

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2019-TR-001

2019-TR-001

Documentation-Based Functional Constraint Generation for

Library Methods
Renhe Jiang, Minxue Pan, Yu Pei, Tian Zhang, Xuandong Li

Technical Report 2019

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

Documentation-Based Functional Constraint Generation for
Library Methods

Renhe Jiang
Minxue Pan

131220105@smail.nju.edu.cn
mxp@nju.edu.cn

State Key Laboratory for Novel
Software Technology, Nanjing

University

Yu Pei
csypei@comp.polyu.edu.hk

Department of Computing, The Hong
Kong Polytechnic University

Tian Zhang
Xuandong Li

ztluck@nju.edu.cn
lxd@nju.edu.cn

State Key Laboratory for Novel
Software Technology, Nanjing

University

ABSTRACT

Software libraries promote code reuse and facilitate software devel-
opment, but they also increase the complexity of program analysis
tasks. To effectively analyse programs built on top of software
libraries, it is essential to have specifications that can be easily
processed by analysis tools for the library methods. However, such
specifications are absent currently: manual writing can be costly
and error-prone, while existing automatic approaches do not pro-
vide specifications strong enough for program analysis. In this
work, we propose the Doc2smt approach to generating strong
functional constraints in SMT for library methods based on their
documentations. Doc2smt employs a novel “expansion and con-
traction” strategy. That is, it first explores many different ways to
interpret the documentation for a method, and then determines,
with help from a configurable domain model and a set of tests,
which interpretation rightly captures the method’s functionalities.

In experiments conducted on 259 methods from the Java Col-
lections Framework, Doc2smt generated correct constraints for
180 methods. The average processing time is around 2 minutes
per method. When the generated constraints are used to enable
the symbolic execution of library methods in the Symbolic Java-
PathFinder, automated test generation produced 28.5 times more
new tests for 16 utility methods.

1 INTRODUCTION

Software libraries are playing an ever more important role in con-
structing programs nowadays. On the one hand, code in libraries
can be easily reused to facilitate common programming tasks and
improve programmers’ productivity. On the other hand, the libraries
used in software development pose new challenges in the analysis
of the resultant programs: the source code of the libraries may be
hard to acquire, their binary code may be obfuscated, and they may
be written in multiple programming languages and/or implement
sophisticated engineering tricks for performance reasons.

Manual writing the specification for each method can be costly
and error-prone. In view of that, researchers proposed various
techniques in the past few years to automatically infer specifica-
tions for library methods, e.g., through dynamic [5, 8, 13, 15, 22]
or static [17, 18] program analysis, so that their implementation
details can be abstracted away to make complex program analysis
tasks possible or scalable. Noticing that most program libraries
provide concise yet well-summarised documentations for methods,

one line of such work focuses on generating structured specifica-
tions for methods from their natural language written documenta-
tions [14, 23]. Pandita et al. [14] propose the Alics approach that
pioneered the application of natural language processing (NLP)
techniques to specification generation for library methods. Alics
translates sentences in API descriptions into logical expressions
based on pre-defined shallow parsing semantic templates, and gen-
erates code-contracts from the expressions by mapping semantic
classes of the predicates to programming constructs. Zhai et al. [23]
construct code snippets as “model implementations” that are func-
tionally equivalent to the methods under consideration. In their
work, grammatical trees of sentences are transformed to produce
variants, and pre-defined patterns are used to match tree structures
and generate code snippets. These techniques extract useful infor-
mation from library documentations. However, they do not produce
concise and strong functional constraints, and therefore, cannot
give full play to static analysis techniques: Alics mostly produces
weak specifications such as null pointer assertions to facilitate the
verification of legal usages; methods invoked in model implemen-
tations may still be challenging to automatically analyse. Besides,
they rely heavily on heuristic translation rules. Considerable effort
may be required to adapt the rules when applying the techniques
to a wider range of libraries.

