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ABSTRACT
Mobile applications play an important role in our daily life, while
it still remains a challenge to guarantee their correctness. Model-
based and systematic approaches have been applied to Android
GUI testing. However, they do not show significant advantages
over random approaches because of limitations such as imprecise
models and poor scalability. In this paper, we propose Q-testing, a
reinforcement learning based approach which benefits from both
random and model-based approaches to automated testing of An-
droid applications. Q-testing explores the Android apps with a
curiosity-driven strategy that utilizes a memory set to record part
of previously visited states and guides the testing towards unfamil-
iar functionalities. A state comparison module, which is a neural
network trained by plenty of collected samples, is novelly employed
to divide different states at the granularity of functional scenarios.
It can determine the reinforcement learning reward in Q-testing
and help the curiosity-driven strategy explore different function-
alities efficiently. We conduct experiments on 50 open-source ap-
plications where Q-testing outperforms the state-of-the-art and
state-of-practice Android GUI testing tools in terms of code cover-
age and fault detection. So far, 22 of our reported faults have been
confirmed, among which 7 have been fixed.
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1 INTRODUCTION
The proliferation of mobile devices and apps makes a huge impact
on our daily life. Statistics [50] show that an average user spends
more than 2 hours a day on mobile apps. However, it remains a
challenge to guarantee apps’ quality because of the large combi-
national space of possible events and transitions. A daily used app
usually contains plenty of interfaces and executable events, which
makes it time-consuming to explore all its states, let alone particular
functionalities that can be accessed only in specific conditions. Dif-
ferent strategies have been applied to automated testing of Android
applications, which, unfortunately, still need improvement [10].

Random strategies [21, 31] generate pseudo-random events to
fuzz the application under test. Monkey [21], regarded as the state-
of-practice testing tool, is a typical example of this strategy. Despite
the wide adoption in practical development, its shortcomings are
quite obvious. It is common for Monkey to generate futile events
like clicking a non-interactive area of the screen that makes no
changes to the current state. Also, the testing is unbalanced and
some hard-to-reach functionalities may never be explored.

Model-based strategies [2, 5, 46] generate test cases according to
application models which are constructed with a static or dynamic
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approach. In this case, high-quality models are extremely important
in order to achieve a good testing result. However, as illustrated
above, it is challenging to explore all the states of an Android
application. What’s more, it is almost impossible to precisely model
the apps’ behavior. For example, a welcome interface is common
in nowadays applications which will appear only when the app is
opened the first time. This information often cannot be captured,
making the generated event sequences always contain events in the
welcome interface, which is inconsistent with apps’ actual behavior
and is highly detrimental to the testing effectiveness.

Systematic strategies [4, 27, 32] use sophisticated techniques
such as symbolic execution to provide specific inputs for targeted
application behavior. These strategies are mainly designed to reveal
typical functionalities that are hard to execute with other strategies,
but they are less scalable and often perform worse in overall testing
metrics like code coverage and bug revelation.

Machine learning techniques are starting to find application in
Android GUI testing, too. Recently, a few works [1, 26, 48] utilize
reinforcement learning, specifically Q-learning which can benefit
from both random and model-based approaches, to guide the test-
ing progress. The Q-table, which records each event’s value, along
with the propagation property of Q values can partly take the place
of models to store testing related information in a light way. It also
helps to avoid the inconsistency problem between models and apps’
actual behavior which is an advantage of random testing. However,
existing works do not fully unleash the ability of reinforcement
learning in Android testing. Take the reward giving process, which
is key to reinforcement learning, as an example. Prior works tend
to calculate the differences between two states (the ones before
and after an event is executed) to determine the reward. If two
states are quite different, the testing tools will continuously give a
large reward which results in frequently jumping between them
even if they have been over explored. Although some of the reward
calculating functions take the executing frequency into considera-
tion, the problem arises again when most of the events have been
executed several times.

To tackle the aforementioned challenges and to unleash machine
learning’s potential in Android GUI testing, we propose a novel
approach, Q-testing, based on reinforcement learning. The strategy
of Q-testing is called curiosity-driven exploration which guides
testing towards states that it is curious about. More precisely, Q-
testing maintains a set, which acts as memory, to record part of the
previously visited states. The reinforcement learning reward is cal-
culated according to the differences between the current state and
those recorded in memory. Different from prior works, curiosity-
driven exploration is a dynamically adaptive strategy. By adaptive,
we mean that it can spot changes in the importance of states and
will continuously adjust the reward for a certain event.

In order to improve test efficiency, we novelly propose a neural
network to divide different states at the granularity of functional
scenarios. Q-testing uses this module to compare states and calcu-
late rewards. With its help, Q-testing will preferentially make effort
to covering different functionalities which helps to rationally allo-
cate limited testing time and will result in the rapid growth of code
coverage in a short time. We collect more than 6k samples to train
the model and it can be used not only in reinforcement learning.

Other tasks including state compression and code recommendation
may also benefit from it.

Q-testing also involves testing strategies that are specifically
designed for Android applications. We resolve RecyclerView [19]
and ListView [18] in a manner to forbid the waste of time in unnec-
essary testing. We also take system-level events into consideration
and it helps Q-testing find some complicated bugs.

In this paper, we make the following main contributions:
• We propose a novel curiosity-driven exploration strategy
based on reinforcement learning to guide Android automated
testing.
• We collect samples and train a neural network, which can
effectively divide different states at the functional level in an
efficient manner.
• We implement a tool and conduct a large-scale experiment.
Results show that our approach outperforms existing ones
in terms of both code coverage and fault detection. The tool
and experimental data are publicly available1 to facilitate
future researches.

The remainder of the paper is structured as follows. Section 2
gives an introduction to Q-learning. Section 3 describes our rein-
forcement learning based testing strategy. Section 4 presents the
state comparison module. Section 5 presents the experiment results.
Section 6 surveys related work and Section 7 makes a conclusion.

2 Q-LEARNING
Q-learning [49] is a form of model-free reinforcement learning
whose goal is learning how to map situations to actions so as to
maximize a numerical reward signal in an unknown environment.
The two most distinguishing features of reinforcement learning
are trial-and-error search and delayed reward. The agent must try
different actions to discover which may yield the most reward,
and actions may affect not only the immediate reward but also
subsequent states along with future rewards.

