
	
	
	

Software	Engineering	Group	
Department	of	Computer	Science	
Nanjing	University	
http://seg.nju.edu.cn	

	
	
	
	

Technical	Report	No.	NJU-SEG-2018-IJ-001	

2018-IJ-001	

	
	

Systematically Ensuring The Confidence of Real Time Home

Automation IoT Systems	
Lei	Bu,	Wen	Xiong,	Chieh-Jan	Mike	Liang,	Shi	Han,	Dongmei	Zhang,	Shan	Lin,	Xuandong	

Li	

	
	
	
	
	

ACM	Transactions	on	Cyber-Physical	Systems	2018	
	
	
	
	
	
	
	

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

22

Systematically Ensuring the Confidence of Real-Time Home

Automation IoT Systems

LEI BU and WEN XIONG, Nanjing University

CHIEH-JAN MIKE LIANG, SHI HAN, and DONGMEI ZHANG, Microsoft Research

SHAN LIN, Stony Brook University

XUANDONG LI, Nanjing University

Recent advances and industry standards in Internet of Things (IoT) have accelerated the real-world adoption
of connected devices. To manage this hybrid system of digital real-time devices and analog environments,
the industry has pushed several popular home automation IoT (HA-IoT) frameworks, such as If-This-Then-
That (IFTTT), Apple HomeKit, and Google Brillo. Typically, users author device interactions by specifying
the triggering sensor event and the triggered device command. In this seemingly simple software system,
two dominant factors govern the system confidence properties with respect to the physical world. First,
IoT users are largely nonexperts who lack the comprehensive consideration regarding potential impact and
joint effect with existing rules. Second, while the increasing complexity of IoT devices enables fine-grained
control (e.g., heater temperature) of continuous real-time environments, even two simply connected devices
can have a huge state space to explore. In fact, bugs that wrongfully control devices and home appliances
can have ramifications on system correctness and even user physical safety. It is crucial to help users to
make sure the system they created meets their expectation. In this article we introduce how techniques from
hybrid automata can be practically applied to assist nonexpert IoT users in the confidence checking of such
hybrid HA-IoT systems. We propose an automated framework for end-to-end programming assistance. We
build and check the Linear Hybrid Automata (LHA) model of the system automatically. We also present a
quantifier elimination-based method to analyze the counterexample found and synthesize fix suggestions.
We implemented a platform, MenShen, based on this framework and proposed techniques. We conducted
sets of real HA-IoT case studies with up to 46 devices and 65 rules. Empirical results show that MenShen can
find violations and generate rule fix suggestions in only 10 seconds.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; • Soft-

ware and its engineering → Model checking;

Additional Key Words and Phrases: IFTTT, home automation, internet of things, linear hybrid automata,
automatic modeling and verification, fix suggestion

This artilce is supported in part by the National Natural Science Foundation of China (No.61690204, No.61632015,
No.61561146394, No.61572249, No.61472179), in which No.61561146394 is a Joint NSFC-ISF Research Program, jointly
funded by the National Natural Science Foundation of China and the Israel Science Foundation. Lei Bu is also supported
by the Microsoft Research Asia Collaborative Research Program. Shan Lin is supported by the NSF CNS 1553273 and CNS
1463722.
Authors’ addresses: L. Bu, W. Xiong, and X. Li are with the Computer Science Department, Xianlin Campus, Nanjing
University, Nanjing, Jiangsu, China, 210023; emails: {bulei, xiongwen, lxd}@nju.edu.cn; C.-J. M. Liang, S. Han, and D.
Zhang, Building 2, No. 5 Dan Ling Street, Haidian District, Beijing, China, 100080; emails: {liang.mike, shihan, dongmeiz}@
microsoft.com; S. Lin is with Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook,
NY 11794-2350; email: shan.x.lin@stonybrook.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 2378-962X/2018/06-ART22 $15.00
https://doi.org/10.1145/3185501

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

mailto:permissions@acm.org
https://doi.org/10.1145/3185501

22:2 L. Bu et al.

ACM Reference format:

Lei Bu, Wen Xiong, Chieh-Jan Mike Liang, Shi Han, Dongmei Zhang, Shan Lin, and Xuandong Li. 2018.
Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems. ACM Trans. Cyber-

Phys. Syst. 2, 3, Article 22 (June 2018), 23 pages.
https://doi.org/10.1145/3185501

1 INTRODUCTION

With the rapid advancement of computing technology, the computing paradigm of Cyber-Physical
Systems (CPS) (Lee 2006) has emerged in the past decade. Under this paradigm, sensor data can be
acquired and processed in real time, which then drives intelligence (Lin et al. 2008). Furthermore,
riding on the momentum of the Internet of Things (IoT), the industry has pushed for standards
that enable more connected devices to interoperate. However, central to this connected vision is an
IoT control framework, which manages the hybrid system of digital real-time devices and analog
environments in a space. Many home owners have benefited from this IoT control framework. For
example, they can author automation tasks that send SMS messages to the ho homeowner when
the kitchen has a high smoke level.

The industry has pushed several offerings in home automation IoT (HA-IoT) services, such as
If-This-Then-That (IFTTT.com) (ift 2011), Apple HomeKit (ah 2016), and Google Brillo (gb 2016).
Interestingly, the user base of home automation largely consists of nonexperts who have insuffi-
cient background with programming hybrid control systems. Therefore, these industry offerings
simplify authoring an automation task down to authoring a set of intuitive event-triggered rules –
or IFTTT-style rules. IFTTT rules are popular among HA-IoT services, and one HA-IoT service,
IFTTT.com, has tens of thousands of active users and more than 340,000 shared rules. An IFTTT-
style rule is in the format of if A then do B, where A is a triggering sensor event and B is a
triggered device command. We illustrate the automation task with an example of two rules that
regulate the CO concentration in a given space to be under 200 ppm.1

IF Smart_Fan.CO_reading == 195 THEN execute Alarm.TURN_ON command
IF Alarm.TURN_ON.Signal ==TRUE THEN execute Smart_Fan.ACTIVATE command

This CO example has a clear relation to user safety. There is also another widely used rule which
concerns keeping room temperature within certain range and also concerns energy saving.2

IF Room. Temperature_reading ==20 THEN execute HVAC.TURN_OFF command
IF Room. Temperature_reading ==28 THEN execute HVAC.TURN_ON command
IF HVAC.TURN_ON.Signal == TRUE THEN execute Window.CLOSE command

However, while individual IFTTT-style rules are simple to author, reasoning about their
confidence (i.e., whether a system’s real-time behavior conforms to a user’s expectation) is a
complicated task with implications for system confidence. This is crucial as wrongfully actuating
IoT devices and appliances could have ramifications for user physical well-being (e.g., high CO
concentration). Such reasoning needs to accurately model the behavior of a system of devices over
the time domain. Challenges arise from the fact that (1) environment and system variables are

1We note that this CO concentration case is inspired by a rule uploaded by normal users on IFTTT.com, https://ifttt.com/
recipes/368595-turn-on-your-air-purifier-when-the-air-quality-decreases.
2This HVAC case is also inspired by a rule on IFTTT.com, https://ifttt.com/recipes/182684-if-the-temperature-inside-
drops-below-degrees-then-turn-off-a-c.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

https://doi.org/10.1145/3185501
https://ifttt.com/recipes/368595-turn-on-your-air-purifier-when-the-air-quality-decreases
https://ifttt.com/recipes/182684-if-the-temperature-inside-penalty -@M drops-below-degrees-then-turn-off-a-c

Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems 22:3

changing continuously, (2) events can happen at any time, and (3) the number of interactions to
inspect increases with the number of automation rules. More importantly, while typical real- time
control systems are maintained by domain experts, HA-IoT systems are operated by nonexpert
homeowners. Therefore, building on formal model checking, we investigate new approaches

and tools to help non-expert IoT users in systematically realizing high-confidence real-time HA-IoT

systems.
Our system design is guided by two main principles. First, there is an increasing number of IoT

appliances that deal with real-time continuous environments with dynamic laws and time delays.
In our CO example, if the smart fan is activated, it can decrease CO concentrations according to
a dynamic law (ODE dCO/dt = −2). So, the 195 ppm threshold of the purifier seems to be correct
in that the CO level will not go over 200 ppm. However, due to the existence of a time delay in
rule reaction, the CO level could exceed the threshold before the smart fan is activated. The HVAC
example shares a similar story as well. Related efforts either simplify the problem down to discrete
values (Liang et al. 2015, 2016), or they do not support arbitrary continuous behavior (Croft et al.
2015), which may cause false negatives in the verification. Second, all steps of system modeling,
specification verification, and violation fixing should be as transparent as possible to the user.
Unlike typical CPS systems with domain experts (Clarke et al. 2008), relying on nonexpert users
is impractical due to their lack of background knowledge.

