2.1: (Hybrid Automata) A hybrid automaton con-
sists of a tuple H = (L,X,U,E, F, Inv,G,R, S0, Sf), where
L discrete locations;
X ⊆ Rn space of continuous states;
U ⊆ Rm space of external inputs;
E ⊆ L× L discrete transitions;
F = {Fl : X × U → Rn| l ∈ L} flow functions;
Inv = {Invl ∈ 2X×U | l ∈ L} invariant conditions;
G = {Ge ∈ 2X×U | e ∈ E} guard conditions;
R = {Re : X × U → X| e ∈ E} reset functions;
S0 ∈ 2L×X initial conditions;
Sf ∈ 2L×X unsafe conditions.
Given a hybrid automaton (HA) H , each discrete location

l ∈ L models a system operating mode, and its flow function
Fl defines the differential equation of the system continuous
states by ẋ = Fl(x, µ), where the continuous states x ∈ X and
the external inputs µ ∈ U . If any of the functions or conditions
in the definition of H is not linear, we say H is a nonlinear
HA.

In this work, we assume that the external inputs in H
are time-varying and piecewise smooth. Control points in
a simulation time horizon are given to the external inputs,
and the interpolation (such as piecewise constant, piecewise
linear and splines) across these control points is performed to
parameterize the external inputs.

Definition 2.2: (Semantics) Given a HA H =
(L,X,U,E, F, Inv,G,R, S0, Sf), the state space of H
is defined as S = L × X , and the state of H is denoted by
the pair s = (l, x) ∈ S. The state of H evolves in the two
following ways:
• Continuous Evolution: by continuous dynamic and a time

delay ∆t, state s = (l, x) can evolve to s′ = (l, x′) ac-

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

WANG et al.: PDF: PATH-ORIENTED, DERIVATIVE-FREE APPROACH FOR REACHABILITY FALSIFICATION OF NONLINEAR AND NONDETERMINISTIC CPS 3

cording to the flow function Fl, if the invariant condition
Invl is always satisfied during ∆t.

• Discrete Evolution: by a discrete and instantaneous tran-
sition, state s = (l, x) can evolve to s′ = (l′, x′), if
(l, l′) ∈ E and it is enabled. We say a discrete transition
(l, l′) in H is enabled when H is at location l and the
guard condition G(l,l′) is satisfied.

The nondeterminism of the dynamic in the HA is captured
under this semantic. Given certain external inputs and the state
s of a HA H , the evolvement of s may be uncertain. For one
thing, if multiple discrete transitions are enabled, H can evolve
through any one of them. For another, if both the continuous
and the discrete evolution are allowed, H can either continue
staying at the current location or evolve to another one. In
fact, this nondeterminism is a common case for systems in
practice.

In this work, given the initial state and external inputs of
a HA, if the behavior of the HA is certain, we call it a
deterministic HA, otherwise, it is a nondeterministic HA. To
define a certain behavior of a nondeterministic HA, we give
the definition of paths, jumping time sequences along paths,
and control instances.

Definition 2.3: (Path) A path of a nondeterministic HA H
is a location sequence ρ = {li}N0 , such that
• ∃x ∈ X, (l0, x) ∈ S0;
• ∀i ∈ [0, N), (li, li+1) ∈ E.
Definition 2.4: (Jumping Time Sequence) A jumping time

sequence of a path ρ = {li}N0 in a HA H is a collection
τ = {ti}N+1

0 , such that
• t0 = 0;
• ∀i ∈ [0, N], ti < ti+1.

The interpretation is that if a HA H evolves along a path
ρ = {li}N0 with a jumping time sequence τ = {ti}N+1

0 of ρ,
H should stay in location li when t ∈ [ti, ti+1) (i ∈ [0, N]);
in other words, the discrete transition (li, li+1) should take
place at time instance ti+1 (i ∈ [0, N)). If multiple discrete
transitions are enabled, the path guides H which transition
to take. If both the discrete and the continuous evolution are
allowed, the jumping time sequence provides H with exact
dwell time in locations.

Definition 2.5: (Control Instance) A control instance of a
HA H is a collection δ = (ρ, τ, µ, x), where ρ is a path, τ is
a jumping time sequence of ρ, µ is the external inputs, and x
is the initial values of the system continuous states.
Given a control instance of a nondeterministic HA H , the
behavior of H is certain and unique.

Definition 2.6: (Simulated Trajectory) A simulated trajec-
tory of a control instance δ = (ρ, τ, µ, x) in a HA H is
a collection of differentiable maps Xδ = {X iδ}N0 , where
X iδ : [ti, ti+1]→ X , such that ∀i ∈ [0, N),

• Flow: ∀t ∈ [ti, ti+1), Ẋ iδ(t) = Fli(X iδ(t), µ(t));
• Reset: X i+1

δ (ti+1) = R(li,li+1)(X iδ(ti+1), µ(ti+1)).
Given a control instance δ, its simulated trajectory Xδ in

H can be achieved according to the flow functions and reset
functions by numerical integration of the ordinary differential
equations. However, a simulated trajectory can be infeasible

for HA H because neither invariant conditions nor guard
conditions are considered in simulated trajectories.

Definition 2.7: (Feasible Trajectory) A simulated trajectory
Xδ of a control instance δ = (ρ, τ, µ, x) is a feasible trajectory
if and only if:
• Invariant: ∀i∈[0, N], ∀t∈[ti, ti+1), (X iδ(t), µ(t))∈Invli ;
• Guard: ∀i ∈ [0, N), (X iδ(ti+1), µ(ti+1)) ∈ G(li,li+1).

If there is a feasible trajectory Xδ of a control instance δ =
(ρ, τ, µ, x) in H , we say the path ρ is feasible and all locations
in ρ are reachable.

Definition 2.8: (Witness Trajectory) A feasible trajectory Xδ
of a control instance δ = (ρ, τ, µ, x) is a witness trajectory of
H if and only if:
• (l0,X 0

δ (t0)) ∈ S0;
• (lN ,XNδ (tN+1)) ∈ Sf .

We use (l0,X 0
δ (t0)) and (lN ,XNδ (tN+1)) to denote the initial

state and the final state, respectively, in a simulated trajectory
Xδ . A witness trajectory of H represents the behavior of H
that starts from an initial state in S0 and reaches an unsafe
state in Sf . We say a control instance that leads to a witness
trajectory is a witness control instance. We say a path ρ
is falsification-related feasible in H if H can evolve to an
unsafe state through ρ. That is, there exists τ , µ and x so
that the simulated trajectory Xδ of the control instance δ =
(ρ, τ, µ, x) is a witness trajectory in H .

An example of a nondeterministic HA is shown in Fig. 1.
Its system continuous states are x and y and external input
µ = ∅. There are 6 discrete locations (from v0 to v5) in
it, with their flow functions and invariant conditions in the
form of equations and inequalities respectively. For example,
the flow functions in v0 are ẋ = ln(x + 2) and ẏ = 1; the
invariant condition in v0 is y ≤ 5− sin x

x and the location v5 has
no invariant condition. The HA has 7 edges, with their reset
functions and guard conditions in the form of equations and
inequalities respectively. The initial state is in S0 = {(l, x, y) |
l = v0

∧
−0.01 ≤ x ≤ 0.01

∧
y == 0}, and the target unsafe

state is in Sf = {(l, x, y) | l = v3
∧
x ≥ y − 1.5}. To falsify

this automaton, we need to find a control instance δ, under
which its simulated trajectory Xδ is a witness trajectory. This
example is used to illustrate our approach in this work.

𝑦𝑦 ≤ 𝑥𝑥2

v0
�̇�𝑥 = 𝑙𝑙𝑙𝑙(𝑥𝑥 + 2)

�̇�𝑦 = 1

𝑦𝑦 ≤ 5 −
𝑠𝑠𝑠𝑠𝑙𝑙 𝑥𝑥
𝑥𝑥

v1
�̇�𝑥 =𝑙𝑙𝑙𝑙(sin 𝑥𝑥

10
+2)

�̇�𝑦=1 − 𝑠𝑠𝑠𝑠𝑠𝑠2 𝑦𝑦
4𝑦𝑦2+0.1

𝑥𝑥 ≤ 3𝑥𝑥 ≥ 5

𝑥𝑥 ≔ 𝑠𝑠𝑠𝑠𝑙𝑙 𝑥𝑥 v2
�̇�𝑥 = 𝑠𝑠𝑠𝑠𝑙𝑙 𝑥𝑥2

- cos 𝑦𝑦2
�̇�𝑦 =

𝑦𝑦
𝑥𝑥2 + 0.1

v4

�̇�𝑥 = 𝑠𝑠𝑠𝑠𝑙𝑙2 𝑥𝑥

�̇�𝑦 = 1 + 𝑥𝑥2

𝑦𝑦 ≥ 10 𝑦𝑦 ≤ 𝑥𝑥 + 7

𝑦𝑦 ≥ 7

𝑦𝑦 ≤ 15 𝑦𝑦 ≥ 𝑥𝑥

v3
�̇�𝑥 = 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑥𝑥
�̇�𝑦 = 𝑥𝑥 + 2
𝑦𝑦 𝑠𝑠𝑠𝑠𝑙𝑙 𝑦𝑦

v5
�̇�𝑥 = 𝑙𝑙𝑙𝑙(𝑥𝑥)

�̇�𝑦 =
𝑦𝑦
6

Fig. 1. An Illustrative Hybrid Automaton

B. Classification-Model-Based Derivative-Free Optimization

Derivative-free optimization (DFO) can tackle complex
constrained optimization problems. Given a domain X and
an objective function F to evaluate solutions in X , DFO
outputs an optimal solution arg minx∈X F(x). No derivative

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. *, NO. *, AUGUST 202*

information is required in DFO, so the objective function
F can be non-convex, non-smooth, non-differentiable, or
even in some way noisy. Many DFO methods are heuristic-
based, using distribution or joint distribution as their model
with distribution estimation algorithms. Typical DFO methods
include genetic algorithms [28], cross-entropy methods [29],
Bayesian optimization methods [30], and optimistic optimiza-
tion methods [31]. However, due to the heuristics in many
DFO methods and the variety of optimization problems, most
DFO methods either have little theoretical support or suffer
from poor scalability.