Environment

Agent

Action
 at

State st

State st+1

Reward rt

Figure 1: Markov Decision Process

The problem of reinforcement learning can be formalized with
ideas from dynamic systems theory, specifically the Markov deci-
sion process, orMDP.MDP can be defined as a 4-tuple< S,A,P,R >
where S represents the set of states and A represents the set of
actions. As depicted in Figure 1, the agent and the outside environ-
ment interact at each of the discrete time steps of a sequence. At
each time step t , the agent selects and executes an action, at ∈ A,
1https://github.com/anlalalu/Q-testing
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based on its observation of the state, st ∈ S. After that, the agent
will move to a new state, st+1 ∈ S, and receive an immediate
reward, rt ∈ R, at the same time. The variables rt and st have
well-defined probability distributions dependent only on preceding
state and action. That is, st+1 ∼ P(st ,at ) and rt ∼ R(st ,at ). The
return which represents the cumulative reward is often defined as
Rt =

∑
t>0 γ

t−1rt , where future rewards are discounted by a factor
of γ ∈ [0, 1].

Reinforcement learning usually involves Q value functions to
estimate how good it is to perform an action in a certain state. This
action-value function returns the expected cumulative reward of
a sequence of actions which starts from action At in state St and
thereafter following policy π :

Qπ (st ,at ) = E [Rt |st ,at ] (1)
With the Bellman equation, we can express the relationship

between the value of a state-action pair and its successor state-
action pair:

Qπ (st ,at ) = E
[
r (st ,at ) + γQ

π (st+1,πst+1 )
]

(2)
Q-learning uses equation 2 to estimate each state-action pair.

If the states and actions are discrete and finite, the pairs can be
represented in a tabular form where all pairs will be given an initial
value. Every time an action is executed, the relating state-action
value will be updated:

Q(st ,at ) ← Q(st ,at ) + α(rt + γQ
∗(st+1,at+1) −Q(st ,at )) (3)

Q∗(st+1,at+1) represents the maximum cumulative reward that
can be achieved from state st+1. The α is the learning rate which is
between 0 and 1. As we can see in this equation, the value of subse-
quent state-action pair will be propagated to influence preceding
pairs. There is a strict proof that the estimator will converge to the
true value if the environment is explored sufficiently. Whenever
Q-learning estimates the values precisely, we can easily find the
optimal policy simply by executing the action which has the highest
value at every state.

Q-learning provides agents with the capability of learning to
act optimally in Markovian environments without requiring them
to build models of the environments. We observe that an Android
application testing process can be viewed as a Markov Decision
Process: by giving rewards when test actions lead to new states
of applications, the entire testing should be able to learn to cover
more functionalities of the applications. This inspires us to apply
Q-learning to Android automated testing.

3 Q-LEARNING BASED ANDROID TESTING
The Android testing task can be viewed as a Markov Decision
Process whichmakes it possible for reinforcement learning to play a
role. We design exploration strategies based on Q-learning to guide
the testing tool towards unrevealed and unfamiliar functionalities.

3.1 Approach Overview
The workflow of Q-testing is depicted in Figure 2. Analogs to the
process of MDP, Q-testing interacts with the outer environment, the
application under test (AUT), during testing. In each cycle, Q-testing

4�OHDUQLQJ�
8SGDWHU

$FWLRQ�
,QIHUHQFH

(YHQWV�
&KRRVHU

Siamese Network

State

Reward

Events

Event
8,$XWRPDWRU

Memory

 

Q-table

APK

Update with Bellman Function

Q-testing:

Figure 2: Q-testing Workflow

first observes the application’s current state st with UIAutomator
[20]. Then the state st is compared with part of prior observed
states. The states are stored in a buffer which acts like Q-testing’s
memory. A neural network is trained to extract states’ features and
conduct the comparison. If state st is similar to any of the states in
memory, the comparator will give a small reward. Otherwise, the
module will give a large reward and state st will be added to the
memory buffer. The reward is used to update the value of the state-
action pair (st−1,at−1). All the state-action pairs’ values are stored
in Q-table and their values are updated with equation 3. Every time
a new state is reached, Q-testing will add related state-action pairs
into Q-table and initialize it with a large value to encourage the
execution of new events. After the updating of Q value, Q-testing
will infer the executable events from the GUI hierarchy of st and
choose an event at with reference to Q-table. In most instances, the
event with the highest value will be chosen. After the execution,
the AUT will respond to at and another cycle starts.

3.2 Formulating Android Testing as MDP
In our approach, an Android GUI testing problem is mathemat-
ically formalized as an MDP that can be defined with a 4-tuple,
< S,A,P,R >. How we define S, A, Pand R for the Android
GUI testing task will make an impact on the testing effectiveness
and efficiency. In this paper, we adopt the following formulation.
S: States. Prior Android automated testing works [1–3, 5, 6, 23,

46, 48, 53] adopt different criteria to abstract applications’ states.
Baek et al. [6] conducts experiments to identify the effect of com-
parison criteria on Android GUI testing and the result indicates
that finer comparison granularity will benefit testing by achieving
higher code coverage and finding more bugs. For this reason, we
adopt the widget composition as a comparison criterion. Specif-
ically, Q-testing uses UIAutomator to extract the GUI hierarchy.
UIAutomator dumps the information of the widgets that are con-
tained in the current interface. The widgets are arranged in a tree
structure where non-leaf nodes represent layout widgets and leaf
nodes represent executable widgets. Q-testing ignores some of the
widgets’ attributes including text to avoid state explosion. This
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detailed information will be disruptive to the update of Q-table
and will reduce testing efficiency. In brief, our state st is defined
as a combined state (w1,w2, ...wn ) wherewi is the state of widget
contained in st and it is defined by selected attributes which in-
clude an index attribute to describe the widget’s position in the
GUI hierarchy tree.
A: Actions. We formulate user interaction events in apps as

actions in MDP, and we do not distinguish events and actions in
this paper. Similar to previous work [6, 23, 46], Q-testing infers exe-
cutable events in the current state by analyzing the dumped widget
hierarchy and corresponding attributes (e.g., clickable, scrollable).

As each event is associated with a specific state, this enables us
to also use the state-action pairs to represent an event executable in
a state of the application. Equation 4 describes the ϵ-greedy policy
that is utilized by Q-testing to select the next event. Q-testing selects
the event with the highest Q value with probability 1−ϵ and selects
a random event with probability ϵ . In order to trigger intricate bugs,
Q-testing also takes system-level events into consideration. The
value of ϵ can be adjusted and its default setting is 0.2 in Q-testing.