In response to the limitations, we propose a novel approach,
named Doc2smt, to generating strong functional constraints for
library methods based on their documentations. Instead of carefully
customising the rules for processing the documentations, Doc2smt
employs a set of general rules to translate descriptions of method
functionalities into a large number of candidate OCL expressions.
A novel two-step validation is then introduced to find out the con-
straints that comply with the behaviours of the method: In static
validation, a domain model that can be manually enhanced in-
crementally is used to filter out OCL expressions that do not “fit”
the problem domain; Dynamic validation checks whether a candi-
date constraint rightly abstracts the method under consideration
through testing.

We implemented the approach into a tool also called Doc2smt.
To evaluate the tool’s effectiveness, we applied it to generate con-
straints for all the 259 public methods defined in 10 classes from the
Java Collections Framework. Doc2smt successfully produced valid
constraints for 182 methods, constraints for 180 methods among
which are confirmed to be correct after manual inspection. The av-
erage time Doc2smt takes to process a method is around 2 minutes,
and the amount of manual effort required to prepare all the inputs is

For Research Only

Technical Report, August 2019, Nanjing, China Renhe Jiang, Minxue Pan, Yu Pei, Tian Zhang, and Xuandong Li

java.util

Class TreeMap<K,V>

java.lang.Object

java.util.AbstractMap<K,V>

java.util.TreeMap<K,V>

All Implemented Interfaces

..., Map<K,V>, NavigableMap<K,V>, SortedMap<K,V>, ...

A Red-Black tree based NavigableMap implementation. The map

is sorted according to the natural ordering of its keys, or

by a Comparator provided at map creation time, depending on

which constructor is used.

Methods

..., containskey, get, put, replace, size, ...

Figure 1: Part of the Javadoc for class TreeMap.

public V replace(K k, V v)

Description copied from interface: Map

Replaces the entry for the specified key only if it is

currently mapped to some value.

Parameters

k - key with which the specified value is associated

v - value to be associated with the specified key

Returns: the previous value associated with the specified

key, or null if there was no mapping for the key

Figure 2: Summary of method replace(K k, V v) from TreeMap.

moderate. When used to facilitate symbolic-execution-based gener-
ation of tests for 16 utility methods manipulating container objects,
the constraints Doc2smt produces help to increase the number of
generated new tests by 28.5 times.

This paper makes the following contributions:
• We propose an approach to generating functional constraints
for library methods. The approach does not rely heavily on
heuristical rules to process texts in natural language, and it
is able to produce strong functional constraints in SMT that
are readily usable by program analysis tools.
• We implement the approach into a prototype tool and con-
duct experiments to evaluate the approach. Experimental
results suggest the approach is effective and efficient.

Tool Availability. A package with Doc2smt’s implementation
and all experimental data is publicly available at: link removed for

double-blind review.

2 DOC2SMT IN ACTION

In this section, we use a method to demonstrate how Doc2smt
generates strong functional constraint based on the corresponding
documentation from a user’s perspective.

A map is a widely-used data structure supporting fast key-based
lookups. Class java.util.TreeMap from the Java standard library
implements a navigable map, i.e., a map whose elements can be
easily accessed in ascending or descending key order, and it stores
a pair of key and value as an Entry internally. Method replace(K

k, V v) of the class, inherited from interface Map, substitutes the
existing value to which k maps with v.

Developers of the class have written structured, highly infor-
mative documentation, in the form of Javadoc, to specify the class
and its public methods. Figure 1 shows part of the Javadoc for

Figure 3: A UML class diagram as the (partial) domain model for

class TreeMap. Public methods that can be easily extracted from the

class Javadoc are omitted for brevity reasons.

1 ;declare-datatypes:

2 ;Map (mk-map (key (Array K Bool)) (mapping (Array K V)))

3 ;Entry (mk-entry (key K) (value V))

4 ;declare-const:

5 ;?p0 (Map Int Int), ?p1 Int, ?p2 Int,

6 ;?r Int, ?_p0 (Map Int Int), t0 (Entry Int Int)

7 ;assertions:

8 (= t0 ((as mk-entry) ?p1 (select (mapping ?p0) ?p1)))

9 (ite

10 (and (select (key ?p0) (key t0))

11 (= (select (mapping ?p0) (key t0)) (value t0)))

12 (and (= (key ?_p0) (key ?p0))

13 (= (mapping ?_p0) (store (mapping ?p0) (key t0) ?p2)))

14 (and (= (key ?_p0) (key ?p0))

15 (= (mapping ?_p0) (mapping ?p0))))

Figure 4: The SMT constraint generated by Doc2smt for method

TreeMap::replace(K k, V v). A Map object contains a key set to identify

all the keys and a mapping that relates each key to a value. Each Entry

object is a key-value pair. Symbols ?p0, ?p1, and ?p2 correspond to

the three input parameters of the method, while symbols ?_p0 and

?r to the two output parameters.

