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ABSTRACT
Barrier certificates provide safety guarantees for hybrid systems.
In this paper, we propose a novel approach to synthesize neural
networks as barrier certificates. Candidate networks are trained
from a special structure: ReLU neural networks consisting of two
hidden layers. Then, the problem of identifying real barrier certifi-
cates from candidates is transformed into a group of mixed integer
linear programming problems and a mixed integer quadratically
constrained problem. Taking full advantage of the recent advance
in optimization, barrier certificates validation can be performed
effectively. We implement the tool SyntheBC and evaluate its per-
formance over 3 hybrid systems and 8 continuous systems up to
12-dimensional state space. The experimental results show that our
method is more scalable and effective than the classical polynomial
barrier certificate method and the existing neural network based
method.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • General and reference→ Verification; •
Computing methodologies→Machine learning.
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1 INTRODUCTION
Much research effort has been devoted to safety verification of
non-linear hybrid systems as a result of the ever-growing safety re-
quirement of complex embedded systems that consist of interacting
computational and physical components [10, 27, 31, 40]. Safety ver-
ification contributes to checking safety properties by determining
whether a system can evolve to some states violating the desired
safety property when it starts at some initial states [22, 32, 34, 39].
A successful verification can raise our confidence in the verified
system.

Safety properties can be directly ensured if it is proved that the
exact reachable set or its over-approximation never invades the
unsafe regions [1, 6, 33]. As the exact or approximate reachable
set is derived step by step, these approaches are usually adopted
in checking safety properties within a finite time horizon, and can
hardly be used in verification concerning an infinite time hori-
zon [1]. Besides, due to the intrinsic computational complexity, it is
extremely difficult to scale them up to complex non-linear systems.

The methods resorting to barrier certificates are proposed to
address the computational complexity and the infinite time horizon
issues [13, 28]. A barrier certificate is a function of the state that sep-
arates reachable states of a system from its unsafe region. It requires
all system trajectories starting from some initial states fall into one
side of the barrier certificate while the unsafe region residents on
the other. As the existence of a barrier certificate proves that the
unsafe region is not reachable, the safety verification problem can
be transformed into the problem of barrier certificate generation.
Compared with reachable set computation, the construction of bar-
rier certificates can easily treat the trajectories in an infinite time
horizon and requires much less computational effort [20, 29, 48].

Barrier certificates of the type polynomial receive the most at-
tention due to its ability to present complex non-linear curves [14,
21, 23, 29]. To find a polynomial barrier certificate, a polynomial
with a fixed degree and unknown coefficients is introduced as a
template. Then, all the verification conditions are encoded into a set
of constraints on state variables and unknown coefficients of the
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barrier certificate according to the theorem of positive semidefinite
polynomials. Finally, those unknown coefficients are determined
by solving the constraints.

To take advantage of the theorem of positive semidefinite poly-
nomials, the systems under verification are not allowed to have
non-polynomial terms. Systems with non-polynomial terms need
to use their polynomial approximations and take care of the er-
rors when they are verified. Furthermore, the polynomial with a
high degree is very sensitive to errors and the number of unknown
coefficients grows exponentially with respect to the degree of the
template, which makes the generation of polynomials with a high
degree not easy.

Recently, safety verification utilizing neural networks to sepa-
rate the over-approximation of the reachable set from the unsafe
region is proposed [26, 51]. Acting as barrier certificates, deep neu-
ral networks have the potential to define more complex barrier
certificates than the classical polynomials do, as the theorem of
universal approximation shows that a feed-forward neural network
that comes with a single hidden layer comprising of a finite number
of neurons can approximate any continues functions on compact
subsets of 𝑅𝑛 with enough precision [3, 12].

Similar to the classical polynomial barrier certificates that assign
the over-approximation of the reachable region and the unsafe
region with non-negative reals and negative reals, respectively, the
neural network barrier certificates have the ability to distinguish
the two regions with different signs.

The procedure for synthesizing neural network barrier certifi-
cates takes a data-driven approach. The candidate neural network
barrier certificate is trained exploiting sampling data points coming
from the initial state, the unsafe region, the system state space as
well as some trajectories starting from the initial state. And then, it
is verified according to the conditions that a real barrier certificate
should satisfy. Thus, effective verification techniques are the key
to the successful synthesis of barrier certificates.

Unfortunately, verification of neural network barrier certificates
is not an easy task, as theremay be a tremendous number of neurons
and non-linear activation functions in them. Existing approaches
resort to non-linear satisfiability modulo theories (SMT) solvers
combined with the piece-wise linear approximation to identify real
barrier certificates from candidate networks [51]. As all SMT solvers
are not complete when handling non-linear arithmetic, plus the
high computational complexity, those methods are prone to fail,
which becomes an obstacle to neural network based verification.

In the paper, we propose the feedforward neural network of
the special structure that consists of two hidden layers and uses
the ReLU activation functions as barrier certificates. Such a special
structure enables us to transform the problems of verifying barrier
certificate conditions intomixed integer linear programming (MILP)
and mixed integer quadratically constrained problems (MIQCP)
with non-linear terms. Taking full advantage of the recent advance
of the optimizer Gurobi 9.0 [11], which explores the entire search
space and can provide an optimal objective value of either MILP or
MIQCP problems, accompanied with its difference from the global
optimal one, verification of the special network can be performed
effectively and efficiently.

Our paper makes the following contributions:

• We adopt a special structure of feedforward neural network
with two hidden layers and the ReLU activation functions
to synthesize barrier certificates for safety verification of
hybrid systems, and transforms the problem of certifying its
conformance to barrier certificate conditions into a group of
MILP and MIQCP problems.

• We develop an optimization based technique that takes ad-
vantages of the optimal objective value and its difference
from the global optimal one, returned by the optimizer, to
identify real barrier certificates from candidate networks.

• We implement the tool SyntheBC and evaluate its perfor-
mance over a set of benchmark examples, which shows that
our method can handle verification problems beyond the
reach of classical polynomial barrier certificates, and is more
scalable and effective than the existing neural network based
verification method.

The rest of this paper is organized as follows. Section 2 gives
an overview of related work. In Section 3, we briefly introduce
some notions about hybrid systems and feedforward neural net-
works. Section 4 is devoted to discussing how to train a candidate
neural network barrier certificate. Then we present the MIP-based
encoding method for the safety verification conditions in Section 5.
Experimental evaluation and comparisons with the classical sum-
of-squares (SOS) method and the stat-of-the-art neural network
based method are shown in Section 6. Section 7 concludes the paper.

2 RELATEDWORK
Barrier certificate generation. Safety verification based on bar-
rier certificates was first proposed by Prajna et al. in [28, 29], where
the theory of Putinar’s Positivstellensatz is exploited to form an SOS
program of the barrier certificate. Kapinski et al. [13, 14] introduced
a Lyapunov function typed barrier certificate. For semi-algebraic
hybrid systems, Kong et al. [20, 21] proposed an exponential con-
dition to generate barrier certificates. Sloth et al. [37] proposed a
new barrier certificate for a special class of hybrid systems that
consists of several interconnected subsystems. Dai et al. [4] stud-
ied how to relax the condition of barrier certificates in a general
way while retaining the convexity. Tuncali et al. [43] combined a
simulation-guided technique with a validation process to identify
barrier certificates. Zeng et al. [50] presented the Darboux-type
barrier certificates that define an algebraic curve, not allowing any
trajectories of the system leaving it once they touch it. For hybrid
systems containing elementary functions, Liu et al. [23] proposed
a symbolic abstraction approach that replaces all non-polynomial
terms with newly introduced variables so that they can be verified
using the well-established verification techniques of polynomial
hybrid systems. All the barrier certificates mentioned above are of
the form polynomials.

To our best knowledge, the seminal work introducing neural
networks as barrier certificates was proposed by Zhao et al. [51].
They exploit neural networks with Bent-ReLU activation func-
tions to verify dynamical systems. After obtaining candidate net-
works, they first use piece-wise lines to over-approximate the
Bent-ReLU function, and then invoke the non-linear SMT solver
isat3 [45] to check the barrier certificate conditions. To get an over-
approximation of Bent-ReLU function precise enough to enable
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correct SMT judgement, the intervals of piece-wise lines should be
carefully determined. They do not give an automatic interval deter-
mination method in the paper. In fact, to avoid the accumulation
of approximation errors, in their experiments, all networks are of
only one hidden layer where the number of neurons ranges from 5
to 20.

Peruffo et al. [26] presented a CEGIS-based technique that used
counterexamples to speed up the construction of networks, serving
as the barrier certificates for safety verification of hybrid systems.
They used Tanh and polynomial activation functions and directly
resorted to the non-linear SMT solver dReal and Z3 to check the
barrier certificate conditions. Experiments showed their method
was faster and required fewer data points in barrier certificate
synthesis than Zhao’s method.

Different from them, we adopt a special feedforward neural net-
work structure that consists of two hidden layers and uses the ReLU
activation functions to synthesize candidate barrier certificates, and
employ a MIP optimization based technique to identify the real
ones.

Neural network verification. The problem of neural network
verification is NP-hard [15] and lots of research focuses on it [35,
41, 44, 46]. Existing methods for verifying neural network are based
on abstract domain [36], abstract interpretation [35], input refine-
ment [15], interval arithmetic [44], linear approximations [46] and
mixed integer programming [5, 41, 42]. The previous MIP-based
verification method is used to verify the output of neural network
neurons on a given input region, which is a problem about mixed
integer linear programming optimization. In this work, we adopt a
MIP-based encode to check barrier certificate conditions. For those
conditions determining neural network output, we encode them as
several MILP optimization problems. Moreover, for the condition
concerning the derivative of the network, it is encoded as a MIQCP
optimization problem.

