

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2020-IJ-008

2020-IJ-008

Automatic Buffer Overflow Warning Validation
FengJuan Gao, Yu Wang, Linzhang Wang, Zijiang Yang and Xuan-Dong Li

Technical Report 2020-IJ-008

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

Gao FJ, Wang Y, Wang LZ et al. Automatic buffer overflow warning validation. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 35(6): 1–22 Nov. 2020. DOI 10.1007/s11390-020-0525-0

Automatic Buffer Overflow Warning Validation

Feng-Juan Gao1,2, Yu Wang1,2, Lin-Zhang Wang1,2,∗, Distinguished Member, CCF
Zijiang Yang3, Senior Member, IEEE, and Xuan-Dong Li1,2, Fellow, CCF

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China
3Department of Computer Science, Western Michigan University, Kalamazoo 49008-5466, U.S.A.

E-mail: {fjgao,yuwang cs}@smail.nju.edu.cn; lzwang@nju.edu.cn; zijiang.yang@wmich.edu; lxd@nju.edu.cn

Received April 11, 2020; revised October 22, 2020.

Abstract Static buffer overflow detection techniques tend to report too many false positives fundamentally due to the

lack of software execution information. It is very time consuming to manually inspect all the static warnings. In this

paper, we propose BovInspector, a framework for automatically validating static buffer overflow warnings and providing

suggestions for automatic repair of true buffer overflow warnings for C programs. Given the program source code and the

static buffer overflow warnings, BovInspector first performs warning reachability analysis. Then, BovInspector executes

the source code symbolically under the guidance of reachable warnings. Each reachable warning is validated and classified

by checking whether all the path conditions and the buffer overflow constraints can be satisfied simultaneously. For each

validated true warning, BovInspector provides suggestions to automatically repair it with 11 repair strategies. BovInspector

is complementary to prior static buffer overflow discovery schemes. Experimental results on real open source programs show

that BovInspector can automatically validate on average 60% of total warnings reported by static tools.

Keywords buffer overflow, static analysis warning, symbolic execution, automatic repair

1 Introduction

Buffer overflow occurs when more data is written

into a buffer than the buffer capacity, causing extra

data being written into memory adjacent to the buffer.

If the adjacent memory before being overwritten has

stored information (such as the pointer to the previous

frame and return address) that is critical for the OS to

correctly execute programs, buffer overflow may cause

unpredictable behaviors. In a buffer overflow attack,

the attacker carefully crafts his/her input data to vul-

nerable software so that the unpredictable behavior is

that the OS executes his/her malicious code embedded

in the overflow data with the privilege of the vulnerable

software.

Although more than 40 years have passed since the

buffer overflow technique was first documented by An-

derson in 1972 [1] and almost 30 years have passed since

the buffer overflow technique was first exploited by the

infamous Morris worm in 1988, buffer overflow remains

the most common type of software vulnerabilities, as

shown in the recent studies of software vulnerability

databases [2], and it is likely to remain so for many years

to come. Most existing software has buffer overflow vul-

nerabilities, which are unknown to their vendors and

users, but could be exploited by attackers. Most future

software will still be written by programmers who are

not well trained in software security. The inherently

unsafe languages C and C++ will remain popular for

performance and backward compatibility. Although we

have known how to avoid buffer overflow problems in

writing programs for many years, having such know-

Regular Paper

Special Section on Software Systems 2020

A preliminary version of the paper was published in the Proceedings of ASE 2016.

This work was supported by the National Natural Science Foundation of China under Grant No. 62032010, and partially by the
Postgraduate Research and Practice Innovation Program of Jiangsu Province of China.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2020

For Research Only

http://dx.doi.org/10.1007/s11390-020-0525-0
http://dx.doi.org/10.1007/s11390-020-0525-0

2 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

ledge is far from enough to thwart the rampant buffer

overflow issue.

There are two general approaches to identify-

ing buffer overflow vulnerabilities: static program

analysis [3–9] and dynamic execution analysis [10–14].

The dynamic execution analysis approach needs a spe-

cific test case to trigger a buffer overflow vulnerability,

which may not be easy to find. The static program ana-

lysis approach scans software source code to discover

the code segments that are possibly vulnerable to buffer

overflow attacks. The key advantage of such schemes

is that buffer overflow vulnerabilities can be discovered

and fixed before software deployment. However, due to

the high false positive rate in static analysis, validat-

ing all the reported warnings takes huge manual effort.

Therefore, people need methods to automatically vali-

date the static warnings and fix the true warnings.

In this paper, we propose BovInspector, a frame-

work for automatically validating static buffer overflow

warnings and providing suggestions for automatic re-

pair of true buffer overflow warnings for C programs.

BovInspector is complementary to prior static buffer

overflow discovery schemes. The key contribution of

BovInspector is on eliminating the need to manually in-

spect the warnings that are actually false warnings, and

providing automatic repair suggestions for validated

true warnings, which will save a tremendous amount

of manual efforts. The key idea of BovInspector is to

use symbolic execution to automatically identify those

buffer overflow warnings that are true warnings or false

warnings. The advantage of symbolic execution is its

capability to explore program execution states that are

unavailable to static program analysis. The disadvan-

tage of symbolic execution is the infamous path explo-

sion issue, i.e., the number of execution paths grows

exponentially with the number of branching points. In

BovInspector, to avoid path explosion, we use the warn-

ing paths to guide the symbolic execution so that we

only focus on these warning paths. Our experimental

results on real open source programs show that BovIn-

spector can automatically validate on average 60% of

total warnings reported by the static tool Fortify 1○.

In summary, this paper contributes the followings:

• an automated framework for validating static

buffer overflow warnings and providing repair sugges-

tions for the true warnings;

• an open source tool, BovInspector 2○;

• an evaluation to show the effectiveness and effi-

ciency of our tool.

Our previous demonstration paper [15] only intro-

duced an initial framework and preliminary experi-

ment results. Compared with [15], this paper 1) pro-

vides theoretical foundations of buffer overflow vali-

dation by defining buffer overflow models and buffer

overflow warnings, 2) extends the buffer overflow repair

method by supporting eight more repair strategies, and

3) conducts more comprehensive experiments on both

synthetic and real-world programs to further demon-

strate the effectiveness and efficiency of our method.

The rest of the paper proceeds as follows. We

first introduce the background knowledge of symbolic

execution and buffer overflow in Section 2. Then we

present the formal description of static buffer over-

flow warning validation in Section 3. In Section 4, we

present the framework of BovInspector and the details

of the method. In Section 5, we show implementation

details and experimental results of BovInspector. Then,

we review related work in Section 6. Finally, we give

conclusions and future work in Section 7.

2 Background

2.1 Symbolic Execution

Symbolic execution is a classical technique for soft-

ware testing and analysis [16]. It is used to systemati-

cally test a program and generate test input with high

coverage. Symbolic execution uses symbolic values as

the input, instead of concrete input, to explore the exe-

cution space of a program. When symbolic execution

encounters a branching condition, it forks the execution

state, following both branch directions and updating

the corresponding path constraints on the symbolic in-

put. When it reaches a program exit or hits an error,

the current path constraint will be solved to find a con-

crete test case that drives program execution to this

program location. KLEE [17] is a state-of-the-art open

source symbolic execution engine and is widely used in

researches.

2.2 Buffer Overflows

Buffer overflows, both on the stack and on the heap,

are a major source of security vulnerabilities in C and

1○https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview, Oct. 2020.
2○BovInspector and a technical paper with illustrative examples and more experimental details are available at http://bovinspect

ortool1.github.io/project/, Sept. 2020.

For Research Only

Feng-Juan Gao et al.: Automatic Buffer Overflow Warning Validation 3

C++ code. A buffer is a region of a physical mem-

ory storage used to temporarily store the data. Using a

buffer while programming in C and C++ makes a lot of

sense and generally speeds up the calculation process,

which may also lead to unexpected buffer overflow. A

buffer overflow, or buffer overrun, occurs when more

data is put into a fixed-length buffer than what the

buffer can handle.

There are two kinds of buffers we deal with, buffers

of characters and buffers of the other values. We pro-

pose the buffer model shown in Fig.1. The symbols in

the figure are defined as follows.

• SBuf : the start address of buffer Buf .

• Size(Buf): the available buffer spacen, in bytes,

of buffer Buf starting from SBuf .

• Sbuf : the start address of buffer buf .

• Off buf : the offset of bytes from the base address

of the whole buffer of buffer buf , Offbuf = Sbuf−SBuf .

• Size(buf): the available buffer spacen, in bytes,

of buffer buf starting from Sbuf .

• Len(buf): the length of the content stored in

buffer buf , which starts from Sbuf and ends with ter-

minator '\0' ('\0' is excluded). To be noticed, if there

is no terminator in buffer buf , we consider its length to

be infinite in our model. Len(buf) is only available for

buffers of characters.

• i: i is the index of buffer buf when accessing

Sbuf [i], which points to the i-th element of buf . Each

element in buf takes up a fixed number of bytes, marked

as typesize.

Size↼Buf↽

Size↼buf↽

Len↼buf↽SbufOffbufSBuf

'/0'

i

Fig.1. Buffer model.

For a buffer Buf with size Size(Buf) and start

address SBuf , we assume a buffer operation ac-

cesses the data in the buffer buf and we know

buf = Buf +Offbuf . Therefore, we can learn that the

size of buf will be Size(buf) = Size(Buf)−Offbuf .

The start address of buf will be Sbuf = SBuf +Offbuf .

If the buffer operation is a direct buffer access, i.e.,

Sbuf [i], it will access the i-th element of buffer buf ,

namely the (i+Offbuf/typesize)-th element of buffer

Buf at address SBuf +Offbuf + i× typesize. For a

buffer of characters, a buffer operation may read the

characters from it. The length of characters that will

be accessed is Len(buf).

3 Definition of Buffer Overflow Models and

Warning Classifications

This section presents a lightweight formalism to

define our buffer overflow model and the three cate-

gories of static buffer overflow warnings validated by

our method.

We first define the simple imperative language (a

core subset of C) in Fig.2 to represent all important

features of C that are necessary for validating a buffer

overflow warning. We use V , L, I, Φ and E to rep-

resent the sets of variables, labels, integers, predicates

and statements, respectively. Each statement e has a

unique label l ∈ L that is used to identify e. In the

following context, the statement label l for e means the

line number of e. We use buf = alloc(m× typesize)

to represent an allocation of a new buffer with size

m× typesize in the stack or on the heap. For sim-

plicity, we use bufAPI(dest, src, n) to represent all

kinds of buffer APIs, where dest is a variable point-

ing to the destination buffer, src is a variable pointing

to the source buffer and n, if provided by the API, in-

dicates the number of bytes to be operated. If n is not

supported by an API, then it means that n is unlim-

ited. bufAPI will copy the data with length n from

src to dest. Whether these buffer operations will cause

a buffer overflow depends on the remaining size of dest

buffer and the length of src content.

Fig.2. Core language for validating buffer overflow warnings.

In a C/C++ program, a buffer is commonly used.

There are also many buffer operations writing data into

buffers in a program. As shown in the language, there

are two categories of buffer operations: API call and

For Research Only

4 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

direct buffer access. To characterize under what con-

dition a buffer operation will lead to a buffer overflow,

we propose our Buffer Overflow Models as follows.

3.1 Buffer Overflow Models

According to the types of buffer operations, we di-

vide buffer overflow models into two categories.