Description

a) if value->exists(value|value.k)

then replace(k) else equals(self@pre) endif

b) if value->exists(value|map(k,v))

then replace(entry(k),v) else equals(self@pre) endif

c) if value->exists(value|map(k,value))

then replace(entry(k),v) else equals(self@pre) endif

Returns

d) if not(self.contains(entry(k)))

then result=null else map(k,result) endif

Figure 5: Three of the candidate OCL expressions generated by

Doc2smt from the method description and one from the return

value description for TreeMap::replace(K k, V v). The conjunction of

expressions c) and d) captures the full functionality of the method.

the class, and Figure 2 shows the summary of its method replace

from the same Javadoc file. Since the information is provided in
natural language, it is not readily usable by, e.g., program analysis
tools. Taking the documentation for the class and the domain model
shown in Figure 3 as the input, Doc2smt generates in less than 5
minutes a SMT constraint, shown in Figure 4, that rightly captures
the functionality of the method.

For Research Only

Documentation-Based Functional Constraint Generation for Library Methods Technical Report, August 2019, Nanjing, China

Static Validation

Method Doc

Dependency

Parsing

Rule-Based

Translation

Phase I

(Manual)

Domain Model

Enhancement

(Primitive)
Domain Model

Phase II

Candidate
OCL

Candidate
OCL

Candidate
OCL Expressions

Well-Formed
OCL

Class Doc

Valid OCLValid OCLValid OCL

Doc2smt

(Automatic)

Domain Model

Construction

(Enhanced)
Domain Model

Start Start

Error Error Errors

Dependency
Graph

Dynamic

Validation
End

Candidate
OCL

Candidate
OCL

Well-Formed
OCL Expressions

Valid
Constraint

OCL to SMT

Error Error Errors

Candidate
OCL

Candidate
OCL

Candidate
Constraints

Figure 6: An overview of the Doc2smt approach.

During the process, Doc2smt generates a large number of OCL
expressions as intermediate results. Figure 5 shows some of such
expressions derived from the method description and the method
return value specification. The SMT constraint is a direct translation
of the OCL expression c)and d).

Three features of Doc2smt are key to its success. First, Doc2smt
applies a set of rules to translate sentences in the input documenta-
tion into candidate constraint clauses in the OCL syntax. The rules
and the translation process are general and permissive enough to
allow the sentences to be interpreted as they were intended. Second,
Doc2smt makes use of a domain model to quickly filter out the
generated candidate constraint clauses that clearly do not apply
to the specific problem domain. While manual work is needed in
preparing the model, the amount of effort required is moderate
and the tool provides guidance on the preparation. Third, Doc2smt
runs tests to ensure only constraints that truly capture the dynamic
behaviours of the methods are reported to the user.

3 THE DOC2SMT APPROACH

Figure 6 shows an overview of the Doc2smt approach. Inputs to
Doc2smt include the documentation for a method and its defining
class. Dependency parsing constructs a dependency graph from
the method’s summary (Section 3.1), and rule-based translation
produces a rich set of candidate constraint clauses in the OCL
syntax based on the dependency graph (Section 3.2). For phase I
static validation, an automatically constructed, primitive domain
model is used to help users identify domain knowledge necessary
for characterising the method’s functionality, while phase II static
validation uses a manually enhanced domain model to prune out
candidate clauses that refer to information outside the domain
model (Section 3.3). The semantic equivalence between a constraint
and the method implementation is then checked through testing
during dynamic validation (Section 3.5). Doc2smt terminates upon
discovering the first constraint that survives dynamic validation
and outputs it as the one that captures the functionality of the
method.