3 PRELIMINARIES
This section introduces the definitions used in the paper. Section
3.1 defines the continuous systems with safety verification condi-
tions and trajectory. Section 3.2 defines the safety verification of
the hybrid systems. Section 3.3 describes the feedforward neural
networks.

3.1 Continuous system
Definition 1 (Continuous system). A continuous system Π is

a tuple ⟨𝑋, 𝑓 , 𝐷, 𝐼 ⟩, where 𝑋 is a set of the system variables, 𝑓 is the
update functions over system variables 𝑋 , 𝐷 is the state space of 𝑋 ,
and 𝐼 ⊆ 𝐷 is the initial states.

Assume the system update functions 𝑓 satisfies the local Lips-
chitz condition, the trajectory of system Π is defined as follows:

Definition 2 (Trajectory). Given a system Π, let𝜓 : [0,𝑇 ] ×
𝐷 → 𝐷 , 𝑇 > 0 be the flow map satisfying:

𝜓 (0, 𝑥) = 𝑥, 𝑥 ∈ 𝐼 and ∀𝑡 ∈ [0,𝑇 ], 𝑑𝜓 (𝑡, 𝑥)
𝑑𝑡

= 𝑓 (𝜓 (𝑡, 𝑥)) .

Then,𝜓 (𝑡, 𝑥) is the trajectory originating from an initial state 𝑥 ∈ 𝐼 .
For every initial state 𝑥 ∈ 𝐼 at time 𝑡 ,𝜓 (𝑡, 𝑥) ∈ 𝐷 is unique.

Given a continuous system Π and the unsafe region𝑈 ⊆ 𝐷 , we
want to verify whether the trajectories can reach 𝑈 starting from
some initial states. The following definition describes the safety of
the continuous system Π.

Definition 3 (Safety). Consider a continuous dynamical system
Π with respect to the unsafe region 𝑈 . The system Π is safe if ∀𝑥 ∈
𝐼 ,∀𝑡 ≥ 0,𝜓 (𝑡, 𝑥) ∉ 𝑈 , that is, all trajectories of the system starting
from initial states 𝐼 never reaches the unsafe region𝑈 .

Barrier certificates can be used to verify safety properties without
computing the set of reachable states explicitly. The essential idea
is to use the zero level set of a barrier certificate 𝐵(𝑥) as a barrier
to separate all the reachable states from the unsafe region. The
safety verification conditions of barrier certificates are formulated
as follows [28]:

Theorem 1. A real barrier certificate 𝐵 of the continuous system
Π satisfies:

𝐵(𝑥) > 0, ∀𝑥 ∈ 𝑈 , (1)
𝐵(𝑥) ≤ 0, ∀𝑥 ∈ 𝐼 , (2)

𝜕𝐵(𝑥)
𝜕𝑥

𝑓 (𝑥) ≤ 0, ∀𝐵(𝑥) = 0, (3)

In Theorem 1, Equation (1) and (2) require 𝐵 is positive and
non-positive on the unsafe region and initial states, respectively.
Equation (3) implies during continuous flow 𝐵 can not jump to
a positive state from a non-positive state. If Equation (1)-(3) are
satisfied, 𝐵 is a real barrier certificate of Π, and Π is safe.

3.2 Hybrid system
Definition 4 (Hybrid system). A hybrid system Π is a tuple

⟨𝑀,𝑋, 𝑓 , 𝐷, 𝐼,𝑇 , 𝑅⟩, where 𝑀 : {𝑚1, ...,𝑚𝑘 } is a finite set of modes,
𝑋 is a set of the system variables, 𝑓 is a set of update functions over
system variables 𝑋 , 𝐷 is the state space, 𝐼 ⊆ 𝐷 is a set of initial states,
𝑇 : {𝑡𝑚,𝑚′ |𝑚 ≠ 𝑚′} is a set of transition states between two modes,
and 𝑅 : {𝑟𝑚,𝑚′ |𝑚 ≠ 𝑚′} is a set of reset functions corresponding to
the terms in 𝑇 .

The trajectory of a hybrid system Π is similar to that of the
continuous system shown in Definition 2. Given a hybrid system
Π, we want to verify whether its trajectories starting from some
initial states can reach the unsafe regions𝑈 ⊆ 𝐷 . The conditions
of barrier certificates for safety verification of hybrid systems are
formulated as follows [28]:

Theorem 2. For each𝑚 ∈ 𝑀 and (𝑚,𝑚′) corresponding to the
𝑡𝑚,𝑚′ and 𝑟𝑚,𝑚′ , a barrier certificate 𝐵 of the hybrid system Π with
respect to the unsafe regions𝑈 satisfies:

𝐵𝑚 (𝑥) > 0, ∀𝑥 ∈ 𝑈𝑚, (4)
𝐵𝑚 (𝑥) ≤ 0, ∀𝑥 ∈ 𝐼𝑚, (5)

𝜕𝐵𝑚 (𝑥)
𝜕𝑥

𝑓𝑚 (𝑥) ≤ 0, ∀𝐵𝑚 (𝑥) = 0, (6)

𝐵𝑚′ (𝑥 ′) ≤ 0, ∀𝑥 ∈ 𝑇𝑚,𝑚′, 𝐵𝑚 (𝑥) ≤ 0, 𝑥 ′ = 𝑟𝑚,𝑚′ (𝑥) . (7)

Theorem 2 requires that for each mode 𝑚, 𝐵𝑚 separates un-
safe regions and initial states with different signs, respectively.
Equation (6) ensures that following the continuous flow, 𝐵𝑚 is not
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allowed to jump from a non-positive state to a positive one. Equa-
tion (7) guarantees 𝐵𝑚 can not become positive after performing a
discrete transition. If Equation (4)-(7) are satisfied for all the modes,
𝐵 is a real barrier certificate of Π, where the safety of Π is certified.

In this paper, we focus on hybrid systems whose update func-
tions are represented by multivariate elementary functions and
variable states are semi-algebraic. Concretely, multivariate elemen-
tary functions are expressed by the following grammar:

𝑓 , 𝑔 ::=𝑐 | 𝑥 | 𝑓 + 𝑔 | 𝑓 − 𝑔 | 𝑓 × 𝑔 | 𝑓

𝑔

| 𝑓 𝑎 | 𝑒 𝑓 | ln(𝑓 ) | sin(𝑓 ) | cos(𝑓 ),

where 𝑐 ∈ R is a real constant, 𝑎 ∈ Q is a rational constant, and
𝑥 ∈ 𝑋 can be any system variable.

3.3 Feedforward neural network
In this work, we adopt feedforward neural networks as the repre-
sentations of barrier certificates. The feedforward neural network
consists of an input layer, an output layer, and multiple hidden
layers in between. Neurons (so-called nodes) in the feedforward
neural network are arranged in disjoint layers, with each neuron in
one layer connected to the next layer, but no connection between
neurons in the same layer. Furthermore, the output of each neuron
in the hidden layer is assigned by a linear combination of the neu-
ron outputs of the preceding layer and then applying a non-linear
activation function. Formally, the feedforward neural network is
defined as follows.

Definition 5 (FeedforwardNeuralNetwork). A feedforward
neural network N is a tuple ⟨𝐿,𝑊 , 𝐵,Φ, 𝑋 ⟩, where

• 𝐿 = {𝐿0 . . . , 𝐿𝑛} is a set of layers, where layer 𝐿0 is the input
layer, 𝐿𝑛 is the output layer, and 𝐿1, . . . , 𝐿𝑛−1 are the hidden
layers. Each layer 𝐿𝑘 , 0 ≤ 𝑘 ≤ 𝑛 is associated with an 𝑠𝑘 -
dimensional vector space Ψ𝑘 ⊆ R𝑠𝑘 , in which each dimension
corresponds to a neuron.

• 𝑊 = {𝑊1, . . . ,𝑊𝑛} is the set of weight matrices. Each non-
input layer 𝐿𝑘 with 1 ≤ 𝑘 ≤ 𝑛 has a weight matrix𝑊𝑘 ∈
R𝑠𝑘×𝑠𝑘−1 , and neurons in 𝐿𝑘 are connected to neurons from the
preceding layer 𝐿𝑘−1 by the weight matrix𝑊𝑘 .

• 𝐵 = {𝑏1, . . . , 𝑏𝑛} is the set of bias vectors. For each non-input
layer 𝐿𝑘 with 1 ≤ 𝑘 ≤ 𝑛, the bias vector 𝑏𝑘 ∈ R𝑠𝑘 is used to
assigned bias values to the neurons in 𝐿𝑘 .

• Φ = {𝜙1, . . . , 𝜙𝑛} is a set of activation functions for hidden
layers and are applied element-wise on each neuron.

• 𝑋 = {𝑥0, . . . , 𝑥𝑛}, where 𝑥𝑘 is the vector corresponding to the
values of the neurons in the layer 𝐿𝑘 for 0 ≤ 𝑘 ≤ 𝑛. For
each hidden layer, let 𝑧𝑘 denote the neuron value vector before
applying activation functions.