Buffer Overflow Models of API Call. For API calls,

such as strcpy, the buffer overflow can be detected by

analyzing the parameters. We propose some constraint

models for the APIs operating buffers in C99 3○ and

Linux system call interfaces 4○. To check for buffer over-

flow, we examine whether the data written to a buffer

exceeds the buffer size. We list the constraints for diffe-

rent types of APIs shown in Table 1, in which Len(src)

and Size(dest) are defined in Fig.1. Note that we se-

lect the parameter format of the first API in the group

as a representative. Other APIs have a similar para-

meter format. We classify the APIs into four types,

namely unbounded content sensitive buffer operations,

bounded content sensitive buffer operations, bounded

content insensitive buffer operations and direct buffer

accesses.

Buffer Overflow Models of Direct Buffer Access. For

direct buffer accesses in Table 1, we propose the con-

straint model for array and pointer accesses. Access-

ing a buffer by array access can be represented as

buf [i] = x, while buf represents a buffer, and x is the

value to be assigned to the corresponding address. Ac-

cessing a buffer by pointer access can be represented

as ∗(buf + i) = x. Without loss of generality, we

also take type casting into consideration, e.g., when

a pointer p points to a character buffer buf [5], the

buffer access ∗((int∗)p + 1) = x will trigger a buffer

overflow. Therefore, the buffer overflow condition is

(i + 1)× typesize > Size(buf).

Based on the above buffer model and buffer overflow

models, we introduce the definition of static buffer over-

flow warning and the principles to classify static buffer

overflow warnings, which will be used in our buffer over-

flow validation module.

3.2 Buffer Overflow Warnings

Given the source code of a program, static analysis

tools will locate all the statements that declare a buffer,

track all the statements that perform operations on the

buffers, and report a buffer overflow warning if the ope-

ration may violate the predefined secure coding rules.

Before validating static buffer overflow warnings, we

first give the definition of static buffer overflow warn-

ing as follows.

Table 1. Buffer Overflow Models

Type API Parameter Format Overflow Constraint

Unbounded strcpy (char* dest, const char* src) Len(src) > Size(dest)
content sensitive strcat (char* dest, const char* src) Len(src) + Len(dest) > Size(dest)
buffer

sprintf, vsprintf (char* str, const char* format, ...) format string length > Size(str)operations

scanf, vscanf (char* format, ...) format string length > Size(desti)

sscanf, vsscanf (const char* s, char* format, ...) format string length > Size(desti)

fscanf, vfscanf (FILE* stream, const char* format, ...) format string length > Size(desti)

Bounded strncpy, snprintf , vsnprintf (char* dest, const char* src, size t n) n > Size(dest)
content

strncat (char* dest, const char* src, size t n) min{Len(src), n}+ Len(dest) > Size(dest)sensitive
fgets (char* str, int num, FILE* stream) num > Size(str)buffer

fread (void* ptr, size t size, size t count, size× count > Size(ptr)operations

FILE* stream)

read (int fd, void* buf , size t count) count > Size(buf)

Bounded content
insensitive
buffer operations

memcpy,

memmove,

memset

(char* dest, const char* src, size t n) n > Size(dest)

Direct buffer buf [i], ∗(buf + i) N/A (i + 1) × typesize > Size(buf)
accesses

Note: format string length is calculated by considering the impact of formatting symbols.

3○https://www.iso.org/standard/29237.html, Oct. 2020.
4○https://man7.org/linux/man-pages/man2/syscall.2.html, Oct. 2020.

For Research Only

Feng-Juan Gao et al.: Automatic Buffer Overflow Warning Validation 5

Definition 1 (Static Buffer Overflow Warning). A

static buffer overflow warning ω is represented as a

tuple: (〈l1, l2, . . . , ln〉, b), where l1 is the label of the

statement where a buffer is first declared or the entry

of the main function, each li (2 6 i 6 n) is the label

of the statement where an operation is performed on

the buffer, and b is the label of the statement where an

overflow may occur on the buffer, which is regarded as

a buffer warning point.

Considering the source code of the example pro-

gram in Fig.3, the static analysis tool reports four

possible buffer overflow warnings that can be repre-

sented as ω0 = (〈4〉, 6), ω1 = (〈19, 23, 9〉, 12), ω2 =

(〈19, 23, 9, 12〉, 14), ω3 = (〈25〉, 30).

Fig.3. Example program.

For each buffer warning point b, there may be sev-

eral paths from the entrance of the program to that

point. We regard these paths as a warning path set.

Definition 2 (Warning Path Set). For a static

buffer overflow warning ω, a warning path set ps is

a sequence (P1, P2, . . . , Pm), where each Pi is a set of

path segments ρ, jointly constituting a path from the

program entrance to the warning point b, and each path

segment ρ records the statement label of the first state-

ment of each basic block in the path. ps represents all

the complete paths from the entrance of the program to

a buffer overflow point. The path constraint of Pi is∧j=ni

j=1 ϕi
j, where ni is the number of branch statements

in path Pi, and ϕi
j is the constraint of the j-th branch

in path Pi.

Here we take as an example the warning ω2 =

(〈19, 23, 9, 12〉, 14) for the program in Fig.3. Its warning

path set is (〈19, 23, 8, 12, 14〉).

The key idea to validate a static buffer overflow

warning ω is to find the evidence that there exists a

test case that follows one of the paths Pi in the warning

path set ps, reaches the buffer warning point b, and fi-

nally triggers the buffer overflow. Therefore, at a buffer

warning point b, BovInspector solves the conjunction of

path constraints and overflow constraints (denoted as

function OC(b)), in order to validate the correspond-

ing buffer overflow warning. OC(b) is constructed and

solved according to the overflow constraint in Table 1

regarding the API at the buffer warning point b. Based

on the solving result, a buffer overflow warning will

be validated as a true buffer overflow warning, a false

buffer flow warning, or an undecided buffer overflow

warning.

For a static buffer overflow warning ω, a path Pi in

the warning path set ps is an overflowable path if the

conjunction of its path constraints and overflow con-

straints is satisfiable. If it is unsatisfiable, the path

will be regarded as a safe path. If the solver cannot

provide the result of the constraints within the given

time limit, the path will be regarded as an undecided

path. For this case, we use TIMEOUT to represent

the situation that the constraint solver cannot provide

the result of the constraints within the given time limit

for path Pi at warning point b.

Definition 3 (Overflowable Path). Given a warn-

ing ω = (〈l1, l2, . . . , ln〉, b), with the warning path set

ps = (P1, P2, . . . , Pm), ∀Pi ∈ ps, Pi is an overflowable

path if (1) holds.

j=ni∧

j=1

ϕi
j ∧OC(b) ≡ SAT. (1)

Definition 4 (Safe Path). Given a warn-

ing ω = (〈l1, l2, . . . , ln〉, b), with the warning path set

ps = (P1, P2, . . . , Pm), ∀Pi ∈ ps, Pi is a safe path if (2)

holds.
j=ni∧

j=1

ϕi
j ∧OC(b) ≡ UNSAT. (2)

For Research Only

6 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Definition 5 (Undecided Path). Given a warn-

ing ω = (〈l1, l2, . . . , ln〉, b), with the warning path set

ps = (P1, P2, . . . , Pm), ∀Pi ∈ ps, Pi is an undecided

path if (3) holds.

j=ni∧

j=1

ϕi
j ∧OC(b) ≡ TIMEOUT. (3)

If we have found an overflowable path Pi in ps for

warning ω, the warning ω will be regarded as a true

warning. If we find a path that can validate the warn-

ing as a true warning, it is unnecessary to validate other

paths in the warning path set ps. Otherwise, we need

to traverse all paths in ps to validate a warning. If

all paths in ps are safe paths, the warning ω will be

regarded as a false warning. If some paths in ps are

undecided paths, when there exists at least one over-

flowable path validating the warning as a true warn-

ing, the warning will be validated as a true warning

regardless of the undecided paths. Otherwise, we can-

not tell whether the warning is a false warning or not

because there may be some overflowable paths hidden

in the time-out paths. Therefore, we classify this kind

of warnings as undecided warnings.

Definition 6 (True Buffer Overflow Warning).

Given a warning ω = (〈l1, l2, . . . , ln〉, b), with the warn-

ing path set ps = (P1, P2, . . . , Pm), ω is a true buffer

overflow warning if (4) holds.

∃Pi ∈ ps :

j=ni∧

j=1

ϕi
j ∧OC(b) ≡ SAT. (4)

Definition 7 (False Buffer Overflow Warning).

Given a warning ω = (〈l1, l2, . . . , ln〉, b), with the warn-

ing path set ps = (P1, P2, . . . , Pm), ω is a false buffer

overflow warning if (5) holds.

∀Pi ∈ ps :

j=ni∧

j=1

ϕi
j ∧OC(b) ≡ UNSAT. (5)

Definition 8 (Undecided Buffer Overflow Warn-

ing). Given a warning ω = (〈l1, l2, . . . , ln〉, b), with the

warning path set ps = (P1, P2, . . . , Pm), ω is an unde-

cided buffer overflow warning if it is neither a true

buffer overflow warning nor a false buffer overflow

warning, or, more formally, if (6) holds.

(∀Pi ∈ ps : (

j=ni∧

j=1

ϕi
j ∧OC(b) ≡ UNSAT)

∨ (

j=ni∧

j=1

ϕi
j ∧OC(b) ≡ TIMEOUT))

∧(∃Pi ∈ ps : (

j=ni∧

j=1

ϕi
j ∧OC(b) ≡ TIMEOUT)). (6)

In some cases, all the paths in the warning path

set ps are infeasible, namely
∧j=ni

j=1 ϕi
j ≡ UNSAT for

all paths, which will make (5) hold. Some of these false

warnings can be found before symbolic execution, which

will be discussed in Subsection 4.2. Other false warn-

ings will be validated during symbolic execution, which

will be discussed in Subsection 4.4.

4 Automatic Buffer Overflow Validation and

Repair

According to Fig.4, BovInspector consists of four

modules: warning reachability analysis, guided sym-

bolic execution, buffer overflow validation, and targeted

automatic repair suggestions.

4.1 Approach Overview

Warning Reachability Analysis. The input to this

module is the set of buffer overflow warnings reported

by static analysis tools together with the source code.

For each buffer overflow warning w, this module com-

putes all the complete paths that start from the pro-

gram entrance, go through the statements in w, and

end at the warning point b. For the warnings that are

Source Code

Static Analysis

Fortify

Buffer Overflow
Warnings

Warning
Reachability

Analysis

BovInspector

Guided
Information

Guided Symbolic
Execution

KLEE

Targeted
Automatic Repair

Suggestions

Buffer Overflow
Validation

Repair
Suggestions

Validated Buffer
Overflow Warnings

Fig.4. Overview of our automatic buffer overflow warning validation and bug repair approach.

For Research Only

Feng-Juan Gao et al.: Automatic Buffer Overflow Warning Validation 7

not reachable, this module can identify and prune them;

the corresponding warnings are then classified as false

warnings. This module will output the warning path set

ps for each static buffer overflow warning w as guided

information.

Guided Symbolic Execution. This module takes as

input the guided information generated by the above

module. It is an extension of the traditional symbolic

execution engine. We perform symbolic execution on

the source code starting from the program entrance. At

each branching point with k possible branches, we first

make k replicates of the execution state; each replicate

of the execution state represents a complete path from

the program entrance to the branching point. At each

branching point, this module tries to prune the state

that cannot lead to the warning points by querying

the guided information. When the execution reaches

a warning point, we call the buffer overflow validation

module to check whether buffer overflow can indeed

happen.

