

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2019-IW-001

2019-IW-001

Android GUI Search Using Hand-drawn Sketches
Xiaofei Ge

International Conference on Software Engineering: Companion Proceedings 2019

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

Android GUI Search Using Hand-drawn Sketches

Xiaofei Ge
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

xfge@smail.nju.edu.cn

Abstract—GUI design is crucial to mobile apps. In the early
stages of mobile app development, having access to visually sim-
ilar apps can help designers and programmers gain inspiration
for revising their designs or even reuse existing GUI code. We
propose an intuitive sketch modelling language to draw GUI
sketches, and a deep learning based method to search for visually
similar apps according to the sketches. Preliminary results show
the potential of our approach.

Index Terms—Graphical User interface, Android app, Code
search and recommendation, Reverse engineering.

I. BACKGROUND AND MOTIVATION

Mobile apps are event-centric programs with rich Graphical

User Interfaces (GUIs) [1]. Apps with good GUI designs can

be more competitive, driving developers investing considerable

effort in GUI developing. Meanwhile, as there are abundant

successful apps in the market, the idea of reusing the high-

quality GUI code is natural and attractive.

Just like searching for nearest shops in Google, searching

for apps with similar GUI designs should be a simple and

quick task as well. It is impractical to require users to provide

high-fidelity images by a complex modelling tool. Searching

tools should support lightweight and low-fidelity prototyping.

However, existing approaches for GUI code search [2, 3] do

not provide users with straightforward methods to model GUIs

conveniently, which limits their usability.

We propose a novel approach that searches for visually

similar apps using sketches. Sketching GUIs on paper is an

intuitive method by which users can use a pencil to model

app GUIs rapidly. To search for code that realizes the sketch

design, We propose to leverage a deep learning (DL) based

framework to translate sketches into GUI structures. Then,

similarity scores are computed between translated structural

GUI data with the ones in the app repositories, based on which

search results are ranked before returning to users.

II. RELATED WORK

As early as the era of widespread Java applications, there

was much work [2, 4, 5] on Java GUI code search and genera-

tion. Reiss’s work [3] transfers a Java-based GUI code search

method [2] to mobile domain, however, the cumbersome

modelling methods limit the feasibility.

Recently, mobile apps are gaining more attention. REMAUI

combines OCR and computer vision algorithms to generate

GUI code from app screenshots but only supports three widget

types. The generated code positions widgets by absolute

coordinates, which is inconvenient for programmers to reuse.

Chen et al. [1] use deep-learning techniques to generate GUI

skeletons from designed UI images. Our tasks are different as

we focus on the initial stages of app development when users

could not provide high-fidelity designed UI images.

Similarity computation for GUIs is also related to our

work. DroidEagle [6] and ViewDroid [7] identify repackaged

apps or phishing malware using GUI similarity. However, the

relevance and difference of widget types are rarely considered

in the existing work.

III. APPROACH

Hand-drawn
sketch

Sketch Parser

Transformed
sketch

Trained DL
Framwork

GUI Skeleton
Extractor

App
Repository

Training set

GUI
skeleton

Transformed
sketch

Similarity
Score

Calculator

Matched apps

RICO
Training set
Constructor

Generated
GUI skeleton

Extracted GUI
skeletons

Sketch Recognition

GUI Skeleton Generation

Similarity Computation

Fig. 1. Overview of our approach

Fig. 1 shows the overview of our approach. It consists of

three parts: (I) Input hand-drawn sketches are processed and

transformed into intermediate forms by a parser; (II) GUI

skeletons of sketches are generated by a DL framework; and

(III) Similarity scores are computed between the generated

GUI skeletons and the ones in the skeleton dataset. Search

results are ranked using the similarity scores.

A. Sketch Modelling Language

We propose a sketch modelling language (SML) to conduct

rapid sketching of app GUIs. Striving for the goal of SML

being intuitive and easy-to-use, we try not to include all

Android widgets but the commonly used ones. We leverage

an Android app UI dataset to decide which widgets to select.

The dataset named Rico contains 72k UIs mined from 9.7k

Android apps using a combination of human and automated

exploration. GUI hierarchies are analyzed and converted into

the form of JSON, along with the widget details used in each

UI, e.g., widgets’ implementing class name, superclass names,

coordinates of the bounding box.

141

2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion)

2574-1934/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-Companion.2019.00060

For Research Only

0 2 4 6 8 10

Switch

AutoCompleteTextView

CompoundButton
OverflowMenuButton

ToggleButton
RadioButton

CheckBox

EditText

Button

ImageButton

ImageView
TextView

0.01
0.03
0.03
0.03
0.04
0.08
0.15
0.19
0.74
0.81

3.52
7.33

widgets per UI

Fig. 2. Average number of the most frequent widgets per UI

We counted the occurrence times of official Android widgets

(with class names prefixed with widgets). For a customized

widget, we considered its most direct superclass prefixed with

android.widget as its type. Fig. 2 depicts the widgets that

have more than 0.01 usage times per page, on average. The

12 most frequently used widgets listed in the figure account

for 99.8% of the total widget usages. For these widgets, we

further merge the functionally and visually identical ones into

a single category. For example, AutoCompleteTextView and

EditText are both widgets used to get user inputs and the

latter is a superclass of the former, and are therefore, merged

as EditText.
Finally, seven kinds of widgets—TextView, EditText, Im-

ageView, Button, RadioButton, Switch and CheckBox are

selected. We designed sketch representations for each widget

with different geometric shapes. We also developed a recog-

nition tool (Sketch Parser in Fig. 1) to identify types and

bounding boxes of widgets from sketches.