This article realizes an end-to-end programming assistance system to automate the modeling,
checking, and fixing of HA-IoT systems. Specifically, this article makes the following contributions:

Hybrid Automata Model Checking of Real-Time HA-IoT System. As IoT devices are be-
coming a customized commodity, it is important to help IoT users to ensure the confidence of the
automation systems they build. Motivated by IoT-specific characteristics, we take the first step to
fill this gap with hybrid automata model checking. First, by using hybrid automata, it is possible for
us to model and check the complex arbitrary continuous real-time behavior of an analog system.
This was previously unachievable through related efforts (Croft et al. 2015). Second, in contrast to
efforts which require user intervention in modeling and debugging (Liang et al. 2015), our work
tries to automate all stages for nonexpert IoT users.

Counterexample-guided Fix Suggestions. With each specification violation, the common prac-
tice is for the verification tool to output a counterexample, which is then analyzed by domain
experts to fix the software problem. However, such an assumption does not hold in the case of
nonexpert IoT users. Instead, what should be provided is root cause analysis that pinpoints the
IFTTT rule to fix. To this end, we present a method to automatically parameterize the system and
synthesize specific parameter values through the Quantifier Elimination (QE) (Monniaux 2008)
technique.

System Implementation and Real Case Evaluation. We have been operating an IoT program-
ing platform, MenShen, which implements our techniques. We check and fix a large number of
real cases, including 46 devices and 65 rules, in only 7.5 seconds. In MenShen, we also support and
appreciate interaction with users. If users can select the specific rules they want to fix, or give a
preferred range of rule parameters, MenShen can finish the task in only 4 seconds with high user
acceptance.

Structure of the Article. The IFTTT-style IoT programming platform studied in this article is
presented in the next section. Section 2 also recaps the definition and verification technique of
LHA, which works as the underlying decision procedure of this article. After that, we present the
architecture of our modeling, verification, and repair framework in Section 3. The details of the
automatic modeling technique and the verifiable schema behind this is introduced in Section 4.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

22:4 L. Bu et al.

The verification technique and our new proposed QE-based fix suggestion is presented in
Section 5. System implementation and evaluation is reported in Section 6. Sections 7 and 8 briefly
discuss the limitation of this work and review related work. Finally, the conclusion is stated in
Section 9.

2 BACKGROUND

2.1 IFTTT-Style Programming Paradigm for HA-IoT

Supporting interactions among digital real-time devices and analog environments, a software sys-
tem is at the center of home automation IoT (HA-IoT). This section discusses the current state of
HA-IoT software systems in terms of the programming paradigm and unfilled gaps.

Similar to wireless sensor networks, HA-IoT is a software system that reacts to changes in ana-
log environments. For example, if room temperature is below a threshold, the heater should be
turned on. As such, the event-driven programming paradigm is widely used by real-world HA-IoT
software systems such as IFTTT (ift 2011), Apple HomeKit (ah 2016), and Google Brillo (gb 2016).
Popularized by IFTTT, this paradigm is referred to as IFTTT-style programming. In IFTTT-style
programming, an automation program consists of IFTTT rules, and these rules are executed in
parallel. Individual rules follow the format of if A then do B, where A is a triggering sensor
event and B is a triggered device command. In the preceding example the former is the room tem-
perature, and the latter is turning on the heater. By crawling the IFTTT website, we found that
more than 34,000 HA-IoT rules have been created and shared by average users, including alerting
when room CO level is too high, turning off the heater when no one is home, and the like. De-
pending on the number and types of connected devices deployed, a normal scale real case HA-IoT
deployment typically has 10 to 30 IFTTT rules.

We argue that current HA-IoT software systems have the following unfilled gaps.

Lack of Automatic HA-IoT Confidence Verification. Since HA-IoT is a software system that
controls IoT-enabled devices and appliances, any software bug (or unexpected behavior) can have
ramifications in the real world and even risk user safety. For example, in our previous CO example,
if the smart fan starts too late, the room CO level can go beyond 200 ppm and be harmful. Therefore,
we argue that automatic confidence verification of certain systems is crucial.

For formal modeling and verification to be practical, the HA-IoT programming tool suite must
be able to automate as much as possible. While HA-IoT software systems for typical houses might
not be as complicated as expert-built real-time control systems (such as for trains), the state space
behind the IFTTT-style rules can quickly grow beyond nonexpert users’ comprehension. Further-
more, the time delay and different dynamic laws in the system are already too difficult for average
end-users to understand. As we discuss in the next sections, techniques from hybrid automata can
be the foundation of a confidence verification solution for HA-IoT solutions from the industry.

Lack of Debugging Feedback for Nonexpert IoT Users. When a specification violation is iden-
tified, the common practice is for the verification tool to provide domain experts with a counterex-
ample or a sequence of system state transitions leading to the violation. Unfortunately, this feed-
back lacks sufficient information for nonexpert users to comprehend the violation and pin-point
the rules to fix. First, since a violation is caused by a sequence of rule execution, there is no clear
indication which rule is at fault. And the overhead of understanding the effect of each rule on the
output can be high. Second, changing a rule in the execution sequence does not necessarily fix the
problem, as doing so may also change which rules are triggered later in the sequence.

To fill this gap of debugging assistance, we propose using QE (Monniaux 2008) as the foundation
to provide actionable feedback.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems 22:5

2.2 Modeling and Verification of Hybrid System

As we can see from the CO example and the previous subsection, the behavior of a HA-IoT system
is tangling with both discrete logic control and continuous time behavior. Such a system is called
a hybrid system. Linear Hybrid Automata (LHA) is a class of widely used formal languages for
modeling hybrid systems (Henzinger 1996). The model checking (Clarke et al. 2001) problem for
LHA is considerably difficult, and the reachability checking problem is undecidable (Henzinger
et al. 1998). Classical techniques try to compute the whole reachable state space of the LHA by
using the expensive polyhedral computation, which is sensitive to continuous variables and not
guaranteed to terminate.

Recently, Bounded Model Checking (BMC) (Biere et al. 2003; Audemard et al. 2005) has attracted
lots of attention as an alternative to general model checking. The basic idea is to look for a coun-
terexample in the given bound threshold instead of the complete state space. In this manner, the
state space needed to search is controlled and thus can be efficiently checked.

Now, let’s give a brief introduction to the definition of LHA (Henzinger 1996) and a state-of-the-
art BMC reachability checking technique for LHA, the path-oriented bounded reachability analy-

sis (Li et al. 2007; Bu and Li 2011).

Definition 2.1. An LHA H is a tuple H = (X , Σ,V ,vI ,E,α , β), where

—X is a finite set of real-valued variables; Σ is a finite set of event labels.
—V is a finite set of locations; vI is the initial location.
—E is a transition relation whose elements are of the form (v,σ ,ϕ,ψ ,v ′), wherev,v ′ ∈ V , σ ∈

Σ, ϕ is a set of transition guards of the form a ≤ ∑l
i=0 cixi ≤ b, andψ is a set of reset actions

of the form x := c where xi ∈ X , x ∈ X , a,b, c , and ci are real numbers (a,b may be∞).
—α is a labeling function which maps each location in V − {vI } to a location invariant which

is a set of variable constraints of the form a ≤ ∑l
i=0 cixi ≤ b , where xi ∈ X , a,b and ci are

real numbers (a,b may be∞).
—β is a labeling function which maps each location in V − {vI } to a set of flow conditions,

which are of the form ẋ ∈ [a,b], where x ∈ X , and a,b are real numbers (a ≤ b). For any
location v , for any x ∈ X , there is one and only one flow condition ẋ ∈ [a,b] ∈ β (v).

For a group of LHA {H1,H2, . . . ,Hn }, their composition, denoted as N = H1 | |H2 | | . . . | |Hm , is
defined as a LHA from synchronizing all components with respect to the same event labels. Labels
shared by several LHA models are called Shared Labels. The semantic of the shared label-guided
synchronization is simple. Suppose several LHA models have a shared label; firing this shared label
triggers the same transition in all models at the same time.