дetAction(s) =


argmaxa Q(s,a), 1 − ϵ
random UI event, 1

2ϵ
random system event, 1

2ϵ
(4)

P: Transition Function. The transition function depicts which
state the application will transit to after an event is executed. It
is determined by the AUT and we cannot make any change to it.
What should be emphasized is the non-deterministic transition of
which the result of executing an event can be changed by the states
of internal variables. Prior model-based approaches usually ignore
this kind of transition due to the limited ability of their modeling
processes. Q-testing updates Q values with the Bellman function
of which the value of a state-action pair (s,a) is influenced by all
the states that can be reached from s . Therefore, all the transition
information is considered when the values are updated.

R: Reward. Q-testing receives a reward every time it executes
an event. We propose a policy to determine the reward, which
contributes to our exploration strategy. The details are illustrated
in the following subsections.

3.3 Exploration Strategies
Q-testing employs the curiosity-driven strategy to test the AUT.
Curiosity, which encourages the agent to explore the outer envi-
ronment, is studied in reinforcement learning tasks [9, 25, 38, 43]
to solve the problem of sparse reward. The curiosity-driven strat-
egy proposed by Q-testing can guide the testing tool to explore
unfamiliar states in order to cover codes and find bugs with high
efficiency.

Algorithm 1 describes the algorithm of the curiosity-driven ex-
ploration strategy. Specifically, Q-testing maintains a state buffer
to store part of previously visited states (line 2). This buffer acts
like a memory and it helps Q-testing to find out the states that it is
unfamiliar with, in other words, curious about. Q-table stores all the
state-action pairs grouped by activities (denoted as act ) along with
their values. Every time a state is reached, Q-testing will directly
look up the Q-table to find out the executable actions. If the state is
reached for the first time, Q-testing will infer executable actions

Algorithm 1 Curiosity Driven Testing
Input: the app under test AUT , execution time t , learning rate α ,

similarity threshold threshold
1: Q ← � ▷ initialize Q-table
2: M ← � ▷ initialize memory buffer
3: st+1,actt+1 ← getCurrentState(AUT )
4: vt+1 ← extractVector(st+1)
5: M ← M ∪ (actt+1,vt+1)
6: while ¬timeout(t) do
7: st ← st+1
8: A← getOrInferEvents(Q, st )
9: at ← getAction(Q, st )
10: st+1,actt+1 ← execute(AUT ,at )
11: vt+1 ← extractVector(st+1)
12: for all (actt+1,v) ∈ M do
13: d ← calculateDistance(v,vt+1)
14: similarity ←min(similarity,d)
15: end for
16: if similarity >= threshold then
17: rt ← smallReward
18: else
19: M ← M ∪ (actt+1,vt+1)
20: rt ← larдeReward
21: end if
22: Q(st ,at ) ← Q(st ,at ) + α(rt + γQ

∗(st+1,at+1) −Q(st ,at ))
23: end while

from the GUI hierarchy and initializes them in Q-table (line 8). The
initial value for all the unexecuted actions is set to 1000, which is a
large number, to encourage executing of new actions and it will be
assigned to 0 after executed. Q-table acts like a lightweight model
that speeds up the testing process, and what is more, it avoids the
problems caused by imprecisely modeling. Q-table also guides the
selection of next executed action as depicted in equation 4 (line 9).
After an action at is executed from state st , the AUT will response
to it and transit to a state st+1 (line 10). Then st+1 is compared with
those stored in memory and a reward will be given according to
their differences (lines 11-21). The curiosity-driven strategy will
steer testing towards unfamiliar states by giving a large reward
when reaching a state that is, to a certain extent, different from all
the remembered states. Q-testing will also update its memory by
adding the unfamiliar states into the buffer and the next time the
state is visited, it will not be attractive anymore. We set the reward
to be 500 for actions leading to unfamiliar functionalities, which
will improve the action’s value according to the Bellman equation.
As for actions that make little contribution to Q-testing exploring
new parts of the AUT, the reward is set as -500. The reward val-
ues are configurable, however, these default values work well on
different types of applications, as shown in the experiments.

It is worth emphasizing that the strategy benefits from the prop-
agation property of Q value (line 22), which makes it possible to
guide Q-testing towards valuable states no matter what values of
the current state is. Suppose that Q-testing executes an event at and
the AUT transits to state st+1 that is similar to one of the states in
memory set. Then a -500 reward will be given which may decrease
the value of at . However, if st+1 is a valuable state that can lead
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to unexplored scenarios, then Q∗(st+1,at+1), which is the maxi-
mum of the Q-values of all state-action pairs in state st+1 stored in
the Q-table, will be large. This results in that the value of at will
still be improved, since γ is set to 0.99 in our implementation to
strengthen the impacts of new states. This makes the unexplored
functionalities more likely to be explored.

Additionally, since the current state has to be compared with all
those in memory, several measures are taken to improve the com-
paring efficiency. First, Q-testing stores feature vectors rather than
the GUI hierarchy information in memory (line 11, 19). Similarity
can be computed between two vectors with Manhattan distance
function without extracting features repeatedly. Second, the vectors
are grouped by activities and a vector only has to be compared with
those in the same activity (line 12). Third, We propose a coarse-
grained criterion to divide states and it benefits the testing process
in several ways. On the one hand, it restricts the number of states
stored and further reduces time spent in comparing states. On the
other hand, it encourages Q-testing to explore states with much
more differences and this will result in high code coverage in a
short time since the states with a huge difference are often bound
to different codes. Other details of this comparison criterion will
be described in section 4.

3.4 Android-Specific Strategies
Despite the curiosity-based strategy, Q-testing also takes advantage
of other strategies specifically designed based on characteristics
of Android applications, including the special treatment of special
widgets and the injection of system events.

RecyclerView [19] and ListView [18] are two Android widgets
that are able to display a collection of views in a scrollable manner.
In most cases, these widgets will contain a lot of items and users
can continuously view new items by scrolling. The clicking of these
items often leads to similar screens (with the same GUI hierarchy
and different contents) and can only trigger the same codes. Existing
works make no consideration on these widgets and may waste
plenty of time testing different items. Q-testing analyzes the result
of relative events. If several items in a RecyclerView lead to similar
states, Q-testing will ignore the items except the first one. This
strategy can save a lot of time since RecyclerView and ListView are
quite common in our daily used applications.