Given a methodm defined in classC , let P andQ be the sequence
of input and output parameters ofm, respectively. Here the output

Figure 7: Dependency graph for the description of method replace.

parameters are for storing the return value ofm, if any, and the
values of the input parameters upon the return ofm, if they are
modified bym. The rest of this section details how Doc2smt gen-
erates, based on C’s documentation, a functional constraint c for
m.

3.1 Dependency Parsing of Method Summary

Doc2smt uses the summary of a method as the main source of in-
formation to learn about that method’s functionality. The summary
of a method includes the method signature, the name, type and
description of each parameter, and a description of the method’s
functionality. If the method should return a value, the summary
also includes the type and specification of that value. For example,
the texts shown in Figure 2 constitute the summary of method
replace.

To understand the functionality of a method, Doc2smt first em-
ploys a dependency parser to construct a dependency graph Gd
from the method description. A dependency graph in natural lan-
guage processing gives the grammatical structure of a sentence,
where a node corresponds to a word in the sentence and may be
associated with syntactic attributes like lemma and part of speech

(POS) tags, while an edge reflects the typed dependency relation
between words. For example, Figure 7 gives the dependency graph
of the description in Figure 2. According to the graph, word “re-
places” is a verb in 3rd person singular present (VBZ), word “entry”
is the direct object (dobj) of “replaces”, and word “mapped” is an
adverbial clause modifier (advcl) of “replaces”.

We generate the graph to better understand the entities and their
relationships in the sentences. Given its goal to generate functional
constraints for methods, Doc2smt mainly focuses on POS tags
concerning nouns (e.g., NNS for plural noun and NNP for singular
proper noun) and verbs (e.g., VBD for past tense verb and VBN for
past participle verb) in its analysis.

If the method returns a value, Doc2smt also constructs a de-
pendency graph Gr based on the specification of that value. In the
next step, Doc2smt translates Gd andGr , if available, into sets of
candidate constraint clauses in OCL.

3.2 Rule-based Translation to OCL

A dependency graph gives the core text elements and their rela-
tions in a sentence. To translate a dependency graph into OCL
expressions, Doc2smt employs a rule-based technique.

3.2.1 Translation Rules. Doc2smt uses two types of rules in the
translation: general rules and domain specific rules. Table 2 shows
representative rules of each type. The syntax of rules is explained
in Table 1.

General rules mainly focus on handling translations that are
applicable to generic texts in English. For verbal phrases with simple
structures, if the verbs are also names of operations in the problem
domain, their translation is also processed by general rules. For

For Research Only

Technical Report, August 2019, Nanjing, China Renhe Jiang, Minxue Pan, Yu Pei, Tian Zhang, and Xuandong Li

Table 1: Syntax of translation rules with explanations and examples. Each rule consists of a pattern and an action. A pattern describes a graph

configuration based on nodes and edges with specific features. An action contains a sequence of plain texts and graph operations (grop). A grop

is surrounded by a pair of square brackets ([]) and defines how to build a new graph using matched parts from the original graph. Note that

the syntax of patterns is adopted from the Stanford CoreNLP Toolkit [10], while the syntax of actions is inspired by [12].

Nonterminal Syntax Explanation

rule pattern→action A translation rule consists of two parts: a pattern specifying the matching condition of the rule and an
action that can be applied to produce the translations when the rule is matched.

pattern nodedec* edgedec* A pattern specifies matching conditions w.r.t. nodes and/or edges in a dependency graph.

nodedec {attrvalue*}=X Matches a node, referred to as X, with specific attribute values. Example: {tag:NN.*}=A.

edgedec

>dep?(X,Y)=E Matches an edge, referred to as E, that is of type dep and connects two nodes X and Y. Here both X and Y

can be a nodedec. Example: >dobj(A,{tag:NN.*})=E.

x,y>>dep?(X,Y)=E Matches an edge, referred to as E, that is the last edge of a path connecting two nodes X and Y. The
length of the path should be between x and y, and the type of E, if declared, should be dep. Example:

0,2>>nmod.*(A,B)=F.

not edgedec Matches a graph where no edge matches with edgedec. Example: not >(A,{}).

action ([grop]|plaintext)* An action consists of a sequence of graph operations (grops) and/or plaintexts. A grop specifies how parts
identified in pattern matching are used during translation, while the plaintexts are directly copied into
the translation results.