DFO Optimizer

Classification
Model ℍ

Solutions {𝑆𝑆+,𝑆𝑆−}
Objective
Function

ℱ
Refine

Sample 𝑠𝑠

Evaluate
by ℱ(𝑠𝑠)

Classify

Fig. 2. Classification-Model-Based DFO

Recently, efficient classification-model-based DFO meth-
ods with better theoretical support have been proposed. A
classification-model-based DFO method with advanced model
learning techniques has been empirically verified as having ef-
ficacy and high efficiency. It has also been theoretically proven
to be able to solve problems with local-Lipschitz continuity in
polynomial time. See [26] for analysis of general optimization
performance bound, including proofs of convergence rate and
query complexity of the objective function F .

Classification-model-based DFO methods learn a classifica-
tion model H to discriminate bad solutions from good ones.
As depicted in Fig. 2, these classification-model-based DFO
methods share a framework of cycles of solution sampling
and model refinement. In each iteration, the classification-
model-based DFO samples a batch of new solutions s from
the domain defined by H. For each sampled solution s, an
objective function F is called to evaluate s. Following this,
evaluations are sent back to H to classify each of the newly
sampled solutions as either positive or negative. Finally, these
positive and negative solutions refine the classification model
H to achieve a better area of the search space for sampling
new solutions in the next iteration. After all iterations are
completed, the classification-model-based DFO returns the
optimal solution to the caller. The sampling and the model
refinement cycle iterates to enhance the accuracy of the
classification model H, so as to improve the quality of the
solutions generated from the model H.

III. PATH-ORIENTED DFO-BASED FALSIFICATION

A. Approach Framework

In this section, we present our two-layered, path-oriented
and DFO-based falsification approach to falsify safety proper-
ties in nonlinear and nondeterministic HA. Since the behavior
of a nondeterministic HA is decided by a control instance
δ = (ρ, τ, µ, x), the search space of the HA falsification
problem is the domain of control instances in the HA.

Path Falsification (Top Layer)

DFO Optimizer

Path Generation (Bottom Layer)

Model ℍ

Solutions {𝛿𝛿+,𝛿𝛿−}

HA
Simulator

ℱ 𝛿𝛿

�𝛿𝛿 ,ℱ(�𝛿𝛿)

Refine Classify

Objective
Function ℱ

𝜌𝜌

𝛿𝛿
𝛿𝛿 𝒳𝒳δ

Fig. 3. Path-Oriented DFO-Based Framework

The main framework of our approach is shown in Fig. 3.
Our framework is two-layered. We generate candidate paths
on the bottom layer. Each time a candidate path ρ is generated,
we send it to the top layer to perform path falsification. To
generate candidate paths, we first obtain all initial locations
and target locations by initial conditions S0 and unsafe condi-
tions Sf respectively. Then we generate candidate paths from
initial locations to target locations. As for the path generation,
we can obtain the graph structure of the HA by its discrete
locations and transitions, and we then perform a target-oriented
DFS for this graph structure. We can also perform the path
generation by encoding the graph structure of the HA as a
SAT formula [32].

To perform path falsification on the top layer for each
candidate path ρ, we search for a control instance δ of the path
ρ so that the simulated trajectory Xδ is a witness trajectory.
First, we encode the falsification-related feasibility of each
candidate path ρ into an optimization problem and define the
objective function F for this path ρ. Optimization problem
encoding and the definition of paths’ objective function are
given in Sec. III-B. Then, we perform a classification-model-
based DFO algorithm for this optimization problem, sampling
control instances along ρ, simulating and evaluating them
iteratively until the iteration limit is reached or a witness
is found. In each iteration of the DFO, control instances δ
are sampled from the model H, evaluated by the objective
function F(δ) and classified as either positive or negative by
the classification model H according to its evaluation. The
classification-model H is then refined by positive and negative
control instance sets {δ+, δ−}. The classification-model-based
DFO algorithm including detailed model refinement process is
given in Sec. III-C.

For example, for the HA in Fig. 1, v0 is the only initial
location in S0 and v3 is the only target location in Sf . We
generate candidate paths from v0 to v3 on the bottom layer.
The candidate path ρ0 = v0 → v1 → v2 → v3 is firstly
generated, and we perform path falsification for ρ0 on the top
layer. If we fail to find a witness control instance along ρ0
on the top layer, the candidate path ρ1 = v0 → v1 → v2 →
v4 → v3 would be generated on the bottom layer.

B. From Path Falsification to Control Instance Optimization

In this part, we transform the falsification of a candidate
path to the optimization for an optimal control instance along

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

WANG et al.: PDF: PATH-ORIENTED, DERIVATIVE-FREE APPROACH FOR REACHABILITY FALSIFICATION OF NONLINEAR AND NONDETERMINISTIC CPS 5

this path. Firstly, we encode the falsification-related feasibility
problem of a candidate path into a satisfiability problem of
a set of constraints. Secondly, we transform the satisfiability
problem of constraints into an optimization problem for an
optimal control instance.

1) Falsification-Related Feasibility Encoding: In a HA H ,
given a path ρ and a simulated trajectory Xδ along ρ, we
encode all constraints that Xδ should satisfy if it is a witness
trajectory in H . We consider the constraints in the discrete
and the continuous level respectively.

Considering the constraints for a witness trajectory Xδ in
the discrete level. First, the initial state and the final state in Xδ
should satisfy conditions in S0 and Sf respectively. Second,
the guard condition of each discrete transition along the path
ρ should be satisfied when the HA H take this transition.
Therefore, constraints in the discrete level are denoted as

Cdis(δ) =S0(l0,X 0
δ (t0))

∧
Sf (lN ,XNδ (tN+1))∧

i∈[0,N),i∈Z

G(li,li+1)(X
i
δ (ti+1), µ(ti+1))

Considering the constraints for a witness trajectory Xδ in
the continuous level. The invariant condition of each location
along the path ρ should be satisfied when the HA H dwells
in this location. Therefore, constraints in the continuous level
are denoted as

Ccon(δ) =
∧

i∈[0,N],i∈Z

∧
∀t∈[ti,ti+1)

Invli(X iδ(t), µ(t))

Combining the constraints in both levels, we denote con-
straints for a witness trajectory Xδ as

C(δ) = Cdis(δ)
∧

Ccon(δ)

For example, for the path ρ0 = v0 → v1 → v2 → v3 in
the HA in Fig. 1, its falsification-related feasibility is encoded
into the satisfiability of constraints C(δ), where δ is a control
instance along ρ0 and

C(δ) = −0.01 ≤X 0
δ (0)(x) ≤ 0.01

∧
X 0
δ (0)(y) = 0∧

X 3
δ (t4)(x) ≥ X 3

δ (t4)(y)− 1.5∧
X 0
δ (t1)(x) ≥ 5

∧
X 1
δ (t2)(y) ≥ 10∧

X 2
δ (t3)(y) ≤ X 2

δ (t3)(x) + 7∧
∀t∈[t0,t1)

X 0
δ (t)(y) ≤ 5− sin(X 0

δ (t)(x))

X 0
δ (t)(x)∧

∀t∈[t1,t2)

X 1
δ (t)(x) ≤ 3

(1)

A candidate path ρ is falsification-related feasible if and
only if constraints C(δ) are satisfied by a control instance δ
along the path ρ.

2) From Constraint Solving to Optimization: After encod-
ing the candidate path’s falsification-related feasibility into
the satisfiability of constraints in C, we need to solve this
satisfiability problem. However, the constraints in C, such as
those shown in Eq.(1), are usually full of nonlinear arithmetics
and even formulas with ‘∀’, which cannot be clearly solved
by existing SMT solvers. In this work, we transform the
satisfiability problem into an optimization problem.

Instead of direct constraint solving, we sample potential
solutions of C (in the form of the control instance δ) to
verify whether they can make the whole constraint problem
satisfiable. We define the dissatisfactory degree of constraints
w.r.t the solution δ to measure whether a sampled potential
solution can fulfill the constraints, and if not, how bad it is.
The dissatisfactory degree of constraints is defined below.

A simple constraint is in the form of ‘Expr ./ 0’, where
‘Expr’ is an expression about continuous states and ./∈ {≥
, >,=, 6=}. Function ‘val’: Expr→ R maps each expression to
its value. The dissatisfactory degree of such a simple constraint
C is defined as:

D(C)1 =

val(Expr) ≥ 0? 0 : −value(Expr) if C is Expr ≥ 0

val(Expr) > 0? 0 : 1− value(Expr) if C is Expr > 0

val(Expr) = 0? 0 : |value(Expr)| if C is Expr = 0

val(Expr) 6= 0? 0 : 1 if C is Expr 6= 0

A complex constraint is in the form of the conjunction or
the disjunction of simple or complex constraints. The dissat-
isfactory degree of such a complex constraint C is defined
as:

D(C) =

{
min(D(C1),D(C2)), if C = C1

∨
C2

D(C1) +D(C2), if C = C1

∧
C2

For example, the first element in the C(δ) in Eq.(1) can
be written as a complex constraint (X 0

δ (0)(x) + 0.01 ≥
0) ∧ (X 0

δ (0)(x) − 0.01 ≤ 0). Given a control instance δ
together with its simulated trajectory Xδ , we can compute the
dissatisfactory degree of this complex constraint.