System events can benefit testing by triggering intricate bugs.
Similar to Stoat [46], Q-testing takes three kinds of system-level
events, including user actions (e.g., screen rotation, phone calls),
broadcast messages [17] (e.g., switch into or out of airplane mode)
and application-specific events which can be extracted from An-
droid manifest files, into consideration. Q-testing executes system-
level events randomly during its exploration. These events are not
included in Q-table since the number of possible system events is
very large. Once they are added, Q-testing may try to execute all of
them in every state.

4 SCENARIO DIVISION MODULE
We propose a new state comparison criterion at coarse granularity
and to determine the reward in the curiosity-driven exploration
strategy. The module is able to determine whether two states are in

the same functional scenario. Reward determined by the compari-
son module will guide Q-testing to firstly cover different functional
scenarios. The coarse granularity states division helps to allocate
limited testing time rationally by preventing Q-testing from falling
into the several same scenarios at the beginning. This will also
result in high code coverage in a short period of time since different
scenarios are usually bound to different codes. More specifically, a
great number of codes (e.g., the codes used to initialize the layout
and interaction events) may be covered the first time a functional
scenario is reached, which is determined by the GUI driven feature
of Android framework.

4.1 The Task of Scenario Division
The definition of a scenario for our scenario division module is sim-
ilar to the definition of the use case which describes how users will
perform the tasks, i.e., an outline of an application’s behavior from
a user’s point of view. They describe the functions provided by the
application without drilling into details. However, since different
users have different understandings and a function may contain
some sub-functions, the division of scenarios can be different. For
example, the function of reading news can be a use case for a news
app, but it can also be divided into two scenarios which include
generally browsing a list of news and reading the details of one
piece of news. However, this would not cause problems for our
scenario division module. As we employ a neural network based
learning framework, the granularity of dividing scenarios can be
adjusted by feeding different training data.

Figure 3 shows three typical scenarios that are common in An-
droid applications, and each scenario consists of two GUI states. As
we can see, the states that are in the same scenario can be quite dif-
ferent and it will be difficult for existing state comparison criteria to
make a correct division. Existing researches rely on manual defined
features (e.g., executable events, GUI hierarchy, activity name) to
describe the states. Some of them utilize a threshold to make the
division flexible (e.g., two interfaces with 80% same widgets will be
judged as the same state). However, prior approaches cannot meet
our requirement where more properties should be considered and
some of them are quite hard for a human to extract. Take Figure
3(a) as an example. There are two states in the browsing scenario
which contains a RecyclerView to present items of news. These two
states can access each other by scrolling. In order to successfully
determine that the two states are in the same scenario, firstly, the
number of items should be ignored. Second, the items’ GUI hierar-
chies should not be viewed as equally important as other widgets.
Despite the heavy work of feature selection, it is also a difficult
task to manually figure out a probable threshold as it usually relies
on a large amount of data and experiment. Q-testing tackles these
problems under the help of the neural network which excels at
extracting features.

4.2 Siamese LSTM
Q-testing utilizes the siamese network [8] to measure the similarity
between two states from the perspective of judging whether they
are in the same scenario. The siamese network is able to learn an in-
variant and selective representation through information about the
similarity between sample pairs. It has been applied in NLP (Natural
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(a) Browsing Scenario (b) Searching Scenario (c) Signing Up Scenario

Figure 3: Examples of Scenarios in Android Applications
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Figure 4: Architecture of Scenario Division Module

Language Processing) to learn the similarity between words [37]
or sentences [36] whose goals share a lot in common with ours.

Figure 4 shows an overview of the network architecture in Q-
testing. Each training sample of our task can be denoted as (sa , sb ,y)
where sa and sb are layout files dumped by UIAutomator. Label
y ∈ 0, 1 depicts whether the two states can be divided into the same
scenario (y = 1) or not (y = 0).

Layout files (sa , sb ) which are in the form of XML will firstly
be encoded as sequences (s(a)1 , s

(a)
2 , ..., s

(a)
la
) and (s(b)1 , s

(b)
2 , ..., s

(b)
lb
)

where si denotes the vector representation of a node in XML which
contains information of a GUI widget. Q-testing utilizes different
encoding strategies for different types of widget properties:

• Integer. The bounds attribute which contains 4 integers is
used to demonstrate the position of a widget on the screen
(2 integers to denote the position of the left top point and
the other 2 denote the position of the right bottom point).
Q-testing normalizes these values with the width and length
of the screen.
• Boolean. The events related attributes (e.g., clickable, scrol-
lable) often use boolean values to describe the executable

properties of a widget. Q-testing maps true and false into 1
and 0 to encode such attributes.
• String. Attributes such as resource id and text are repre-
sented in the form of string. When comparing two states, we
only care about whether 2 strings are the same rather than
what their actual values are. Q-testing hashes the texts into
numbers with the MD5 message-digest algorithm.
• String (Class Type). The class attribute describes the wid-
get’s class type and it is in the form of string too. Q-testing
processes this attribute with one-hot encoding since all the
types of Android widgets can be accessed.

The encoded sequences will then be passed to the dual-LSTM
(Long Short-Term Memory) network which comprises two single-
layer networks with 100 hidden neurons. The neural network is
able to learn a mapping from the space of variable length sequences
into a fixed length vector. Finally, the distance of the generated
vectors will be measured with similarity functions like Manhattan
distance and the weights of the layers in LSTMs will be updated
according to the difference between output and actual label. Note
that the LSTMs share the same weights, they will extract features
with the same standard.

After the training process, part of the model is used in the sce-
nario division module. Q-testing leverages one LSTM along with
its encoding module to extract features from state files. The states
stored in memory buffer are also in the form of a feature vector.
In this way, the time spent in comparing states will decrease since
there is no need to extract features for all the remembered states. It
is worth mentioning that other tasks that need state comparison or
states compression may also benefit from such a module.

One of the challenges of applying the deep learning approach
is that a large amount of training data is needed. We address this
challenge in the following section.

4.3 Training Data Collection
In order to improve the model’s performance, a wealth of samples
should be collected. We collect and label the samples in 4 steps.