Buffer Overflow Validation. This module takes as

input the static buffer overflow warnings and outputs

the validated buffer overflow warnings. During sym-

bolic execution, each execution state maintains the

necessary information, in particular path constraints.

When the execution encounters a warning point, we

will construct the buffer overflow constraints accord-

ing to Table 1. Then the conjunction of the path con-

straints and the buffer overflow constraints will be fed

to a constraint solver to examine whether all these con-

ditions can be simultaneously satisfied. Based on the

solution of constraint solving, we validate the path as

an overflowable path, a safe path or an undecided path.

If it is an overflowable path, then the warning will be

validated as a true warning. A test case will be gene-

rated for it. Then the warning point will be removed

from the checking list. Otherwise, the execution will

continue until all the paths for the warning are exe-

cuted. If all paths for a warning are safe paths, then

the warning is a false warning. If there exist some un-

decided paths besides the false paths, the warning will

be regarded as an undecided warning.

Targeted Automatic Repair Suggestions. By inves-

tigating 100 highly ranked buffer overflow vulnerabil-

ities from 2009 to 2014 in the Common Vulnerabili-

ties and Exposures (CVE) 5○ and the benchmarks from

prior buffer overflow detection work, we discover a total

of 11 common repair strategies [18]. For each validated

true buffer overflow warning, we automatically gene-

rate repair code as suggestions for all the usable repair

strategies. Moreover, programmers can also manually

configure a preferred repair strategy.

4.2 Warning Reachability Analysis

For warning reachability analysis, we first generate

the Inter-procedural Control Flow Graph (ICFG) [19].

Then, for each static buffer overflow warning ω =

(〈l1, l2, . . . , ln〉, b), we calculate all the complete exe-

cution paths that start from the program entrance,

go through the statements contained in the warning

(l1, l2, . . . , ln), and end at the warning point b. To

do that, we first map each statement label in ω to

its corresponding basic block, i.e., l1, l2, . . . , ln, b cor-

responds to bbl1, bbl2 , . . . , bbln , bbln+1
. Then, we calcu-

late the complete paths covering these basic blocks.

A straightforward solution is to perform a depth-first

traversal on ICFG to find such complete paths. How-

ever, this will lead to the redundant traversal of many

paths that do not contain any path segments of the

buffer overflow warnings. In this work, for each warning

point, we perform backward tracking on ICFG start-

ing from the warning point. By backward tracking,

we can ignore the ICFG nodes that do not lead to the

warning point. For each pair of (bbli−1
, bbli), where

2 6 i 6 n+ 1, we use depth first search to calculate all

the path segments between the two basic blocks (de-

noted as PSi−1,i). Similarly, we analyze the partial

warning path set PSi−2,i−1 for (bbli−2
, bbli−1

). By com-

bining and connecting these two partial warning path

sets PSi−2,i−1 and PSi−1,i, we compute the partial

warning path set PSi−2,i for (bbli−2
, bbli). The above

steps repeat until we reach the program entrance. Fi-

nally, we get the warning path set ps of a static buffer

overflow warning ω. The warning path set will be used

as the guided information in the guided symbolic exe-

cution.

4.3 Guided Symbolic Execution

In this work, the program under test is symbolically

executed to identify whether the possible buffer over-

flows can be triggered.

As shown in Algorithm 1, we extend the traditional

symbolic execution engine to support guided symbolic

execution and buffer overflow validation. The extended

parts are written in bold. To be noticed, a symbolic exe-

cution engine is quite complex and here we only excerpt

5○https://cve.mitre.org/, Oct. 2020.

For Research Only

8 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Algorithm 1. Guided Symbolic Execution

Input: WarningList, Pathsets
Output: V alidationReport

1 GuidedSymbolicExecution(){
2 ExecutionStatePool = ∅;
3 AddedStateSet = ∅;
4 RemoveStateSet = ∅;
5 ExecutionStatePool.add(initialState);
6 while ExecutionStatePool.size > 0 && ! TIMEOUT do
7 es = selectState(ExecutionStatePool);
8 ExecuteInstruction(es);
9 UpdateState(ExecutionStatePool, AddedStateSet,

RemoveStateSet);

10 }
11

12 ExecuteInstruction(ExecutionState es){
13 if ∃ ω ∈ WarningList && es.pc == ω.b then
14 Call Validation Module;

15 if es.pc.instructionType == FORK then
16 es2 = fork(es);
17 es.pc = trueBranchStmt;
18 es2.pc = falseBranchStmt;
19 AddedStateSet.add(es2);
20 StatePruning(es, es2);

21 Other operations in traditional symbolic execution...
22 }
23

24 StatePruning(ExecutionState es, ExecutionState es2){
25 if es != NULL && es2 != NULL then
26 l1 = es.pc.stmtLabel;
27 l2 = es2.pc.stmtLabel;

28 if Pathsets.contains(l1) && !Pathsets.contains(l 2) then
29 RemoveStateSet.add(es2);

30 if !Pathsets.contains(l1) && Pathsets.contains(l 2) then
31 RemoveStateSet.add(es);

32 }

the actions related to our algorithm. This module takes

as input the static buffer overflow warnings reported

by some static analysis tool and the warning path sets

generated by warning reachability analysis, denoted as

WarningList and Pathsets. ExecutionStatePool will

be maintained during execution. The overall process of

guided symbolic execution is executing a loop until the

pool is empty or time-out (lines 6–10). In the loop, the

pool will be updated by adding or removing states (line

9). This is the default move of the traditional symbolic

execution engine. In each iteration, one of the states

will be selected (line 7) to execute (line 8) according to

a specific rule (e.g., randomly choose one). pc (i.e., the

program counter) in the state represents the instruc-

tion to be executed. Before executing the instruction,

we will first check its type. If the statement label of

pc reaches a warning point (i.e., ω.b), the buffer over-

flow validation module will be invoked (lines 13 and

14), which will be discussed in Subsection 4.4. If it is

a branch or loop instruction, we will fork a duplicate

of the current state (i.e., es) and add it (i.e., es2) into

AddedStateSet (lines 15–19). Then StatePruning will

be invoked to try to prune states that cannot lead to

the warning points.

Here we try to prune states right after the symbolic

execution engine finished interpreting a branch instruc-

tion and only check the two execution states that cor-

respond to the branch. This strategy has two motiva-

tions. First, if the unnecessary state can be pruned at

the very beginning when it is just generated, the sym-

bolic execution engine can explore the necessary paths

more efficiently. Second, the branch information can

help us to identify an execution path better. That is be-

cause we use the statement label of the first statement

of a basic block to represent the block in our warning

path set, referring to Definition 2 in Section 3. After a

branch, pc of the true or false branch state is exactly

the first statement of the corresponding block, i.e., l1

for es and l2 for es2.

In StatePruning, to decide whether an execution

state can be removed from the execution state pool, we

check whether the execution state matches the warn-

ing path sets. Namely, we will check the existence of

the two statement labels (i.e., l1 and l2) in Pathsets

(lines 28–31). If only one statement label is contained

in a certain warning path set, the execution state corre-

sponding to the other statement label will be removed.

If both statement labels are contained in the path set,

we do not remove any of the execution states. Note

that if both statement labels are not in the path set,

we also do not remove any of the execution states. One

reason is that the symbolic execution engine may ex-

plore the internal part of some library calls that do

not appear in any warning path. Another reason is to

support validating the buffer overflow warnings whose

warning points are in the loop. Each path in a warn-

ing path set starts from the program entrance and ends

at the warning point. Namely, the branch information

after the warning point is not contained in any warn-

ing path set. But the buffer overflow may be triggered

by iterating the loop. Therefore, to iterate the loop,

the two states of the branch after the warning point

should not be pruned. In this way, our approach al-

lows an execution to continue after calling the buffer

overflow validation module if the current path cannot

trigger a buffer overflow but the warning point is in a

loop. When an execution reaches the exit of the loop,

which is a branch, the execution state jumps back to

the entrance of the loop. Since the buffer overflow point

For Research Only

Feng-Juan Gao et al.: Automatic Buffer Overflow Warning Validation 9

is in the loop, the entrance of the loop is contained in

the warning path set. The execution will find a match

and enter the loop again. Thus, our method can guide

symbolic execution to iterate the loop until the loop

ends or a buffer overflow is found within a loop time

threshold.

4.4 Buffer Overflow Validation

When the symbolic execution engine encounters an

instruction matching a warning point in the warning

list, the buffer overflow validation module will be in-

voked (lines 12 and 13 in Algorithm 1). The instruction

encountered at the warning point is a buffer operation,

which may be the APIs listed in Table 1, e.g., a call

to strcpy. To validate static buffer overflow warnings

during symbolic execution, we extend the symbolic exe-

cution engine to monitor buffer operations, collect path

constraints, construct overflow constraints and validate

warnings during symbolic execution.

To validate a warning, first we need to fetch the

buffer information from the symbolic execution engine.

It provides a memory management model to handle the

information of all variables, including the addresses,

size, contents, etc. By analyzing the memory object,

we obtain the information of the buffer to be checked,

including the starting address of the buffer, the offset

from the starting address, and the size of the buffer.

The symbolic execution engine updates the content in

the buffer whenever there is an operation on the buffer.

Therefore, before executing the instruction at the warn-

ing point, it is easy to fetch the latest content of the

buffer related to the instruction. However, when the

data copied to the buffer is symbolic, the length in-

formation is difficult to obtain. To address this issue,

we design a model to represent the length of a sym-

bolic string variable. Let buf be a symbolic string

variable, Len(buf) denotes the length of string buf

in bytes, and '\0' denotes the end of a string. In our

model, we apply the following constraints based on the

string length to judge buffer overflow: Len(buf) = i,

where ∀j ∈ [0, i), Sbuf [j] 6= '\0' and Sbuf [i] = '\0'. To

unify the validation model, we apply the definition on

both symbolic strings and concrete strings. As men-

tioned before, we use Size(buf) to represent the size

of the buffer assigned to the parameter buf , which can

be obtained from the memory management model in

the symbolic execution engine. When calculating the

length of buffer buf , if the first Size(buf) bytes have

no '\0', it means that the string in the buffer has no

terminator. In this case, we consider Len(buf) to be

infinite. To be noticed, the above assumption is only for

our self-defined Len(buf) in this paper. It is different

from strlen(), which is a traditional API in C program

and re-implemented symbolically in KLEE.

Based on the above buffer information, i.e., the

starting address, offset, size and content, we next con-

struct the buffer overflow constraints according to Ta-

ble 1. For example, in this module, the overflow con-

straints Len(src) > Size(dest) for strcpy will be con-

structed as
∧j=Size(dest)−1

j=0 Ssrc[j] 6= '\0' during sym-

bolic execution. The buffer overflow constraints con-

structed here correspond to the function OC(b) in the

definitions in Section 3. Then, we feed the conjunc-

tion of the path constraints and overflow constraints to

a constraint solver. Based on the result of constraint

solving, we validate the path as an overflowable path,

a safe path or an undecided path according to Defini-

tions 3–5 in Section 3. If it is an overflowable path,

then the warning will be validated as a true warning,

referring to Definition 6 in Section 3. A test case will

be generated for it. Then the warning point will be re-

moved from the checking list. Otherwise, the execution

will continue until all the paths for the warning being

executed or an overflowable path found for the warning.