Definition 2.2. For an LHA H = (X , Σ,V ,vI ,E,α , β), a reachability specification, denoted as
R (v,φ), consists of a locationv inH and a set φ of variable constraints of the form a ≤ ∑l

i=0 cixi ≤
b where xi ∈ X for any i (0 ≤ i ≤ l), a,b , and ci (0 ≤ i ≤ l) are real numbers.

We use the sequences of locations to represent the evolution of an LHA from location to lo-
cation. For an LHA H = (X , Σ,V ,vI ,E,α , β), a path segment is a sequence of locations of the

form 〈v0〉
(ϕ0,ψ0)
−→
σ0
〈v1〉

(ϕ1,ψ1)
−→
σ1
. . .

(ϕn−1,ψn−1)
−→
σn−1

〈vn〉, which satisfies (vi ,σi ,ϕi ,ψi ,vi+1) ∈ E for each i

(0 ≤ i < n). A path in H is a path segment starting from the initial location vI .
The question of whether a given path ρ in an LHA model H satisfies specification R (v,φ) has

been well studied in Li et al. (2007) and Bu and Li (2011). The basic idea is to describe the state
space of ρ by encoding all the semantical elements, including transition guards, resets, location
invariants, and flow conditions along this path into a formula together, denoted as Ψ. Then,

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

22:6 L. Bu et al.

Fig. 1. The architecture of the framework.

whether ρ satisfies R (v,φ) can be translated into the problem of the feasibility of Ψ, which can be
solved efficiently by linear programming.3

As we all know, the basic idea of BMC is to search for a counterexample in executions whose
length is bounded by some integer k . Given an LHA, the number of candidate paths with length
no longer than k is finite. Therefore, if we enumerate and check all the paths in the bound one by
one, the BMC problem can be tackled. This is known as path-oriented bounded analysis (Bu and Li
2011; Xie et al. 2014) of LHA.

Now we’ve reviewed the status of the latest HA-IoT industry offerings, the definition of LHA,
and also the path-oriented BMC analysis technique for LHA. In the next section, we’ll show how
we can use such techniques in the HA-IoT industry.

3 FRAMEWORK OVERVIEW

As summarized in the preceding sections, the IFTTT-style HA-IoT system gives users high auton-
omy to build their own customized smart home automation system, albeit with potential confi-
dence risks. As HA-IoT systems have extremely close relations with users’ daily life, it is crucial to
offer a mechanism which can help users increase the confidence of certain systems. In this article,
we propose an automated framework for end-to-end programming assistance to tackle this problem
by performing the modeling, checking, and fixing of such systems automatically. The framework
shown in Figure 1 consists of the following parts:

—Linear Hybrid Automata Automatic Modeling: The first phase of our framework is to
generate the LHA models according to the devices and IFTTT rules in the system. It is un-
realistic to ask an average end-user to build the models of the system. Therefore, we design
a specific schema where device manufacturers can present necessary device information
according to the format of such a schema. Then, we can automatically build the LHA model
of the system from device documentation and the IFTTT rules.

—Reachability Analysis of LHA Model: The second phase of our framework is to check
the user-specified unwanted reachability specification by the path-oriented BMC checking
procedure mentioned in Section 2. Clearly, if the unwanted target is not reachable, the sys-
tem is good. Otherwise, we’ll get an error trace, which describes the sequence of system
events leading to a “bad” state.

3Due to space limitations, we give a short review of the encoding of Ψ in the appendix. Readers are also referred to
(Li et al. 2007; Bu and Li 2011) for details of such techniques.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems 22:7

—Counterexample-guided Fix Suggestion Synthesis: If the model fails verification, the
third phase is to help the user in debugging the counterexample. Again, as typical IoT users
have insufficient knowledge in software testing and verification, providing guidance (e.g.,
fix suggestions) can be very helpful. To do so, we propose a method that first parameterizes
the system and subsequently solves the free parameters using QE techniques.

4 VERIFIABLE SCHEMA AND AUTOMATIC LHA MODELING

In this section, we introduce the first part of our framework: Automatic LHA modeling. Clearly, it
is impractical and unreasonable to ask the average user to build a model for her devices and rules
manually. Therefore, such a task should be conducted automatically and systematically, if possible.

As we can see from the CO example, the aspects affecting the behavior of the HA-IoT system
include high-level control logic, the time delay and dynamic laws inherent in the system, the syn-
chronization among devices and rules, and so on. Therefore, LHA, which is the simplest model
that can address all these aspects, is the most suitable modeling language for such HA-IoT sys-
tems. Now the question is: How can we build the LHA model for such a system automatically?

4.1 Verifiable Device Schema

Before building an LHA model, we need to get all the information needed about the device. Actu-
ally, IoT-enabled devices typically have a presence-advertising feature. It is common to see manu-
facturers list the working modes of the device, publicly observable variables, executable APIs, and
even simple dynamic laws in different places (e.g., advertisements, user manuals, device websites),
piece by piece.

Clearly, manufacturers know all the information about the device. For the sake of automatic
model generation, we argue each device should come with a profile documentation organized in
a specific format that can express all the necessary information about the device. Actually, the
industry has proposed such a standard to present device information in an organized way, such
as the Device Registry for AWS IoT (DR) (aws 2015). Similar to the style of DR, which is readable
and writable by manufacturers, we give the format of the verifiable device schema as follows:

—Device Type and SN, which indicate the type and the serial number (SN) of the device.
—A set of System Variables, which indicates the environmental variables affected by the device

or the internal data kept by the device. In detail, if the value of a variable is observable by
the user, we mark such variable as public.

—A set of device Working Modes, which represents the high-level discrete working modes of
the device. In detail, for each mode, descriptions should include dynamic information on
how the system variables will evolve in such mode. For example, in our CO example, when
the smart fan is activated, the CO concentration in the room is going down bydCO/dt = −2.

—A set of Transitions, which indicates the internal mode-changing logic of the device, such as
under which triggering condition the device will change from mode A to mode B. There is
also a special boolean flag, Signal. If this flag is true, it means the execution of the transition
is a triggering condition event that the environment can observe.

—Finally, a set of APIs, which describes the kind of triggered commands that can be called by
users and other devices. It has the same structure as Transitions. The only difference is that
only the API can appear in the right-hand side of an IFTTT rule.

JSON (jso 2009) is a widely used data format that can be parsed efficiently. We design a specific
file format to express the preceding information in a JSON file. For example, Listing 1 and Listing
2 in Figure 2 give the JSON files for the devices in the CO example.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

22:8 L. Bu et al.

Fig. 2. Json docs for the CO example.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems 22:9

Fig. 3. LHA models generated for the CO example.

4.2 From Schema To LHA

Now, we present how to automatically build the LHA model from the device schema.
First, the LHA model for each device is modeled in the following way:

—The name, variables, locations, and flow conditions of the LHA model can be generated
directly based on the device schema.

—Each transition in the Transitions section becomes a transition in the LHA model.
—If the Signal flag of the transition is true, then mark the label of the corresponding tran-

sition as Signal_Transition.Name. In this manner, other LHA models can communicate
with this model using this shared label.

—The API section is treated differently. In detail:
—If the Signal flag of the transition is false, then we treat it as a normal transition first.

Then, as the API could be called by other components/rules, whenever there is a new
caller, we will add a new transition with the label API.Name_Caller.Name.4

—If the Signal flag is true, we add an intermediate location between the source and target
location of a certain API call. More specifically, we force the dwelling time of this inter-
mediate location to be 0. Then, the previous API transitions will point to this intermediate
location, and a new transition will be added from this intermediate location to the origi-
nal target location with the label Signal_API.Name. In this manner, no matter which caller
executes this API, other components can receive the same signal. For example, we can
see such locations and transitions in Figure 3(a) and (b).

4We must distinguish different callers by transitions with different labels, because if different callers use the same label for
one API, then they will be forced to fire the transition at the same time according to the synchronization semantic of LHA.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

22:10 L. Bu et al.

For IFTTT rules, as each rule i has the same structure, the modeling can be done in a structural
way.

—The structure of the IFTTT rule automaton is simple. There are two locations, where transi-
tions wait for the enabling of the triggering condition and are ready to execute the triggered
command.

—As the triggered command part of a rule can only be an API of a device, the label of the
corresponding transition is API.Name_Caller.Name. In this case, it can communicate with
the device automaton by this shared label.

—The triggering condition part could be the occurrence of an event/signal or a triggering
condition expression ϕ of an observable variable
—If it is a signal, the label of the corresponding transition is Signal_Transition.Name.
—If it is an expression, then we introduce a self-loop transition in each location of the device

automaton with the expression ϕ as the guard. The labels of the added device transition
and in the rule model are both Sensor_Rulei .