grop

X Returns node X declared in the corresponding pattern.
{attrvalue*} Creates and returns a new node with the given attributes. Example: {lemma:index}.
copy(X)|deepcopy(X) Returns a copy/deep-copy of node X. Example: copy(X)

grop1-grop2 Removes nodes and edges in grop2 from grop1 and returns gopt1.
>E(grop1,grop2) Connects the root of grop2 to that of grop1 via edge E and returns grop1. Example: >E(X-Z,deepCopy(Y)).
>dep(grop1,grop2) Connects the root of grop2 to that of grop1 via an edge of type dep and returns grop1. Example: >dobj(A,B)

rep(X,grop1,grop2) Replaces node X in grop2 with the result of grop1 and returns grop2. Example: rep(Z,copy(Y),X).

Table 2: Example translation rules used in Doc2smt. For each category, its number of variants (#) and an example with id and definition.

Categories on the top are general, while those on the bottom are domain specific.

category #
example

id definition

Pronoun Replacement 1 PR1 {}=X {tag:NN.*}=Y {lemma:it|they}=Z 0,2>>(X,Y) 0,2>>(X,Z) not 0,2>>(Y,Z)→ [rep(Z,deepCopy(Y),X)]
Condition Translation 3 CT3 {}=X {}=Y {}=Z 0,3>>conj:or(X,Y) 0,3>>(X,Z) >(Z,{lemma:if})→ if [Z] then [Y-Z] else [X-Y-Z] endif
Quantifier Introduction 4 QI4 {}=X {tag:NN.*}=Y {lemma:all|each}=Z 0,2>>(X,Y) >det.*(Y,Z)→[Y-Z]->forAll([copy(Y)]|[X-Z])
Boolean Evaluation 7 BE7 {lemma:greater|less}=X {tag:NN.*}=Y {tag:NN.*}=Z >nsubj(X,Y) >>nmod.*(X,Z)

→ [Y].[copy(X)]([Z],specifyinclusive)
Passive to Active 1 PA1 {tag:VBN}=X {tag:NN.*}=Y {tag:VB.*}=Z >nsubj.*(X,Y) >auxpass(X,Z)→ [>dobj(X-Y-Z,Y)]
Sentence Decompose 6 SD6 {}=X {tag:NN.*}=Y {}=Z >(X,Y)=E >acl.*(Y,Z)→ [Y] implies [>E(X-Y,copy(Y))]
Noun Composition 1 NC1 {tag:NN.*}=X {}=Y >amod|compound(X,Y)→ [Y][X-Y]
Noun Modifier 4 NM4 {}=X {}=Y 0,3>>nmod.*(X,Y)→ [X-Y] /→ [Y].[X-Y] /→ [X-Y]([Y]) /→ [Y]
Verb Dobj 1 VD1 {}=X {tag:NN.*}=Y >dobj(X,Y)→ [X-Y]([Y])
Verb Nsubj 1 VN1 {}=X {tag:NN.*}=Y >nsubj(X,Y)→ [Y].[X-Y]()
Adjective Clause 2 AC2 {tag:NN.*}=X {tag:VB.*}=Y >acl.*(X,Y)→ [>nmod(Y,X-Y)]
Terminal 1 TE1 {}=X not >nmod.*(X,{})→ [copy(X)]

This Reference 1 TR1 {lemma:CN1|CN2|CN3}=X {lemma:this|the}=Y >det(X,Y) not >(X,{word:specified})→ self
Special Structure 5 SS5 {lemma:be}=X {lemma:there}=Y {tag:NN.*}=Z >expl(X,Y) >nsubj(X,Z)→ contains([Z])
Implicit Constraint 6 IC6 {lemma:replace}=X {lemma:entry}=Y not >nmod.*(X,{})→ [X-Y]([Y],specifyvalue)

example, Rule PR1, and Rule PA1, replaces pronouns with nouns
they refer to, and changes a sentence in passive voice to active
voice, respectively, while Rule VD1 translates a verbal phrase with
direct object into a method invocation with argument.