However, the universal quantification ‘∀’ exists in the
continuous-level falsification-related feasibility constraints
Ccon. It is impossible for us to compute and accumulate dis-
satisfactory degrees of constraints in the invariant conditions at
all moments infinitely. So we approximate the dissatisfactory
degree of constraints Ccon by focusing on the dissatisfactory
degrees of constraints in the invariant conditions at regular
intervals and critical moments. Thus, the approximation of
Ccon and C are defined as C′con and C′ respectively, where

C′con(δ) =
∧

i∈[0,N],i∈Z

∧
αj∈[ti,ti+1),

αj∈(αj−1,αj−1+4t],
αj=αj−1+4t||αj is critical2

Invli(X iδ(αj), µ(αj))

C′(δ) = Cdis(δ)
∧

C′con(δ)

Given a potential solution δ of a constraint C(δ), we
evaluate it by the dissatisfactory degree of C′(δ) as:

F(δ) = D(C′(δ)) (2)

The dissatisfactory degree of constraints is always non-
negative and a smaller dissatisfactory degree implies better
satisfaction of constraints. The dissatisfactory degree would
be 0 if and only if the constraints are satisfied. Thus, the
falsification-related feasibility of the path ρ is transformed into
the optimization problem of arg minδ along ρ F(δ).

1‘?’ is a conditional ternary operator here. Given an expression ‘A? B:C’,
if A is true, the entire expression evaluates to B, and otherwise to C.

24t is a small and fixed time interval. The time instance αj is critical if
Invli is violated at αj , for the first time since αj−1. Critical time instances
are obtained by the ODE solver used in our work.

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. *, NO. *, AUGUST 202*

C. Classification-Model-Based DFO for Optimal Control In-
stance

Algorithm 1 Classification-Model-based DFO for the Op-
timal Control Instance along a Candidate Path
Input:

X : Domain of Control Instances along the path ρ;
F : Dissatisfactory Degree Function of the path ρ;
N : Number of Iterations;
m : Number of Solutions Sampled in Each Iteration;
n : Number of Mutations When Sampling New Solutions.

Output: argminδ∈X F(δ), minδ∈X F(δ).
1: function Optimize(X,F , N,m, n)
2: S, Y = {} . Solution set, evaluation set
3: S+ = X,S− = {} . Positive, negative solutions
4: δ̃ = {} . Optimal solution
5: for n = 1 to N do
6: for i = 1 to m do
7: δ+ = UniformRandom(S+)
8: H = ModelRefine(X, δ+, S−)
9: δi = Sample(H, δ+, n, |X|)

10: yi = F(δi) . Evaluate solutions
11: end for
12: S = {δ1, ..., δm}, Y = {y1, ..., ym}
13: {S+, S−} = Ck(S, Y) . Classify solutions
14: δ̃ = arg min

δ∈S∪{δ̃}
F(δ) . Update optimal solution

15: end for
16: return δ̃,F(δ̃) . Optimal solution and evluation
17: end function

18: function ModelRefine(X, δ+, S−)
19: H = X . Init new model
20: while ∃δ− ∈ S−, s.t. δ− ∈ H do
21: d = UniformRandom(1, |X|) . Select dimension
22: S−l = {δ− ∈ S− | δ−[d] > δ+[d]}
23: S−s = {δ− ∈ S− | δ−[d] < δ+[d]}
24: if |S−l | ≥ |S

−
s | then . Shrink upper bound

25: r = UniformRandom(δ+[d],min
δ∈S−

l
s[d])

26: H = H ∩H[d] ≤ r
27: end if
28: if |S−l | ≤ |S

−
s | then . Shrink lower bound

29: r = UniformRandom(max
δ∈S−s

s[d], δ+[d])
30: H = H ∩H[d] ≥ r
31: end if
32: end while
33: return H . Return learnt model
34: end function

35: function Sample(H, δ+, n,D)
36: δ = δ+ . Init new solution
37: for i = 1 to n do . Mutate n times
38: d = UniformRandom(1, D) . Select dimension
39: δ[d] = UniformRandom(H[d].low,H[d].up)
40: end for
41: return δ . Return new solution
42: end function

For the current optimization problem transformed from
the falsification-related feasibility of a candidate path ρ, its
optimization domain consists of all control instances along ρ.
The objective function to evaluate each control instance δ is
the dissatisfactory degree function F(δ) in Eq.(2). The optimal
solution is the control instance δ̃ with the minimum dissatis-
factory degree F(δ̃). Since the objective function F(δ) is non-
convex, non-differential and sometimes even non-continuous,

we cannot solve the optimization problem by gradient-based
methods. Therefore, we solve this optimization problem in a
derivative-free manner and design a new classification-model-
based DFO algorithm based on the framework of [26].

As shown in Alg. 1, classification-model-based DFO is
performed in the function ‘Optimize’. It employs a hyper-
rectangle H as its classification model. For each solution
δ in the optimization domain X , it is viewed as a good
one if it is in the hyper-rectangle H, otherwise, viewed
as a bad one. The main workflow of ‘Optimize’ performs
N times of iterations (line 5-15). In each iteration, it first
performs m cycles of classification-model refinement by the
function ‘ModelRefine’ (line 8), solution sampling by the
function ‘Sample’ (line 9), and solution evaluation by the
input objective function F (line 10). In the same cycle, model
refinement (line 8) and solution sampling (line 9) are based
on the same randomly sampled positive solution δ+ (line 7).
Then, this batch of m new solutions are divided into positive
and negative ones by the function ‘Ck’ (line 13). Solutions
with k smallest evaluations are classified into the positive set
S+, and the rest into the negative set S−. At the end of each
iteration, we update the optimal solution δ̃ by the one with the
smallest dissatisfactory degree (line 14).

Model refinement and solution sampling techniques are key
to a classification-model-based DFO method. We introduce our
model refinement process (line 18-34) and solution sampling
process (line 35-42) below in detail.

During the model refinement, we first initialize the model
H by the optimization domain X (line 19). Then, we refine
the model H iteratively until no negative solutions in S−

exist inside (line 20-32). In each iteration, we refine H in
a randomly selected dimension d (line 21). By counting the
number of negative solutions whose value is larger than the
input positive solution δ+ in dimension d (line 22) and the
number of negative solutions whose value is smaller (line
23), we decide how to shrink the bounds of H in dimension
d (line 24-31). For example, in dimension d, if the majority
of the negative solutions are larger than δ+, (which means
S−l is the majority), we shrink the upper bound of H[d] to a
random value larger than δ+[d] and smaller than the value of
any solution in S−l in dimension d (line 24-27). As such, in
each iteration, we shrink the model H to exclude the majority
of S− while keeping the positive solution δ+ still inside.
Like most classification model learning techniques, our model
refinement technique is also equipped with various high-level
randomness (omitted in the pseudocode) to keep reducing the
positive search space with a small error-target dependence and
a small shrinking rate.

During the solution sampling, we generate new solutions
from H by mutating the input positive solution δ+ for n
times (line 37-40). In each iteration, we select a random
dimension d (line 38) and adjust the solution’s value in
dimension d to a randomly selected value in H[d] (line 39).
Since δ+ is inside the newly refined model H, the mutated
solution is also inside H.

Based on our classification-model-based DFO, we accom-
plish the falsification of the illustrative HA in Fig. 1. For the
candidate path ρ0 = v0 → v1 → v2 → v3, control instances in

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

WANG et al.: PDF: PATH-ORIENTED, DERIVATIVE-FREE APPROACH FOR REACHABILITY FALSIFICATION OF NONLINEAR AND NONDETERMINISTIC CPS 7

the optimization domain X = {ρ0, τ = {ti}40, µ = ∅, x ∈ R2}
are sampled and evaluated iteratively. After all iterations are
over, we achieve the optimal control instance along ρ0 with
a minimal dissatisfactory degree 3.814, which is larger than
0. Thus, the candidate path ρ0 is viewed as not falsification-
related feasible and we continue to generate more candidate
paths on the bottom layer. Path ρ1 = v0 → v1 → v2 → v4 →
v3 is then generated. The dissatisfactory degree of the optimal
control instance along ρ1 is 5.591, which is still larger than
0. At last, the third candidate path ρ2 = v0 → v1 → v5 → v3
is generated. The dissatisfactory degree of the optimal control
instance along ρ2 is 0, and the optimal control instance is δ̃ =
(ρ2, τ̃ , ∅, x̃), where τ̃ = {4.86022, 2.23614, 3.40948, 2.77142}
and x̃ = {−0.00760778, 0}. We complete the falsification of
the illustrative HA with this witness control instance δ̃.

IV. SEARCH SPACE PRUNING

In this section, two search space pruning techniques under
our path-oriented, DFO-based framework are provided. The
first technique introduces a nested DFO structure with better
model refinements during the path falsification. It reduces the
continuous search space of the jumping time sequences along
candidate paths. The second technique reduces the discrete
search space by introducing the idea of ‘hardly feasible path
prefix’ and using it to guide backtracking during the path
generation.

A. Nested DFO Structure with Better Model Refinements

Given a HA H with its current state (l, x) and the external
inputs, we can simulate the evolution of H during a simulation
time horizon to figure out when a discrete transition (l, l′) can
be enabled in H and when H can not continue staying in the
current location l. Therefore, when H evolves under a control
instance δ in the first i locations and arrives at the (i + 1)th
location li at the moment ti, we can define its smallest and
largest possible jumping time to the location li+1.

Definition 4.1: (Jumping Time Bounds) Given a HA H
having evolved to the location li under a control instance
δ = {ρ = {li}N0 , τ = {ti}N+1

0 , µ, x}, the upper jumping time
bound to li+1 is tui+1, where
• ti < tui+1

• (X iδ(tui+1), µ(tui+1)) /∈ Invli
• ∀t ∈ [ti, t

u
i+1), (X iδ(t), µ(t)) ∈ Invli

the lower jumping time bound to li+1 is tui+1, where
• ti < tli+1 ≤ tui+1

• (X iδ(tli+1), µ(tli+1)) ∈ G(li,li+1)

• ∀t ∈ [ti, t
l
i+1), (X iδ(t), µ(t)) /∈ G(li,li+1)

When simulating a HA under a control instance, the jump-
ing time bounds for all reachable locations can be obtained
with a small amount of extra effort. When the HA has evolved
to the location li, we simulate its continuous dynamics in some
simulation time horizon. The upper jumping time bound of the
location li+1 is the first moment that the invariant condition
of li is not satisfied during the simulation. The lower jumping
time bound of the location li+1 is the first moment that the
guard condition of the discrete transition (li, li+1) is satisfied

and the invariant condition of li has not been violated. When
the upper jumping time bound of li+1 doesn’t exist, we can
set it to the simulation time horizon. When the lower jumping
time bound of li+1 doesn’t exist, it suggests that the location
li+1 is not reachable under this control instance.