For the above feedforward neural network, a non-input layer
neuron value is computed by the preceding layer neuron values,
the layer weight matrix, and the bias vector. Let 𝑥0 denote the given
neuron value of input layer; 𝑧𝑘 and 𝑥𝑘 , 1 ≤ 𝑘 ≤ 𝑛 − 1 denote the
neuron value of hidden layer 𝐿𝑘 before and after activation function
Φ𝑘 , respectively; and 𝑥𝑛 denote the neuron value of output layer,

Figure 1: The structure of neural network for synthesizing
barrier certificates. The neurons in input and output layers
correspond to the system variables and the output of the
barrier certificate. The two hidden layers use ReLU function
as activation functions.

the forward propagation of the neural network is as follows:
𝑧𝑘 =𝑊𝑘𝑥𝑘−1 + 𝑏𝑘 , 𝑘 = 1, ..., 𝑛 − 1,
𝑥𝑘 = 𝜙𝑘 (𝑧𝑘 ), 𝑘 = 1, ..., 𝑛 − 1,
𝑥𝑛 =𝑊𝑛𝑥𝑛−1 + 𝑏𝑛 .

(8)

The network output N(𝑥) is the neuron value of the output layer,
i.e., N(𝑥0) = 𝑥𝑛 and 𝑥𝑛 is computed as Equation (8).

4 BARRIER CERTIFICATE TRAINING
Given a hybrid system Π, our goal is to synthesize a neural network
that satisfies the conditions in Theorem 2, so that it acts as a barrier
certificate 𝐵, ensuring the unsafe region never to be invaded. Here,
the process of synthesis consists of two steps. At first, a candidate
neural network barrier certificate N is derived by training parame-
ters of a special network structure, which uses the sampled data
points from the initial state, the unsafe region, the system state
space, and the trajectories as well. After that, the network N is
verified according to the barrier certificate conditions defined in
Theorem 2, where the special structure of the network enables
the transformation of verification problem into a set of MILP and
MIQCP problems. In the section, we detail the training process
while the verification technique is presented in the next section.

4.1 A Special Structure of Neural Networks
We propose a feedforward neural network of a special structure as
the template for synthesizing barrier certificates, which is charac-
terized as follows:

• The input layer contains the same number of neurons as
that of the system variables, and each system variable corre-
sponds to one unique neuron of the input layer;

• The output layer has only one neuron, producing the output
of the barrier certificate.

• There are two and only two hidden layers, each of which
can have many neurons.

• The ReLU function is the only legal activation function.

The ReLU functions is defined as follows:

ReLU(𝑥) =
{
𝑥, if 𝑥 > 0,
0, otherwise. (9)
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The special structure of networks is depicted in Figure 1. The
design of the special network structure tries to balance the re-
quirement of enough expressive power to approximate complex
functions and easy verification.

By restricting the number of hidden layers and the type of acti-
vation function, the problem of verifying Equation (4), Equation (5),
and Equation (7) in Theorem 2 forms a group of MILP problems,
while the problem of certifying Equation (6) forms a MIQCP prob-
lem.

Although, theorem of universal approximation [3, 12] has proven
that one hidden layer with a large number of neurons is good
enough to obtain precise approximation to complex functions, re-
cent research on neural network training has shown that a network
with deep architectures provides better expressive power and are
easier to be trained [24, 30]. Here, we set the number of hidden
layers to 2 to obtain the global the optimal objective value of the
problems of the two types.

4.2 Training dataset generation
The procedure for synthesizing neural networks takes a data-driven
approach. Here, we discuss how to generate adequate datasets for
training the candidate network. Datasets are generated aiming at
making the network fulfill the barrier certificate conditions given
by Theorem 2.

The first dataset is designed to let the network output desired
results on different regions, corresponding to Equation (4), Equa-
tion (5). Let dataset 𝐷1 : {𝑥 ∈ 𝑈𝑚} contains data points sampled
from unsafe regions, according to Equation (4), when fed with
points in 𝐷1, the network should output positive values. Similarly,
let 𝐷2 : {𝑥 ∈ 𝐼𝑚} consists of data points sampled from initial states,
the network should output non-positive values for these points.

Equation (7) claims that discrete jumps should retain non-positive
signs. To make the network conform to this condition, we have to
exploit system trajectories. By choosing a time bound𝑇 , which lasts
long enough, some trajectories starting from initial state trigger
several discrete jumps. We sample date points from those trajec-
tories 𝜓 (𝑡, 𝑥), 𝑡 ∈ [0,𝑇 ], and add them to the dataset 𝐷2, as all of
them should make the network produce non-positive values.

The last dataset 𝐷3 is defined as {𝑥 |N (𝑥) = 0∧𝑥 ∈ 𝐷}, which is
used to train the network to satisfy the condition 𝜕N(𝑥)

𝜕𝑥 𝑓 (𝑥) ≤ 0,
when N(𝑥) = 0. Note that, the network parameters keep on updat-
ing during the training, so the set keeps on change its elements ac-
cordingly. Given a network, it requires unaffordable computational
effort to build dataset 𝐷3. Thus we use a testing based approach,
which randomly samples points from the system state space 𝐷 , and
add those that make the network evaluate to zero to 𝐷3 .

4.3 Loss function construction
Utilizing the datasets 𝐷1, 𝐷2 and 𝐷3, the neural network is trained
to satisfy the following conditions:

N(𝑥) > 0, ∀𝑥 ∈ 𝐷1, (10)
N(𝑥) ≤ 0, ∀𝑥 ∈ 𝐷2, (11)

𝜕N(𝑥)
𝜕𝑥

𝑓 (𝑥) ≤ 0, ∀𝑥 ∈ 𝐷3 . (12)

According to Equation (10)-(12), we construct sub loss functions
that lead optimizers to build the network by minimizing the loss.

To meet Equation (10), the neural network N(𝑥) should output
positive values when the input comes from 𝐷1. Otherwise, it will
produce loss. Let 𝜖1 > 0 be a small positive number, the first sub
loss function is defined as follows:

𝑙1 =
∑︁
𝑥 ∈𝐷1

−min(N (𝑥) − 𝜖1, 0) . (13)

Similarly, to conform to Equation (11), the neural networkN(𝑥)
must output negative values. Otherwise, it will produce loss too.
The second sub loss function is defined as follows:

𝑙2 =
∑︁
𝑥 ∈𝐷2

max(N (𝑥), 0) . (14)

For Equation (12), the constraintN(𝑥) = 0 should be relaxed first,
due to the errors introduced by real number computation. Let 𝜖2 > 0
be a small positive number denoting the threshold of relaxation,
the constraint N(𝑥) = 0 is relaxed as −𝜖2 ≤ N(𝑥) ≤ 0. As a result,
the dataset 𝐷3 is redefined as {𝑥 | − 𝜖2 ≤ N(𝑥) ≤ 0 ∧ 𝑥 ∈ 𝐷}. The
third sub loss function is defined as follows:

𝑙3 =

{ ∑
max( 𝜕N(𝑥)

𝜕𝑥 𝑓 (𝑥),0), 𝑥 ∈𝐷3,
0, otherwise.

(15)

Finally, let 𝛼 > 0, 𝛽 > 0, and 𝛾 > 0 denote the weights of
sub losses, respectively, the overall loss function is defined as the
weighted sum of sub losses:

𝑙 = 𝛼𝑙1 + 𝛽𝑙2 + 𝛾𝑙3 . (16)

Weminimize 𝑙 to train a candidate neural network barrier certificate
using classical Adam optimizers [17].

5 BARRIER CERTIFICATES VERIFICATION
In this section, we focus on how to identify real barrier certificates
from the candidate neural networks yielded from the last section.
The key point is to utilize the special structure of the network to
encode the verification problem as several optimization problems,
and then resort to the optimizer to find the global optimal objective
value.

Suppose a network N is of the special structure introduced in
Section 4.1, to ease the presentation, we use 𝑥0 to denote the input
of the network and denote the neural network output as 𝑥3, where
𝑥3 = N(𝑥0), since the third layer of N is the output layer and it
consists of only one neuron.

To become a barrier certificate, the network N must satisfy the
following conditions given by Theorem 3.

Theorem 3. Let the neural network N accept the input 𝑥0, which
corresponds to the system variables of𝑋 of the hybrid system Π. Given
the unsafe regions 𝑈 , N acts as a barrier function of Π, if it satisfies
the following conditions:

𝑥3 > 0, ∀𝑥0 ∈ 𝑈𝑚, (17)
𝑥3 ≤ 0, ∀𝑥0 ∈ 𝐼𝑚, (18)

𝜕𝑥3
𝜕𝑥0

𝑓𝑚 (𝑥0) ≤ 0, ∀𝑥3 = 0, (19)

𝑥′3 ≤ 0, ∀𝑥0 ∈ 𝑡𝑚,𝑚′ , 𝑥3 ≤ 0, 𝑥′0 = 𝑟𝑚,𝑚′ (𝑥0) . (20)

The barrier certificate conditions in Theorem 3 forms verification
problems of two types: Equation (17), (18) and (20) require to check
the output range of the network with respect to the given input
region while Equation (19) cares for the derivative of the network

For Research Only



HSCC ’21, May 19-21, 2021, Virtual Zhao et al.

on the zero level set of the network. In the following, we encode
them to a group of MILP optimization problems and a MIQCP
optimization problem, respectively.