If all the paths for a warning are safe paths, then the

warning is a false warning, referring to Definition 7 in

Section 3. If there exist some undecided paths besides

the false paths, the warning will be regarded as an un-

decided warning, referring to Definition 8 in Section 3.

In order to improve the efficiency of BovInspector

and avoid getting stuck in a loop or a path, we discuss

several details of buffer overflow validation as follows.

First, if we have validated a warning as a true warn-

ing, we will stop exploring other paths for this buffer

warning point and report a true warning along with a

test case that can follow the execution path and trigger

the buffer overflow. Second, if we validate the current

path as a safe path, we will check whether the current

warning point is in a loop. If so, such execution will

be allowed to continue until it reaches the upper bound

of the loop or the path is validated as an overflowable

path within a loop time threshold, as discussed in Sub-

section 4.3. Last, we set a time limit for the execution

of each path to a buffer overflow warning point. If the

procedure exceeds the time bound, it means that the

solver cannot determine whether there is a solution to

the constraints.

For Research Only

10 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

4.5 Targeted Automatic Repair Suggestions

Fixing the validated buffer overflow defects in the

program is an urgent task for the developers for the

sake of security. It is time consuming to manually fix

the existing defects. Therefore, using automatic tech-

niques to supplement manual software development is

becoming a trend. However, automatic software repair

is challenging because it is a difficult task to figure out

where the bug is and how to generate a programmer’s

preferred fix. Our buffer overflow validation module

has solved the “where the bug is” problem. It reports

the true buffer overflow warnings, each of which con-

tains the information of the buffer APIs, the size of

buffer, the locations of buffer initialization, buffer ope-

rations and the overflow point, the test cases to trig-

ger the vulnerability and the corresponding execution

paths. The next step is to figure out “how to fix the

bug in a way that will be adopted by programmers”.

Automatic software repair is a promising way to re-

duce the manual work for programmers. The prob-

lem is that programmers tend to lack confidence in

the code repaired by some automatic tools. Improv-

ing the understandability of the repaired code will be

helpful for the programmers to validate and adopt the

repair suggestions. Therefore, we perform some empir-

ical studies to survey the officially adopted or program-

mers’ preferred fix approaches for buffer overflow vul-

nerabilities. By investigating 100 highly ranked buffer

overflow CVEs from 2009 to 2014 and the benchmarks

from prior buffer overflow detection work, we discover

a total of 11 common repair strategies [18]. The results

show that nearly half of these vulnerabilities (48%) are

patched by adding boundary checks, while API replace-

ment and using larger buffer share the second place. All

the 11 kinds of repair strategies mentioned in [18] are

shown in Table 2 in decreasing order of usage frequency.

These strategies fix buffer overflows by adding checks

or smashing overflow conditions. Inspired by these offi-

cial or programmers’ preferred repair habits, we adopt

these 11 types of repair strategies as repair templates,

assemble the final repair codes using the contexts of the

buffer overflow vulnerabilities, and provide repair sug-

gestions fully automatically or according to the repair

mode selected by the developers.

The specific steps of targeted automatic repair sug-

gestions are shown in Algorithm 2. This module takes

as input the source code of the target program, the

true buffer overflow warnings validated by BovInspec-

tor , and a repair mode configured by programmers,

which can be empty. The repair may insert some state-

ments in the code, which will result in a line num-

ber mismatch between the source code and the re-

port of the other warnings. To keep the consistency

of line numbers by handling true warnings from the

bottom to the top, we first sort all the true warnings

in each source file by the line numbers in descending

order. For each validated true buffer overflow warn-

ing, we extract the necessary information for repair,

such as buffer API, buffer size, definition location of

the buffer, and location of the buffer API, and so on.

We first query the usable repair modes for the buffer

Table 2. Buffer Overflow Repair Templates

Rank Repair Repair Strategy Template Allowed Context

Mode

1 ABC Adding boundary check if (Overflow Constraints) exit (error); Any context allowed

2 AR API replacement snprintf(dest, Size(dest), format, ...) strcpy/sprintf/strcat/vsprintf/scanf/
vscanf/sscanf/vsscanf/fscanf/vfscanf

2 ULB Using larger buffer static buffer: TYPE buf [newSize];
dynamic buffer: buf = realloc(buf , newSize);

Static buffer: TYPE buf [oldSize];
dynamic buffer: TYPE* buf

4 FBC Fixing boundary check if (Overflow Constraints){...} Boundary check exists

5 AIC Adding integer check if (i+ j < i || i+ j < j) exit (error); buf [i+ j] = x

6 ASE Adding string end if (i > Size(buf)) dest[Size(buf) − 1]='\0'; buf [i] = x

7 AMC Adding Malloc check if (!buf) exit (error); buf = malloc(n)

8 SR String reformat snprintf(str, Size(str), “...%%%ds ...”, ...,
Size(dest)− 1,...); sscanf(src, str, ..., dest...);

sscanf(src, “...%s...”, ...dest...)

9 UUV Using unsigned value unsigned i; Boundary check i > 0 is needed

10 LIR Limiting index range i = min(i, Size(dest)/sizeof(∗dest) − 1);
i = max(i, 0);

buf [i] = x

11 UCL Using concrete length bufAPI(dest, src, ConcreteV alue); bufAPI(dest, src, n)

Note: For ULB, the newSize of static buffer is configured by programmers or other static size analysis tools and is determined at
compile time; the newSize of dynamic buffer is computed based on the overflow constraints at runtime.

For Research Only

Feng-Juan Gao et al.: Automatic Buffer Overflow Warning Validation 11

API in Table 3, marked as UsableRepairModeList in

line 4. If the programmer provides a none empty repair

mode and the mode is usable, we clear the modes in

UsableRepairModeList and use the configured repair

mode instead (lines 5–7). Otherwise, we use the modes

in the original UsableRepairModeList computed at

line 4. For each mode in UsableRepairModeList, we

first check whether the precondition is satisfied by an-

alyzing the context of the buffer operation in the pro-

gram. The allowed contexts are shown in the last col-

umn in Table 2. For repair mode SR, only sscanf is

listed as an example in Table 2. Other APIs, such as

scanf , vscanf , sscanf , vsscanf , fscanf and vfscanf ,

use the corresponding allowed contexts and templates.

The allowed context to use SR to repair sscanf is: the

buffer API sscanf is storing characters to the buffer

dest with a string format like “%s”. If the allowed con-

text is satisfied, we then query the template for the re-

pair mode. For repair mode AR, the safe APIs used as

templates are shown in Table 4. Next, we assemble the

repair code based on the template and the contexts of

the buffer API in the source code. For repair mode SR,

the core idea is to control how many bytes are written

into a buffer by a formatting string. SR will convert the

string format “%s” in sscanf into “%ns” by applying

an snprintf operation, where n is Size(dest)− 1.

To be noticed, when using BovInspector to repair

a program, sizeof(buf) is used instead of the value of

Size(buf) when the statement in function f is accessing

a buffer buf that is a locally defined (namely defined

in the same function f) static array or a globally de-

fined static array, because by analyzing official repairs,

we find “sizeof” is commonly used in such cases. When

the above conditions are not satisfied, we will retrieve

the size of the buffer from the output of BovInspector ,

i.e., Size(buf). In the body of the new “if” statement

added by BovInspector, we take “return 0;”, “return

false;” or “return NULL;” as the return statement de-

pending on the return type of the function. The return

statement we add may be incorrect and analyzing a

more precise return statement based on the program

context is left as future work.

Algorithm 2. Targeted Automatic Repair Suggestions

Input: SrcCode, TrueWarningSet, RepairMode
Output: RepairedCodeSuggestions

1 SortedTrueWarningSet = Sort(TrueWarningSet);
2 foreach w ∈ SortedTrueWarningSet do
3 bufAPI, bufSize, bufLoc, bufAPILoc =

ExtractInfo(w);
4 UsableRepairModeList =

QueryRepairSolutions(bufAPI);
5 if RepairMode != EMPTY && RepairMode ∈

UsableRepairModeList then
6 UsableRepairModeList.clear();
7 UsableRepairModeList.add(RepairMode);

8 foreach mode ∈ UsableRepairModeList do
9 isSatisfied =

CheckPrecondition(mode, bufAPILoc);
10 if isSatisfied then
11 template = QueryRepairTemplate(mode);
12 code = AssembleRepairCode(SrcCode,

template, bufAPI, bufSize, bufLoc,
bufAPILoc);

13 RepairedCodeSuggestions.add(code);

14 else
15 ReportError(w,mode);

This module provides the corresponding repaired

codes for each usable repair mode and ranks them in the

order of the repair modes listed in Table 2, namely in

decreasing order of usage frequency. Programmers can

simply take the first one as the repaired code, which

is the most commonly used repair mode in official re-

pairs, or they can configure a preferred repair mode.

Note that these repair methods only ensure that the

buffer overflow will not happen for the current line of

code. We recommend users to manually decide whether

to adopt the repair suggestions.

Table 3. Buffer Overflow Repair Solution

Type API ABC AR ULB FBC AIC ASE AMC SR UUV LIR UCL

Unbounded strcpy, sprintf , strcat, vsprintf X X X X X
content sensitive scanf , sscanf , fscanf X X X X X X
buffer operations

vscanf , vsscanf , vfscanf

Bounded content strncpy, snprintf , fgets, X X X X X X
sensitive buffer vsnprintf , fread, read
operations

strncat X X X X X

Bounded content memcpy, memmove, memset X X X X X X
insensitive buffer
operations

Direct buffer accesses buf [i], ∗(buf + i) X X X X X X X X

For Research Only

12 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Table 4. Safe API Used in Repair Mode AR

API Safe API Option

strcpy strncpy(dest, src, Size(dest)− 1),
snprintf(dest , Size(dest), “%s”, src)

strcat snprintf(dest+ strlen(dest),
Size(dest)− strlen(dest),“%s”, src)

sprintf , vsprintf snprintf(str, Size(str), format, ...)

scanf , vscanf scanf s, vscanf s

sscanf , vsscanf sscanf s, vsscanf s

fscanf , vfscanf fscanf s, vfscanf s

5 Implementation and Evaluation

Implementation. We implemented BovInspector by

extending the tool proposed in our previous work [15].

The tool is based on LLVM 2.9 6○ and KLEE 7○. We

use the commercial Fortify 3.2 as the static buffer over-

flow detector. For other static analyzers, BovInspector

provides a unified static buffer overflow warning report

format. It is straightforward to convert the output of

another static analyzer to this format.

Evaluation Goals. For evaluation, we hope to an-

swer the following key research questions.

RQ1. Is our validation technique effective and pre-

cise for classifying static buffer overflow warnings?

RQ2. Is the performance and scalability of our tech-

nique acceptable on real-world applications?

RQ3. Is our automatic repair technique effective?

Metrics. The symbols used in the metrics are de-

fined in Table 5.

Table 5. Symbols Used in the Metrics

Symbol Meaning

#L Number of lines of code

#W Number of buffer overflow warnings

#P Number of buffer overflow warning paths

#true Number of true warnings validated by BovIn-
spector

#false Number of false warnings validated by BovIn-
spector

#undecided Number of undecided warnings that cannot be
validated by BovInspector

#FP Number of false positives

#fixed Number of warnings that will not be reported
by the static analysis tool Fortify after being
repaired by BovInspector

For RQ1, we first define DCR and UCR to evaluate

the effectiveness of our approach.