However, under our original single layer DFO structure,
it is hard to refine the classification model by the jumping
time bounds directly. For one thing, the jumping time bound
[tli+1, t

u
i+1] under a control instance δ is valid only when the

HA is given the same initial values, external inputs and dwells
in all locations before li as δ requires. For another, the space
required to store all jumping time bounds under all sampled
control instances can be giant. Therefore, to utilize the jumping
time bounds efficiently, we propose a nested optimization
structure during the path falsification. The workflow under the
nested optimization structure is shown in Fig. 4.

S2.2:
{tl, tu}
ℱ2 𝛿𝛿

S0: 𝜌𝜌

Objective Function ℱ1

ℱ1 𝜌𝜌, �̃�𝜏,𝜇𝜇, 𝑥𝑥

S2.1: 𝛿𝛿S1.1: 𝜌𝜌,𝜇𝜇, 𝑥𝑥

S3: �𝛿𝛿 = 𝜌𝜌, �̃�𝜏, �𝜇𝜇, 𝑥𝑥 ,ℱ1(�𝛿𝛿)

Objective
Function
ℱ2

1st-Layer DFO

Model ℍ1

Solutions{ 𝜇𝜇,𝑥𝑥 }

S1.4:
Refine

2nd-Layer DFO
Solutions {𝜏𝜏}

Model ℍ2

S1.2: �̃�𝜏,

Path Generation (Bottom Layer)

Path Falsification (Top Layer)

HA
Simulator

S1.3:
Classify S2.3:

Classify
S2.4:
Refine

Fig. 4. Workflow under the Nested Optimization Structure

In the first layer of the nested DFO, it samples and eval-
uates pairs of external inputs and initial values iteratively. It
performs S1.1-1.4 in cycles and returns an optimal control
instance δ̃ together with its dissatisfactory degree F1{δ̃} in
S3. The objective function F1 is defined as before in Eq.(2).

S1.1 A pair of external inputs and initial values (µ, x) is
sampled from the model H1 as before in Alg. 1 and is
sent with the candidate path ρ to the second layer DFO
to be evaluated.

S1.2 Evaluations of a pair of (ρ, µ, x), including an optimal
jumping time sequence τ̃ of it and the dissatisfactory
degree F1(ρ, τ̃ , µ, x), are returned from the second layer
DFO to the first layer DFO.

S1.3 Each pair of (µ, x) is classified into a positive or a
negative one by its evaluation F1(ρ, τ̃ , µ, x).

S1.4 The model H1 is refined by positive and negative solu-
tions sampled before as in Alg. 1.

In the second layer of the nested DFO, for each input
(ρ, µ, x), it samples and evaluates time sequences τ along ρ it-
eratively. It performs S2.1-2.4 in cycles and returns evaluations
of (ρ, µ, x) to the first layer in S1.2. The objective function
F2 in the second layer DFO is defined to return the number
of unreachable locations, the smaller the better.

S2.1 A jumping time sequence τ of ρ is sampled from the
model H2 as before and then the combined control
instance δ = (ρ, τ, µ, x) is sent to be evaluated by F2.

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. *, NO. *, AUGUST 202*

S2.2 For each control instance δ, its simulated-trajectory and
all jumping time bounds {tl, tu} are obtained by the
HA simulator and the number of unreachable locations
is obtained by F2(δ).

S2.3 Each jumping time sequence τ is classified into a positive
or a negative one by its evaluation F2(δ).

S2.4 The model H2 is refined by selecting a random posi-
tive solution τ+ and adding constraints of all jumping
time bounds under δ+ = (ρ, τ+, µ, x)—constraints are
H2[i] ∈ [tli, t

u
i] for each reachable location li in ρ.

The validity of the jumping time bounds is ensured from
two aspects. First, the initial values and external inputs are
certain inside the second layer. Second, model H2 is refined
by the jumping time bounds of a random selecting positive
solution τ+, and then new solutions are sampled from H2 by
mutating the same τ+.

The jumping time bounds refine the classification model
H2 in the second layer DFO more accurately and efficiently,
compared to balancing from positive and negative solutions
of jumping time sequences sampled before. Actually, we only
need to compute jumping time bounds when needed. Also,
under this nested DFO structure, our approach is compatible
with deterministic HA. For a deterministic HA, given (ρ, µ, x),
we can obtain the unique legal jumping time sequence quickly
through the model refinements in the second layer DFO by
jumping time bounds.

B. Hardly Feasible Path Prefixes Guided Backtracking

The discrete search space in HA falsification can be large.
Problems such as “path explosion” limit the performance of
“path-oriented” methods. To sufficiently leverage our path-
oriented framework and enhance the efficiency of our ap-
proach, we introduce the infeasible location sets and infeasible
path prefixes. We then prune the discrete search space by an
approximation of the shortest infeasible path prefix, which we
call “the shortest hardly feasible path prefix”. To be specific,
we perform backtracking guided by this path prefix, during
our path generation process on the bottom layer. When we
run out of the simulation limit and find no witness in the
current candidate path, instead of generating and checking the
next candidate path in the DFS order, we can turn to check a
more appropriate one directly.

An infeasible location set of a path ρ is a set of locations
in ρ that the constraints of these locations can not be satisfied
simultaneously. We give a formal definition of the infeasible
location set as follows.

Definition 4.2: (Infeasible Location Set) Given a path ρ =
{li}N0 in a HA H , the location set λ is an infeasible location set
of ρ, if and only if λ ⊆ ρ and it is impossible for all constraints
(including invariant conditions and guard conditions) of the
locations in λ be satisfied when H evolves along ρ.
While some locations in an infeasible location set λ = {li}jnj0
of the path ρ can be reachable along ρ, the last location ljn
in λ is always not reachable when H evolves along ρ.

Definition 4.3: (Shortest Infeasible Path Prefix) Given a path
ρ = {li}N0 in a HA H , ρ′ = {li}M0 is the shortest infeasible
path prefix of ρ, if and only if

• ∃λ = {li}jnj0 , λ is an infeasible location set of ρ, M = jn
• @λ = {li}jnj0 , λ is an infeasible location set of ρ, M > jn
The shortest infeasible path prefix of the last candidate path

can guide us to perform backtracking during path generation.
To find the shortest infeasible path prefix of a path, we need to
find all infeasible location sets of it. However, the infeasible
location sets are theoretically unobtainable in our approach.
Thus, we search for some hardly feasible location sets as an
alternative.

In our approach, a hardly feasible location set of the
candidate path ρ is a set of locations in ρ that the constraints
of these locations are never satisfied simultaneously when we
simulate the HA along ρ during the path falsification. Usually,
hundreds or thousands of simulations are performed for each
candidate path during the path falsification on the top layer.
Therefore, the hardly feasible location sets can be viewed as
an alternative to the infeasible location sets. Then, we could
obtain the shortest hardly feasible path prefix of ρ through the
hardly feasible location sets of ρ. We only need a little extra
effort to record the satisfiability of each location’s constraints
during the simulations on the top layer. See Alg. 2 for the
pseudocode of generating the shortest hardly feasible path
prefix.

Algorithm 2 Shortest Hardly Feasible Prefix Generation
Input:

ρ : the Candidate Path;
N : the Number of Simulations.

Output:
{li}index

0 : the Shortest Hardly Feasible Path Prefix of ρ.
1: function GenPrefix(ρ,N)
2: index = |ρ| − 1 . Init it to the index of last location
3: for i = 1 to 3 do . Check location sets with size 1-3
4: for each set λ, |λ| = i, λ ⊆ ρ do
5: sat=FALSE . Init satisfiability
6: for j = 0 to N -1 do . Check all simulations
7: if all the constraints w.r.t. λ is TRUE then
8: sat=TRUE, goto line 11
9: end if

10: end for
11: if ¬ sat then . Update to the smallest one
12: index = min(index, λ[i− 1])
13: end if
14: end for
15: end for
16: return {li}index

0 . The shortest hardly feasible prefix
17: end function

Only hardly feasible location sets of size smaller than 4
are considered in our work. In our experience, searching for
and utilizing hardly feasible location sets of larger size are
more time-consuming and less effective. Therefore, we only
search for hardly feasible location sets of size 1-3 (line 3-
15). We check each location set by the satisfiability records
of each location’s constraints in each simulation (line 6-10).
For each hardly feasible location set, we check the index of
its last location and record the smallest one in the variable
‘index’ (line 11-13). Finally, we return the shortest hardly
feasible path prefix of ρ (line 16).

Take the illustrative HA in Fig. 1 as an example. Firstly,
the candidate path ρ0 = v0 → v1 → v2 → v3 is generated
and we search for its shortest hardly feasible path prefix during

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

WANG et al.: PDF: PATH-ORIENTED, DERIVATIVE-FREE APPROACH FOR REACHABILITY FALSIFICATION OF NONLINEAR AND NONDETERMINISTIC CPS 9

the path falsification of it. According to Alg. 2, hardly feasible
location sets of ρ0, such as λ0 ={v0,v1,v2} and λ1 ={v2,v3},
are found. Among the last locations of all hardly feasible
location sets, the location v2 is the one with the smallest index.
Thus, ρ′0 = v0 → v1 → v2 is the shortest hardly feasible path
prefix of ρ0. We could backtrack from the location v3 to v1 on
the bottom layer, and then, the next generated candidate path
is ρ2 = v0 → v1 → v5 → v3. Finally, the falsification-related
feasible path ρ2 is falsified. Compared to the falsification
process described in Sec. III, the generation and falsification
of ρ1 = v0 → v1 → v2 → v4 → v3 is not needed any more.