5.1 Verifying neural network output using
MILP-based encoding

We begin with the verification of the condition: the network should
produce positive values for the unsafe region, formulated in Equa-
tion (17). By adopting the forward propagation of neural networks
described in Section 3, the problem of verifying the Equation (17)
is transformed into the following optimization problem:

𝑝 = min 𝑥3
s.t. 𝑥0 ∈ 𝑈𝑚, ∀𝑚 ∈ 𝑀,

𝑧𝑘 =𝑊𝑘𝑥𝑘−1 + 𝑏𝑘 , 𝑘 = 1, 2,
𝑥𝑘 = ReLU(𝑧𝑘 ), 𝑘 = 1, 2,
𝑥3 =𝑊3𝑥2 + 𝑏3 .


(21)

Suppose 𝑝∗ is the global optimal solution of the problem (21), if
𝑝∗ > 0, Equation (17) is verified to be satisfied.

It is intractable to directly optimize the problem (21) due to the
non-linearity coming from the activation function ReLU and the
constraints defining𝑈𝑚 . An exact MILP-based encoding of ReLU is
introduced to eliminate the non-linearity that activation functions
bring.

MILP-based encoding of ReLU. The MILP-based encoding
presented in the following theorem has been widely used to treat
ReLU [42].

Theorem 4. Let [𝑙𝑥 , 𝑢𝑥 ] denote the region of 𝑥 , the ReLU function
can be encoded by the following linear constraints:

−𝑥 + 𝑦 − 𝑙 · 𝑡 ≤ −𝑙, (22)
𝑥 − 𝑦 ≤ 0, (23)

𝑦 − 𝑢 · 𝑡 ≤ 0, (24)

with linear constraint and binary constraint:

𝑦 ≥ 0, (25)
𝑡 ∈ {0, 1}, (26)

where 𝑡 is the intermediate binary variable, 𝑙 and 𝑢 are bound esti-
mation constants satisfying 𝑙 ≤ 𝑙𝑥 and 𝑢 ≥ 𝑢𝑥 , respectively.

Piece-wise linear approximation. To handle the non-linearity
arising from the constraints defining the unsafe region𝑈𝑚 , a piece-
wise linear approximation method is utilized. For a non-linear func-
tion 𝑔(𝑥) with 𝑥 ∈ [𝑙𝑥 , 𝑢𝑥 ], it can be approximated by two piece-
wise linear functions𝑔𝑙 (𝑥) and𝑔𝑢 (𝑥), where the difference between
𝑔𝑙 (𝑥) and 𝑔𝑢 (𝑥) is not greater than the controlled approximation
error 𝜂, formally defined as:

𝑔𝑙 (𝑥) ≤ 𝑔(𝑥) ≤ 𝑔𝑢 (𝑥), |𝑔𝑢 (𝑥) − 𝑔𝑙 (𝑥) | ≤ 𝜂,∀𝑥 ∈ [𝑙𝑥 , 𝑢𝑥 ] . (27)

MILP-based encoding of Equation (17). Using the piece-wise
linear approximation method, 𝑈 can be approximated by two sets
of piece-wise linear functions 𝑔𝑙 and 𝑔𝑢 , i.e., 𝑔𝑙 [𝑚] ≤ 𝑈𝑚 ≤ 𝑔𝑢 [𝑚] .
Together with the MILP-based encoding of ReLU, the optimiza-
tion problem (21) is further transformed into the following MILP

problem:
𝑝 = min 𝑥3
s.t. 𝑔𝑙 [𝑚] ≤ 𝑥0 ≤ 𝑔𝑢 [𝑚] , ∀𝑚 ∈ 𝑀,

𝑧𝑘 =𝑊𝑘𝑥𝑘−1 + 𝑏𝑘 , 𝑘 = 1, 2,
−𝑧𝑘 + 𝑥𝑘 − 𝑙𝑘𝑡𝑘 ≤ −𝑙𝑘 , 𝑘 = 1, 2,
𝑧𝑘 − 𝑥𝑘 ≤ 0, 𝑘 = 1, 2,
𝑥𝑘 −𝑢𝑘𝑡𝑘 ≤ 0, 𝑘 = 1, 2,
𝑥𝑘 ≥ 0, 𝑘 = 1, 2,
𝑡𝑘 ∈ {0, 1}𝑠𝑘 , 𝑘 = 1, 2,
𝑥3 =𝑊3𝑥2 + 𝑏3,


(28)

where the bound constants 𝑙𝑘 and 𝑢𝑘 can be estimated using inter-
val computation [16] or simply set to the numbers small enough
(𝑙𝑘 = −1𝑒9) and large enough (𝑢𝑘 = 1𝑒9), respectively.

Remark 1. As a result of the piece-wise linear approximation
applied to 𝑈𝑚 , compared with the problem (21), the feasible set of
problem (28) is the superset of that of (21), which indicates that the
optimal solution 𝑝∗𝑟 of (28) is the lower bound of the optimal solution
𝑝∗ of (21), i.e., 𝑝∗𝑟 ≤ 𝑝∗.

In practice, given a region defined by a set of nonlinear con-
straints, it is not easy to construct its piece-wise linear approxi-
mation. Fortunately, the optimizer Gurobi provides automatical
piece-wise linear approximation whose error under the control of
the parameter 𝜂 in its recent version 9.0. So we do not need to
consider the approximation of𝑈𝑚 in hand anymore.

Getting guaranteed solution. The error introduced by piece-
wise linear approximation and the error accompanied with float
point number calculation make it impossible for the optimizer to
find the real global optimum, although given enough time, the
global optimum of MILP problems can be found by searching the
whole space.

In fact, for the problem (28), Gurobi can return an optimum 𝑝 ′,
together with the maximum relative error 𝜉 between 𝑝 ′ and the
global optimal solution 𝑝∗, formally:

𝜉 ≥ |𝑝 ′ − 𝑝∗ |
|𝑝 ′ | . (29)

This feature allows us to certify the original problem based on
the an optimum 𝑝 ′ and the accompanied maximum relative error
𝜉 . The following theorem connects the return of Gurobi with the
verification of Equation (17).

Theorem 5. When solving problem (28), if the solution 𝑝 ′ > 0
while the maximum relative error 𝜉 < 1, then the global optimal
solution 𝑝∗𝑟 of problem (28) is positive, indicating that the Equation (17)
is verified to be satisfied.

The proof of Theorem 5 uses the following lemma.

Lemma 6. Let 𝑝 ′ be one optima of problem (28), 𝑝∗𝑟 be the global
optima, |𝑝′−𝑝∗

𝑟 |
|𝑝′ | ≤ 𝜉 , if 𝜉 < 1, then 𝑝 ′ and 𝑝∗ have the same signs.

Proof.
𝜉 < 1

⇒ 1 >
|𝑝′−𝑝∗𝑟 |
|𝑝′ | (𝜉 ≥ |𝑝′−𝑝∗𝑟 |

|𝑝′ | )
⇒ |𝑝′ − 𝑝∗𝑟 |2 < |𝑝′ |2 ( |𝑝′ − 𝑝∗𝑟 | > 0, |𝑝′ | > 0)
⇒ (𝑝′)2 − 2𝑝′𝑝∗𝑟 + (𝑝∗𝑟 )2 < (𝑝′)2
⇒ 𝑝′𝑝∗𝑟 > 1

2 (𝑝
∗
𝑟 )2 ≥ 0

(30)

□
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Theorem 5 can be proved as follows: according to lemma 6, 𝑝 ′
and 𝑝∗𝑟 have the same signs as 𝜉 < 1. Due to the condition 𝑝 ′ > 0, the
global optimal solution 𝑝∗𝑟 > 0. As Remark 1 states that 𝑝∗ ≥ 𝑝∗𝑟 > 0,
the global optimal solution 𝑝∗ of problem (21) retains positive. Thus
Equation (17) is verified to be satisfied.

MILP-based encoding of Equation (18). The verification of
Equation (18) takes the same manner, as Equation (18) has the
same structure as that of Equation (17) except for the input and
output of the network. It is expected that the network should output
non-positive values from the input of the initial set.

Exploiting two sets of piece-wise linear functions 𝑔𝑙 and 𝑔𝑢 to
approximate the initial state 𝐼 , i.e., 𝑔𝑙 [𝑚] ≤ 𝐼𝑚 ≤ 𝑔𝑢 [𝑚] , combined
with MILP encoding, the Equation (18) corresponds to the following
optimization problem:

𝑝 = max 𝑥3
s.t. 𝑔𝑙 [𝑚] ≤ 𝑥0 ≤ 𝑔𝑢 [𝑚] , ∀𝑚 ∈ 𝑀,

𝑧𝑘 =𝑊𝑘𝑥𝑘−1 + 𝑏𝑘 , 𝑘 = 1, 2,
−𝑧𝑘 + 𝑥𝑘 − 𝑙𝑘𝑡𝑘 ≤ −𝑙𝑘 , 𝑘 = 1, 2,
𝑧𝑘 − 𝑥𝑘 ≤ 0, 𝑘 = 1, 2,
𝑥𝑘 −𝑢𝑘𝑡𝑘 ≤ 0, 𝑘 = 1, 2,
𝑥𝑘 ≥ 0, 𝑘 = 1, 2,
𝑡𝑘 ∈ {0, 1}𝑠𝑘 , 𝑘 = 1, 2,
𝑥3 =𝑊3𝑥2 + 𝑏3 .


(31)

Verification of Equation (18) is based on the following theorem.