Decidable classifying ratio (DCR) of warning vali-

dation is the percentage of warnings that are validated

as true or false warnings by BovInspector in all the

static buffer overflow warnings.

DCR =
#true+#false

#W
.

Likewise, DCR of warning path validation is the

percentage of warning paths that are validated by

BovInspector.

Undecidable classifying ratio (UCR) for warning

validation is the percentage of warnings that are un-

decided warnings that cannot be validated by BovIn-

spector in all the static buffer overflow warnings.

UCR =
#undecided

#W
.

Likewise, UCR of warning path validation is the

percentage of warning paths that cannot be validated

by BovInspector.

For RQ2, we use time consumptions and memory

consumptions to measure the performance of our ap-

proach in the three stages of reachability analysis, sym-

bolic execution, and buffer overflow validation.

For RQ3, the recall ratio of static analysis (RRSA)

is used to measure the percentage of unfixed warnings

in the validated true buffer overflow warnings.

RRSA =
#true −#fixed

#true
.

Experimental Setup. To prepare the benchmark,

we selected eight programs from GNU COREUTILS

utilities 8○ and real-world open source programs such as

sendmail-8.12.7 9○. All experiments were conducted on

a quad-core machine with an Intel CoreTM Corei5-2400

3.10 GHz processor and 4 G memory, running Linux

3.11.0.

5.1 RQ1: Effectiveness and Precision of the

Validation of Static Buffer Overflow

Warnings by BovInspector

To answer RQ1, we performed experiments on both

synthetic and real-world programs. Table 6 shows

the synthetic programs used in the experiments, which

are eight programs from GNU COREUTILS utilities.

6○https://releases.llvm.org/2.9/docs/ReleaseNotes.html, Oct. 2020.
7○https://klee.github.io/, Oct. 2020.
8○https://www.gnu.org/software/coreutils/, Oct. 2020.
9○http://www.sendmail.org/∼ca/email/sm-812.html, Oct. 2020.

For Research Only

Feng-Juan Gao et al.: Automatic Buffer Overflow Warning Validation 13

Table 6. Buffer Overflow Validation Result on Synthetic Programs

Program BovInspector Input BovInspector Output

Warning Points Warning Paths

#L (×103) #W #P #true #FP #false #FP DCR (%) #true #FP #false #FP DCR (%)

of #true of #false of #true of #false

chmod 0.6 12 12 7 0 4 0 92 7 0 4 0 92

tr 1.9 8 15 3 0 3 0 75 6 0 5 0 73

pwd 0.4 12 16 3 0 7 0 83 3 0 10 0 81

sort 3.3 22 27 8 0 7 0 68 10 0 9 0 70

su 0.6 6 8 1 0 3 0 67 2 0 3 0 63

ls 4.6 31 42 4 0 19 0 74 10 0 22 0 76

pr 2.9 29 31 11 0 15 0 90 13 0 15 0 90

df 1.0 18 18 9 0 9 0 100 9 0 9 0 100

These programs are relatively small and we can manu-

ally check the results.

To increase the number of static analysis warnings

for each program, we manually inserted or removed

code snippets in several random positions in the pro-

gram. These code snippets will make Fortify report

buffer overflow warnings, including both true and false

buffer overflow warnings. True buffer overflow warnings

are mainly introduced by removing the existing boun-

dary checks for insecure buffer manipulations. False

buffer overflow warnings are introduced by inserting

buffer manipulations with infeasible paths. More de-

tails can be found in the full version paper 10○.

Table 7 shows the six real-world programs used in

the experiments. The six programs were used in pre-

vious buffer overflow detection work [7, 10, 20–22]. Each

real-world buffer overflow is located by referring to its

CVE descriptions, comparing the current version with

the repaired version and reading the log of the repaired

version. The details of the real buffer overflows are

shown in Table 8.

Table 7. Buffer Overflow Validation Result on Real Programs

Program BovInspector Input BovInspector Output

Warning Points Warning Paths

#L (×103) #W #P #true #FP #false #FP DCR (%) #true #FP #false #FP DCR (%)

of #true of #false of #true of #false

polymorph-0.40 0.3 11 19 0 0 11 0 100 0 0 19 0 100

bc1.06 9.7 5 15 1 0 3 0 80 1 0 11 0 80

net-tool1.46 8.1 62 1 256 6 0 36 0 68 251 0 763 0 81

wwwcount2.3 8.3 20 112 1 0 5 0 30 1 0 50 0 45

gzip1.2.4 5.1 19 237 1 0 12 0 68 4 0 148 0 64

sendmail8.12.7 78.1 96 4 854 1 0 51 0 54 1 0 3 067 0 63

Table 8. Buffer Overflow Details in Real Programs

Program API Buffer API Location Reference Official Repair Version

polymorph-0.40 strcpy polymorph.c:118 EDB-ID:22633 φ

bc-1.06 array access main.c 188 [7] φ

net-tools-1.46 strcat netstat.c:450, 457, 602, 608, 737, 743 N/A φ

wwwcount-2.3 strcpy parse.c:840 CVE-1999-0021 wwwcount-2.5

gzip-1.2.4 strcpy gzip.c:1009 CVE-2001-1228 gzip-1.3.9

sendmail-8.12.7 array access headers.c:1337-1342 CVE-2002-1337 sendmail-8.12.8

Note: φ means we have not found an official repair for the buffer overflow. N/A means the reference of the report of the buffer overflow
defect is unavailable.

10○https://bovinspectortool1.github.io/project/, Oct. 2020.

For Research Only

14 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Table 6 shows the results on synthetic programs and

Table 7 shows the results on real programs. The first

four columns show the name of the programs and the

basic information of the input of BovInspector, i.e., #L,

#W and #P . From the fifth column to the 14th col-

umn, we show the result for warning points and warning

paths. For each of them, we show five types of output

of BovInspector , i.e., #true and its #FP , #false and

its #FP , and DCR.

Result 1. BovInspector can significantly reduce

the number of buffer overflow warnings to be manu-

ally checked due to its ability of validating static buffer

overflow warnings. From Table 6 and Table 7, we can

find that BovInspector can effectively validate most of

the warning points and the warning paths. For warn-

ing points, the DCR on the synthetic programs ranges

from 67% to 100% and the DCR for all the synthetic

programs together is 82%; the DCR on the real pro-

grams ranges from 30% to 100% and the DCR for all

the real programs together is 60%. For warning paths,

the DCR on the synthetic programs ranges from 63%

to 100% with an average of 81%; the DCR on the real

programs ranges from 45% to 100% with an average

of 67%. In general, the UCR on real-world programs

is 40%. In other words, there are about 40% of static

warnings, namely undecided static warnings, that need

to be manually checked by programmers in real-world

programs. It means BovInspector can significantly re-

duce the number of buffer overflow warnings to be man-

ually checked.

Result 2. In practice, the true warnings and the

false warnings identified by BovInspector are all correct.

For the synthetic programs in Table 6, we manually ex-

amined all the buffer overflowwarnings reported by For-

tify, recorded the verified buffer overflow list and com-

pared them with the true buffer overflow warnings and

false buffer overflow warnings validated by BovInspec-

tor. As shown in Table 6, columns #FP of #true and

#FP of #false record the number of false positives

for the true warnings and that for the false warnings

validated by BovInspector, respectively. The values in

these two columns are all 0, which means the true warn-

ings and false warnings identified by BovInspector are

all correct. Moreover, there is a one-to-one correspon-

dence between the manually verified buffer overflow list

and the warnings validated by BovInspector. By manu-

ally validating the warning paths, we find that the true

and false warning paths validated by BovInspector are

all correct. For the real-world programs in Table 7,

after validation, BovInspector will label the warning

paths as overflowable paths or safe paths (denoted as

#true and #false in the “Warning Paths” column) for

each warning. We manually checked all the overflow-

able (#true) paths reported by BovInspector. For the

safe (#false) paths reported by BovInspector, we only

randomly checked 200 of them or all of them if they are

less than 200 by hand. It shows that there is no false

positive for the validation of warning paths and warn-

ing points by BovInspector. Furthermore, all the true

buffer overflows validated by BovInspector are included

in the real buffer overflow list, referring to Table 8. We

can also see that false warnings account for about 92.2%

of all the decided warnings. The experiments on both

synthetic and real programs show that the result of our

method for decided warnings is reliable.

5.2 RQ2: Performance and Scalability of

BovInspector

To evaluate the performance and the scalability of

our method on real-world programs, we recorded the

time and memory consumptions of BovInspector on the

six real-world programs used in Table 7. Moreover, to

show the benefit of introducing the warning reachability

analysis and guided symbolic execution, we conducted

two sets of experiments shown in Table 9. For the first

set, we list the statistics of BovInspector. We first list

the statistics of the two stages of BovInspector, i.e.,

#RA for reachability analysis and #GSE +BV for

Table 9. Time and Memory Consumption on Real Programs

Program Time Consumption (s) Memory Consumption (MB)

BovInspector Unguided BovInspector Unguided

#RA #GSE + BV #All #RA #GSE +BV #Peak

polymorph-0.40 0.1 101.2 101.3 294.2 2.4 36.1 36.1 87.1

bc1.06 3.1 125.9 129.0 201.1 22.2 77.4 77.4 283.4

net-tool1.46 39.8 282.7 322.5 2 547.7 68.0 394.5 394.5 512.3

wwwcount2.3 9.1 159.3 168.4 352.6 19.4 225.1 225.1 435.9

gzip1.2.4 16.7 169.2 185.9 453.7 15.1 64.2 64.2 166.2

sendmail8.12.7 145.8 5 758.2 5 904.0 7 124.1 109.2 1 435.1 1 435.1 3 046.9

For Research Only

Feng-Juan Gao et al.: Automatic Buffer Overflow Warning Validation 15

guided symbolic execution with buffer overflow valida-

tion. We then take the time consumptions of #RA and

#GSE +BV as the time consumptions of BovInspec-

tor and list the values in column #All. We recorded the

peak memory consumption of #RA and #GSE +BV

as the memory consumption of BovInspector and list

the values in column #Peak. To be noticed, for the

item #GSE +BV , we only considered those validated

true or false buffer overflow warnings, because the un-

decided buffer overflow warnings are limited by a time

bound, which may disturb the accuracy of the statis-

tics. Symbolic execution will be terminated when all

the buffer overflow warning points and warning paths

are traversed. For the second set, a comparison experi-

ment was performed to study whether it is also capable

of validating static warnings fast without the guidance

of warning reachability analysis, namely the column la-

beled as “Unguided”. In this case, we performed buffer

overflow validation by using unguided symbolic exe-

cution. Namely, we omitted the warning reachability

analysis and simply took as input the buffer overflow

warnings reported by Fortify. Actually, to be fair, only

the decided warnings validated by BovInspector were

fed to the symbolic execution engine in the “Unguided”

experiment. Since no path information is available for

the “Unguided” method, symbolic execution would be

terminated when all the buffer overflow warning points

were traversed. In that case, the “Unguided” method

may miss a lot of executions to trigger buffer overflow.

Therefore, the actual time and memory consumptions

of the “Unguided” method would be even larger than

the values shown in Table 9.