V. IMPLEMENTATION & EXPERIMENTAL EVALUATION

A. Implementation Details

We have implemented our approach in a tool called PDF,
(Path-Oriented, Derivative-Free Falsification), in C++. Given
a HA, PDF would return a witness trajectory if it finds any
within the given simulation iterations. PDF supports the gen-
eral HA with external inputs, nondeterministic semantics, and
arbitrary nonlinear dynamics. Details of our implementation
are presented below.

System parameters: We implemented our basic approach
(Sec. III) and our two pruning techniques (Sec. IV) in PDF.
System parameters of PDF include the interpolation method
and the number of control points for external inputs, the
determinism of HA, the error tolerance, the simulation time
horizon, the simulation iteration bound for each path, the total
simulation iteration bound, etc. The default error tolerance is
set to a small number (1e−8) for practical purposes.

Simulation: We have used Sundials’ CVODE [33] to handle
the numerical integration of the ordinary differential equations
associated with the flow functions in the HA. The interpolation
of the external inputs is obtained by GNU Scientific Library
(GSL) [34], which offers various interpolation types and
methods to the users.

B. Benchmarks & Experiments Setup

PDF was tested over a set of widely used benchmarks for
HA falsification. The benchmarks used in our experiments
included HA with different features such as non-linearity and
nondeterminism, different numbers of locations, continuous
states and external inputs, and different difficulty levels of
unsafe specifications to be falsified. All benchmarks and their
features are given in table I.

More specifically, Air1-3 [35] model and capture the es-
sential features of the aircraft flight. They contain a fairly
simple deterministic HA with only one discrete location, but
with a large number of external inputs. IG1-3 [36] model the
dynamics of the interaction between glucose and insulin in the
blood system, and IG-4 is modified from IG1-3 to introduce
possible errors in the measurement by medical instruments.
IG1-3 and IG-4 are benchmarks of deterministic HA without
and with external inputs respectively. Nav1-15 [15], [37]
model the movement of a vehicle on a R2 map, and the
vehicle’s desired velocity is determined by its position on
an n × m grid of the map. In the HA of Nav benchmarks,
fixing the cells’ size of the grid, the number of locations and

the number discrete transitions both increase with the size
of the map. Nav1-2, Nav3-4, and Nav-5 are benchmarks of
deterministic HA with 16, 25, and 225 locations respectively.
Nav6-15 are benchmarks of nondeterministic HA modified
from Nav1-5 to introduce blurred borders of the cells on
practical maps.

Besides, it’s worth mentioning that AFC1 and AFC2 contain
a frequently used automatic control system in ARCH-COMP,
whose model is reported as “a high complexity model” with
“complex constraint input spaces” [38]–[41]. This benchmark
was first introduced in [42], consisting of a powertrain engine
model and an air-fuel controller with 4 operation modes, 2
external inputs, and 8 continuous states. Representative system
requirements were also given in [42]. In our experiment,
we falsified the two requirements that can be written in the
form of safety property, with the input settings given in [42].
To be specific, we fixed the input throttle to be piecewise
constant with 10 uniform segments over [0,61.2) and the input
speed to be constant over [900,1100). AFC1a-c falsify the
controlled signal overshoot/undershoot requirement presented
in Eq.(26) in [42], and AFC2a-c falsify the accumulated error
requirement presented in Eq.(29) there. For the requirements
in AFC1a-c, their specific limits increase in value, such that
their falsification difficulties increase in order. So do AFC2a-c.

Our experiments are organized in the following aspects.

1. We evaluated the performance of our approach and the
effectiveness of the two pruning techniques proposed under
our path-oriented, DFO-based framework.

2. We evaluated the performance of PDF by comparing it
with S-TaLiRo [14] and Breach [13], two state-of-the-
art optimization-based falsification tools in the falsification
track of ARCH-COMP 20 [41], designed to falsify tempo-
ral logic specifications in deterministic HA. Therefore, we
compared PDF with them merely in deterministic bench-
marks. We converted the unsafe conditions to safety prop-
erties expressed by temporal logic formulas for S-TaLiRo
and Breach, and applied HyST [43], [44] to translate all
models into Simulink models so that Breach can handle.
For the AFC benchmark, we used the hybrid automaton
version of the AFC system presented in [42]. We also
slightly modified its Simulink version for other tools, such
that its dynamics are consistent with our hybrid automaton
version.

3. We implemented the Simulated Annealing (SA) algorithm
in PDF according to S-TaLiRo’s setting. Then, we com-
pared the performance of our classification-model-based
DFO algorithm with this classical heuristic method.

All experiments were conducted on the same PC (Intel Core
i7 2.20GHz, 16GB RAM, UBUNTU 15.5.2 Virtual Machine).
The simulation iteration bound is 10000 for deterministic
benchmarks and 30000 for nondeterministic cases. The falsi-
fication time bound is 1800s for all cases. For all benchmarks
except AFC, we ran PDF, S-TaLiRoSA, and S-TaLiRoCE 100
times and ran S-TaLiRoSOAR and Breach 20 times. For the
AFC benchmark, whose model complexity leads to its time-
consuming simulation process, we ran PDF 100 times and
other tools 20 times.

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. *, NO. *, AUGUST 202*

C. Evaluations
1) Evaluate PDF and Its Pruning Techniques: In Table. I,

we presented the falsification results of PDF on all 28 bench-
marks. The data we observed have been presented as follows:
1. PDF supports the falsification of deterministic and non-

deterministic HA with hundreds of locations and nonlin-
ear time-varying dynamics. PDF successfully generated
witness trajectories for all 28 benchmarks and achieved
success rates no lower than 95% on 23/28 of them.

2. The efficiency of PDF is satisfactory in that it obtained
witness trajectories of all benchmarks in seconds and used
more than 18 seconds in only 2 of all 28 cases.

3. Comparing the basic version of PDF with the optimized
version, we concluded that the pruning techniques made
substantial improvements in PDF:
• Without pruning, the success rates of PDF were less

than 2% in 9 cases. More specifically, the success rates
were 0% in 7 cases and 1% in the other 2 cases.
Equipped with pruning techniques, all these failed
cases were then solved with high success rates (no
lower than 89%).

• While the success rates were improved in all cases, the
simulation iteration usage was generally maintained or
even reduced in many cases.

2) Compare PDF with Other Tools in Deterministic Cases:
Here, we evaluate the performance of PDF by comparing it
with existing works. However, we failed to find any publicly
available tool that supports the falsification of nondeterministic
and nonlinear HA. Therefore, we made a comparison with
S-TaLiRo and Breach, two state-of-the-art optimization-based
falsification tools focusing on deterministic hybrid systems. S-
TaLiRo and Breach support various optimization methods. In
the experiment, we ran Breach with Nelder-Meade (NM), its
default optimization method. Since no default or dominating
optimization method exists in S-TaLiRo, we chose to run S-
TaLiRo with Simulated Annealing (SA), Stochastic Optimiza-
tion with Adaptive Restart (SOAR), and Cross-Entropy (CE).
As these tools only handle deterministic hybrid systems, the
comparisons were conducted in the deterministic cases only.

The falsification results of PDF, S-TaLiRo, and Breach are
shown in Table. II. From the data we observed the following:
1. For success rates:

• PDF is the only tool that solved all 18 deterministic
cases. Meanwhile, S-TaLiRo solved at most 17/18 by
S-TaLiRoSOAR, and Breach solved 14/18 of all cases.

• PDF achieved or tied for the highest success rate in
17/18 of all cases. In the remaining one case, Nav-2,
the success rate of PDF is up to 97%.

• Comparing all settings of S-TaLiRo and Breach,
Breach achieved or tied for the highest success rate
in 10/18 of all cases. Among the different settings of
S-TaLiRo, S-TaLiRoSA won by achieving or tying for
the highest success rate in 6/18 of all cases.

2. For iteration numbers:
• In the strategy of Breach, it tries the corner samples

first to look for a witness trajectory. In the exper-
iment, this strategy worked, and Breach used very

few iterations in 8/18 of all cases. However, when
this strategy did not work, Breach had unsatisfactory
success rates or iteration numbers in 8/10 of the rest
cases, and therefore showed an unstable performance
in our experiment.

• S-TaLiRoSOAR consumed the fewest iterations in 7
cases. The SOAR optimizer captured the characteristics
of the search space and exploited learned information
sufficiently. However, the SOAR optimizer brought
heavy time usage, which we will discuss later.

• While the path of deterministic HA is certain under
each input sample, for PDF which is designed to handle
nondeterministic HA, all paths need to be checked
and more simulated iterations are required naturally.
However, even though PDF is not specially tuned for
deterministic cases at all, the iteration number used by
PDF still was the best three in 17/18 of all cases, when
comparing with other 4 settings which are all designed
for deterministic HA.

3. For time usages:

• Since the implementation of all these tools is different,
it is not quite fair to compare PDF with S-TaLiRo and
Breach in this aspect. PDF was implemented in C++,
but Breach is a Matlab/C++ toolbox and S-TaLiRo is
a Matlab toolbox. Thus, PDF used notably less time in
most cases naturally.

• Interestingly, while S-TaLiRoSOAR required fewer iter-
ations than S-TaLiRoSA and S-TaLiRoCE , it consumed
remarkably more time in most cases. For example, S-
TaLiRoSOAR consumed 2-20 times fewer iterations but
1.1-76.0 times more amount of time than S-TaLiRoSA
in 8/10 of the cases that they both solved. The SOAR
optimizer explored and exploited learned information
in a delicate but time-consuming way. Therefore, S-
TaLiRoSOAR is especially suitable for the cases when
the simulation number of the model is strictly restricted
or when the simulation cost is extremely high.