Domain specific rules are complementary to general rules and
devised to handle three types of scenarios that often occur in pro-
cessing library documentations. First, when, e.g., a phrase “this

treemap” appears in the summary of a method from class TreeMap,
it often refers to the receiver object on which the method is invoked,
and the keyword self should be used as its translation in OCL. Rule
TR1 is introduced to deal with such cases particularly, where CNs
are names of the context classes. Second, certain domain specific
operations are often phrased in different ways in documentations,
special rules are therefore needed to help identify those operations.

For Research Only

Documentation-Based Functional Constraint Generation for Library Methods Technical Report, August 2019, Nanjing, China

Input: G: a dependency graph;
Σ: a group of translation rules

Output: Π: a set of strings as the translation result
1 function Translate(G, Σ)
2 if G .nodeCount () == 1 then
3 Π ← {G .nodes().f ir st ().lemma } ;
4 else

5 Π ← ∅ ;
6 foreach σ ∈ Σ do

7 matcher ← σ .pattern .match(G) ;
8 whilematcher .f ind () do
9 foreach action ∈ σ .actions do

10 ∆← {action .toStr inд()} ;
11 foreach дrop ∈ action .дetGrops() do
12 G′ ← дrop .execute(G,matcher) ;
13 Π′ ← Translate(G′, Σ) ;
14 ∆←

⋃
δ ∈∆

⋃
π ∈Π′ δ [дrop/π] ;

15 end

16 end

17 Π ← Π ∪ ∆ ;
18 end

19 end

20 end

21 return Π;

Figure 8: Algorithm to translate a dependency graph into a list of

candidate constraint clauses in OCL.

For example, Rule SS5 stipulates that a phrase there is an o in c

can be translated into c.contains(o). Third, constraints may be im-
plied, instead of explicitly stated, in the documentation, and parts of
a sentence may be omitted when the meaning is clear (for human)
from the context. Domain specific rules are also needed in those
cases to explicitly add the implicit or omitted information back
during translation. Consider the method description in Figure 2.
Verb replace is missing its complement “with sth”, which, judging
from the context, refers to parameter v of the method. To make
the information complete in the translation, Rule IC6 includes a
placeholder specifyvalue in its action to indicate that a specific
value from the context should be used.

It is worth noting that, while the domain specific rules are closely
related to the task of library documentation processing, they are
general and most likely reusable across different libraries in the
same language.

3.2.2 Translation Algorithm. When translating a piece of text, mul-
tiple rules may be applicable at the same time, and different applica-
tion orders of the rules most likely will lead to distinct translation
results. To avoid missing out the right translations, Doc2smt enu-
merates all possible ways, instead of prematurely committing itself
to a small number of options in making the translation, with rules
that tend to manipulate a larger range of texts being attempted first.
For instance, Rule CT3 will be tried before Rule PR1.

Given a dependency graph G and a set Σ of translation rules,
function translate shown in Figure 8 translates G into a set of
OCL expressions in string by iterating through all possible ways to
apply the rules in Σ. In case G contains a single node, the function
simply returns the lemma of that node (lines 2 and 3). Otherwise,
the function takes each rule σ from Σ (line 6), repeatedly finds
subgraphs in G that match the pattern specified in σ (line 8), and
applies each action defined in σ to produce one translation (lines 9

through16). When applying an action to a matched subgraph, the
function uses a set ∆ to temporarily store the partial translation
results produced by executing some of the graph operations defined
in action: For each дrop defined in action (line 11), the дrop is
first executed to produce the result graph G ′ (line 12), then G ′ is
recursively translated to a set Π′ of strings using rules from Σ, and
next each string from Π′ is used to replace the corresponding дrop
in ∆. All the translation results are collected into Π (line 17) and
returned (line 21).

Consider again the method description in Figure 2 for example.
Besides the three OCL expressions shown in Figure 5, Doc2smt
also produces 324,336 other translations for it.

3.2.3 Post-Processing. Two extra general rules are employed to
correct obvious syntax errors in translations.

Some translation rules (e.g. Rule BE7 and Rule SS5) refer to un-
specified values from the context via placeholders like specifyvalue.
Rule Parameter Substitution will replace such placeholders with ac-
tual values. For instance, specifyvalue will be replaced with the
actual parameter v of the method when translating the description
of replace.