Result 3. Our method is capable of handling large-

scale real-world programs. Table 7 shows the buffer

overflow validation results on real programs. Most of

the programs have almost 10 000 lines of source code

while the largest one reaches 78 100. We observe that

BovInspector performs well on most of these programs

and validate a large number of false warnings, especially

for the warning paths. About 60% of the static buffer

overflow warnings are decidable for BovInspector. Ac-

cording to Table 9, BovInspector can finish validating

all the decidable static buffer overflow warnings in these

real-world programs with an acceptable time consump-

tion and memory consumption.

Result 4. Warning reachability analysis and guided

symbolic execution are effective for improving the per-

formance and scalability of BovInspector. By compar-

ing the statistics of BovInspector and the “Unguided”

method, we find that the “Unguided” method always

consumes more time and memory than BovInspector.

The gap becomes more obvious especially when the

scale of the program increases. This means the warning

reachability analysis and the guided symbolic execution

perform well in saving time and memory by reducing

the exploration space of symbolic execution. By com-

paring the time consumption of BovInspector and “Un-

guided”, we can see that the guidance of the warning

reachability analysis helps save about 17.1% to 87.3%

of time, with an average of 37.9%. The result shows

that BovInspector consumes about 23.0%–72.7% with

an average of 50.7% less memory than the “Unguided”

method. Despite we only made a relatively conserva-

tive statistics on the “Unguided” method, namely the

data for it would be even larger than the value shown

in Table 9, BovInspector still costs much less time and

memory than the “Unguided” method. In that case, we

can conclude that applying warning reachability ana-

lysis and guided symbolic execution can effectively re-

duce the size of search space, which further significantly

increases the performance and scalability of BovInspec-

tor.

5.3 RQ3: Effectiveness of Automatic Repair

After validating the buffer overflow warnings of the

programs in Table 7, we continued to evaluate the effec-

tiveness of the repair module of BovInspector on these

programs. After repair, we used Fortify to re-scan the

repaired code to see whether the buffer overflow is fixed.

To study the reliability of the repair of BovInspector, we

made a comparison between the repair codes generated

by BovInspector and the official repairs. According to

Table 8, there is no official repair version found for the

first three programs. To further enrich the repair ex-

amples, we repaired another seven real-world programs

with known buffer overflows using BovInspector.

Result 5. The targeted automatic repair module

can fix buffer overflow in most cases. Table 10 shows

the results of Fortify on the original programs and the

programs repaired by BovInspector. From the column

“Fortify (before)” and BovInspector, we can see that

all the buffer overflow warnings are validated as true

buffer overflow warnings. The column “Fortify (after)”

lists the Fortify results for the four repair modes, i.e.,

ABC, AR, ULB and LIR. We observe that by apply-

ing the ABC repair mode of BovInspector to the pro-

grams, three buffer overflow warnings are degraded to

a dangerous function, which is a very low-risk warning

in Fortify, and the other eight buffer overflow warnings

For Research Only

16 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Table 10. Validation and Repair Results on Real Programs

Program API #W Fortify (Before) BovInspector Fortify (After)

ABC AR ULB LIR

polymorph-0.40 strcpy 1 Bov Bov Dangerous function φ N/A N/A

bc-1.06 array access 1 Bov Bov φ N/A Bov Bov

net-tool-1.46 strcat 6 Bov Bov φ φ N/A N/A

wwwcount-2.3 strcpy 1 Bov Bov Dangerous function φ N/A N/A

gzip-1.2.4 strcpy 1 Bov Bov Dangerous function φ N/A N/A

sendmail-8.12.7 array access 1 Bov Bov φ N/A N/A N/A

Note: Bov means buffer overflow. φ means there is no report from Fortify after applying the corresponding repair. N/A means the
corresponding repair mode is unavailable for the bug.

are eliminated from the report of Fortify. Therefore,

RRSA in the ABC mode is 27.3%. The AR mode per-

forms better. All the nine buffer overflow warnings are

not reported by Fortify after being repaired by BovIn-

spector in the AR mode and therefore RRSA is 0%.

All these repaired codes are verified to be correct by

manual inspection. For the repaired code of bc-1.06,

by applying the ULB and the LIR mode, Fortify still

reports buffer overflow warning on it due to the bug

finding schemes of Fortify. Through re-validation by

BovInspector and manual inspection, we found that the

warning for ULB is a true warning, but the warning for

LIR is a false warning.

Result 6. Our repair method is similar to the hu-

man programmers’ repair habit.

Table 11 shows the results of the BovInspector’s re-

pair and the official repair. The “BovInspector Repair”

column shows the repair results for the usable repair

modes. ABC and AR are usable for strcpy and sprintf .

ABC and LIR are usable for array access. We list all

Table 11. Results of the BovInspector’s Repair and the Official Repair

Program Location API BovInspector Repair Official Repair

wwwcount

-2.3

parse.c

840

strcpy ABC:if(strlen(qs) > sizeof (query string)) return 1;

AR:strncpy(query string, qs, sizeof(query string)− 1);

query string[sizeof (query string)− 1]='\0';

AR:

safeStrcpy(query string, qs, sizeof

(query string)− 1) ;

gzip

-1.2.4

gzip.c

1009

strcpy ABC:if(strlen(iname) > sizeof (ifname)) return 1;

AR:strncpy(ifname, iname , sizeof (ifname)− 1);

ifname[sizeof (ifname)− 1]='\0';

ABC:

if(sizeof ifname− 1 6strlen(iname))

sendmail

-8.12.7

headers.c

1337

array ABC:if(strlen(bp) > (MAXNAME + 1)) return bp; ABC:

if(realqmode &&bp<bufend)

man

-1.5i2

man.c

299

strcpy ABC:if(strlen(name0) > sizeof(ultname)) return NULL;

AR:strncpy(ultname, name0, sizeof (ultname) − 1);

ultname[sizeof (ultname) − 1]='\0';

ABC:

if(strlen(name0)>sizeof(ultname))

{return name0;}

wu-ftpd

-2.5.0

ftpd.c

1210

strcpy ABC:if(strlen(mapped path) > 1024) return NULL;

AR:strncpy(path, mapped path, 1023);

path[1023]='\0';

AR:

strncpy(path, mapped path, size);

path[size− 1] = '\0';

xmp

-2.5.1

dtt load.c

79

array ABC:if((i+1)∗sizeof (∗pofs)>sizeof(pofs)) return 1;

LIR: i = min(i, sizeof (pofs)/sizeof (∗pofs)− 1);

ABC:

if (i < 256)

mapserver

-5.2.0

Beta4

mapserv.c

1334

sprintf ABC:#include “MY vsnprintf.h”

if(MY vsnprintf(“%s%s%s.map”, mapserv->map->

web.imagepath, mapserv->map->name, mapserv->Id)

> sizeof(buffer)) return 1;

AR:snprintf(buffer , sizeof (buffer), “%s%s%s.map”, mapserv

->map->web.imagepath, mapserv->map->name,

mapserv->Id);

AR:

snprintf(buffer , sizeof (buffer), “%s%s

%s.map”, mapserv->map->web.

imagepath, mapserv->map->

name, mapserv->Id);

cgminer

-4.3.4

util.c

1883

sprintf ABC:#include “MY vsnprintf.h”

if(MY vsnprintf(“%s:%s”, url, port)>sizeof(address))

return false;

AR:snprintf(address, sizeof(address), “%s:%s”, url, port);

AR:

snprintf(address, 254, “%s:%s”, url,

port);

Note: In the last two table rows, we use our self-defined function MY vsnprintf() in header MY vsnprintf.h. It calls vsnprintf(NULL,
0, format, ...) to compute the length of the format string.

For Research Only

Feng-Juan Gao et al.: Automatic Buffer Overflow Warning Validation 17

the repair results of the usable repair modes to further

show how BovInspector repairs buffer overflow vulnera-

bilities. The last column shows the results of the official

repairs. We also present the repair modes used by offi-

cial repair. As we can see, the code repaired by BovIn-

spector, when using the same repair mode with the offi-

cial repair, is very similar to the code repaired by official

developers. The repair of man-1.5i2 using repair mode

ABC and the repair of mapserver=5.2.0Beta4 using re-

pair mode AR of BovInspector are exactly the same as

the official repairs. For wwwcount-2.3, in the AR repair

mode, BovInspector repairs it by replacing strcpy with

strncpy and setting the last element to '\0'. Official

repair uses a safeStrcpy, which actually is a wrapper

of our repair code. Therefore, they are essentially the

same. The repair of cgminer-4.3.4 using repair mode

AR of BovInspector is also essentially the same as the

official repair. The repair of wu-ftpd-2.5.0 using re-

pair mode AR is different from the official repair. In

our repair, for the buffer mapped path coming from the

parameter, we can only find all its call sites and take

the minimum value as the buffer size, which will be

too conservative. The developer of wu-ftpd changed

the definition of the function to make the size of the

buffer available directly from a new parameter, i.e.,

size. However, the last argument of strncpy is mistak-

enly set to size instead of size− 1, which may lead to

an off-by-one buffer overflow. For gzip-1.2.4, sendmail-

8.12.7 and xmp-2.5.1, BovInspector uses “if(a > b)”

and the official repairs use “if(a < b)” when adding

boundary checks. It is up to the developers to choose

which kind of boundary checks to be added in the pro-

grams.

5.4 Discussion

Experiments show that our method works well on

buffer overflow detection and false alarm elimination.

Precision of Warning Validation. According to the

warning classification rules shown in Subsection 3.2, for

a warning, if we find there exists an overflowable path,

then a test case that can trigger the buffer overflow

will be generated, and thus the warning must be a true

warning. If a warning is validated as a false warning, it

indicates every reachable path for the warning is a safe

path. Based on the warnings with suspicious buffer

access information provided by static tools, we only

check all the paths that cover these suspicious buffer

operations. The manual inspection results have shown

that all the validated false warnings by BovInspector

are correct. But BovInspector can also conservatively

ignore all the buffer operations in the warning (i.e.,

ω = (〈〉, b)). Then it will analyze all possible paths from

the entry of a program to b. In that case, false warn-

ings validated by BovInspector would be trustworthy.

If there exists any path that exceeds the time limit and

no overflowable path has been found, the warning will

be classified as an undecided warning, which will need

further manual inspection.

Our method can automatically validate about 60%

of the buffer overflow warnings reported by Fortify for

real-world programs, but there are still a lot of unde-

cided ones. By analyzing the undecided cases, we find

some main reasons.

Function Pointers. In the warning reachability ana-

lysis module, for function pointers, we simply skip the

analysis inside the called functions. In that case, all

sub-paths of these functions will be explored during

symbolic execution, which may lead to path explosion.

When the execution times out before exploring all the

paths of a warning point, an undecided warning will be

reported.

Loops and Branches. Another scenario is that some

buffer overflow points are contained in a loop. Dur-

ing guided symbolic execution, our approach allows an

execution to continue if the buffer overflow point is in

a loop and the current overflowable path constraints

cannot be solved. Then the executions can explore the

rest of the loop. When an execution reaches the exit of

the loop, there are two directions to be selected: one

leads to the outer part of loop body, while the other

jumps back to the loop entrance. In the warning reach-

ability module, since the buffer overflow point is in the

loop, the entrance of the loop is contained in the warn-

ing path. In that case, the execution will continue to

explore the loop again, until the loop reaches the loop

upper bound (which means the path constraints of the

entrance branch cannot be solved) or the time upper

bound, or it finds a solution to the overflowable path

constraints at the buffer overflow point (which means

it is a true warning). Some buffer overflows can only be

triggered by a specific number of loop iterations, which

will lead to the path explosion problem. Moreover, the

very existence of branches and loops will also increase

the complexity of constraints. Therefore, sometimes, it

may be impossible to solve constraints within a reason-

able amount of time. In these situations, our method

may not be able to decide whether corresponding warn-

ings are true or false within the time limit and then an

undecided warning will be reported.