Instrumenting APKs. We collect plenty of commercial apps
and each of them contains abundant scenarios. Since most of them

158

For Research Only



Reinforcement Learning Based Curiosity-Driven Testing of Android Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

are closed-source apps, we conduct research on the Android frame-
work and utilize Soot [40] to instrument several methods and state-
ments of the APKs to collect runtime information which will pro-
vide more information to facilitate the later labeling process. Specif-
ically, the instrumented methods and statements are corresponding
to the start and destroy of Activity, Fragment or Dialog and often
make a huge impact on the display of interface along with changes
of scenarios. The invocations of these instrumented methods and
statements usually mean a switch of scenarios. As for APKs do not
support instrumenting, we will manually label samples collected
from them.

Collecting Data.We implement a tool to automatically collect
sample data. It randomly explores the applications and every time
it executes an event, the states before and after the transition will
be stored as a sample pair.

Augmenting Data. There are issues in the automatically col-
lected data among which the most important one is that it only
includes pairs where the two states can transit to each other with
one event. This restriction will result in the different distribution
between training data and actual data since a new state has to be
compared with all the states with the same activity in memory.

In order to solve the problem, we make an augmentation of the
collected data. More concretely, we divide the collected data into
several groups w.r.t. their activities. Then new pairs are generated
by randomly mapping the states in the same activity.

Labelling Data. After data collection steps, we look into the
screenshots, the collected runtime information of every state pair
and decide a label for the pair of whether it belongs to the same
scenario or not.

The labeled samples are fed to the neural network for training.
We pre-trained a model with 6058 pairs of samples for Q-testing.
More details are in Section 5.

5 EVALUATION
In this section, we mainly inspect two parts: (1) the ability of the
scenario division module; and (2) the ability of the whole testing
tool to automatically covering codes and triggering bugs. We aim
to answer the following research questions in our evaluation:

RQ1: Scenario Division. Is Q-testing able to determine differ-
ent functional scenarios effectively?

RQ2: Code Coverage. How does Q-testing compare against
state-of-the-art and state-of-practice testing tools with respect to
code coverage?

RQ3: Fault Revelation. How does Q-testing compare against
state-of-the-art and state-of-practice testing tools with respect to
fault revelation?

5.1 Evaluation Setup
All the experiments are conducted on a physical machine with 4
cores 3.60GHz CPU and 16GB RAM on Ubuntu 16.04. Since the
original Stoat [46] and Sapienz [33] are suggested to running on
Android API level 19, We run all experiments on Android emulators
which are configured with 2GB RAM, and the KitKat version (SDK
4.4, API level 19).

Scenario Division.We collect and label samples from 92 com-
mercial Android apps with the approach described in Section 4.3.
The automatic collecting tool explores each of the apps for at least
one hour. Most of these popular apps comprise abundant scenarios
that will benefit the classification accuracy of the neural network
when applied to other applications. We conduct 5 rounds of 10-
fold cross-validation. The division of data is conducted by apps
that scenarios from the same application should not exist in both
the training set and the testing set; otherwise, it may increase the
classification accuracy but jeopardize the validation result.

Automated Testing. In this part of the evaluation, Q-testing is
compared with Monkey [21], Stoat [46], and Sapienz [33], which
are considered as the state-of-practice and state-of-the-art tools in
Android GUI testing. Our benchmark consists of 50 open-source
Android applications which are collected from two sources:

(1) Most of the applications are collected from related work [11,
41]. Apps selected by Choudhary et al. [10] have become a standard
benchmark in evaluating automated testing tools and is adapted
by several works [27, 33, 46]. Since many of these applications are
quite out of date, we only involve those can be found in F-Droid
[29] or GitHub [16]. We also exclude the projects that cannot be
compiled due to long time no maintenance. After the filtering, 34
applications are selected.

(2) Over 40 percent of the applications selected above have less
than 1k executable lines of codes (ELOC) which may be unable
to reflect the difference between diversity exploration strategies.
So we enrich the benchmark by adding 16 larger apps from the
open-source apps list [39]. The applications are randomly selected
from several commonly used categories (i.e., communication, news,
education, tools) and most of them have more than 10k ELOC.

Additionally, applications that have been used to train scenario
division module and gaming applications are excluded. Note that
although the collected applications all have source-code, Q-testing
can test application APKs without source-code. We use these open-
source applications so that we can collect code coverage more
accurately, analyze the root causes of faults with reference to the
code, and better understand the testing behavior.

The testing time is set to one hour. We follow previous work
[11, 24, 34] to set a 200 milliseconds wait interval for Monkey
to partially avoid some abnormal behavior. Stoat’s default time
settings for 2 phases are one hour and two hours. We did not follow
the allocation proportion as [46] in our one hour testing because
we were not sure whether 20 minutes of modeling was enough. We
conducted a small evaluation on several applications to compare
the allocation of 40/20, 30/30, and 20/40 minutes for Stoat. The
difference is not huge but the 30/30 minutes allocation does exceed.
So all the apps are tested with this time allocation. As for Sapienz,
we notice the evolution step can not be executed in some apps
because of the large default setting for population size. So we run
Sapienz with different population sizes for each app and pick the
one with the highest code coverage. The selected setting is listed
in Table 1. To mitigate randomness, for every testing tool, four
test runs were conducted on the benchmark apps. We also enable
Stoat and Sapienz to compute code coverage with Jacoco [14] for
consistency.
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5.2 Experimental Results
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Figure 5: Accuracy of Scenario Division

RQ1: Scenario Division.We totally collect and label 6058 pairs
of samples. For every round of 10-fold cross-validation, the samples
are divided into 10 sets and every set is selected as the testing set
by turns. The neural network is trained with approximately 90
percent of the data for 100 epochs which costs about half an hour
on our experiment PC. After that, the trained model is applied to
the testing set to complete a test. After 10 repeated operations, the
average accuracy is calculated. Figure 5 shows the result of the 5
rounds of 10-fold cross-validation. The average accuracy is 89.80%
and the lowest accuracy is above 85%, which indicates the model’s
ability to divide different scenarios.

We also undertake a careful analysis of the classification results.
The examples in Figure 3, which are important scenarios in Android
applications, are all correctly identified as the same scenario by our
model. These are also samples difficult for previous criterion [6],
including executable events and widget layout, to make a correct
judgment.