—It is normal to see a time delay between the enabling of the triggering condition and the
execution of the corresponding API. Such delay can be marked as the invariants and guards
in the model. For example, in Figure 3(c), we have invariant t ≤ 5 on location waitinд and
guard t ≥ 3 on the transition Close_Rule1. This means the potential delay is 3 ≤ t ≤ 5.

Let’s recall the IFTTT rule for the CO example given in Section 1:

IF Smart_Fan.CO_reading == 195 THEN execute Alarm.TURN_ON command
IF Alarm.TURN_ON.Signal ==TRUE THEN execute Smart_Fan.ACTIVATE command

After processing the JSON schema, Figure 2, and the rules of the CO example, the corresponding
LHA models generated according to these rules are shown in Figure 3 (a-d), respectively.

4.3 Feasibility of Verifiable Schema

The modeling process can apply to a wide range of IoT devices, and both the industry and academia
have been pushing hard in this direction. For example, the AllSeen alliance (which is backed up 50+
member companies such as Microsoft, Qualcomm, NetGear, HoneyWell, and LG) has a working
group called ÒCommon Device ModelsÓ. Similarly, GoogleÕs Weave protocol also mandates that
compatible IoT devices provide device schemas. Furthermore, from the aspect of infrastructure,
AmazonÕs AWS offers IoT device registry services.

Building on this momentum in the industry, our contribution is to highlight those device spec-
ifications that would be necessary for policy verification. In fact, most of these specifications are
not difficult for IoT device manufacturers to provide. Furthermore, we discuss how these device
specifications should be used to achieve our goals.

5 SYSTEM CHECKING AND FIX SUGGESTION

The previous section presents a method to construct LHA models for a given set of HA-IoT devices
and IFTTT-style automation rules. Now, we discuss approaches to efficiently check whether these
models conform to specifications and systematically synthesize solutions to resolve identified
violations.

5.1 Specification Authoring and Specification-Related Reachability Checking

In addition to the system model, the HA-IoT programming tool suite must allow IoT users to
author confidence/reachability specifications. We note that these specification should be easy for
nonexpert users to read and write. To this end, we define the specification format as a conjunction

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems 22:11

of conditions that shall not happen. This specification format is intuitive to nonexpert IoT users as
it is similar to IFTTT-style programming. In our CO example, if users do not want the room CO
concentration to be higher than 200, they can write SmartFan.CO ≥ 200.

After we get specifications from users, we can check that the system of LHA models can
never reach a given undesirable state. One option is to conduct BMC checking by directly using
off-the-shelf checkers. However, this option can have a significant overhead because these check-
ers always explore the entire state space of devices and rules, regardless of whether there are
meaningful interactions among devices. At the same time, we note that the performance of state
reachability checking can degrade quickly as the number of components increases. Therefore, we
propose to only consider the subset of models that are related through specifications, to shrink
the state space for the underlying checker. This approach is formally presented next.

Definition 5.1. Given a composed LHA network N = H1 | |H2 | | . . . | |Hm , and a reachability spec-
ification R (v,φ), if v is a location of Hi , φ consists of variables from Hj , (1 ≤ i, j ≤ m), we say Hi

and Hj are R related.

Definition 5.2. If two LHA models have a shared label, we say these two models are related.
Given three LHA models, A, B, and C, if A is related to B, B is related to C , then A is related to
C . Given a composed LHA network N = H1 | |H2 | | . . . | |Hm , we call the sets of all the LHA models
related to Hi the related closure of Hi (1 ≤ i ≤ m).

Definition 5.3. Given a composed LHA network N = H1 | |H2 | | . . . | |Hm , and a reachability spec-
ification R (v,φ), if v is a location of Hi , φ consists of variables from Hj , (1 ≤ i, j ≤ m), we say Hi

and Hj are R related. Then, the set of LHA models consists of the related closure of Hi and the
related closure of Hj is the R related closure.

Technically, given a reachability specification R (v,φ), we first compute the R related closure

subset of models. Then, we feed it to the underlying checker to do the checking. In this man-
ner, since the size of the system under checking is reduced, checking can be done with a smaller
overhead.

5.2 Counterexample-Guided Fix Suggestion

The output of BMC checking indicates whether the set of models passes or fails the verification. If
models fail the check, it means there exists a sequence of transitions that can reach an undesirable
state. In another word, bad things could happen. For IoT users, this potentially undesirable scenario
should be resolved before the automation rule set is deployed.

Again, it is impractical to count on an average end-user to fix the system based on his or her
understanding of the counterexample trace. Even for a domain expert, debugging and fixing are
not trivial. Because our framework is user-facing, there will not be an expert to help the user to
analyze and fix violations. Therefore, such tasks should be automated.

To resolve a specification violation, the first thing is to identify the problematic automation
rule(s). Different from debugging for general CPS software, IoT users can realistically change only
the automation rules, rather than changing the installed IoT devices or specifications. Specifically,
we can only adjust the triggering condition value of IFTTT rules.

To systematically perform this task, we propose parameterizing IFTTT rules and then solving
for solutions to the parameterized system. Each of these solutions would represent one valid con-
figuration that can be presented to the IoT user.

In our CO example, suppose the reachability specification asks whether the CO concentration
in the room can ever exceed 200. The checker finds a counterexample: As the smart fan detects the
CO level reaching 195, rule 1 is executed. However, as there is a delay between the satisfaction of

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

22:12 L. Bu et al.

ALGORITHM 1: Counterexample-Guided Fix Suggestion

1: procedure CE–Analysis (Counterexample Path ρ, Specification R (v,φ), Rule Set RS)
2: Encoding the reachability of ρ according to R (v,φ) as Formula Ψ
3: Denote the constraints related with all the rules in RS as Θ and the other rules in Ψ as Φ
4: Therefore, Ψ = (

∧n
i=1 ϕi) ∧ (

∧m
i=1 θi), where ϕi ∈ Φ, and θi ∈ Θ

5: for each θi , (Devicei .variablej == concrete_valuek), ∈ Θ do

6: Parameterize concrete_valuek to a free parameter parak

7: Generate new constraint θ ′ = (Devicei .variablej == parak)
8: end for

9: Generate formula Θ′ =
∧m

i=1 θ
′
i , and Ψ′ = (

∧n
i=1 ϕi) ∧ Θ′

10: Take the negation of all the subformulasψi in Ψ′, get new formula Ψ′′ =
∨¬ψi

11: Denote all the variables in Ψ as Vari
12: Use QE to check: Whether ∃parak , such that ∀xi ∈ Vari , Ψ′′ is feasible.
13: QE returns the value range for each parak , which is the suggestion of the fix
14: end procedure

the triggering condition and the execution of the triggered command, the CO concentration can
reach 200 before the smart fan is activated. The original rule says IF Smart_Fan.CO == 195 THEN
Execute Alarm.TURN_ON. We parameterize the rule to IF Smart_Fan.CO == A THEN Execute
Alarm.TURN_ON. Then, we need to solve for values of A that can invalidate the specification.

Instead of computing the potential range of A directly, we propose a counterexample-guided

approach. Our basic idea is to find values of A to dismiss the found counterexample path ρ. The
algorithm is shown in Algorithm 1. As introduced in Section 2, given a path in the model, whether
that path satisfies the specification is encoded to the feasibility of a formula Ψ. Then, we param-
eterize the threshold of the triggering conditions in the rules to free parameters parak , and we
modify Ψ to Ψ′ accordingly (Lines 5–9).

We can reformulate the problem thus: Can we find a valuation for these parameters to make
Ψ′ infeasible? If the answer is yes, then the located counterexample is dismissed. We take the
negation of all the subformulas in Ψ′, make a disjunction of them, and get new formula Ψ′′. Now,
the question become whether we can find parak to make Ψ′′ feasible (Line 10).

As all constraints in Ψ are linear, we can use QE (Monniaux 2008) to transform this problem to
an equivalent quantifier-free numerical formula about parak . This formula gives the value range
for each parak that can make Ψ′ infeasible (in other words, dismiss the found counterexample;
Line 11–13). Clearly, we can simply select a value in the range as a fix suggestion and ask the
checker to check the system again. As the number of potential paths in the given bound is finite,
this procedure is guaranteed to terminate.