3) Compare Classification-Model-Based DFO with Heuris-
tic Methods: Different from S-TaLiRo and Breach, PDF
performs in a path-oriented manner and handles large search
space caused by the nondeterminism. Thus, it is inappropriate
to compare our DFO method in PDF with the heuristic ones
in other tools just by comparing PDF with them. Instead,
we implemented a classical heuristic search method into PDF
to make a fair comparison. Among all settings of S-TaLiRo
and Breach, S-TaLiRoSA has satisfactory average success rate
and balanced performance in the aspects of iteration numbers
and execution time, as shown in Table. II. Therefore, we
implemented the same SA method (as its implementation in
S-TaLiRo) in PDF.

The falsification results of all benchmarks by PDF with SA,
PDF with and without pruning are shown in Fig. 5.

1. Optimized PDF with DFO VS. PDF with SA

• The optimized version of PDF with classification-
model-based DFO and pruning outperformed PDF with
SA substantially in success rate in all cases.

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

WANG et al.: PDF: PATH-ORIENTED, DERIVATIVE-FREE APPROACH FOR REACHABILITY FALSIFICATION OF NONLINEAR AND NONDETERMINISTIC CPS 11

TABLE I
EXPERIMENTAL RESULTS OF PDF WITH AND WITHOUT PRUNING TECHNIQUES IN ALL BENCHMARKS

Benchmark Success Rate(%) #Iter2 Time(s)2

Name Description Det1#Loc1 #Var1 #Mu1 Unsafe Conditions Basic3 Opt3 Basic Opt Basic Opt
Air-1

Aircraft [35] True 1 3 2*10
v1, x1 ∈ [260,∞), x2 ∈ [−10, 10], t ∈ [3, 3.2] 100 100 502 399 0.2 0.5

Air-2 v1, (x1 + x3) ∈ [413.5,∞), t ∈ [3, 4] 13 64 2075 3643 1.3 3.6
Air-3 v1, x1 ∈ [256,∞), x3 ∈ [146,∞), t ∈ [3, 4] 20 32 6675 6560 4.3 10.2
IG-1 Insulin Glucose

Control (IG)
[36]

True 6 4 0
v3, G ∈ [−∞, 5.325], t ∈ [88, 92] 0 100 - 490 - 0.7

IG-2 v5, G ∈ [−∞, 4], I ∈ [−∞,−13.29], t ∈ [120, 360] 0 100 - 565 - 2.6
IG-3 v3, G ∈ [−∞, 5.52], t ∈ [98, 102] 1 100 4594 2226 4.9 3.4
IG-4 Modified IG [36] True 6 4 1*5 v4, G ∈ [6, 16], t ∈ [90, 100] 0 100 - 296 - 0.4

Nav-1 Navigation [15] True 16 4 0 v15,x ∈ [2.47, 2.53], vx ∈ [−∞, 0.8], vy ∈ [−0.5, 0.5], t ∈ [0, 10] 0 100 - 1013 - 0.5
Nav-2 v12, x ∈ [3.1, 3.9], y ∈ [2.1, 2.9], t ∈ [0, 25] 0 97 - 4486 - 3.4
Nav-3 Navigation [37] True 25 4 0 v6,(x+ y) ∈ [2.399, 2.401], t ∈ [0, 5] 1 100 2186 150 0.2 0.1
Nav-4 v6, x ∈ [0.99, 1], y ∈ [1.3, 1.6], vx ∈ [0, 1], |vy | ∈ [0, 0.2], t ∈ [0, 5] 0 100 - 897 - 0.2
Nav-5 Navigation [37] True 225 4 0 v125, x ∈ [4, 4.96], t ∈ [0, 5] 0 89 - 2864 - 2.1
Nav-6

Modified
Navigation [15] False 16 4 2*5

v11, x ∈ [2.5, 3], t ∈ [0, 25] 100 100 1338 790 0.6 0.3
Nav-7 v12, t ∈ [0, 25] 73 95 3428 1903 2.0 1.0
Nav-8 v8, y ∈ [1.6, 2], t ∈ [0, 25] 38 95 5383 16308 3.9 17.4
Nav-9 v3, x ∈ [2.3, 2.7], t ∈ [0, 25] 76 95 24267 20739 17.3 19.2
Nav-10

Modified
Navigation [37] False 25 4 2*5

v3, x ∈ [2.3, 2.7], t ∈ [0, 25] 100 100 1078 63 0.4 0.1
Nav-11 v5, vx, vy ∈ [−1, 1], t ∈ [0, 25] 87 96 3315 2957 1.7 2.1
Nav-12 v10, x ∈ [4.2, 5], t ∈ [0, 25] 76 80 6927 6629 4.3 5.2
Nav-13

Modified
Navigation [37] False 225 4 2*5

v125, y − x ∈ [3, 4], t ∈ [0, 25] 90 99 9992 6960 5.8 5.3
Nav-14 v70, t ∈ [0, 25] 49 99 11489 15938 7.2 11.4
Nav-15 v71, t ∈ [0, 25] 21 50 13804 16524 10.2 15.5
AFC-1a

Modified
Automotive

Powertrain [42]
True 4 8 1*10

+1*1

v2, |µ| ∈ [0.0075,∞], t ∈ [11, 50] 82 100 4668 2 165.9 0.1
AFC-1b v2, |µ| ∈ [0.0076,∞], t ∈ [11, 50] 81 100 4122 20 151.6 1.7
AFC-1c v2, |µ| ∈ [0.0077,∞], t ∈ [11, 50] 77 100 4680 31 165.4 2.7
AFC-2a v2, xrms ∈ [0.30,∞], t ∈ [11, 50] 9 100 5221 99 314.7 11.4
AFC-2b v2, xrms ∈ [0.31,∞], t ∈ [11, 50] 8 100 6223 146 385.5 17.0
AFC-2c v2, xrms ∈ [0.32,∞], t ∈ [11, 50] 5 96 6331 1310 396.3 159.7

1 Det marks the determinism of systems, #Loc is the number of discrete locations, #Var is the number of continuous states, #Mu is the number of external inputs
times the number of control points.

2 #Iter is the average simulation iterations for successfully falsified runs. Time(s) is the average execution time for successfully falsified runs in seconds.
3 PDF was run with 2 settings: Basic (without pruning technique) and Opt (with both pruning techniques).

TABLE II
EXPERIMENTAL RESULTS OF PDF AND OTHER TOOLS IN DETERMINISTIC BENCHMARKS

Benchmark
Name

Success Rate(%) #Iter1 Time(s)1

PDF S-TaLiRo Breach PDF S-TaLiRo Breach PDF S-TaLiRo Breach
SA SOAR CE NM SA SOAR CE NM SA SOAR CE NM

Air-1 100 0 100 100 30 399 - 236 512 1528 0.5 - 127.5 8.5 757.6
Air-2 64 0 30 5 0 3643 - 286 2464 - 3.6 - 1346.3 51.8 -
Air-3 32 0 30 0 0 6560 - 271 - - 10.2 - 961.9 - -
IG-1 100 99 100 90 100 490 962 103 3626 2 0.7 4.0 304.0 13.9 0.3
IG-2 100 100 100 100 0 565 338 52 1004 - 2.6 53.7 358.8 414.6 -
IG-3 100 100 100 60 100 2226 2176 114 4207 2 3.4 8.0 331.1 14.2 0.4
IG-4 100 100 100 100 100 296 547 81 647 3 0.4 8.9 12.3 10.1 1.7

Nav-1 100 100 15 43 100 1013 1091 207 599 1870 0.5 93.8 399.7 44.1 466.1
Nav-2 97 29 10 0 100 4486 4938 1369 - 2 3.4 960.2 1096.2 - 0.6
Nav-3 100 100 90 38 100 150 1118 232 2403 13 0.1 111.2 232.3 168.6 4.5
Nav-4 100 100 85 100 85 897 1041 453 2210 2284 0.2 99.5 500.7 148.3 765.0
Nav-5 89 86 0 17 50 2864 2398 - 6927 327 2.1 590.7 - 1547.6 938.4

AFC-1a 100 20 95 55 100 2 250 159 247 3 0.1 1118.2 745.3 995.7 3.6
AFC-1b 100 10 75 20 100 20 208 146 177 401 1.7 931.4 706.1 681.9 581.8
AFC-1c 100 0 55 0 70 31 - 156 - 460 2.7 - 783.3 - 1037.4
AFC-2a 100 0 80 0 100 99 - 157 - 78 11.4 - 843.2 - 115.9
AFC-2b 100 0 60 0 100 146 - 139 - 78 17.0 - 746.6 - 117.9
AFC-2c 96 0 40 0 0 1310 - 152 - - 159.7 - 948.3 - -

1 #Iter is the average simulation iterations for successfully falsified runs. Time(s) is the average execution time for successfully falsified runs in seconds.

• Meanwhile, compared to PDF with SA, both the itera-
tions and the time consumed by the optimized PDF are
sharply reduced in deterministic cases and maintained
at the same level in nondeterministic cases.

2. Basic PDF with DFO VS. PDF with SA
• For success rates, our basic version solved 21 bench-

marks, and the SA version solved 16 benchmarks.
Besides, in the 14 simultaneously solved cases, the
success rate of our basic version was on average 3
times higher than the SA version and 1-73 times higher
in 11/14 of them.

• For iteration numbers, our basic version showed more
efficiency than the SA version in 12 out of the 14
simultaneously solved cases. And in all 14 simultane-
ously solved cases, our basic version consumed 26%
fewer iterations than the SA version on average.

• In terms of time usage, our basic version and the
SA version performed at the same level. In the 14
simultaneously solved cases, the time used by these
two versions is close. Summing up all of the average
time used in these 14 cases, the basic version used 0.2
second less than the SA version.