Theorem 7. When solving problem (31), if the solution 𝑝 ′ ≤ 0
while the maximum relative error 𝜉 < 1, then the global optimal
solution 𝑝∗ of problem (31) is non-positive, so that the Equation (18)
is ensured to be satisfied.

MILP-based encoding of Equation (20). For Equation (20),
there may exist non-linear terms in transition states 𝑇 and reset
functions 𝑅, which should be approximated by piece-wise linear
functions. Besides, the encoding of Equation (20) is similar to Equa-
tion (17), containing two parts. The first one is used to encode the
constraints before reset functions, i.e., concerning 𝑥0. The second
one is used to encode the constraints after reset functions, i.e., con-
cerning 𝑥 ′0 = 𝑟𝑚,𝑚′ (𝑥0). For the transition state 𝑡𝑚,𝑚′ and reset
function 𝑟𝑚,𝑚′ , the encoding of Equation (20) is given as follows:

𝑝 = max 𝑥′3
s.t. 𝑥0 ∈ 𝑡𝑚,𝑚′ , 𝑥′0 = 𝑟𝑚,𝑚′ (𝑥0) ∀𝑡𝑚,𝑚′ ∈ 𝑇,

𝑧𝑘=𝑊𝑘𝑥𝑘−1+𝑏𝑘 , 𝑧′
𝑘
=𝑊𝑘𝑥

′
𝑘−1+𝑏𝑘 , 𝑘 = 1, 2,

-𝑧𝑘+𝑥𝑘 -𝑙𝑘𝑡𝑘 ≤ -𝑙𝑘 , -𝑧′
𝑘
+𝑥′

𝑘
-𝑙′
𝑘
𝑡 ′
𝑘
≤ -𝑙′

𝑘
, 𝑘 = 1, 2,

𝑧𝑘 -𝑥𝑘 ≤ 0, 𝑧′
𝑘
-𝑥′

𝑘
≤ 0, 𝑘 = 1, 2,

𝑥𝑘 -𝑢𝑘𝑡𝑘 ≤ 0, 𝑥′
𝑘
-𝑢′

𝑘
𝑡 ′
𝑘
≤ 0, 𝑘 = 1, 2,

𝑥𝑘 ≥ 0, 𝑥′
𝑘
≥ 0, 𝑘 = 1, 2,

𝑡𝑘 ∈ {0, 1}𝑠𝑘 , 𝑡 ′
𝑘
∈ {0, 1}𝑠𝑘 , 𝑘 = 1, 2,

𝑊3𝑥2+𝑏3 ≤ 0, 𝑥′3 =𝑊3𝑥
′
2+𝑏3,


(32)

where the left side and the right side are the networks serving as
barrier certificates on mode𝑚 and𝑚′, respectively.

Theorem 8 supports the verification of Equation (20).

Theorem 8. When solving problem (32), if the solution 𝑝 ′ ≤ 0
while the maximum relative error 𝜉 < 1, then the global optimal
solution 𝑝∗ of problem (32) is non-positive, so that the Equation (20)
is ensured to be satisfied.

5.2 Verifying the derivative condition using
MIQCP-based encoding

Now we turn to the verification of Equation (19). For the constraint
∀𝑥3 = 0 in Equation (19), it can be encoded as 𝑥3 = 0 and 𝑥0 ∈ 𝐷 ,
plus the encoding of the network used in problem (21). For the
derivative 𝜕𝑥3

𝜕𝑥0
𝑓𝑚 (𝑥0), the update function 𝑓𝑚 (𝑥0) is defined by

system Π and is going to be approximated by piece-wise linear
functions. In the following, we focus on the representation of the
derivative of the network, i.e., 𝜕𝑥3𝜕𝑥0

.

Theorem 9. Let 𝑟 (𝑥) is the derivative of ReLU(𝑥), represented as:

𝑟 (𝑥) =
{

1, if 𝑥 > 0,
0, otherwise. (33)

Let 𝑥 [𝑖 ] denote the 𝑖-th element of the vectors 𝑥 , and𝑊𝑟 (𝑥) =
diag(𝑟 (𝑥 [1] ), 𝑟 (𝑥 [2] ), ..., 𝑟 (𝑥 [𝑛] )) be a diagonal matrix, the deriva-
tive of the network with respect to the input 𝑥0, denoted by

𝜕𝑥3
𝜕𝑥0

, can
be derived as follows:

𝜕𝑥3
𝜕𝑥0

=𝑊3𝑊𝑟 (𝑧2)𝑊2𝑊𝑟 (𝑧1)𝑊1, (34)

where 𝑧𝑘 denotes the value of neurons in hidden layers before applying
the ReLU function.

Proof. Let 𝑧𝑘 = 𝑊𝑘𝑥𝑘−1 + 𝑏𝑘 and 𝑥𝑘 = ReLU(𝑧𝑘 ), 𝑘 = 1, 2,
denote the neuron value before and after applying ReLU, as shown
in Equation (8), respectively. For different neuron network layers,
we have the following backward propagation:

𝜕𝑥3
𝜕𝑥2

= 𝑊3
𝜕𝑥𝑘
𝜕𝑧𝑘

=
𝜕Φ𝑘 (𝑧𝑘 )

𝜕𝑧𝑘
, 𝑘 = 1, 2,

𝜕𝑧𝑘
𝜕𝑥𝑘−1

= 𝑊𝑘 , 𝑘 = 1, 2.
(35)

Referring to Equation (33): 𝜕Φ𝑘 (𝑧𝑘 )
𝜕𝑧𝑘

= 𝑟 (𝑧𝑘 ). Applying the chain
rule, the derivative 𝜕𝑥3

𝜕𝑥0
is yielded by:

𝜕𝑥3
𝜕𝑥0

=
𝜕𝑥3
𝜕𝑥2

𝜕𝑥2
𝜕𝑧2

𝜕𝑧2
𝜕𝑥1

𝜕𝑥1
𝜕𝑧1

𝜕𝑧1
𝜕𝑥0

=𝑊3𝑊𝑟 (𝑧2)𝑊2𝑊𝑟 (𝑧1)𝑊1 .

□

The following theorem further refines the derivation by taking
advantage of the MILP-based encoding of the ReLU function.

Theorem 10. Let ReLU function is represented by the MILP encod-
ing in Theorem 4, 𝜕𝑥3𝜕𝑥0

can be further refined as:

𝜕𝑥3
𝜕𝑥0

=𝑊3 · 𝑡2𝑊2 · 𝑡1𝑊1, (36)

where · denotes the element-wise product.

Proof. The MILP-based ReLU encoding in Theorem 4 shows
the fact that 𝑡 = 0 ⇔ 𝑥 ≤ 0 and 𝑡 = 1 ⇔ 𝑥 > 0. Combining with
Equation (33): 𝑟 (𝑥) = 0 ⇔ 𝑥 ≤ 0 and 𝑟 (𝑥) = 1 ⇔ 𝑥 > 0, it is easy
to see that the value of binary variable 𝑡 is exactly the derivative
value 𝑟 of ReLU, i.e., 𝑡 = 𝑟 (𝑥). Therefore, by replacing the diagonal
matrix𝑊𝑟 (𝑥) with 𝑡 in Equation (34), we get a representation of
𝜕𝑥3
𝜕𝑥0

in terms of 𝑡 . □
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Equation (36) discloses the fact that 𝜕𝑥3
𝜕𝑥0

is a function defined over
the binary variable 𝑡 , as𝑊𝑘 is the determined network parameters.
Furthermore, each hidden layer 𝐿𝑘 with ReLU activation functions
contributes a vector of binary variables 𝑡𝑘 , so the degree of 𝜕𝑥3

𝜕𝑥0
is

determined by the number of hidden layers.
In general, neural networks with more hidden layers are sup-

posed to have stronger expressive power. However, the higher the
degree is, the more difficult the verification is. We choose the ReLU
neural network with two hidden layers as the template of candidate
barrier certificates, as shown in Section 4.1. Under the structural
configuration, the degree of 𝜕𝑥3

𝜕𝑥0
is 2, where there are two binary

vectors 𝑡1 and 𝑡2.
Now we proceed to 𝜕𝑥3

𝜕𝑥0
𝑓𝑚 (𝑥), the objective of the following

optimization problem. Let 𝑥0[𝑖 ] and 𝑓𝑚 [𝑖 ] (𝑥) denote the 𝑖-th ele-
ment of the vectors 𝑥0 and 𝑓𝑚 (𝑥), respectively, the product of 𝜕𝑥3

𝜕𝑥0
and 𝑓𝑚 (𝑥) is the sum of the product of correspondence elements
defined as:

𝜕𝑥3
𝜕𝑥0

𝑓𝑚 (𝑥) =
∑︁ |𝑋 |

𝑖=1
𝜕𝑥3

𝜕𝑥0[𝑖 ]
𝑓𝑚 [𝑖 ] (𝑥), (37)

where |𝑋 | is the number of system variables, also the number of
neurons in the input layer.