As for those predicted mistakenly by our model, some of them
are difficult to distinguish even by human users. Since the design
of Android applications is quite flexible, it is sometimes hard to
clearly define whether 2 states belong to the same scenario. Take
Figure 6 as an example. The left state has a search bar on the top of
several pieces of news which makes it look like a combination of
searching scenario and browsing scenario. Even if the right state
can be reached by simply scrolling down in the left state, it is hard
to category the two states into the same scenario. Fortunately, our
reinforcement learning framework is able to tolerate mistakes made
by the scenario division module because of the bellman function.
On the one hand, if the module makes a mistake and updates the
event’s value wrongly with a large number, its value will still be
rectified later after several triggering and updating due to value
propagation. On the other hand, if a new scenario which leads
to important states is reached and the neural network mistakenly
updates the event’s value with a small number, the executed event’s
value will still be updated larger by the bellman function. With this
function, all the subsequent events’ value will make an effect on
the previous one.

In conclusion, it is reliable to determine different scenarios and
calculate reinforcement learning rewards with the scenario division
module.

Figure 6: Example of Confusing Scenario

RQ2: Code Coverage. In this experiment, Q-testing uses the
siamese network trained with the 6058 pairs of samples to divide
scenarios.

Table 1 shows the average instruction coverage of the four test
runs by Monkey, Stoat, Sapienz, and Q-testing on 50 open source
applications. The apps are sorted by ELOC extracted from Jacoco
coverage report and the first two apps are too small for Stoat to
conduct the second phase. On average, Q-testing achieves 46.62%
instruction coverage which is higher than Monkey (43.50%), Stoat
(38.82%) and Sapienz (40.48%). Additionally, Q-testing achieves the
highest code coverage for 33 of the open-source applications while
the statistics for Monkey, Stoat, and Sapienz are 8, 7 and 9.

Coverage information is collected every 30 seconds during test-
ing and Figure 7 depicts the progressive average code coverage for
each tool in one hour. Monkey achieves the highest coverage within
the first few minutes. That is mainly because it executes events at
an extraordinarily high speed and lots of random events can lead it
to new states in the very beginning. However, as the progress of
testing continues, more and more redundant events are executed
by Monkey and its efficiency starts to decrease. Q-testing takes the
first place after about 5 minutes which confirms the effectiveness
of our curiosity-driven strategy. The strategy to firstly discover
different scenarios enables Q-testing to achieve high code coverage
within a short time. This is extremely important when the testing
budget is tight.

The efficiency of generating events is also important when test-
ing time is limited. During one hour’s testing,Monkey, Stoat, Sapienz,
and Q-testing averagely generate approximately 53000, 1804, 29570
and 1693 events. As for Monkey, there is no need for it to analyze
widget hierarchy before generating events. Besides, it can communi-
cate directly with several essential Android services. These features
enable it to generate events with high speed. Even if Monkey can
generatemuchmore events than others, most of them are redundant
and may make no effect on the applications. Sapienz comes second
in generating events as it is built upon Monkey. It is encouraging to
see the number of executed events by Q-testing is close to that of
Stoat’s. Stoat can directly generate event sequences with reference
to models, which benefits the testing efficiency. Q-testing does not
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Table 1: Testing Results for Comparison

Subject Coverage(%) Faults Setting

Name ELOC M St Sa Q M St Sa Q Sa

DivideAndConquer 80 91 - 95 95 0 - 0 0 50
QuickSettings 91 91 - 92 91 1 - 1 1 20
MunchLife 188 81 86 82 90 0 0 0 0 50
AnyCut 414 66 58 64 67 0 0 0 0 20

lockpatterngenerator 674 83 68 83 65 0 0 0 0 20
autoanswer 447 15 18 16 21 2 2 0 2 30
batterydog 468 59 51 60 49 0 0 1 1 50
Dumbphone 572 40 38 35 40 0 0 0 1 30
soundboard 641 38 44 32 46 3 0 0 1 30

whohasmystuff 744 77 75 68 78 1 1 0 2 50
zooborns 760 17 19 16 17 1 3 1 4 20

multismssender 862 55 55 59 45 3 1 0 0 50
alogcat 906 71 67 71 78 0 0 0 0 20

SmsScheduler 915 58 61 52 57 0 0 0 0 30
dialer 955 45 45 47 49 1 3 2 2 20

Talalarmo 1030 74 78 74 77 1 0 0 1 30
WeightChart 1054 67 58 67 78 6 2 3 2 50
alarmclock 1269 43 47 41 36 1 4 1 2 20

Notes 1910 59 55 54 73 3 0 3 2 20
PasswordMaker 1949 60 55 57 61 0 2 0 5 50
BudgetWatch 2143 42 45 47 61 1 0 1 6 40
manpages 2417 18 12 15 17 2 5 2 3 30

GoodWeather 2501 69 58 57 73 4 4 0 5 20
swiftp 3188 21 23 22 22 1 3 1 5 30
jamendo 3904 29 14 41 46 3 4 2 6 30
fillup 3967 58 57 43 60 1 5 0 1 40
sanity 4675 24 15 23 26 3 1 2 5 20
mileage 4711 44 35 45 42 2 8 2 7 20

importcontacts 4817 2 2 2 2 1 1 1 1 40
Tomdroid 4901 42 49 46 50 1 0 0 2 20

materialistic 6661 54 46 26 54 2 1 0 5 40
RadioBeacon 7459 35 39 32 41 4 4 1 11 20
TintBrowser 7575 38 40 16 43 0 4 0 0 30
AntennaPod 8153 43 34 24 42 9 2 0 9 30
keepassdroid 9035 11 8 11 8 0 0 0 2 20
ConnectBot 9090 21 23 16 26 2 1 0 5 50

APhotoManager 9751 50 36 46 55 3 1 6 5 50
BetterBatteryStats 10042 11 16 15 18 1 4 0 6 50

uhabits 10629 55 45 36 54 3 4 4 3 20
vanilla 10776 41 46 35 40 6 1 4 4 40
Timber 12004 43 30 31 36 9 6 4 10 40

AnyMemo 12414 31 20 44 46 6 15 2 10 30
Runnerup 16378 19 20 22 23 11 9 8 11 40

SuntimesWidget 16681 40 38 16 48 1 2 0 6 40
AmazeFileManager 17705 26 26 27 29 4 6 4 6 30

amme 21586 17 12 15 30 3 2 3 9 20
BookCatelogue 24378 28 30 29 35 2 1 0 6 50

Anki 28093 29 19 33 32 0 6 3 13 50
MyExpenses 29067 25 27 26 34 0 4 0 5 50

Signal 43954 21 20 20 26 1 8 0 4 30

have a model to guide the generation of test sequences. However,
the Q-table acts like a lightweight model which maps explored
states to actions and can save the time inferring executable events.
What’s more, the storage of states’ vector rather than the original
GUI hierarchy in memory set contributes to the improvement of
efficiency too.