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. *, NO. *, AUGUST 202*

2.3
3.5

N/A

8.0
9.4

N/A

0.3 0.4
2.0 3.4

2.2

13.0

1.1 2.7 4.4
6.1

9.4

0.2 1.3
4.3

N/A N/A

4.9

N/A N/A

0.2

N/A N/A

0.6 2.0 3.9

17.3

0.4 1.7 4.3

5.8 7.2
10.2

0.5
3.6

10.2

0.7 2.6 3.4 0.4 0.5
3.4

0.1 0.2

2.1

0.1
1.7 2.7

11.4

17.0

0.3 1.0

17.4
19.2

0.1

2.1
5.2 5.3

11.4

15.5

0.0

5.0

10.0

15.0

20.0

25.0
Time (s)

SA Basic Opt

Out of
Iteration

100

13

20

0 1 0 1 0

82 81 77

9 8 5

73

38

76
87

76

90

49

21
17

25

0

12

0
8

0 0 0

21 17

0 0 0 0 0 0 0

38

1 4
8

91

3 9 12 20 7

64

32

100 100 100 100 100 97 100 100
89 100 100 100 100 100 96 100

95 95 95
100 96

80
99 99

50

0

20

40

60

80

100

Success Rate (%)

399

3643

6560

490
565

2226

296
1013

4486

150 897

2864

2 20 31 99 146

1310502 2075

6675

N/A

4594

N/A

2186

N/A N/A

4668
4122

4680 5221

6223
63314971

5451

N/A

5443

N/A

5639

N/A N/A

2282

2596

N/A N/A N/A N/A N/A N/A

0

2000

4000

6000

8000

10000

#Iter in Deterministic Benchmarks
Out of
Iteration

790 1903

16308
20739

63 2957
6629

6960

15938
16524

1338
3428

5383

24267

1078
3315

6927
9992

11489
13804

5513
8167

3928

24963

1921
3451

6583

11017 15603

18132

0

5000

10000

15000

20000

25000

#Iter in Nondeterministic Benchmarks

0.5

3.6

10.2

0.7 2.6
3.4

0.4 0.5

3.4

0.1 0.2
2.1

0.2 1.3

4.3

N/A N/A

4.9

N/A
N/A

0.2

N/A N/A

2.3 3.5

N/A

8.0

9.4

N/A

0.3 0.4
0.0

3.0

6.0

9.0

12.0

15.0Out of
Iteration

0.1 1.7 2.7 11.4 17.0

159.7165.9 151.6 165.4

314.7
385.5 396.3N/A N/A N/A N/A
N/A N/A

0.0

80.0

160.0

240.0

320.0

400.0Out of
Iteration

0.3 1.0

17.4
19.2

0.1

2.1
5.2

5.3

11.4

15.5

0.6 2.0
3.9

17.3

0.4 1.7
4.3

5.8
7.2

10.2

2.0 3.4

2.2

13.0

1.1 2.7 4.4
6.1

9.4

0.0

4.0

8.0

12.0

16.0

20.0

Time (s) in Nondeterministic BenchmarksTime (s) in Deterministic Benchmarks

Fig. 5. Classification-Model-Based DFO VS. SA in PDF

VI. RELATED WORK

Verification proves the correctness of systems by technolo-
gies such as model checking and theorem proving. Over the
last few decades, many verification techniques [3]–[7] have
been developed and resulted in tools such as SpaceEx [5],
Flow* [6] and C2E2 [7]. However, formal verification tech-
niques have complexity and scalability issues, and can not
handle arbitrary nonlinear and nondeterministic hybrid sys-
tems well. Since existing verification approaches suffer from
various significant limitations and the general problem of the
verification of HA is undecidable [8], the falsification of the
continuous and hybrid systems becomes an important and
practical topic that attracts lots of attention. Falsification of
systems aims at finding counterexamples that violating system
properties directly.

A. Inner-Approximation-Based Falsification

Inner approximations prove the reachability of the desired
states in systems. These methods can be used in the falsifica-
tion of safety properties in systems. Given safety properties,
a system is unsafe if its inner approximations of reachable
states sets intersect its unsafe state sets. Inner approximations
for nonlinear systems have been computed by modal inter-
vals together with some set-based methods [45]. They have
also been computed by the general polytopes [46], reducing
the conservativeness induced by the interval representations.
Besides, study [47] and its extension [48] compute inner
approximations for nonlinear systems via Taylor models, while
study [49] computes inner approximations by optimal control
theory through Pontryagin’s principle, providing an automated

tool-chain named UTOPIC. However, UTOPIC only handles
continuous systems.

B. Simulation-Based Falsification

Apart from inner-approximation-based approaches, most
existing falsification works are simulation-based, requiring a
numerical system simulator and observing the target systems
by simulated trajectories. Inevitably, the simulator might in-
troduce discrepancies when solving ODEs numerically. As
such, a simulated witness trajectory is an approximated system
behavior and can be invalid due to simulation discrepancies.
However, the simulation-based falsification results are still
helpful in industry, where the scalability and the complexity
of systems keep increasing, and the white-box models are not
always available. See [50] for an overview of the simulation-
based approaches.

Generally, the simulation-based falsification is conducted
in either the motion-planning-based or the optimization-based
directions. Recently, there are also emerging works that attack
such a problem by various methods such as machine learn-
ing. While many simulation-based approaches aim to falsify
MTL [51] or STL [52] properties, our work falsifies safety
properties. We can falsify STL properties defined as Gϕ or
G[a, b]ϕ, where ϕ is the system’s safety property. Supporting
the falsification of the general STL properties will be in our
future work.

Motion-Planning-Based Falsification Motion-planning-
based falsification steers algorithms such as rapidly growing
random tree (RRT) [21] to explore the search space. The
RRT can grow both forward [9] or backward [10] in time

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

WANG et al.: PDF: PATH-ORIENTED, DERIVATIVE-FREE APPROACH FOR REACHABILITY FALSIFICATION OF NONLINEAR AND NONDETERMINISTIC CPS 13

and can be guided by different metrics. A coverage metrics
called star discrepancy is utilized in [11], and a robustness
metric is utilized in [12] to guide the growth of RRT. The
motion-planing-based falsification approach does not require
the parameterization of external inputs. External inputs are
allowed to change along the systems’ current trajectory while
growing RRT.

Optimization-Based Falsification S-TaLiRo [14],
Breach [13], and FalStar [17] are mature Matlab toolboxes
using various optimizers to search for counterexamples of
temporal logic specifications. These tools are designed for
deterministic systems and support Simulink/Stateflow models.
As PDF, these tools also parameterize the space of external
inputs by control points.

Breach uses Nelder-Mead simplex-based methods [53] with
multiple restarts as its default optimizer. S-TaLiRo supports
various optimization algorithms, such as Simulated Anneal-
ing [15], Ant-Colony [16], and Cross-Entropy [24]. Recently,
the SOAR optimizer [54], which conducts global search by
a global Gaussian process (GP) model and trust-region-based
local search by multiple local GP models, is also implemented
in S-TaLiRo. Besides SOAR, multiple other optimization
algorithms are also developed in recent falsification works by
tightly combining global and local search, balancing explo-
ration and exploitation. FalStar combines Monte Carlo tree
searching and local hill-climbing optimization, and study [55]
combines Simulated Annealing with local search using gradi-
ent descent directions.

Our falsification approach is also an optimization-based one.
Unlike the aforementioned tools, which are mostly restricted
to models with deterministic semantics, our work also supports
nondeterministic models. Compared with existing approaches,
we are solving optimization problems with larger optimization
domains and different objective functions (associated with the
different constraint encoding). Also, instead of the various
heuristic searching algorithms used in these tools, we design
and use an efficient classification-model-based DFO algorithm.

Gradient-Based Falsification and Learning-Based Fal-
sification Instead of heuristic search, gradient-based solving
has been applied to the falsification of HA in recent studies.
An approach called multiple-shooting is proposed in [18].
Trajectory segments with gaps starting from the initial states
are introduced. By narrowing the gaps between segments
iteratively with system gradient, approximate trajectories can
be achieved from promising segmented trajectories. Recently,
the multiple-shooting-based approach is also combined with
symbolic reachability analysis in [19]. By adding reachability
constraints, it improves the efficiency of producing concrete
counterexamples. While the class of models that can be han-
dled is limited as these works rely on gradient-based solving,
our work supports the analysis of arbitrary nonlinear systems.
Our future research will further explore the idea of integrating
path falsification into the CEGAR loop of verification.

Unlike the aforementioned related works, ‘falsify’ [20]
learns the behavior of systems and solves falsification prob-
lems by reinforcement learning. Future research can in-
vestigate how to combine reinforcement learning with our
classification-model-based learning in the falsification of CPS.

VII. CONCLUSION

In this work, we proposed a path-oriented, derivative-free
approach for the safety falsification of a large scope of CPS
that could be modeled by general hybrid automata, allow-
ing for nonlinear and nondeterministic dynamics as well as
external inputs. In our two-layered, path-oriented, derivative-
free approach, the enumeration of the candidate paths was
designed to handle the large search space of the nondetermin-
istic systems; the derivative-free feature of our optimization
algorithm was designed to handle the nonlinearity of the
systems’ dynamics. Moreover, two novel and light-weight
techniques were proposed to prune the search space of the
falsification problem and to improve the efficiency of our
approach. Firstly, we proposed a nested optimization struc-
ture with better model-refinements to prune the continuous
search space of the candidate paths’ jumping time sequences.
Secondly, we leveraged hardly feasible path prefixes to prune
the discrete search space by backtracking during the candidate
path generation.

We implemented our approach in a prototype tool called
PDF and applied it to a set of benchmarks, including both
the well-known deterministic benchmarks and the nondeter-
ministic benchmarks. Our experiments showed that our path-
oriented, DFO-based approach, together with our two pruning
techniques, supported the safety falsification of complex CPS
with high success rates and satisfactory efficiency.

REFERENCES

[1] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-
physical systems approach. Mit Press, 2016.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger et al., “The
algorithmic analysis of hybrid systems,” Theor. Comput. Sci., vol. 138,
no. 1, pp. 3–34, 1995.

[3] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification of
hybrid systems,” in CAV, 2002, pp. 365–370.