Translation rules like NM4, VD1, and VN1 will surround each
object of a verb with a pair of parentheses. If we regard the verb
as denoting an operation, all the parameters, however, should be
placed inside a single pair of parentheses and separated with com-
mas. Rule Parentheses Elimination removes redundant parentheses
and adds commas if necessary. For example, an invocation map(key

)(value) would be changed to map(key,value) after parentheses
elimination.

Applying rule-based translation to Gd produces a set Ed of can-
didate OCL expressions in string format. When the method returns
a non-void value, another set Er of candidates expressions is gener-
ated fromGr following the same process. Without loss of generality,
we assume Er = {true} when the method return type is void.

3.3 Library Domain Model and Static

Validation

Through rule-based translation, Doc2smt can typically produce
a large number of constraint clauses in OCL for a method. To
determine whether a clause is well-formed or not, a context has
to be provided. We propose a domain model as part of the input
for that purpose, and a two-step approach to preparing the model
incrementally.

Since all the related classes and their methods are clearly essen-
tial for the problem domain under consideration, and the informa-
tion is easily retrievable in the corresponding class documentation,
Doc2smt automatically extracts the information and builds a primi-
tive domain model based on that. For example, the primitive domain
model extracted for class TreeMapwill include types like Object and
TreeMap and methods like containsKey, get, and put.

While this primitivemodel contains important information about
the problem domain, it does not show how classes are related. More
importantly, the description of class and method functionalities in
a Javadoc may involve (high-level) implementation details, which
should be reflected in the domain model to help validate the OCL
expressions extracted from the same Javadoc. In the example with
TreeMap, since Entry is a public nested class of TreeMap, it is also part

For Research Only

Technical Report, August 2019, Nanjing, China Renhe Jiang, Minxue Pan, Yu Pei, Tian Zhang, and Xuandong Li

of the primitive model Doc2smt constructs for TreeMap. Method
replace refers to “the entry for the specified key” in its description,
but no operation is provided by TreeMap to get the entry object using
a key. Doc2smt relies on user input to complement the primitive
domain model with operations like entry(Object).

Since our ultimate goal is to generate functional constraints
for methods, we focus on parts of the domain model that will
facilitate such generation. Particularly, Doc2smt first validates all
the generated OCL expressions against the primitive domain model.
Besides of identifying expressions with syntax errors, Doc2smt
also records validation errors due to missing entities (i.e. classes
and/or properties) in the model, and reports them to the user in
descending order of their counts of occurrences. In manual domain
model enhancement, a user may choose to focus only on themissing
entities with counts of occurrences greater than No : Only relevant
entities should be added to the model, while the others should be
ignored.

Programmers often use synonyms in documentations to avoid
repeating the same words. Such synonyms can be one of the causes
for missing entities. For example, a reference to a missing property
named beginning can be replaced with that to an existing property
named start in the same context, since “beginning” and “start” are
synonyms. When checking through all the missing entities in this
step, Doc2smt allows users to map the words with same semantics
in a context, and creates a table of synonyms. It then uses the
table to replace the words with their synonyms in generated OCL
expressions.

Once we have the manually enhanced domain model, another
round of static validation is conducted to prune out OCL expressions
that fail to validate. For instance, based on the enhanced model
given in Figure 3, clause a) in Figure 5 is considered invalid since
it refers to a property k of value, which, however, does not exist
according to the domain model. Constraint clauses that cause no
errors in either phase of static validation are referred to as well-
formed clauses.

LetWd andWr be the set of well-formed clauses from Ed and Er
(Wd ⊆ Ed ,Wr ⊆ Er), respectively. Since a functional constraint is
expected to incorporate all the requirements from both the method
description and the method return value specification, Doc2smt
computes a set C = {e1 and e2 | e1 ∈ Wr , e2 ∈ Wd } as the set of
candidate constraints for the method. Each candidate constraint
σ ∈ C is a predicate on P and Q .