An intermediate variable 𝑣 is introduced as a constraint of the
optimization problem, which is a quadratic constraint about two
binary vectors 𝑡1 and 𝑡2, define as: 𝑣 =𝑊3 ·𝑡2𝑊2 ·𝑡1𝑊1. Then, the opti-
mization objective reacting to Equation (19) becomes 𝑣 𝑓𝑚 (𝑥). Here,
𝑣 is a variable of degree one and 𝑓𝑚 (𝑥) can be over-approximated
by piece-wise linear functions with degree one, so the optimization
objective 𝑣 𝑓𝑚 (𝑥) is quadratic. We construct the following MIQCP
problem for verifying the derivative condition:

𝑝 = max 𝑣𝑓𝑚 (𝑥)
s.t. 𝑥0 ∈ 𝐷𝑚, ∀𝑚 ∈ 𝑀,

𝑧𝑘 =𝑊𝑘𝑥𝑘−1 + 𝑏𝑘 , 𝑘 = 1, 2,
−𝑧𝑘 + 𝑥𝑘 − 𝑙𝑘𝑡𝑘 ≤ −𝑙𝑘 , 𝑘 = 1, 2,
𝑧𝑘 − 𝑥𝑘 ≤ 0, 𝑘 = 1, 2,
𝑥𝑘 −𝑢𝑘𝑡𝑘 ≤ 0, 𝑘 = 1, 2,
𝑥𝑘 ≥ 0, 𝑘 = 1, 2,
𝑡𝑘 ∈ {0, 1}𝑠𝑘 , 𝑘 = 1, 2,
𝑊3𝑥2 + 𝑏3 = 0,
𝑣 =𝑊3 · 𝑡2𝑊2 · 𝑡1𝑊1,



(38)

where 𝑙𝑘 and 𝑢𝑘 are estimated bound constants and 𝑓𝑚 (𝑥) and 𝐷𝑚

are approximated with the piece-wise linear functions.
For MIQCP problems, the optimizer Gurobi can search the whole

state space, and return an optimumwith its maximum relative error
to the global optimum. Likely, we use the following theorem to
certify the condition.

Theorem 11. For the MIQCP problem (38), if the solution 𝑝 ′ ≤ 0
while the maximum relative error 𝜉 < 1, then the global optimal
solution 𝑝∗ of problem (38) is non-positive. For ∀𝑥0 ∈ 𝐷𝑚 such that
𝑥3 = 0, we have 𝜕𝑥3

𝜕𝑥0
𝑓𝑚 (𝑥) ≤ 0 and Equation (19) is verified to be

satisfied.

5.3 Algorithm
The detailed barrier certificate synthesis algorithm is presented in
Algorithm 1. To train a neural network barrier certificate, we first
generate the training datasets and initialize the neural network
N (Line 1-2). In each epoch, the training datasets are divided into

Algorithm 1: Barrier Certificate Synthesis
Input: Hybrid system Π, trajectory time bound𝑇 , maximum epoch

number 𝑒𝑚𝑎𝑥 , loss function parameters 𝜖1, 𝜖2, 𝛼, 𝛽,𝛾
Output: Result flag 𝑓 𝑙𝑎𝑔 and barrier certificate N

1 Generate datasets 𝐷1, 𝐷2, 𝐷3 with trajectory points in [0,𝑇 ]
2 Initialize parameters 𝜃 of neural network N
3 for 𝑒 = 1 to 𝑒𝑚𝑎𝑥 do
4 Divide 𝐷1, 𝐷2, 𝐷3 to batches 𝑑𝑠 : {𝑑1, ..., 𝑑𝑛 }
5 for each 𝑑𝑖 ∈ 𝑑𝑠 do
6 Construct loss function 𝑙 with 𝜖1, 𝜖2, 𝛼, 𝛽,𝛾 according to

Equation (16)
7 Update 𝜃 by minimizing 𝑙 using Adam optimizer

8 Transform network output verification into the MILP problems
according to (28) (31) (32)

9 Transform network derivative verification into the MIQCP
problem according to (38)

10 Optimize above MIP problems to get current solutions 𝑝′ with
the maximum relative error 𝜉

11 if 𝑝′ have the expected signs and 𝜉 < 1 then
12 Return 𝑠𝑢𝑐𝑐𝑒𝑠𝑠,N
13 else
14 Sample data points around verification counterexamples

and add them to training datasets

15 Return 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒, 𝑁𝑜𝑛𝑒

several batches and loss function 𝑙 are constructed on each batch
(Line 3-6). The network is trained by minimizing 𝑙 using Adam op-
timizer (Line 7). Note that loss function minimization optimization
is out of the scope of this paper, and we direct readers to [2, 8, 38].
After training on all batches,N is regarded as the candidate barrier
certificate. The safety verification of the candidate neural network
barrier certificateN is encoded to a set of MIP-based problems. The
verification of requiring positive for unsafe regions, non-positive
for initial states, and non-positive after discrete transitions is trans-
formed into a group of MILP problems as according to (28), (31), and
(32), respectively (Line 8). The verification of requiring non-positive
about network derivative when following the continuous flow is
transformed into the MIQCP problem according to (38) (Line 9).
These MIP-based optimization problems are solved by the MIP
solver to get the current solutions 𝑝 ′ with the maximum relative
error 𝜉 (Line 10). If 𝜉 < 1 and 𝑝 ′ have the expected signs, i.e., posi-
tive sign for problem (28) and non-positive signs for problem (31),
(32), (38), N is a real barrier certificate and return 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and N
(Line 12). Otherwise, sampling data points around counterexamples
returned by optimizer and add them to the corresponding train-
ing datasets to enhance the training datasets (Line 14). The above
barrier certificate synthesis process continues until finding a real
barrier certificate or reaching the maximum epoch number.

6 EXPERIMENTS
We have implemented a barrier certificate synthesis tool named
SyntheBC based on Algorithm 1. In this section, we present an
experimental evaluation of SyntheBC over a set of benchmark ex-
amples, including 3 hybrid systems and 8 continuous systems up to
12-dimensional state space, and compare with the neural network
barrier certificate synthesized framework nnbarrier [51] and the
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classical SOS barrier certificate generation method [19]. For nnbar-
rier, we use their default settings. For the SOS method, we explore
the different degrees of polynomial barrier certificate up to 8. We
implement SyntheBC based on Tensorflow 1.14 and Gurobi 9.0. All
experiments are conducted on a machine running Ubuntu 16.04
with 128GB RAM, a 3.20GHz Intel Xeon Gold 6146 CPU, and an
NVIDIA TITAN V GPU.

In experiments, the examples contain elementary functions such
as𝑝𝑜𝑤, 𝑠𝑞𝑟𝑡, 𝑒𝑥𝑝, 𝑠𝑖𝑛, 𝑐𝑜𝑠 and the number of system variables reaches
up to 12. For all examples, we set the parameters 𝜖1 = 0.0001, 𝜖2 =
0.001, 𝛼 = 𝛽 = 𝛾 = 1 and 𝛿 = 0.5.

6.1 Case studies

Figure 2: The original system and changed system in Example
1. Left subgraph plots the neural network barrier certificate
synthesized by SyntheBC on the original system. Right sub-
graph plots barrier certificates synthesized by SyntheBC, the
SOS method, and nnbarrier on the changed system with 1/4
initial state.

Example 1. Consider the following continuous system [25]:[
¤𝑥1
¤𝑥2

]
=

[
𝑥21 + 𝑥1𝑥2 + 𝑥1
𝑥1𝑥2 + 𝑥22 + 𝑥2

]
,

with the state space:

𝐷 = {−2 ≤ 𝑥1, 𝑥2 ≤ 2}.
It is required to verify that all trajectories of the system starting from
the initial states:

𝐼 = {0 ≤ 𝑥1, 𝑥2 ≤ 1},
will never enter the unsafe region:

𝑈 = {(𝑥1 + 0.5)2 + (𝑥2 + 0.5)2 ≤ 0.25}.
A neural networkN with ReLU activation functions of the structure

2-20-16-1 is trained as the barrier certificate by SyntheBC, where the
number of neurons of each layer is separated by ’-’. Initially, each
training data set is generated with 100,000 randomly sampled data
points. SyntheBC randomly samples 300 points from initial states as
the starting point of the trajectories and move forward 100 steps with
step size 0.1.

The left subgraph in Figure 2 displays the initial state, trajectories,
the unsafe region of the system, and the zero level set of the neural
network barrier certificate synthesized by SyntheBC. The network
curve is flexible enough to turn smoothly near the zero point and walk

along with the line 𝑥1 = 0. For nnbarrier and the SOS method, they
fail to synthesize barrier certificates.

For a more comprehensive comparison, we reduce the initial state
to one quarter of the original one, all methods can synthesize barrier
certificates as shown in the right subfigure in Figure 2. In this case,
the barrier certificates synthesized by nnbarrier and SyntheBC have
similar behaviors, while the SOS method synthesizes a barrier certifi-
cate close to the initial state. This example shows that SyntheBC is
more capable and works well in extreme cases.