For Research Only

18 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

Library Calls. The warning reachability module

skips the analysis inside library functions, and without

the guidance of warning reachability analysis, the sym-

bolic execution engine will have to explore all the paths

in the library functions if the library functions have

been modeled by the symbolic execution engine. The

number of library functions to be explored will grow

exponentially with the number of branches, which will

further increase the number of branches and may even-

tually lead to undecided warnings. Besides, a warning

point may not be reachable by the symbolic execution

engine due to unknown library calls. When an exe-

cution path contains calls to the library functions that

have not been modeled by the symbolic execution en-

gine, the engine will terminate the path that cannot

be explored further. Besides, because there is a lim-

itation in KLEE for accessing some parameters dur-

ing symbolic execution or processing multi-threads and

multi-processes systems, some buffer operations are not

supported in BovInspector. In these situations, BovIn-

spector will also treat the corresponding warning as an

undecided one.

6 Related Work

Prior work on identifying buffer overflow vulner-

abilities falls into two categories: static program

analysis [3–7, 9] and dynamic execution analysis [10–14].

Besides, there are some researches on guided symbolic

execution for test case generation [23–26] and automatic

bug repair [27–30].

6.1 Static Program Analysis

Most static program analysis approaches scan soft-

ware source code to discover the code segments that

are possibly vulnerable to buffer overflow attacks. Each

vulnerability warning needs to be manually inspected to

check whether it is indeed a true vulnerability. ITS4 [3]

scans C or C++ source code, breaks the codes into

lexical tokens, and then matches patterns in the token

stream to find possible vulnerabilities. Other similar

tools include FlawFinder 11○, which has more detailed

report and supports more source code types. These

schemes only consider the lexical information although

they are simple and can be easily applied to large-scale

programs.

Some schemes perform semantic analysis. BOON [4]

focuses on string operations. By checking whether an

operation can make the range of a variable outside the

boundaries, BOON can report possible buffer overflow

vulnerabilities. Splint [5] requires users to add source

annotation to apply inter-procedural analysis and pro-

duces warnings for all library functions susceptible to

buffer overflow vulnerabilities. These schemes share the

same drawback of lacking run-time information so that

they often report a large number of false alarms.

To improve accuracy, some schemes introduce path-

sensitive analysis. ARCHER [6] adopts path-sensitive

inter-procedural symbolic analysis on program source

code, which reduces false alarms since some false posi-

tives are caused by infeasible paths. However, it cannot

understand C string operations and spends too much

resource for checking the paths not related to buffer

overflow vulnerabilities. Marple [7] uses path-sensitive

analysis to improve the detection accuracy, and classi-

fies paths into five types: infeasible, safe, vulnerable,

overflow-input-independence, and do not know. The

main drawback of Marple is that the path-sensitive ana-

lysis is static, which means that it cannot identify the

buffer overflows that need run-time information. Yam-

aguchi et al. [9] designed a novel representation of source

code called code property graph and with the com-

prehensive view of source code, their method is able

to model different common vulnerabilities more pre-

cisely. However, since this scheme does not interpret

code, it cannot find vulnerabilities induced by runtime

behaviors. AEG [8] mixes binary analysis with source

code analysis to find exploitable vulnerabilities. It uses

preconditioned symbolic execution to find bugs at the

source code level. Then, it performs dynamic analysis

at the binary level with the input generated by sym-

bolic execution to verify whether the vulnerability is

exploitable. However, the precision is limited by the

preconditions for symbolic execution.

Although many static analysis schemes for buffer

overflow have been proposed, it remains an open prob-

lem for scaling to large real systems and manually in-

specting amounts of warnings. Our work is complemen-

tary to such schemes.

6.2 Dynamic Program Analysis

The dynamic program analysis approach inserts

special code into software so that buffer overflow oc-

currences can be detected and properly processed such

as terminating software execution. Some dynamic ana-

lysis tools, such as StackGuard [10], add canaries before

11○https://dwheeler.com/flawfinder/, Oct. 2020.

For Research Only

Feng-Juan Gao et al.: Automatic Buffer Overflow Warning Validation 19

return addresses in the stack layout to protect entire

distributions from stack smashing buffer overflow at-

tacks. Some other methods [11–13] assume the boundary

of variables should not be exceeded by all accesses and

monitor the variables to find buffer overflow.

Splat [14] is a tool for automatically generating test

cases for detecting buffer overflows and it performs di-

rected random testing guided by symbolic execution. It

uses symbolic length abstractions techniques to prune

the state space without losing the buffer overflow detec-

tion ability. UndefinedBehaviorSanitizer (UBSan) 12○ is

a fast undefined behavior detector. It modifies the pro-

gram at compile time to catch various kinds of unde-

fined behaviors during program execution. All dynamic

execution approaches of buffer overflows are challenged

by generating high-quality test cases to trigger the bugs

with limited efforts. Our approach is based on static

analysis and symbolic execution; thus it is directed, au-

tomatic and cost-effective.

6.3 Guided Symbolic Execution

Guided symbolic execution techniques focus on con-

trolling the procedure of symbolic execution and diffe-

rent methods are proposed to steer the exploration to

various parts of the program to tackle the problem of

path explosion. Generally, most guided symbolic exe-

cution techniques aim to improve the coverage of pro-

grams. The control-flow guided search strategy [23] con-

structs a weighted control flow graph (CFG), guiding

the exploration to the nearest currently uncovered parts

based on the distance in the CFG when the concolic

testing needs to choose branches to negate. The fitness-

guided search strategy [26] calculates fitness values from

explored paths to target predicates and fitness gains

for the branches to be flipped, and then selects proper

paths and branches to cover the target predicates.

There are also some approaches which guide sym-

bolic execution to specific parts of the program based on

various purposes. The tool eXpress [24] introduces dy-

namic symbolic execution for regression test generation

and prunes paths that do not expose behavioral diffe-

rences while exploring new program versions. Babić et

al. [25] proposed to exploit static analysis to guide dy-

namic automated test generation for binary programs.

This work is similar to ours, but it depends on the visi-

bly pushdown automaton (VPA) generated by the seed

tests, which may be not complete.

6.4 Automatic Bug Repair

Automatic bug repair is a promising way of reduc-

ing the cost and many methods have been proposed re-

cently. There are general techniques and fault-specific

techniques existing for automatic bug repair [31, 32].

GenProg [27] uses genetic programming to guide the

generate-and-validate process to repair defects in C pro-

grams. With new representation and mutation and

crossover operators, GenProg can scale to large, open-

source programs by taking advantages of cloud com-

puting. RSRepair [28] presents a new automated re-

pair technique using random search instead of genetic

search. AE [29] also focuses on generate-and-validate

repair methods. It uses a formal cost model which sug-

gests an improved algorithm for defining and search-

ing the space of patches and the order in which tests

are considered. Qi et al. [30] presented a generate-

and-validate patch generation system Kali which can

achieve the same effect as prior work by just deleting

functionality. CodePhage [33] automatically transfers

correct code from donor applications into recipient ap-

plications that process the same inputs to successfully

eliminate errors in the recipient. SearchRepair [34] ex-

ploits a database of human-written patches encoded as

SMT formulas. These techniques try to automatically

fix universal defects. Compared with these studies, our

method only repairs those validated true buffer overflow

warnings, and is more targeted and simpler. Currently,

it is specific to buffer overflow vulnerabilities. By intro-

ducing more vulnerability models and investigating suc-

cessful repair practices, our method can be extended for

various defects. There are also some approaches that

focus on repairing buffer overflow defects. DIRA [35]

automatically instruments a network service program

to detect control hijacking and record enough runtime

information to generate the corresponding patch. It

will extend a buffer according to its runtime informa-

tion but the patch may be useless under another test

case. TAP [36] is an automatic buffer overflow and inte-

ger overflow discovery and patching system. Its appli-

cation is limited to those programs which contain incor-

rect checks. ClearView [37] reallocates the compromised

local array as a global array and sandwiches it in a pair

of write-protected pages. But its patches are not similar

to those that human programmers write. BovInspector

generates automatic repair suggestions according to the

11 repair strategies preferred by programmers only for

the true buffer overflow warnings.

12○https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html, Oct. 2020.

For Research Only

20 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

6.5 False Positives Elimination

There are several ways of eliminating false positives

reported by static analysis. Ruthruff et al. [38] proposed

logistic regression models to generate binary classifica-

tions of static warnings. Their results show that the

generated models are over 85% accurate in predicting

false positives. However, this method cannot ensure the

validity of the true warnings it predicts. On the con-

trast, BovInspector is able to further provide a test case

that can trigger the buffer overflow for each validated

true warning.

The second way is using verification methods [39, 40]

such as model checking, symbolic execution to verify

warnings reported by static analysis. Junker et al. [39]

presented an abstraction refinement technique to auto-

matically find and eliminate false positives. The ana-

lysis starts with a syntactic model according to the

static analysis. Then, it iteratively computes the infea-

sible sub-paths using SMT solvers and refines the model

using additional automata. Muske and Khedker [40]

proposed an observation-based method to avoid redun-

dancy when using bounded model checking to verify

false positives.

The last kind of methods leverages a precise static

method to validate warnings reported by an imprecise

but fast static method [41–43]. Smoke [41] shows a two-

stage method that uses a precise static analysis method

to eliminate false positives from the previous, imprecise

but fast static method. Kim et al. [42] proposed to only

perform a more precise analysis on the small fragments

of the code that are more relevant to a buffer over-

flow alarm by invoking an SMT solver. In this way,

their method only tries to remove false alarms as many

as possible but cannot determine the truth of alarms.

Finally, the most related work was proposed by Arzt

et al. [43], which is a post-analysis step based on sym-

bolic execution to prune infeasible paths from the re-

sult of data flow analysis. However, it only verifies one

path among all possible paths for each warning. In con-

trast, our method verifies all possible paths that cover

the buffer operations reported by a static tool to avoid

false negatives. Moreover, our method models buffer

operations to verify not only whether a path is feasi-

ble, but also whether its overflowable constraints are

satisfiable.

7 Conclusions

In this paper, we made three key contributions.

First, we proposed the framework called BovInspec-

tor for automatically validating buffer overflow warn-

ings outputted by existing static program analysis tools

and providing suggestions to repair the true warnings.

Second, we proposed the method for warning reacha-

bility analysis, guided symbolic execution, buffer over-

flow validation and targeted automatic repair. Third,

we implemented BovInspector and evaluated its perfor-

mance on both synthetic programs and real-world open

source programs. The experimental results showed that

BovInspector can significantly reduce the number of

false alarms in buffer overflow warnings outputted by

static program analysis tools.

In the future, we will extend our method to validate

and repair other static warnings. More accurate guid-

ance of symbolic execution is also a promising way to

improve the efficiency of the validation.