Continuing the CO example, we first parameterize the condition Smart_Fan.CO == 195 to
Smart_Fan.CO == A. Then, we conduct the negation and QE procedures, as presented. The re-
sulting formula for A from the QE solver is 0 ≤ A ≤ 190, and the Satisfiability Modulo Theories
(SMT) solver selects a value from this range (e.g., 165). We use it as a potential fix and check the set
of models again. The system should pass the verification this time, and it subsequently presents
the new value as a fix suggestion to the user.

5.3 Handling of Conditions of Inequalities

In the last subsection, the conditions of the triggers are all presented as equalities. The problem
with inequality constraints is a rather complex but still can be handled in a similar way.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems 22:13

According to the “lazy” semantic of LHA, when a transition guard is an inequality, the transition
can be fired at any time spot that satisfies the inequality guard. In other words, the time spot where
the transition is fired is not required to be the exact time spot that satisfies the guard. Take the CO
level, for example: The transition guard Smart_Fan.CO ≥ 195 can be fired when CO level ≥ 1,000
because this still satisfies the semantics of the model.

As a result, even if we modify the condition to Smart_Fan.CO ≥ 165, as we did in the equality
case, the model checker can still find a behavior which fires the trigger too late, when the CO level
is too high, say, 1,000. In other words, if the triggering condition is a half interval, the limitation
of LHA semantics makes it difficult to control the timing at which the transition will be fired.

Therefore, when our method needs to fix conditions with inequalities of half-intervals, it
changes it to a parametric interval first. Still using the CO example, if the original condition is
Smart_Fan.CO ≥ 165, the parameterized condition is b≥ Smart_Fan.CO ≥ a, where a and b are
free parameters. Then, Line 12 of Algorithm 1 is changed to “Use QE to check: Whether ∃a, ∃b,
such that ∀xi ∈ Vari , Ψ′′ is feasible.” Then the following procedure is the same with equality.

In the CO example, the QE result we get is 300 ≥ a ≥ 0, 190 ≥ b ≥ 0, and b ≥ a. The SMT solver
selects values for a and b from the corresponding range (e.g., a = 75, b = 180). We modify the
condition to 180 ≥ Smart_Fan.CO ≥ 75. We use it as a potential fix, and the system then passes
the verification.

6 SYSTEM IMPLEMENTATION AND EVALUATION

This section is organized by the following major results. First, the technique proposed and dis-
cussed in this article is implemented in a tool, MenShen. Second, our optimization techniques
allow MenShen to gracefully scale with LHA size. Empirical results suggest that, for a deployment
of up to 46 devices and 65 rules, MenShen can finish within 10 seconds (i.e., the typical human at-
tention span (Nielsen Norman Group 1993)). Third, a user study confirms that most users cannot
find the bug and fix the system. Meanwhile, the user study also suggests that more than 66.7% of
fix suggestions are accepted without further user intervention. The implementation of MenShen
and all experimental data are available online (Bu 2016).

6.1 System Implementation Overview

Our current system implementation, MenShen,5 supports functionalities discussed in previous
sections: (1) automated LHA model generation from device schemas, (2) template-based GUI for
authoring IFTTT-style rules and specifications, (3) automated system reachability checking, and
(4) violation fix suggestions.

MenShen is implemented in C#. Some system components are based on third-party libraries:
BACH (Bu 2006; Bu et al. 2008) for the LHA checker, Redlog (Dolzmann 2006) for the QE solver,
Z3 (de Moura and Bjørner 2008) for the SMT solver, and Json.Net (jso 2009) for parsing the device
schemas.

Here we show the GUIs of the system to demo the functionalities of MenShen. The main GUI
is shown in Figure 4, where we can see that a user can specify rules and the specifications using
drop-down list-style templates. MenShen reads the device information directly from their docs.
Then, users can select the name of the device, the observable variables, and the APIs allowed to
call to compose a rule/specification directly.

We can also find three options for the user to select before they click the check button at the
bottom of Figure 4. The options include:

5MenShen is the name of the door god in Chinese.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

22:14 L. Bu et al.

Fig. 4. Main GUI of MenShen.

—General: No optimization technique is applied.
—Minimize: Perform checking on the property-related closure, as described in Section 5.1.
—Merge: Link and analyze the rules with the same triggering condition together. This pre-

vents MenShen from assigning different thresholds while generating fix suggestions.

If MenShen finds a violation of the specification, the fixing procedure is activated. We grant
users the option to mark rules that should never be changed. They can also provide the preferred
range for individual variables. Then MenShen will look for a solution in the user-specified range.
When multiple fix suggestions are possible, MenShen prioritizes the suggestions based on how
similar they are to the original rules. Minimizing this difference can improve user acceptance of
fix suggestions. The related GUI is shown in Figure 5.

After the fix suggestion is synthesized, MenShen will conduct a new round of confirmation
checking. If the new system passed the confirmation check, MenShen pushes the fix suggestion to
the user, as we can see in Figure 6. The changed rules are marked in red. Last but not least, if users
are not satisfied with the fix suggestion, they are free to modify the rule and start the procedure
again.

6.2 Real-World Evaluation Datasets

Our nine datasets contain automation rule sets deployed in the real world. They are from three
sources: (1) four small-scale systems (labeled SC-1, SC-2, SC-3, SC-4) are based on rules shared
by normal IFTTT.com users (ift 2011); (2) four large real-world HA-IoT systems are from office
deployments (labeled MS-1, MS-2, MS-3, MS-4); and (3) one is used by a related effort (Universal
Devices Products 2007) (Croft et al. 2015) (labeled ISY).

SC-1, SC-2, SC-3, and SC-4 have 2-3 devices and rules. Each of MS-1, MS-2, MS-3, and MS-4
has tens of rules and devices, similar to typical home automation systems. The ISY dataset has 46
devices and 65 rules. In total, there are 26 different types of devices including gas meters, HVAC,
lights, air purifiers, GPS, and water heaters.

Table 1 lists the most important system property that dataset owners expect their automation
rule sets to comply with.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems 22:15

Fig. 5. GUI for fix configuration.

Fig. 6. GUI for fix suggestion.

6.3 System Scalability

MenShen aims to minimize the user burden in realizing high-confidence real-time HA-IoT systems.
Given that formal checking techniques are mature enough to accurately identify policy violations,
this section discusses system scalability in IoT scenarios. Specifically, we show that optimization
techniques allow MenShen to exhibit a processing latency of less than the typical 10-sec user
attention span (Nielsen Norman Group 1993).

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

22:16 L. Bu et al.

Table 1. System Properties that Dataset Owners Expect Their Automation Rule Sets to Satisfy

System Policy
SC-1 The hot water is ready when the user is back home.
SC-2 The temperature of water in the bathtub should not drop down to 40 degree

when the user is back home.
SC-3 The level of CO in the room should never be dangerous.
SC-4 The home security should be closed when the garage door is opened.
MS-1 The level of smoke in the room should never be too high.
MS-2 The level of gas should never be dangerous.
MS-3 The temperature in the room should stay below 27.
MS-4 The level of PM2.5 in the room should not be harmful.
ISY The light in the bedroom should be turned off at 8:00 pm.

Table 2. Results of Checking and Fixing Real-Case HA IoT Systems by MenShen

Original System System Minimization Related Rules Merging

System #Devices #Rules #LHA Model(s) Check (s) Fix (s) #LHA Model(s) Check (s) Fix (s) #LHA Model(s) Check (s) Fix (s)

SC-1 3 3 6 0.011 0.26 0.98 6 0.011 0.26 0.98 6 0.012 0.26 0.98

SC-2 3 3 6 0.011 0.26 1.25 6 0.010 0.26 1.25 6 0.011 0.26 1.25

SC-3 2 2 4 0.011 0.12 0.66 4 0.011 0.12 0.66 4 0.013 0.12 0.66

SC-4 3 2 5 0.010 0.22 0.92 5 0.013 0.22 0.92 5 0.013 0.22 0.92

MS-1 12 15 27 0.013 1.89 51.17 20 0.012 0.88 3.62 20 0.012 0.92 3.32

MS-2 12 15 27 0.012 1.79 365.58 20 0.013 1.23 8.62 20 0.015 1.02 7.88

MS-3 18 20 38 0.012 3.77 11.19 3 0.017 0.23 0.97 3 0.013 0.23 0.95

MS-4 18 19 37 0.013 3.56 10.5 3 0.012 0.23 0.98 3 0.013 0.23 0.95

ISY 46 65 111 0.014 9.25 1209.4 25 0.024 0.97 7.51 25 0.016 0.52 3.98

#Devices and #Rules denote the number of devices and rules in the dataset, respectively. #LHA denotes the number of
generated LHA models. Check denotes the time spent in checking the problem. Fix denotes the time spent in fixing. The
default bound set for all problems is 10 for all the Automata.