Example 2. Consider the HIV transmission model [23]:
¤𝑥1
¤𝑥2
¤𝑥3

 =

− 𝛽𝑐𝑥1𝑥2
𝑥1+𝑥2+𝑥3 − 𝜇𝑥1
𝛽𝑐𝑥1𝑥2

𝑥1+𝑥2+𝑥3 − (𝜇 + 𝜈)𝑥2
𝜈𝑥2 − 𝛼𝑥3

 ,
where 𝑥1, 𝑥2, and 𝑥3 denote the part of the population: HIV susceptible,
HIV infected, and AIDS diagnosed, respectively; 𝛽 is the possibility
of infection per partner contact; 𝑐 is the rate of partner change; 𝜇 is
the death rate of non-AIDS population; 𝛼 is the death rate of AIDS
patients; and 𝜈 is the rate at which HIV infected people develop AIDS.
As shown in [23], the parameters are: 𝛽 = 0.2, 𝑐 = 10, 𝜇 = 0.008,
𝛼 = 0.95, and 𝜈 = 0.1. Suppose the system state space 𝐷 is:

𝐷 = {0 ≤ 𝑥1, 𝑥2, 𝑥3 ≤ 10.013}.
The goal is to verify that all trajectories of the system starting from
the initial states:

𝐼 = {9.985 ≤ 𝑥1 ≤ 9.995, 0.005 ≤ 𝑥2 ≤ 0.015, 0 ≤ 𝑥3 ≤ 0.003},
will never enter the unsafe region:

𝑈 = {0 ≤ 𝑥1, 𝑥2 ≤ 10.013, 1 ≤ 𝑥3 ≤ 10.013}.
For this example, SyntheBC and nnbarrier fails to synthesize barrier
certificates and only the SOS method succeeds. The possible reason for
SyntheBC’s failure is the asymmetric size of the initial states and the
insecure region.

Figure 3: The hybrid system in Example 3.

Example 3. Consider the following hybrid system [50] in Figure 3,
where

𝑓1 (𝑥) =
[
𝑥1 − 𝑥1𝑥2
−𝑥2 + 𝑥1𝑥2

]
, 𝑓2 (𝑥) =

[
𝑥1 + 𝑥21𝑥2
𝑥2 + 𝑥1𝑥2

]
.

It is required to verify that all trajectories of the system starting from
the initial state 𝐼1 in mode𝑚1:

𝐼1 = {−2 ≤ 𝑥1, 𝑥2 ≤ −1},
will never enter the unsafe region𝑈2 in the mode𝑚2:

𝑈2 = {0 ≤ 𝑥1 ≤ 1,−2 ≤ 𝑥2 ≤ −1}.
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Table 1: Performance Evaluation

Examples |𝑋 | Feature SyntheBC nnbarrier SOS method
N 𝑡𝑡 𝑡𝑣 𝑟 𝑡𝑡 𝑡𝑣 𝑟 𝑑 𝑡 𝑟

H1 [50] 2 𝑝𝑜𝑙𝑦 2-20-16-1 32.55 3.19 ✓ - - × - - ×
H2 [50] 2 𝑝𝑜𝑙𝑦 2-20-16-1 45.37 2.89 ✓ - - × 2 6.91 ✓
H3 [47] 2 𝑝𝑜𝑙𝑦, 𝑠𝑞𝑟𝑡 2-20-16-1 91.82 1.97 ✓ - - × 2 4.69 ✓
C1 [25] 2 𝑝𝑜𝑙𝑦 2-20-16-1 29.63 1.11 ✓ - - × - - ×
C2 [23] 3 𝑝𝑜𝑙𝑦, 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 - - - × - - × 2 0.83 ✓
C3 [25] 2 𝑝𝑜𝑙𝑦 2-20-16-1 61.45 4.58 ✓ 846.54 465.24 ✓ - - ×
C4 [4] 2 𝑝𝑜𝑙𝑦, 𝑒𝑥𝑝, 𝑠𝑖𝑛 2-20-16-1 46.44 10.44 ✓ 648.46 45.18 ✓ 3 1.43 ✓
C5 [9] 3 𝑝𝑜𝑙𝑦 3-20-16-1 74.68 6.10 ✓ 2465.89 1049.68 ✓ - - ×
C6 [49] 2 𝑝𝑜𝑙𝑦, 𝑒𝑥𝑝, 𝑐𝑜𝑠 2-20-16-1 95.64 3.49 ✓ 1469.81 645.90 ✓ - - ×
C7 [18] 7 𝑝𝑜𝑙𝑦 7-20-16-1 111.92 5.16 ✓ - - × 2 7.06 ✓
C8 [7] 12 𝑝𝑜𝑙𝑦, 𝑠𝑖𝑛, 𝑐𝑜𝑠 12-20-16-1 292.28 4.19 ✓ - - × - - ×

A neural networkN with ReLU activation functions of the structure
2-20-16-1 is trained as the barrier certificate by SyntheBC. The neural
network barrier certificate is verified to satisfy Equation (17)-(20) and
guarantees the safety of the hybrid system. For nnbarrier and the
SOS method, they fail to synthesize the barrier certificates.

6.2 Performance evaluation
Table 1 shows the performance evaluation of SyntheBC, nnbarrier,
and the SOS method on 3 hybrid systems and 8 continuous sys-
tems. In Table 1, the example ID beginning with ’H’ represents
the hybrid system, and ’C’ represents the continuous system; |𝑋 |
denotes the number of system variables; Feature denotes the type
of system update functions. In the columns of SyntheBC,N denotes
the structure of neural network barrier certificates; 𝑡𝑡 denotes the
running time of barrier certificate training process; 𝑡𝑣 denotes the
running time of barrier certificate verification process; 𝑟 denotes the
result flag: ✓denotes success and ×denotes failure. In the nnbarrier
columns, 𝑡𝑡 , 𝑡𝑣 , and 𝑟 are the same as those in SyntheBC columns.
In the SOS method columns, 𝑑 denotes the degree of the barrier
certificate, 𝑡 is the running time of synthesizing barrier certificate,
and 𝑟 is the same as that in SyntheBC columns. The running time
is reported in seconds.

For the all 11 examples, SyntheBC verifies 10 examples, while
the nnbarrier and the SOS method verify 4 and 5 examples, respec-
tively. For the hybrid systems H1-3, nnbarrier fails to verify safety
properties and the SOS method verifies two of them. For the high
dimensional systems C7-8, the SOS method can verify one of them
while nnbarrier fails to verify both.

For the 7-dimensional system C7, nnbarrier trains a candidate
neural network barrier certificate on C7 using 6615.76s. However,
the candidate barrier certificate can not be verified by the SMT-
solver isat3 used by nnbarrier in 24 hours. To verify the safety of this
candidate barrier certificate, we try to encode it to an optimization
problem and solve it by Gurobi. Since the Bent-ReLU 𝑦 = 0.5𝑥 +√
0.25𝑥2 + 0.0001 which is used by nnbarrier as activation function

is not piece-wise linear, it need to be approximated. However, due
to the high complexity caused by the approximation of all hidden
layer neurons with Bent-ReLU activation functions, we can not get
the optimal solution in 24 hours. Thus it is reported failed.

Observing the structure of network N in Table 1, the sum of
neural network neuron number is not greater than 50. Based on

such network structures, SyntheBC successes to synthesize barrier
certificates on all examples. Moreover, for example C3-6, the barrier
certificate training time of SyntheBC has an order of magnitude
improvement than that of nnbarrier. For C3, C5, and C6, the bar-
rier certificate verification time of SyntheBC has more than two
orders of magnitude improvement than that of nnbarrier. For C4,
the verification time of SyntheBC is a quarter of that of nnbarrier.

The SOS method’s running time is much less than that of Syn-
theBC and nnbarrier, since the approaches of synthesizing barrier
certificate are fundamentally different. We experiment the SOS
method on 11 examples and explore the degree of polynomial up
to 8. However, the SOS method can only verify 5 examples and
for the rest of the examples, it can not verify safety in an hour.
These experimental results show that SyntheBC is more scalable
and effective than nnbarrier and the SOS method.

7 CONCLUSION
In this paper, we have presented a novelmethod to synthesize neural
networks as barrier certificates for verifying the safety properties
of hybrid systems. Barrier certificates of the type neural networks
are synthesized through two successive steps: network training
and barrier certificates validation. The training procedure trains
candidate networks from a special structure: ReLU neural networks
consisting of two hidden layers. For barrier certificates validation,
we propose a MIP-encoding based method to transform the prob-
lem of verifying barrier certification conditions into a group of
MILP problems and a MIQCP problem. The recent advance in opti-
mization makes the validation very effective and efficient. We have
implemented the tool SyntheBC and evaluate its performance over
a set of benchmark examples up to 12-dimensional state space. The
experimental results show that our method is more scalable and
effective than the classical polynomial barrier certificate method
and the existing neural network based method nnbarrier.

ACKNOWLEDGMENTS
We gratefully acknowledge the support from the Leading-edge
Technology Program of Jiangsu Natural Science Foundation No.
BK20202001, the National Natural Science Foundation of China
under Grant 62032010, 61772203, 61772260, Zhejiang Provincial
Natural Science Foundation of China under Grant LY20F020020.

For Research Only



Synthesizing ReLU Neural Networks with Two Hidden Layers as Barrier Certificates for Hybrid Systems HSCC ’21, May 19-21, 2021, Virtual

REFERENCES
[1] Hirokazu Anai and Volker Weispfenning. 2001. Reach Set Computations Using

Real Quantifier Elimination. In Proceedings of the 4th International Workshop on
Hybrid Systems: Computation and Control (HSCC ’01, Vol. 14). Springer, London,
UK, 63–76.

[2] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

[3] George Cybenko. 1989. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems 2, 4 (1989), 303–314.

[4] Liyun Dai, Ting Gan, Bican Xia, and Naijun Zhan. 2017. Barrier Certificates
Revisited. Journal of Symbolic Computation 80 (2017), 62–86.

[5] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Output range analysis for deep feedforward neural networks. In NASA Formal
Methods Symposium. Springer, 121–138.