[4] L. Bu, Y. Li, L. Wang, and X. Li, “Bach: Bounded reachability checker
for linear hybrid automata,” in FMCAD, 2008, pp. 1–4.

[5] G. Frehse, C. L. Guernic, and A. Donzé, “Spaceex: Scalable verification
of hybrid systems,” in CAV, vol. 6806, 2011, pp. 379–395.

[6] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in CAV, vol. 8044, 2013, pp. 258–263.

[7] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2E2: A
verification tool for stateflow models,” in TACAS, vol. 9035, 2015, pp.
68–82.

[8] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable
about hybrid automata?” J. Comput. Syst. Sci., vol. 57, no. 1, pp. 94–124,
1998.

[9] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Hybrid systems: from
verification to falsification by combining motion planning and discrete
search,” Formal Methods Syst. Des., vol. 34, no. 2, pp. 157–182, 2009.

[10] S. Proch and P. Mishra, “Directed test generation for hybrid systems,”
in ISQED, 2014, pp. 156–162.

[11] T. Dang and T. Nahhal, “Coverage-guided test generation for continuous
and hybrid systems,” Formal Methods Syst. Des., vol. 34, no. 2, pp. 183–
213, 2009.

[12] T. Dreossi, T. Dang, A. Donzé, J. Kapinski et al., “Efficient guiding
strategies for testing of temporal properties of hybrid systems,” in NFM,
2015, pp. 127–142.

[13] A. Donzé, “Breach, A toolbox for verification and parameter synthesis
of hybrid systems,” in CAV, vol. 6174, 2010, pp. 167–170.

[14] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems,” in
TACAS, vol. 6605, 2011, pp. 254–257.

[15] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancic et al.,
“Monte-carlo techniques for falsification of temporal properties of non-
linear hybrid systems,” in HSCC, 2010, pp. 211–220.

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056360, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. *, NO. *, AUGUST 202*

[16] Y. S. R. Annapureddy and G. E. Fainekos, “Ant colonies for temporal
logic falsification of hybrid systems,” in IECON, 2010, pp. 91–96.

[17] Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini et al., “Two-layered
falsification of hybrid systems guided by monte carlo tree search,” IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 37, no. 11, pp.
2894–2905, 2018.

[18] A. Zutshi, S. Sankaranarayanan, J. V. Deshmukh, and J. Kapinski, “A
trajectory splicing approach to concretizing counterexamples for hybrid
systems,” in CDC, 2013, pp. 3918–3925.

[19] S. Bogomolov, G. Frehse, A. Gurung, D. Li et al., “Falsification of
hybrid systems using symbolic reachability and trajectory splicing,” in
HSCC, 2019, pp. 1–10.

[20] T. Akazaki, S. Liu, Y. Yamagata, Y. Duan et al., “Falsification of cyber-
physical systems using deep reinforcement learning,” in FM, 2018, pp.
456–465.

[21] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” Algorithmic and computational robotics: new
directions, no. 5, pp. 293–308, 2001.

[22] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic
specifications for continuous-time signals,” Theor. Comput. Sci., vol.
410, no. 42, pp. 4262–4291, 2009.

[23] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in FORMATS, vol. 6246, 2010, pp. 92–106.

[24] S. Sankaranarayanan and G. E. Fainekos, “Falsification of temporal
properties of hybrid systems using the cross-entropy method,” in HSCC,
2012, pp. 125–134.

[25] J. Lygeros, K. H. Johansson, and S. N. Simic, “Dynamical properties
of hybrid automata,” IEEE Trans. Automat. Contr., vol. 48, no. 1, pp.
2–17, 2003.

[26] Y. Yu, H. Qian, and Y. Hu, “Derivative-free optimization via classifica-
tion,” in AAAI, 2016, pp. 2286–2292.

[27] Y. Hu, H. Qian, and Y. Yu, “Sequential classification-based optimization
for direct policy search,” in AAAI, 2017, pp. 2029–2035.

[28] D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine
Learning. Addison-Wesley, 1989.

[29] P. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial
on the cross-entropy method,” Annals OR, vol. 134, no. 1, pp. 19–67,
2005.

[30] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, 2010.

[31] R. Munos, “From bandits to monte-carlo tree search: The optimistic
principle applied to optimization and planning,” Found. Trends Mach.
Learn., vol. 7, no. 1, pp. 1–129, 2014.

[32] D. Xie, L. Bu, J. Zhao, and X. Li, “SAT-LP-IIS joint-directed path-
oriented bounded reachability analysis of linear hybrid automata,” For-
mal Methods Syst. Des., vol. 45, no. 1, pp. 42–62, 2014.

[33] S. D. Cohen, A. C. Hindmarsh, and P. F. Dubois, “Cvode, a stiff/nonstiff
ode solver in c,” Computers in physics, vol. 10, no. 2, pp. 138–143, 1996.

[34] M. Galassi, J. Davies, J. Theiler, B. Gough et al., “Gnu scientific library,”
1996.

[35] J. Lygeros, “On reachability and minimum cost optimal control,” Autom.,
vol. 40, no. 6, pp. 917–927, 2004.

[36] M. E. Fisher, “A semiclosed-loop algorithm for the control of blood
glucose levels in diabetics,” IEEE Trans. Biomed. Eng., vol. 38, no. 1,
pp. 57–61, 1991.

[37] A. Fehnker and F. Ivancic, “Benchmarks for hybrid systems verification,”
in HSCC, 2004, pp. 326–341.

[38] A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. E. Fainekos, “ARCH-
COMP17 category report: Preliminary results on the falsification bench-
marks,” in ARCH@ CPSWeek, 2017, pp. 170–174.

[39] A. Dokhanchi, S. Yaghoubi, B. Hoxha, G. Fainekos et al., “ARCH-
COMP18 category report: Results on the falsification benchmarks,” in
ARCH@ ADHS, 2018, pp. 104–109.

[40] G. Ernst, P. Arcaini, A. Donze, G. Fainekos et al., “ARCH-COMP 2019
category report: Falsification,” in ARCH@ CPSIoTWeek, vol. 61, 2019,
pp. 129–140.

[41] G. Ernst, P. Arcaini, I. Bennani, A. Donze et al., “ARCH-COMP 2020
category report: Falsification,” EPiC Series in Computing, vol. 74, pp.
140–152, 2020.

[42] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda et al., “Powertrain control
verification benchmark,” in HSCC, 2014, pp. 253–262.

[43] S. Bak, S. Bogomolov, and T. T. Johnson, “Hyst: a source transformation
and translation tool for hybrid automaton models,” in HSCC, 2015, pp.
128–133.

[44] S. Bak, O. A. Beg, S. Bogomolov, T. T. Johnson et al., “Hybrid
automata: from verification to implementation,” Int. J. Softw. Tools
Technol. Transf., vol. 21, no. 1, pp. 87–104, 2019.

[45] E. Goubault, O. Mullier, S. Putot, and M. Kieffer, “Inner approximated
reachability analysis,” in HSCC, 2014, pp. 163–172.

[46] B. Xue, Z. She, and A. Easwaran, “Under-approximating backward
reachable sets by polytopes,” in CAV, 2016, pp. 457–476.

[47] E. Goubault and S. Putot, “Forward inner-approximated reachability of
non-linear continuous systems,” in HSCC, 2017, pp. 1–10.

[48] ——, “Inner and outer reachability for the verification of control
systems,” in HSCC, 2019, pp. 11–22.

[49] J. Doncel, N. Gast, M. Tribastone, M. Tschaikowski et al., “Utopic:
Under-approximation through optimal control,” in QEST, 2019, pp. 277–
291.

[50] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito et al., “Simulation-
based approaches for verification of embedded control systems: An
overview of traditional and advanced modeling, testing, and verification
techniques,” IEEE Control Syst. Mag., vol. 36, no. 6, pp. 45–64, 2016.

[51] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real Time Syst., vol. 2, no. 4, pp. 255–299, 1990.

[52] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in FORMATS/FTRTFT. Springer, 2004, pp. 152–166.

[53] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Comput. J., vol. 7, no. 4, pp. 308–313, 1965.

[54] L. Mathesen, S. Yaghoubi, G. Pedrielli, and G. Fainekos, “Falsification
of cyber-physical systems with robustness uncertainty quantification
through stochastic optimization with adaptive restart,” in CASE, 2019,
pp. 991–997.

[55] S. Yaghoubi and G. Fainekos, “Falsification of temporal logic require-
ments using gradient based local search in space and time,” IFAC-
PapersOnLine, vol. 51, no. 16, pp. 103–108, 2018.

Jiawan Wang received the BSc degree from Nan-
jing University in 2018. She is currently pursuing the
Ph.D. degree from Nanjing University. Her research
interest mainly focuses on the verification of cyber-
physical systems.

Lei Bu is a professor in the Department of Computer
Science and Technology and State Key Laboratory
of Novel Software Technology at Nanjing Univer-
sity. He received his B.S. and PH.D. degree in
Computer Science from Nanjing University in 2004
and 2010 respectively. His main research interests
include formal method, model checking, especially
verification of hybrid system and cyber-physical
system. He has published more than 50 research
papers in major peer-reviewed international journals
and conference proceedings. He is a member of the

IEEE and the ACM.

Shaopeng Xing received the BSc degree from Nan-
jing University in 2018. He was admitted to study for
a Msc degree in Nanjing University in the same year.
His research interests mainly include verification and
optimal control of cyber-physical systems.

Xuandong Li received his MS and PhD degrees
from Nanjing University, China, in 1991 and 1994,
respectively. He is a professor at the Computer Sci-
ence and Technology Department of Nanjing Uni-
versity. His research interests include formal support
for design and analysis of reactive, disturbed, real-
time, hybrid, and cyber-physical systems; software
testing and verification.

Authorized licensed use limited to: Nanjing University. Downloaded on July 18,2021 at 12:55:30 UTC from IEEE Xplore. Restrictions apply.