Experiments were conducted by checking whether individual datasets satisfy their expected
system property listed in Table 1. We used a ThinkCenter workstation, with Intel Core 2 Quad
CPU Q9500 @ 2.83GHz × 4, 4GB RAM, and Ubuntu 14.04 64-bit.

MenShen Implementation. Table 2 shows the empirical results under three different MenShen
settings: “Original System” refers to running MenShen without additional constraints, “System
Minimization” refers to running the specification verification with only related models, “Related
Rules Merging” refers to manually marking rule variables that should be the same (as discussed in
Section 6.1). As we discuss next, the system size (i.e., the number of LHA states) largely determines
the system latency, and we also evaluated the effectiveness of two optimization techniques.

If the size of the system increases significantly, QE can be the performance bottleneck. Specifi-
cally, for the four small cases (SC-1, SC-2, SC-3, and SC-4), MenShen can complete both the check-
ing and fix suggestions in less than 1 second. However, for the ISY dataset, which is 20 times larger
than the SC series cases, the latency increases quickly to 1,209 seconds.

As discussed next, optimization techniques can reduce system latency for large cases. Table 2
shows two such optimizations: System Minimization and Related Rules Merging.

First, when the system size is large, especially if not all the devices are connected with each
other, the System Minimization technique exhibits a significant improvement space. Specifically,
the number of automata in MS-3 is reduced from 38 to 3, and the number of automata in the ISY
case is reduced from 111 to 25. Since the entire state space is reduced significantly, the performance

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems 22:17

Fig. 7. Optimization evaluation: Related rules merging VS, no optimization.

of MenShen improves substantially in all five large datasets. And the time for ISY is reduced from
more than 1,209 seconds down to only 7.5 seconds. However, we note that since SC-1, SC-2, SC-3,
and SC-4 are small datasets, the systems are very compact. Therefore, the gain from optimization
techniques is negligible.

Second, we look at the gain from the Related Rules Merging technique. When the number of
rules is large, it is not rare to have different rules sharing the same trigger conditions. In this case,
while the number of automata under check stays the same, the structure for the related models can
be simplified to reduce the number of parameters to solve. As this optimization contains system
minimization, we report the decrease ratio of “Related Rules Merging” versus no optimization on
the five large problems concerning LHA size, time for checking, and time for fix, respectively, in
Figure 7. We can see that the optimization methods work very well in that up to 99.7% of time can
be saved on large systems like ISY.

6.4 User Study

To understand the usefulness of MenShen’s feedback to IoT users, we conducted a set of user
studies with our real-world automation rule sets. Specifically, we took the MS-4 dataset, which
represents a room with 20 IoT-enabled devices and 18 automation rules. And we added two more
system properties to check to the one in Table 2.

We have two group of volunteers. Each group has 45 participants. The study participants in the
first group include researchers and interns from Microsoft Research Asia, and PhD and master’s
degree students in the software engineering discipline at Nanjing University. The participants in
the second group include non-computer science (CS) major college students, high school students,
and also some housewives.

We asked the participants to decide whether the connected IoT system can violate any of the
three given specifications, and then we asked participants to attempt to fix these violations man-
ually. Table 3 summarizes the user study results of the CS-Major users, while the results of Non-
CS-Major users are presented in Table 4.

For comparison, these tables also include the performance of MenShen (without any optimiza-
tion enabled). Several observations support the effectiveness of MenShen. For example, Tables 3
and 4 suggest that the majority of participants cannot find any violation after spending 1 to
8 minutes searching, and only four participants (two from the CS-Major Group and, two from

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

22:18 L. Bu et al.

Table 3. User Study on MS-4 Scenario from CS-Majored Students and Researchers

Problem
Total

Partici.

Average
Total

Time(s)
Average
Check(s)

Average
Fix(s)

Able to Find
Conflicts

Able to
Fix

MenShen
Check(s)

MenShen
Fix(s)

User
Acceptance

Q1 45 453 444 82 7/45 2/45 3.56 10.5 39/45

Q2 45 98 90 63 7/45 2/45 3.82 17.77 37/45

Q3 45 75 63 57 11/45 2/45 3.14 9.72 45/45

Average time denotes the average time spent by the participants in analyzing the specific problem. MenShen time denotes
the time spent by MenShen in the same problem.

Table 4. User Study on MS-4 Scenario from Non-CS-Majored Participants

Problem
Total

Partici.

Average
Total

Time(s)
Average
Check(s)

Average
Fix(s)

Able to Find
Conflicts

Able to
Fix

MenShen
Check(s)

MenShen
Fix(s)

User
Acceptance

Q1 45 326 443 61 14/45 5/45 3.56 10.5 30/45

Q2 45 85 70 26 6/45 2/45 3.82 17.77 33/45

Q3 45 48 47 32 13/45 10/45 3.14 9.72 31/45

Fig. 8. Data of CS major participants versus Non-CS major participants.

the Non-CS-Major group) were able to identify and fix all the problems successfully. We can see
that, for the majority of participants, even for users with a background in computer science, suc-
cessfully realizing a high-confidence HA-IoT system is still a difficult task.

We’ve also organize and present the user study data of CS-Major users and Non-CS-Major users
in Figure 8. Interestingly, the percentage of users who can find and fix the system is higher for Non-
CS-Major than for CS-Major participants in many cases, as shown in Figure 8(a,b). This supports
our observation that, while the popular IFTTT-style programming paradigm simplifies authoring,
it does not simplify the task of checking and fixing specification violations. For average users of
HA-IoT, even CS background education cannot alleviate this problem.

Delving into Tables 3 and 4, we discuss the user acceptance rate to MenShen feedback. Specifi-
cally, this metric is quantified by presenting MenShen’s fix suggestions to the participants. Tables 3
and 4 show that, after we explained to the user the reason the system failed and fixed the related
rule, user acceptance of the fix suggestions made by MenShen is in the range of 66.7%(30/45) to
100% (45/45). One of the main reasons that some participants are not satisfied with the fix sugges-
tion is that they have difficulty understanding how the original parameter may have caused the
error and why the changed version is correct. Therefore, we can see from Figure 8(c) that the user
acceptance rate from the CS-Major group is higher than from the Non-CS-Major group in general.
This raises an interesting question about how to present failures to users in the future.

In addition to these findings, one lesson learned is that, while several scenarios in a space can
be programmed by a set of automation rules, IoT users tend to focus on manually verifying one
scenario at a time. While this approach reduces the manual burden, it ignores interactions among

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems 22:19

scenarios. For example, turning on the HVAC can cause the air ventilation system to stop intak-
ing outside air in the summer, which can have a undesirable consequence depending on indoor
CO concentration. This observation brings up the value of having programming assistance from
MenShen.

7 DISCUSSION

In this work, we demonstrate the feasibility of using LHA for HA-IoT systems. Not only does LHA
simplify the presentation of device communications and the dynamic behavior of analog environ-
ments, it also efficiently checks their complex behavior. We now describe system limitations that
are beyond the scope of this article.

First, we assume that device models are static and do not change over a short period of time.
If the modeled environment is highly dynamic, parametric models (Bu et al. 2011) may yield bet-
ter results. Furthermore, we note that it can be costly to model continuous analog environments
that are under the influence of multiple IoT devices. For example, room temperature can be af-
fected by outdoor temperature and indoor appliances. Future work will focus on reducing this
cost on the underlying system infrastructure. Second, the semantics of transition in LHA is not
“Urgent” (Schupp et al. 2015). Therefore, we may encounter situations where the trigger condi-
tion is enabled but the model does not fire such a transition. Third, we currently do not consider
human-in-the-loop or user models that can change analog environments at any time. We leave
this for future work.

8 RELATED WORK

IoT Software System Checking and Monitoring. The high-confidence analysis of IoT systems
has recently gained attention in the community. SIFT (Liang et al. 2015) took the first step of
demonstrating the potential of correctness checking of IoT systems, and it used the symbolic ex-
ecution method to generate test cases to test the abstracted code of an IoT system. In contrast
to MenShen, SIFT assumes IoT users have the necessary knowledge and background to run such
procedures. Furthermore, SIFT does not consider the temporal behavior of devices nor violation
debugging.