We also dissect the codes covered by different tools. Take Good-
Weather which is a weather application as an example. In Good-
Weather, a considerable portion of functions can be configured for
variants via a ‘Setting’ option residing in a Sidebar. Q-testing out-
performs other tools on GoodWeather mainly because it tries more
settings during testing. Some of the settings have to be executed
with at least 6 steps and it is a long event sequence for Android
applications. There are a lot of candidate events in every step which
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Figure 7: Progressive Instruction Coverage

makes the settings hard to trigger. To be more specific, we make
an analysis of the testing behavior of Q-testing and discover that
Q-testing tends to open the Sidebar (with 60.77% probability) in
the main interface which is not viewed in Stoat (14.15%). Monkey
and Sapienz do have the same tendency to open the Sidebar. That
is because they would try to execute keyboard events and tend to
click the button on the top left of the interface. However, keyboard
events are not available in current mobiles, and clicking the top left
area is now to open the Sidebar in GoodWeather. This phenomenon
can also be viewed when the Sidebar is opened where Monkey
would choose the first option with a greater possibility (43.20%)
than the fourth ‘Settings’ option (13.02%). In Sidebar, where there
are 6 candidate options and several other events (e.g. back, menu)
to be chosen, Q-testing selects the ’Settings’ option with a proba-
bility of 30.69%. This observed phenomenon indicates the power
of curiosity-driven strategy and the value propagation property
of Q-learning for exploring important scenarios which can lead to
more new scenarios.

RQ3: Fault Revelation. Table 1 also shows the unique faults
revealed by the four testing tools. We adopt the definition in Stoat
where a fault is identified by crash or exception lines in stack traces
(exceptions without the keywords of the AUT’s package name are
excluded). Q-testing detects the most faults for 27 of the experiment
applications (tied first also counts) while Stoat detects the most for
12 of them and comes second. Q-testing reveals a total of 197 faults
among the 50 applications, which is more effective than Monkey
(109), Stoat (130), and Sapienz (62).

Figure 8 shows the pairwise comparison result of revealed faults
between each 2 of the testing tools. The intersecting faults found by
Stoat and Q-testing are 59 and most of them are triggered by system
events. More than 30% of faults revealed by Sapienz is covered by
Monkey since they share the same manner in injecting events. In
addition, the numbers of unique faults, which are not revealed by
the other 3 tools, for Q-testing, Monkey, Stoat, and Sapienz are 115,
63, 67, and 32. This shows the ability of Q-testing to trigger faults,
which can not be replaced by other tools.

Most of the faults revealed by Q-testing have been reproduced
and reported to the developers. So far, 22 reported issues have been
confirmed to be first-time found real faults. We consider an issue
confirmed if the developers respond in text clearly or add a ’Bug’
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Table 2: Confirmed Issues Found by Q-testing

App Name Exception Description Status Issue URL

Anki-Android ActivityNotFoundException No Activity found to handle a View Intent Fixed github.com/ankidroid/Anki-Android/issues/5653
SuntimesWidget NullPointerException Multi thread related crash Fixed github.com/forrestguice/SuntimesWidget/issues/376
Runnerup WindowsLeakedException Dialog’s state not preserved on screen orientation or activity close Fixed github.com/jonasoreland/runnerup/issues/862
Runnerup IllegalStateException Add a child view which already has a parent Fixed github.com/jonasoreland/runnerup/issues/863
Book-Catalogue WindowsLeakedException Dialog’s state not preserved on screen orientation or activity close Confirmed github.com/eleybourn/Book-Catalogue/issues/835
manpages InflateException Error inflating class on binary XML file Confirmed github.com/Adonai/Man-Man/issues/19
manpages NullPointerException Crash after cache is cleared Confirmed github.com/Adonai/Man-Man/issues/20
Swiftp NullPointerException Unable to start FsWidgetProvider Receiver Confirmed github.com/ppareit/swiftp/issues/140
Swiftp WindowsLeakedException Dialog’s state not preserved on screen orientation or activity close Confirmed github.com/ppareit/swiftp/issues/150
Budget-Watch WindowsLeakedException Dialog’s state not preserved on screen orientation or activity close Confirmed github.com/brarcher/budget-watch/issues/202
Budget-Watch WindowsLeakedException TransactionActivity has leaked window that was originally added Confirmed github.com/brarcher/budget-watch/issues/203
Budget-Watch NullPointerException Unable to start ReceiptViewActivity Confirmed github.com/brarcher/budget-watch/issues/204
Notes IndexOutOfBoundsException Cursor out of bounds when handling Intent in NotificationService Confirmed github.com/SecUSo/privacy-friendly-notes/issues/77
Notes IllegalArgumentException Illegal argument in SketchActivity when editing reminder Confirmed github.com/SecUSo/privacy-friendly-notes/issues/78
AmazeFileManager IllegalStateException Illegal state while executing doInBackground() Confirmed github.com/TeamAmaze/AmazeFileManager/issues/1793
AmazeFileManager WindowsLeakedException Dialog’s state is not preserved on screen orientation Confirmed github.com/TeamAmaze/AmazeFileManager/issues/1794
AmazeFileManager ActivityNotFoundException Intent cannot be handled when amaze cloud plugin is not available Fixed github.com/TeamAmaze/AmazeFileManager/issues/1795
AmazeFileManager IndexOutOfBoundsException Index out of bounds when cutting a folder and pasting within itself Confirmed github.com/TeamAmaze/AmazeFileManager/issues/1796
AmazeFileManager NullPointerException Unable to start TextEditorActivity Fixed github.com/TeamAmaze/AmazeFileManager/issues/1808
Uhabits NullPointerException WeekdayPickerDialog’s not preserved results in null object reference Fixed github.com/iSoron/uhabits/issues/534
PasswordMaker IndexOutOfBoundsException Index out of bounds when deleting folder Confirmed github.com/passwordmaker/android-passwordmaker/issues/47
AnyMemo NullPointerException Crash when trying to paint because the library used is not maintained Confirmed github.com/helloworld1/AnyMemo/issues/488
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Figure 8: Pairwise Comparison on Fault Revelation

label manually. Among these 22 faults, 7 have been fixed. Table 2 list
the confirmed issues along with the bug types, brief description, and
statuses. Several bugs are quite concealable. For example, one multi-
thread related crash in AmazeFileManager can only be triggered
when a zip file, which is contained in another zip file, is continuously
selected to be extracted. The event traces recorded by Q-testing
help a lot in reproducing these faults. Considering that most of the
apps have been maintained for quite a while and tested many times
by previous work, revealing such an amount of new faults clearly
demonstrates Q-testing’s ability.