B. Deep-learning based GUI Skeleton Generation

Android GUIs, implemented in the form of tree-like struc-

tures, are called GUI skeletons. With each node representing

a widget or a layout, a GUI skeleton defines what and how

the components of layouts and widgets are composed for

reproducing the UI elements and their spatial layout.

We employ a deep-learning method to generate GUI skele-

tons from sketches, following the idea of [1]. In [1], GUI

skeletons are generated from UI images. Large quantities of

pairs of UI images and GUI skeletons were collected for model

training. Our task is different from theirs in that we need

the skeletons and their corresponding sketches to train the

DL model. Therefore we implemented a sketch generation

method to construct the training set based on GUI details

contained in Rico. To reduce training complexity and improve

learning accuracy, we transformed hand-drawn sketches into

colored images in which widgets are represented by rectangles

with different colors (as shown in Fig. 1). Experiments show

that our DL framework is able to generate GUI skeletons for

sketches not included in the dataset.

C. GUI Skeleton based Similarity Computation

The similarity between a pair of GUIs are represented by

the similarity between their corresponding GUI skeletons.

As GUI skeletons are tree-like structures, we proposed a

similarity computation method based on the algorithm of the

largest weighted common subtree embeddings (LWCSE) with

penalties. Specifically, we employ labeled trees to depict GUI

skeletons where tree nodes can distinguish different widget

types. The similarity score of two GUI skeletons, considering

both the structural information of the tree and the types of

widget nodes, is computed by applying LWCSE on a weight

function on pairs of nodes.

The search is conducted by comparing the GUI skeleton

of the sketch against all skeletons in the data set. Search

results are ranked before returning to users. The largest com-

mon weighted GUI substructure embeddings are provided for

reference as well. As the experiment shows, our approach can

effectively evaluate the similarity between two GUI Skeletons.

IV. PRELIMINARY RESULTS

Our goal is to find apps that contain UIs similar to input

hand-drawn sketches. We performed a preliminary experiment

on 60 Android apps from different categories. These apps

cover at least one or more of the six common UI scenarios:

login & register, search, setting, list, picture, and detail. For

each UI scenario, we selected an app and drew sketches for

the concerned GUIs. We refer to the GUIs from which we

drew sketches as target GUIs. Six hand-drawn sketches were

processed by our tool, and the results are shown in Table I.

TABLE I
TARGET GUIS IN SEARCH RESULTS

UI
scenario Target App package name Similarity

score* Rank*

login &
register

com.choiceoflove.dating 81.08% 1

search com.parfield.prayers.lite 64.86% 5
setting com.google.android.apps.messaging 72.97% 5

list com.baviux.pillreminder 67.57% 6
picture com.kudago.android 78.42% 1
detail com.google.android.play.games 70.27% 1

* Scores and ranks of the six target GUIs in the final search result list,
respectively.

As the result shows, our approach can find the target GUIs

in the top six candidates, with three ranked top one. We

also ran the returned apps and found that the other top-

ranked apps in the search result were also visually similar

to the sketches. We are currently working on collecting more

Android apps, performing experiments on a larger-scale and

conducting systematic evaluations.

V. CONCLUSION

The preliminary results show that given sketches, the pro-

posed method can find visually similar apps. The search

strategy is under improvement based on further experiments,

and we are conducting empirical studies to improve the

effectiveness and efficiency of the approach.

142

For Research Only

REFERENCES

[1] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From UI design image
to GUI skeleton: a neural machine translator to bootstrap mobile GUI
implementation,” in Proceedings of the 40th International Conference on
Software Engineering. ACM, 2018, pp. 665–676.

[2] S. P. Reiss, “Seeking the user interface,” in Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering.
ACM, 2014, pp. 103–114.

[3] F. Behrang, S. P. Reiss, and A. Orso, “GUIfetch: supporting app design
and development through GUI search,” in Proceedings of the 5th Interna-
tional Conference on Mobile Software Engineering and Systems. ACM,
2018, pp. 236–246.

[4] A. Caetano, N. Goulart, M. Fonseca, and J. Jorge, “JavaSketchIt: Issues
in sketching the look of user interfaces,” in AAAI Spring Symposium on
Sketch Understanding, 2002, pp. 9–14.

[5] J. Seifert, B. Pfleging, E. del Carmen Valderrama Bahamóndez, M. Her-
mes, E. Rukzio, and A. Schmidt, “Mobidev: a tool for creating apps on
mobile phones,” in Proceedings of the 13th International Conference on
Human Computer Interaction with Mobile Devices and Services. ACM,
2011, pp. 109–112.

[6] M. Sun, M. Li, and J. Lui, “DroidEagle: seamless detection of visually
similar android apps,” in Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks. ACM, 2015, p. 9.

[7] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “ViewDroid: Towards
obfuscation-resilient mobile application repackaging detection,” in Pro-
ceedings of the 2014 ACM conference on Security and privacy in wireless
& mobile networks. ACM, 2014, pp. 25–36.

143

For Research Only