Like MenShen, DeLorean (Croft et al. 2015) argues the importance of modeling the temporal
behavior when checking HA-IoT systems. They proposed building a timed automata model for
home automation control programs. However, they assumed a manual modeling procedure, which
is not practical for nonexpert IoT users. Furthermore, timed automata can only model a time clock
with uniform speed, rather than any continuous variables with arbitrary clocks. Therefore, Men-
Shen can theoretically handle a wider spectrum of HA-IoT scenarios than DeLorean. Last but not
least, they stop DeLorean after the checking is finished, but our work continues to synthesize fix
suggestions.

DepSys (Munir and Stankovic 2014) presented a method to specify and check the dependency of
devices in a home automation IoT system. However, they only focus on potential conflicts among
the devices, say, A and B control the same device. This solution does not address system-wide, and
especially time-related, policy violations like MenShen.

In addition to these efforts in correctness checking, there are also investigations in the area of
invariant correctness monitoring (Gunǎ et al. 2014; Herbert et al. 2007). Generally, these works
perform online monitoring of invariants concerning certain parameterÕs values to see whether
certain values will break the invariant during system operation. Then, if an invariant violation is
detected, predefined safety-related rules could be called in a way similar to IFTTT.

These works mainly focus on the efficiency of runtime detecting certain invariant violations
(say, catch the threshold in a timely manner). By contast, our work tries to make sure that such

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

22:20 L. Bu et al.

violations will not happen. We perform an offline formal verification style check to guarantee cor-
rectness, and we also help to fix the rules when the original system cannot meet the specification.

Parameter Fix Suggestion. The fix suggestion synthesis performed by MenShen is related to
the classical parameter synthesis problem. This problem has been amply studied already. Studies
by Henzinger and Wong-Toi (1995) and Frehse et al. (2008) are the closest works to MenShen as
they all deal with real-time hybrid automata.

The problem of parameter synthesis for LHA was already proposed (Henzinger and Wong-Toi
1995). However, in that solution, the whole reachable set had to be computed first, which is very
expensive. Thus, the systems they can handle are rather limited.

Similar with this work, Frehse et al. (2008) also works on parameter synthesis for LHA. They
propose a CEGAR framework to find the values for the parameters which can avoid “bad” states in
the complete state space. As MenShen is performing BMC rather than general MC, we are facing
a much smaller state space. Therefore, we can use QE directly on the counterexample path to find
potential parameter assignments.

Recently, a study (Cimatti et al. 2013) proposed a method to perform optimal parameter synthesis
for infinite state space systems. These researchers extended the IC3 (Bradley 2011) framework to
compute the precise region incrementally. This is an interesting work, and we will try to adapt it
into MenShen in future work.

9 CONCLUSION

This article presents MenShen, a novel framework of automated end-to-end programming assis-
tance, to help nonexpert IoT users in systematically realizing high-confidence real-time HA-IoT
systems. In contrast to related efforts that handle only high-level logic, MenShen can model and
reason about both real-time behavior and analog environments. Furthermore, not only does Men-
Shen check whether an automation rule set violates specifications, it also effectively suggests pos-
sible solutions to users.

As future work, we will investigate methods to model continuous aspects that are influenced by
multiple devices and environmental factors. Personalized parameter generation is also an interest-
ing topic which can help to increase user satisfaction. Furthermore, leveraging probabilistic model
checking to generate user-friendly quantitative probabilistic reports of such HA-IoT systems is
also worth investigation.

APPENDIX

In this section, we review the path-oriented reachability checking encoding presented in earlier
work (Li et al. 2007; Bu and Li 2011). This technique is the underlying decision procedure of Men-
Shen for reachability checking.

For a path in an LHA H of the form 〈v0〉
(ϕ0,ψ0)
−→
σ0
〈v1〉

(ϕ1,ψ1)
−→
σ1
. . .

(ϕn−1,ψn−1)
−→
σn−1

〈vn〉, by assigning

each location vi with a time delay stamp δi we get a timed sequence of the form 〈v0
δ0
〉

(ϕ0,ψ0)
−→
σ0
〈v1

δ1
〉

(ϕ1,ψ1)
−→
σ1
. . .

(ϕn−1,ψn−1)
−→
σn−1

〈vn

δn

〉 where δi (0 < i ≤ n) is a non-negative real number and δ0 = 0 as v0 = vI

is the initial location. This time sequence represents a behavior of H such that the system starts
from the initial location v0; stays there for δ0 time units, which is 0; then jumps to v1 and stays at
v1 for δ1 time units; and so on.

The behavior of an LHA can be described informally as follows. The automaton jumps from the
initial locationv0 tov1 to initialize all the variables. Then, as time progresses, the values of all vari-
ables change continuously according to the flow condition associated with the current location. At

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems 22:21

any time, the system can change its current location fromv tov ′ provided that there is a transition
(v,σ ,ϕ,ψ ,v ′) from v to v ′ whose transition guards in ϕ are all satisfied by the current value of
the variables. With a location change by a transition (v,σ ,ϕ,ψ ,v ′), some variables are reset to the
new value according to the reset actions inψ . Transitions are assumed to be instantaneous.

Let H = (X , Σ,V ,vI ,E,α , β) be an LHA. Given a timed sequence ω of the form 〈v0
δ0
〉

(ϕ0,ψ0)
−→
σ0

〈v1
δ1
〉

(ϕ1,ψ1)
−→
σ1
. . .

(ϕn−1,ψn−1)
−→
σn−1

〈vn

δn

〉, let ζi (x) represent the value of x (x ∈ X) when the automaton has

stayed at vi for delay δi and λi (x) represent the value of x at the time the automaton reaches vi

along with ω (0 ≤ i ≤ n). It follows that

λi+1 (x) =

{
d if x := d ∈ ψi

ζi (x) otherwise
(0 ≤ i < n).

Definition 9.1. For an LHA H = (X , Σ,V ,vI ,E,α , β), a timed sequence of the form

〈v0
δ0
〉

(ϕ0,ψ0)
−→
σ0
〈v1

δ1
〉

(ϕ1,ψ1)
−→
σ1
. . .

(ϕn−1,ψn−1)
−→
σn−1

〈vn

δn

〉 represents a behavior of H if and only if the following con-

dition is satisfied:

—〈v0〉
(ϕ0,ψ0)
−→
σ0
〈v1〉

(ϕ1,ψ1)
−→
σ1
. . .

(ϕn−1,ψn−1)
−→
σn−1

〈vn〉 is a path;

—each variable x ∈ X evolves according to its flow condition in each location vi (0 < i ≤ n);
that is, uiδi ≤ ζi (x) − λi (x) ≤ u ′iδi where ẋ ∈ [ui ,u

′
i] ∈ β (vi);

—all the transition guards in ϕi (1 ≤ i ≤ n − 1) are satisfied; that is, for each transition guard
a ≤ ∑l

k=0 ckxk ≤ b in ϕi , a ≤
∑l

k=0 ckζi (xk) ≤ b;
—the location invariant of each location vi (1 ≤ i ≤ n) is satisfied; that is, at the time the

automaton reaches and leaves vi , each constraint a ≤ ∑l
k=0 ckxk ≤ b in α (vi) (1 ≤ i ≤ n) is

satisfied (i.e., a ≤ ∑l
k=0 ckλi (xk) ≤ b and a ≤ ∑l

k=0 ckζi (xk) ≤ b).

Definition 9.2. For an LHA H = (X , Σ,V ,vI ,E,α , β), if a timed sequence of the form

〈v0
δ0
〉

(ϕ0,ψ0)
−→
σ0
〈v1

δ1
〉

(ϕ1,ψ1)
−→
σ1
. . .

(ϕn−1,ψn−1)
−→
σn−1

〈vn

δn

〉 is a behavior of H , we say path ρ = 〈v0〉
(ϕ0,ψ0)
−→
σ0
〈v1〉

(ϕ1,ψ1)
−→
σ1

. . .
(ϕn−1,ψn−1)
−→
σn−1

〈vn〉 is feasible, and location vn is reachable along ρ.

Definition 9.3. Let H = (X , Σ,V ,vI ,E,α , β) be an LHA, and R (v,φ) be a reachability specifica-

tion. A behavior of H of the form 〈v0
δ0
〉

(ϕ0,ψ0)
−→
σ0
〈v1

δ1
〉

(ϕ1,ψ1)
−→
σ1
. . .