[6] Chuchu Fan and Sayan Mitra. 2015. Bounded Verification with On-the-Fly
Discrepancy Computation. In Automated Technology for Verification and Analysis,
Bernd Finkbeiner, Geguang Pu, and Lijun Zhang (Eds.). Springer International
Publishing, Cham, 446–463.

[7] Sicun Gao. [n.d.]. Quadcopter Model. ([n. d.]).
https://github.com/dreal/benchmarks/ blob/master/inv/quadcopter_nonlinear.inv.

[8] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

[9] Eric Goubault, J-H Jourdan, Sylvie Putot, and Sriram Sankaranarayanan. 2014.
Finding non-polynomial positive invariants and Lyapunov functions for polyno-
mial systems through Darboux polynomials. In Proceedings of the 2014 American
Control Conference (ACC). IEEE, 3571–3578.

[10] Sumit Gulwani and Ashish Tiwari. 2008. Constraint-Based Approach for Analysis
of Hybrid Systems. In Proc. of the 20th International Conference on Computer Aided
Verification (CAV). 190–203.

[11] Incorporate Gurobi Optimization. 2020. Gurobi optimizer reference manual. URL
https://www.gurobi.com (2020).

[12] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. 1989. Multilayer
feedforward networks are universal approximators. Neural Networks 2, 5 (1989),
359–366.

[13] James Kapinski and Jyotirmoy Deshmukh. 2015. Discovering forward invariant
sets for nonlinear dynamical systems. In Interdisciplinary Topics in Applied
Mathematics, Modeling and Computational Science. Springer, 259–264.

[14] James Kapinski, Jyotirmoy V Deshmukh, Sriram Sankaranarayanan, and Nikos
Aréchiga. 2014. Simulation-guided lyapunov analysis for hybrid dynamical
systems. In Proc. of the Hybrid Systems: Computation and Control (HSCC). ACM,
133–142.

[15] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In
International Conference on Computer Aided Verification. Springer, 97–117.

[16] R Baker Kearfott and Vladik Kreinovich. 2013. Applications of interval computa-
tions. Vol. 3. Springer Science & Business Media.

[17] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[18] Edda Klipp, Ralf Herwig, Axel Kowald, Christoph Wierling, and Hans Lehrach.
2005. Systems Biology in Practice: Concepts, Implementation and Application.
Wiley-Blackwell.

[19] Michal Kocvara and Michael Stingl. 2005. PENBMI userąŕs guide. Avaiable from
http://www.penopt.com (2005).

[20] Hui Kong, Fei He, Xiaoyu Song, William NN Hung, and Ming Gu. 2013.
Exponential-condition-based barrier certificate generation for safety verification
of hybrid systems. In Proceedings of the 25th International Conference on Computer
Aided Verification (CAV). Springer, 242–257.

[21] Hui Kong, Xiaoyu Song, Dong Han, Ming Gu, and Jiaguang Sun. 2014. A new
barrier certificate for safety verification of hybrid systems. Comput. J. 57, 7 (2014),
1033–1045.

[22] Jiang Liu, Naijun Zhan, and Zhao Hengjun. 2011. Computing semi-algebraic
invariants for polynomial dynamical systems. In Proceedings of the International
Conference on Embedded Software (EMSOFT). ACM, 97–106.

[23] Jiang Liu, Naijun Zhan, Hengjun Zhao, and Liang Zou. 2015. Abstraction of
Elementary Hybrid Systems by Variable Transformation. In Proceedings of the
20th International Symposium on Formal Methods. 360–377.

[24] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. 2017.
The Expressive Power of Neural Networks: A View from the Width. In Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA.
6231–6239.

[25] Nadir Matringe, Arnaldo Vieira Moura, and Rachid Rebiha. 2010. Generating
invariants for non-linear hybrid systems by linear algebraic methods. In Proc. of
the Static Analysis. Springer, 373–389.

[26] Andrea Peruffo, Daniele Ahmed, and Alessandro Abate. 2020. Automated Formal
Synthesis of Neural Barrier Certificates for Dynamical Models. arXiv preprint
arXiv:2007.03251 (2020).

[27] André Platzer and Edmund M. Clarke. 2009. Computing differential invariants
of hybrid systems as fixedpoints. Formal Methods in System Design 35, 1 (2009),
98–120.

[28] Stephen Prajna and Ali Jadbabaie. 2004. Safety verification of hybrid systems
using barrier certificates. In Proceedings of the 7th International Workshop on
Hybrid Systems: Computation and Control (HSCC). Springer, 477–492.

[29] S. Prajna, A. Jadbabaie, and G.J. Pappas. 2007. A framework for worst-case and
stochastic safety verification using barrier certificates. IEEE Trans. Automat.
Control 52, 8 (2007), 1415–1429.

[30] Maithra Raghu, Ben Poole, Jon M. Kleinberg, Surya Ganguli, and Jascha Sohl-
Dickstein. 2017. On the Expressive Power of Deep Neural Networks. In Proceed-
ings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017. 2847–2854.

[31] Enric Rodríguez-Carbonell and Ashish Tiwari. 2005. Generating Polynomial
Invariants for Hybrid Systems. In Proc. of the 8th ACM International Conference
on Hybrid Systems: Computation and Control. 590–605.

[32] Sriram Sankaranarayanan. 2010. Automatic invariant generation for hybrid
systems using ideal fixed points. In Proceedings of the 13th ACM International
Conference on Hybrid Systems: Computation and Control. ACM, 221–230.

[33] Sriram Sankaranarayanan. 2020. Reachability Analysis Using Message Passing
over Tree Decompositions. In Computer Aided Verification, Shuvendu K. Lahiri
and Chao Wang (Eds.). Springer International Publishing, Cham, 604–628.

[34] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. 2008. Constructing
invariants for hybrid systems. Formal Methods in System Design 32, 1 (2008),
25–55.

[35] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin
Vechev. 2018. Fast and effective robustness certification. In Advances in Neural
Information Processing Systems. 10802–10813.

[36] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An
abstract domain for certifying neural networks. Proceedings of the ACM on
Programming Languages 3, POPL (2019), 1–30.

[37] Christoffer Sloth, George J Pappas, and Rafael Wisniewski. 2012. Compositional
safety analysis using barrier certificates. In Proceedings of the 15th ACM Interna-
tional Conference on Hybrid Systems: Computation and Control. ACM, 15–24.

[38] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951–2959.

[39] Andrew Sogokon, Khalil Ghorbal, Paul B Jackson, and André Platzer. 2016. A
Method for Invariant Generation for Polynomial Continuous Systems. In Proceed-
ings of the International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI). Springer, 268–288.

[40] Thomas Sturm and Ashish Tiwari. 2011. Verification and synthesis using real
quantifier elimination. In Proceedings of the International Symposium on Symbolic
and Algebraic Computation (ISSAC). ACM Press, 329–336.

[41] Vincent Tjeng and Russ Tedrake. 2017. Verifying neural networks with mixed
integer programming. arXiv preprint arXiv:1711.07356 (2017), 945–950.

[42] Vincent Tjeng, Kai Xiao, and Russ Tedrake. 2017. Evaluating robustness of neural
networks with mixed integer programming. arXiv preprint arXiv:1711.07356
(2017).

[43] Cumhur Erkan Tuncali, James Kapinski, Hisahiro Ito, and Jyotirmoy V. Deshmukh.
2018. Reasoning about safety of learning-enabled components in autonomous
cyber-physical systems. In Proceedings of the 55th Annual Design Automation
Conference, DAC 2018, San Francisco, CA, USA, June 24-29, 2018. ACM, 30:1–30:6.

[44] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal security analysis of neural networks using symbolic intervals. In 27th
{USENIX} Security Symposium ({USENIX} Security 18). 1599–1614.

[45] Felix Winterer. 2017. isat3. URL https://projects.informatik.uni-
freiburg.de/projects/isat3 (2017).

[46] Eric Wong and Zico Kolter. 2018. Provable defenses against adversarial examples
via the convex outer adversarial polytope. In International Conference on Machine
Learning. PMLR, 5286–5295.

[47] Bai Xue, Martin Fränzle, Hengjun Zhao, Naijun Zhan, and Arvind Easwaran.
2019. Probably Approximate Safety Verification of Hybrid Dynamical Systems.
In International Conference on Formal Engineering Methods. Springer, 236–252.

[48] Zhengfeng Yang, Wang Lin, and Min Wu. 2015. Exact Verification of Hybrid
Systems Based on Bilinear SOS Representation. ACM Transactions on Embedded
Computing Systems 14, 1 (2015), 1–19.

[49] Zhengfeng Yang, Min Wu, and Wang Lin. 2020. An efficient framework for
barrier certificate generation of uncertain nonlinear hybrid systems. Nonlinear
Analysis: Hybrid Systems 36 (2020), 100837.

[50] Xia Zeng, Wang Lin, Zhengfeng Yang, Xin Chen, and Lilei Wang. 2016. Darboux-
type barrier certificates for safety verification of nonlinear hybrid systems. In Proc.
of 2016 International Conference on Embedded Software, EMSOFT 2016, Pittsburgh,
Pennsylvania, USA, October 1-7, 2016, Petru Eles and Rahul Mangharam (Eds.).
ACM, 11:1–11:10.

[51] Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu. 2020. Synthesizing
barrier certificates using neural networks. In Proceedings of the 23rd International
Conference on Hybrid Systems: Computation and Control. 1–11.

For Research Only