5.3 Threats to Validity
Internal Threats. The main internal threat lies in the choice of
parameter settings for the four testing tools that may affect the
testing results. In order to mitigate the threat, we try to choose
their default settings as possible. For circumstances where default
settings cannot be adopted, we conduct small-scale experiments and
choose suitable settings before the formal evaluation. We cannot
figure out a good setting for Sapienz’s population size, so we run it

with different settings and record the one that has the best testing
effect.

The performance of siamese network is also an internal threat
to validity. As for this threat, we conduct experiments to verify its
ability. We will collect more training data and optimize the model
in further work.

External Threats. The external threat mainly lies in the selec-
tion of subject apps and our results may not be generalized to other
apps. We alleviate the threat by choosing subject apps from related
work which include a standard benchmark. We further refine the
benchmark by replacing out of date apps with large-scale ones from
a popular open-source list.

6 RELATEDWORK
Many techniques have been proposed to automate Android GUI
testing. We broadly classify the technologies into four categories
w .r .t . their exploration strategies.

Random Testing. This kind of testing tools [21, 31] adopt ran-
dom strategies to generate input for Android applications. Monkey
[21], which is the most frequently used Android testing tools, gener-
ates pseudo-random streams of user events by randomly interacting
with screen coordinates. This basic random strategy performs quite
well on some benchmark apps [11]. However, the generated test
cases contain a large number of noneffective or redundant events
and this will be a threat to the testing effectiveness.

Some other tools [22, 42, 54] utilize fuzzing testing to generate
intent inputs rather than explore applications’ states to make the
AUT crash or to reveal security issues. Q-testing also takes intent
inputs into consideration when generating system-level events.

Model Based Testing. Model-based approaches [2, 3, 5, 6, 13,
23, 27, 44, 51–53] build models with dynamic or static strategies
to describe the applications’ behaviors and then derive test cases
from the models to find bugs. Since the test cases are generated
underlying the constructed model, its accuracy and completeness
will be of great importance.
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Stoat [46] utilizes a stochastic Finite State Machine model to
describe the behavior of AUT. In the model construction process, it
infers the executable events and prioritizes their executions accord-
ing to factors like event type and executed frequency. Then in the
test generation process, Stoat leverages MCMC sampling to direct
the mutation of the model from which test cases are derived.

Q-testing leverages Q-table to record executable events in the
covered state and the transition information is partially considered
by the Bellman function. To some extent, Q-testing also benefits
from model-based testing. However, Q-testing does not directly de-
rive test cases from a model, which prevents it from the problem of
inconsistent between model and applications’ actual behavior. APE
[24] makes some effort in model abstraction and refinement which
alleviates the problem, but the model is still imprecise as internal
states of variables, which will affect the applications’ behavior, are
still ignored due to limitation of the modeling language.

Systematic Testing. Symbolic execution and evolutionary algo-
rithms are applied by systematic strategies [4, 15, 32] to generate
specific input to cover hard-to-reach codes.

Sapienz [33] leverages a Pareto-optimal multi-objective search-
based approach to maximize code coverage and bug revelation
while at the same time minimizing the length of test sequences. It
also reverses-engineering the APK to get statically-defined strings
to generate specific input for text fields. Sapienz generates new
test cases by random crossover and mutation, which will result in
invalid sequences. The iterative evaluation of new generated test
cases will also cost a lot of time.

Machine Learning Based Testing. Machine learning has been
applied in Android GUI testing and related work can be divided
into 2 categories. The first kind of approaches [7, 26, 28, 30] have an
explicit training process to learn from the previous testing process
and the learned experience will later be leveraged on new apps. QBE
[26] learns from a set of Android applications the value of different
types of events towards a particular objective like increasing activity
coverage or detecting crashes. In order to make it possible for
knowledge to be transferred between different applications, these
approaches usually have to make abstractions on the apps’ states.
QBE divides states by the number of enabled actions where plenty
of information is ignored and this may reduce testing effectiveness.
Additionally, the design of Android applications is quite flexible,
it may be useless to guide the testing of new applications with
knowledge learned from others.

The other work tends to model independently for every app
[1, 47, 48] or adapts a general model to the app under test [12].
Some of them [1, 47, 48] extend AutoBlackTest [35] and do not
have an explicit training process. Similar to Q-testing, they also
apply Q-learning to guide the exploration of Android applications.
However, they simply rely on the difference between two states’
executable events and their executing frequency to determine re-
ward where the events’ value can not be adjusted flexibly during
testing. For example, an event connecting two states with quite
different events will always be encouraged to execute when most
events are executed many times. Q-testing tackles this problem by
using memory and scenario division module to steer the testing
towards unfamiliar functionalities with high efficiency.

Reinforcement learning is also applied to other testing work. For
example, Wuji [55] combines reinforcement learning with evolu-
tionary algorithms to test games. Retecs [45] uses RL to guide test
prioritization and selection in regression testing.

7 CONCLUSION
In this paper, we propose Q-testing, a Q-learning based approach
for Android automated testing. Q-testing leverages Q-table as a
lightweight model while exploring unfamiliar functionalities with
a curiosity-driven strategy. To effectively determine the reward for
Q-learning and to further guide the exploration, a scenario division
module which distinguishes functional scenarios using a neural
network is proposed. Experiments show that Q-testing outperforms
the state-of-the-art and state-of-practice Android GUI testing tools
in both code covering and fault detection.
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