References

[1] Anderson J P. Computer security technology planning

study. Technical Report, Air Force Electronic Systems Divi-

sion, 1972. https://apps.dtic.mil/sti/citations/AD0758206,

Oct. 2020.

[2] Shahzad M, Shafiq M Z, Liu A X. A large scale exploratory

analysis of software vulnerability life cycles. In Proc. the

34th Int. Conference on Software Engineering, Jun. 2012,

pp.771-781.

[3] Viega J, Bloch J T, Kohno Y, McGraw G. ITS4: A static

vulnerability scanner for C and C++ code. In Proc. the

16th Annual Computer Security Applications Conference,

Dec. 2000, pp.257-267.

[4] Wagner D A, Foster J S, Brewer E A, Aiken A. A first step

towards automated detection of buffer overrun vulnerabili-

ties. In Proc. the Network and Distributed System Security

Symp., Feb. 2000.

[5] Evans D, Larochelle D. Improving security using extensi-

ble lightweight static analysis. IEEE Software, 2002, 19(1):

42-51.

[6] Xie Y, Chou A, Engler D. ARCHER: Using symbolic, path-

sensitive analysis to detect memory access errors. In Proc.

the 9th European Software Engineering Conference Held

Jointly with the 11th ACM SIGSOFT Int. Symp. Founda-

tions of Software Engineering, Sept. 2003, pp.327-336.

[7] Le W, Soffa M L. Marple: A demand-driven path-sensitive

buffer overflow detector. In Proc. the 16th ACM SIG-

SOFT Int. Symp. Foundations of Software Engineering,

Nov. 2008, pp.272-282.

[8] Avgerinos T, Cha S, Hao B, Brumley D. AEG: Automatic

exploit generation. In Proc. the Network and Distributed

System Security Symp., Feb. 2011, pp.59-66.

[9] Yamaguchi F, Golde N, Arp D, Rieck K. Modeling and dis-

covering vulnerabilities with code property graphs. In Proc.

the 2014 IEEE Symp. Security and Privacy, May 2014,

pp.590-604.

For Research Only

Feng-Juan Gao et al.: Automatic Buffer Overflow Warning Validation 21

[10] Cowan C, Pu C, Maier D, Walpole J, Bakke P, Beattie S,

Grier A, Wagle P, Zhang Q, Hinton H. StackGuard: Auto-

matic adaptive detection and prevention of buffer-overflow

attacks. In Proc. the 7th USENIX Security Symp., Jan.

1998, pp.63-78.

[11] Jones R W, Kelly P H. Backwards-compatible bounds

checking for arrays and pointers in C programs. In Proc.

the 3rd International Workshop on Automated Debugging,

May 1997, pp.13-26.

[12] Wagner D, Dean R. Intrusion detection via static analysis.

In Proc. the 2001 IEEE Symp. Security and Privacy, May

2001, pp.156-168.

[13] Haugh E, Bishop M. Testing C programs for buffer over-

flow vulnerabilities. In Proc. the Network and Distributed

System Security Symp., Feb. 2003.

[14] Xu R G, Godefroid P, Majumdar R. Testing for buffer

overflows with length abstraction. In Proc. the 2008

ACM/SIGSOFT Int. Symp. Software Testing and Ana-

lysis, Jul. 2008, pp.27-38.

[15] Gao F, Wang L, Li X. BovInspector: Automatic inspection

and repair of buffer overflow vulnerabilities. In Proc. the

31st IEEE/ACM Int. Conference on Automated Software

Engineering, Sept. 2016, pp.786-791.

[16] Clarke L A. A system to generate test data and symboli-

cally execute programs. IEEE Trans. Software Engineering,

1976, 2(3): 215-222.

[17] Cadar C, Dunbar D, Engler D R et al. KLEE: Unassisted

and automatic generation of high-coverage tests for com-

plex systems programs. In Proc. the 8th USENIX Symp.

Operating Systems Design and Implementations, Dec. 2008,

pp.209-224.

[18] Ye T, Zhang L, Wang L, Li X. An empirical study on de-

tecting and fixing buffer overflow bugs. In Proc. the IEEE

Int. Conference on Software Testing, Verification and Val-

idation, Apr. 2016, pp.91-101.

[19] Sinha S, Harrold M J, Rothermel G. Interprocedural con-

trol dependence. ACM Trans. Software Engineering and

Methodology, 2001, 10(2): 209-254.

[20] Larochelle D, Evans D. Statically detecting likely buffer

overflow vulnerabilities. In Proc. the 10th USENIX Secu-

rity Symp., Aug. 2001, pp.177-190.

[21] Zitser M, Lippmann R, Leek T. Testing static analysis tools

using exploitable buffer overflows from open source code. In

Proc. the 12th ACM SIGSOFT Int. Symp. Foundations of

Software Engineering, Oct. 2004, pp.97-106.

[22] Lu S, Li Z, Qin F, Tan L, Zhou P, Zhou Y. BugBench:

Benchmarks for evaluating bug detection tools. In Proc. the

Workshop on the Evaluation of Software Defect Detection

Tools, Jun. 2005.

[23] Burnim J, Sen K. Heuristics for scalable dynamic test gene-

ration. In Proc. the 23rd IEEE/ACM Int. Conference on

Automated Software Engineering, Sept. 2008, pp.443-446.

[24] Taneja K, Xie T, Tillmann N, de Halleux J. eXpress:

Guided path exploration for efficient regression test gene-

ration. In Proc. the 20th Int. Symp. Software Testing and

Analysis, Jul. 2011, pp.1-11.

[25] Babić D, Martignoni L, McCamant S, Song D. Statically-

directed dynamic automated test generation. In Proc. the

20th Int. Symp. Software Testing and Analysis, Jul. 2011,

pp.12-22.

[26] Xie T, Tillmann N, De Halleux J, Schulte W. Fitness-guided

path exploration in dynamic symbolic execution. In Proc.

the 2009 IEEE/IFIP Int. Conference on Dependable Sys-

tems and Networks, Jun. 2009, pp.359-368.

[27] le Goues C, Dewey-Vogt M, Forrest S, Weimer W. A sys-

tematic study of automated program repair: Fixing 55 out

of 105 bugs for $8 each. In Proc. the 34th Int. Conference

on Software Engineering, Jun. 2012, pp.3-13.

[28] Qi Y, Mao X, Lei Y, Dai Z, Wang C. The strength of random

search on automated program repair. In Proc. the 36th Int.

Conference on Software Engineering, May 2014, pp.254-

265.

[29] Weimer W, Fry Z P, Forrest S. Leveraging program equiva-

lence for adaptive program repair: Models and first results.

In Proc. the 28th IEEE/ACM Int. Conference on Auto-

mated Software Engineering, Nov. 2013, pp.356-366.

[30] Qi Z, Long F, Achour S, Rinard M. An analysis of patch

plausibility and correctness for generate-and-validate patch

generation systems. In Proc. the 2015 Int. Symp. Software

Testing and Analysis, Jul. 2015, pp.24-36.

[31] Gazzola L, Micucci D, Mariani L. Automatic software re-

pair: A survey. IEEE Trans. Software Engineering, 2017,

45(1): 34-67.

[32] Monperrus M. Automatic software repair: A bibliography.

ACM Computing Surveys, 2018, 51(1): Article No. 17.

[33] Sidiroglou-Douskos S, Lahtinen E, Long F, Rinard M. Au-

tomatic error elimination by horizontal code transfer across

multiple applications. In Proc. the 36th ACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation, Jun. 2015, pp.43-54.

[34] Ke Y, Stolee K T, le Goues C, Brun Y. Repairing pro-

grams with semantic code search (T). In Proc. the 30th

IEEE/ACM Int. Conference on Automated Software Engi-

neering, Nov. 2015, pp.295-306.

[35] Smirnov A, Chiueh T C. DIRA: Automatic detection, iden-

tification and repair of control-hijacking attacks. In Proc.

the Network and Distributed System Security Symp., Feb.

2005.

[36] Sidiroglou-Douskos S, Lahtinen E, Rinard M. Auto-

matic discovery and patching of buffer and integer

overflow errors. Technical Report, Massachusetts Insti-

tute of Technology, Cambridge, 2015. https://dspac-

e.mit.edu/handle/1721.1/97087, Oct. 2020.

[37] Perkins J H, Kim S, Larsen S et al. Automatically patch-

ing errors in deployed software. In Proc. the 22nd ACM

SIGOPS Symp. Operating Systems Principles, Oct. 2009,

pp.87-102.

[38] Ruthruff J, Penix J, Morgenthaler J, Elbaum S, Rother-

mel G. Predicting accurate and actionable static analysis

warnings. In Proc. the 30th ACM/IEEE Int. Conference

on Software Engineering, May 2008, pp.341-350.

[39] Junker M, Huuck R, Fehnker A, Knapp A. SMT-based false

positive elimination in static program analysis. In Proc. the

14th Int. Conference on Formal Engineering Methods, Nov.

2012, pp.316-331.

[40] Muske T, Khedker U P. Efficient elimination of false pos-

itives using static analysis. In Proc. the 26th IEEE Int.

Symp. Software Reliability Engineering, Nov. 2015, pp.270-

280.

For Research Only

22 J. Comput. Sci. & Technol., Nov. 2020, Vol.35, No.6

[41] Fan G, Wu R, Shi Q, Xiao X, Zhou J, Zhang C. Smoke:

Scalable path-sensitive memory leak detection for millions

of lines of code. In Proc. the 41st IEEE/ACM Int. Confe-

rence on Software Engineering, May 2019, pp.72-82.

[42] Kim Y, Lee J, Han H, Choe K M. Filtering false alarms

of buffer overflow analysis using SMT solvers. Information

and Software Technology, 2010, 52(2): 210-219.

[43] Arzt S, Rasthofer S, Hahn R, Bodden E. Using targeted

symbolic execution for reducing false-positives in dataflow

analysis. In Proc. the 4th ACM SIGPLAN Int. Workshop

on State of the Art in Program Analysis, Jun. 2015, pp.1-6.

Feng-Juan Gao is a Ph.D. candidate

in Nanjing University, Nanjing. She

received her B.S. degree in computer

science from University of Electronic

Science and Technology of China,

Chengdu, in 2014. Her research is in

software engineering, with focus on

symbolic execution.

Yu Wang is a Ph.D. candidate

in Nanjing University, Nanjing. He

received his B.S. degree in computer

science from University of Electronic

Science and Technology of China,

Chengdu, in 2014. His research is in

software engineering, with focus on

analyzing concurrent software defects.

Lin-Zhang Wang is a professor

in State Key Laboratory for Novel

Software Technology, and Department

of Computer Science and Technology,

Nanjing University, Nanjing. He re-

ceived his Ph.D. degree in computer

science from Nanjing University, Nan-

jing, in 2005. His research interests

include software engineering and software testing.

Zijiang Yang is a professor at

Western Michigan University, Kalama-

zoo. He received his Ph.D. degree in

computer science from the University

of Pennsylvania, Philadelphia, in 2003.

His research interests are in the broad

areas of software engineering and formal

methods.

Xuan-Dong Li is a professor in

State Key Laboratory for Novel Soft-

ware Technology, and Department of

Computer Science and Technology,

Nanjing University, Nanjing. He re-

ceived his B.S. degree in 1985, M.S.

degree in 1991, and Ph.D. degree in

1994, all in computer science from Nanjing University,

Nanjing. His research interests include software modeling

and analysis, software testing and verification.

For Research Only