(ϕn−1,ψn−1)
−→
σn−1

〈vn

δn

〉 satisfies R (v,φ) if and

only if vn = v and each constraint in φ is satisfied when the automaton has stayed in vn for de-
lay δn ; that is, for each variable constraint a ≤ ∑l

k=0 ckxk ≤ b in φ, a ≤ ∑l
k=0 ckζn (xk) ≤ b where

ζn (xk) (0 ≤ k ≤ l) represents the value of xk when the automaton has stayed at vn for the delay
δn . H satisfies R (v,φ) if and only if there is a behavior of H which satisfies R (v,φ).

According to Definitions 9.2 and 9.3, the reachability of a given path in an LHA model can
be encoded to the feasibility of a conjunction of a set of linear constraints, which can be solved
efficiently by Linear Programming SMT techniques.

REFERENCES

Apple HomeKit. 2016. Apple HomeKit. Retrieved from http://www.apple.com/ios/homekit/.
Gilles Audemard, Marco Bozzano, Alessandro Cimatti, and Roberto Sebastiani. 2005. Verifying industrial hybrid systems

with mathSAT. Electrical Notes on Theoretical Computer Science 119, 2 (2005), 17–32.
AWS IoT. 2015. Device Registry for AWS IoT. Retrieved from http://docs.aws.amazon.com/iot/latest/developerguide/

thing-registry.html.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

http://www.apple.com/ios/homekit/.
http://docs.aws.amazon.com/iot/latest/developerguide/thing-registry.html.

22:22 L. Bu et al.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. 2003. Bounded model checking.
Advances in Computers 58 (2003), 117–148.

Aaron R. Bradley. 2011. SAT-based model checking without unrolling. In Proceedings of the 12th International Conference

on Verification, Model Checking, and Abstract Interpretation (VMCAI’11). 70–87.
Lei Bu. 2006. BACH. Retrieved from http://seg.nju.edu.cn/BACH/.
Lei Bu. 2016. MenShen Project Page. Retrieved from http://seg.nju.edu.cn/MenShen/.
Lei Bu and Xuandong Li. 2011. Path-oriented bounded reachability analysis of composed linear hybrid systems. Interna-

tional Journal on Software Tools for Technology Transfer (2011), 307–317.
Lei Bu, You Li, Linzhang Wang, and Xuandong Li. 2008. BACH: Bounded reachability checker for linear hybrid automata.

In Proceedings of Formal Methods in Computer-Aided Design (FMCAD’08). 1–4.
Lei Bu, Qixin Wang, Xin Chen, Linzhang Wang, Tian Zhang, Jianhua Zhao, and Xuandong Li. 2011. Toward online hybrid

systems model checking of cyber-physical systems time-bounded short-run behavior. SIGBED Review 8, 2 (2011), 7–10.
Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. 2013. Parameter synthesis with IC3. In Proceedings

of Formal Methods in Computer-Aided Design (FMCAD’13). 165–168.
Edmund Clarke, Orna Grumberg, and Doron A. Peled. 2001. Model Checking. MIT Press.
Edmund Clarke, Bruce Krogh, Andre Platzer, and Raj Rajkumar. 2008. Analysis and verification challenges for cyber-

physical transportation systems. In Proceedings of the National Workshop for Research on High-Confidence Transportation

Cyber-Physical Systems: Automotive, Aviation and Rail.

Jason Croft, Ratul Mahajan, Matthew Caesar, and Madan Musuvathi. 2015. Systematically exploring the behavior of control
programs. In Proceedings of the 2015 USENIX Annual Technical Conference (USENIX ATC’15). 165–176.

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the 14th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08). 337–340.
Andreas Dolzmann. 2006. Redlog. Retrieved from http://redlog.eu/.
Google Brillo. 2016. Google Brillo. Retrieved from https://developers.google.com/brillo/.
Goran Frehse, Sumit Kumar Jha, and Bruce H. Krogh. 2008. A counterexample-guided approach to parameter synthesis for

linear hybrid automata. In Proceedings of the 11th International Workshop on Hybrid Systems: Computation and Control

(HSCC’08). 187–200.
Ştefan Gunǎ, Luca Mottola, and Gian Pietro Picco. 2014. DICE: Monitoring global invariants with wireless sensor networks.

ACM Trans. Sen. Netw. 10, 4 (2014), 54:1–54:34.
Thomas A. Henzinger. 1996. The theory of hybrid automata. In Proceedings of the 11th Annual IEEE Symposium on Logic in

Computer Science. 278–292.
Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. 1998. What’s decidable about hybrid au-

tomata?Journal of Computer Systems Science 57, 1 (1998), 94–124.
Thomas A. Henzinger and Howard Wong-Toi. 1995. Using hytech to synthesize control parameters for a steam boiler.

In Formal Methods for Industrial Applications, Specifying and Programming the Steam Boiler Control, vol. 1165. Lecture
Notes in Computer Science, Springer, 265–282.

Douglas Herbert, Vinaitheerthan Sundaram, Yung-Hsiang Lu, Saurabh Bagchi, and Zhiyuan Li. 2007. Adaptive correctness
monitoring for wireless sensor networks using hierarchical distributed run-time invariant checking. TAAS 2, 3 (2007),
8:1–8:23.

IFTTT. 2011. IFTTT: Put the internet to work for you. Retrieved from http://ifttt.com.
Json.NET. 2009. Json.Net. Retrieved from https://www.newtonsoft.com/json.
Edward Lee. 2006. Cyber- physical systems- are computing foundations adequate?Position Paper for NSF Workshop on

Cyber-Physical Systems: Research Motivation, Techniques and Roadmap. Austin, Texas. https://ptolemy.berkeley.edu/
publications/papers/06/CPSPositionPaper/Lee_CPS_PositionPaper.pdf.

Xuandong Li, Sumit Jha, and Lei Bu. 2007. Towards an efficient path-oriented tool for bounded reachability analysis of
linear hybrid systems using linear programming. Electrical Notes on Theoretical Computer Science 174, 3 (2007), 57–70.

Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang, Shi Han, Börje Karlsson, Dongmei Zhang, and Feng Zhao. 2016.
Systematically debugging IoT control system correctness for building automation. In Proceedings of the 3rd ACM Inter-

national Conference on Systems for Energy-Efficient Built Environments (BuildSys@SenSys’16). ACM, 133–142.
Chieh-Jan Mike Liang, Börje F. Karlsson, Nicholas D. Lane, Feng Zhao, Junbei Zhang, Zheyi Pan, Zhao Li, and Yong Yu. 2015.

SIFT: Building an internet of safe things. In Proceedings of the 14th International Conference on Information Processing in

Sensor Networks (IPSN’15). 298–309.
Shan Lin, Tian He, and John A. Stankovic. 2008. CPS-IP: Cyber physical systems interconnection protocol. SIGBED Review

5, 1 (2008), 22.
David Monniaux. 2008. A quantifier elimination algorithm for linear real arithmetic. In Proceedings of the 15th International

Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’08). 243–257.

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

http://seg.nju.edu.cn/BACH/
http://seg.nju.edu.cn/MenShen/.
http://redlog.eu/
https://developers.google.com/brillo/.
http://ifttt.com.
https://www.newtonsoft.com/json
https://ptolemy.berkeley.edu/publications/papers/06/CPSPositionPaper/Lee_CPS_PositionPaper.pdf

Systematically Ensuring the Confidence of Real-Time Home Automation IoT Systems 22:23

Sirajum Munir and John A. Stankovic. 2014. DepSys: Dependency aware integration of cyber-physical systems for smart
homes. In ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS’14). Berlin, Germany, 127–138.

Nielsen Norman Group. 1993. Response Times: The 3 Important Limits. Retrieved from https://www.nngroup.com/articles/
response-times-3-important-limits.

Stefan Schupp, Erika Ábrahám, Xin Chen, Ibtissem Ben Makhlouf, Goran Frehse, Sriram Sankaranarayanan, and Stefan
Kowalewski. 2015. Current challenges in the verification of hybrid systems. In Proceedings of the 5th International Work-

shop on Cyber Physical Systems. Design, Modeling, and Evaluation (CyPhy’15). 8–24.
Universal Devices Products. 2007. Universaldevicesproducts/insteon/isy-99iseries. Retrieved from http://www.universal-

devices.com/.
Dingbao Xie, Lei Bu, Jianhua Zhao, and Xuandong Li. 2014. SAT-LP-IIS Joint-directed path-oriented bounded reachability

analysis of linear hybrid automata. Formal Methods in System Design 45, 1 (2014), 42–62.

Received July 2016; revised June 2017; accepted January 2018

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 3, Article 22. Publication date: June 2018.

For Research Only

https://www.nngroup.com/articles/response-times-3-important-limits.
http://www.universal-penalty -@M devices.com/.