Note that while the well-formed clauses are in the OCL form,
they may not adhere to the OCL standard specification, since we
allow calls to non-pure operations from the problem domain. For
example, clause c) in Figure 5 invokes an overloaded version of
method replace, which may modify the receiver TreeMap object.
We choose to have constraint clauses in the OCL form at this step
to enable, with the help of an OCL expression validator, the easy
identification of valid relations among properties, operations, and
objects in the problem domain and the effective prune of most
invalid relations suggested by the permissive translation process
Ocl2smt implements.

1 entry(Object)

2 (= ?r ((as mk-entry) ?p1 (select (mapping ?p0) ?p1)))

3 contains(Entry)

4 (= ?r (and (select (key ?p0) (key ?p1))

5 (= (select (mapping ?p0) (key ?p1)) (value ?p1))))

Figure 9: SMT constraints for meta-operations entry and contains

from class TreeMap.

3.4 OCL to SMT

Candidate constraints are then translated to the SMT-LIB [3, 7]
format via a syntax-directed process [1].

In this step, expressions like if-then-else-endif in OCL are di-
rectly translated to expressions like ite in SMT-LIB, but operations
like replace and entry in Figure 5.c need special treatments, since
there are no constraints expressing their semantics. We refer to
such operations as meta-operations. Doc2smt automatically identi-
fies meta-operations and demands their semantics to be provided
in SMT in the enhanced domain model (one by one or in batch).

If one operation is used to express the constraint of another
operation, Doc2smt incorporates the semantics of the former into
that of the latter using a similar technique as applied in [9]. Consider
an operation f invoked in a candidate constraint, let S be the
encoding of f ’s semantics in SMT-LIB. Essentially, to translate an
invocation to f to SMT-LIB, Doc2smt first instantiates S using a
unique variable for each input and output formal parameter of f ,
then conjuncts that instantiation to the existing translation result,
and finally binds actual parameters with those unique variables
corresponding to the formal parameters.

While quantifications in OCL can be easily translated into their
counter-constructs in SMT-LIB, to help make the translation re-
sults easier to solve, we can provide rules in the enhanced domain
model to guide the elimination of quantifiers. For example, one
such rule may suggest to replace the existential quantifier value->
exists(value|map(k,value)) in Figure 5.c with the call sequence
contains(entry(k)). Figure 9 shows the SMT constraints for meta-
operations entry and contains. The instantiations of the two con-
straints appear on lines 8, 10, and 11 in Figure 4.

3.5 Dynamic Validation

For a constraint c to be a correct, i.e., both complete and sound,
functional constraint form, c has to satisfy the condition that, given
two sequences of values p and q that are compatible with P and Q ,
respectively, i) c(p,q) holds if and only if ii) invoking methodm on
input p produces output q.

It is obviously impossible to examine all feasible input and output
values ofm in most cases, and therefore, Doc2smt checks whether
two conditions i) and ii) are equivalent, with respect to a limited
set of tests. Particularly,
• Doc2smt implements a random algorithm [11] to generate a
group T1 of Nt tests form. If for every test t ∈ T1, the input
values p1 and output values q1 of t satisfy c , i.e., c(p1,q1),
then condition i) is necessary for condition ii), w.r.t. T1;
• Doc2smt also utilises the off-the-shelf constraint solver
Z3 [6] to find a set S of Ns solutions for each candidate
constraint. Let ps and qs be the input and output values of
a solution s ∈ S , ts be the test for m with ps as the input

For Research Only

Documentation-Based Functional Constraint Generation for Library Methods Technical Report, August 2019, Nanjing, China

Table 3: Subjects used in experiments to answer RQ3. For each con-

text class, the number of subject methods selected from that class

(#method) and the types of containers the subject methods manip-

ulate (container classes).

class #method container classes

Collections 8 Collection, List
CollectionUtils† 2 Collection, Set, HashSet
ListUtils† 5 Collection, Set, HashSet, List,

ArrayList, Map, HashMap
MapUtils† 1 Map

total 16 -
† Classes from package org.apache.commons.collections4.

Class Collections is from package java.util.

parameters, and T2 = ∪s ∈S ts be the set of all tests derived
from S . If for every solution s ∈ S , the output of ts is equal
to qs , then condition i) is sufficient for condition ii), w.r.t. T2.

If condition i) is both necessary and sufficient for condition ii), w.r.t.
the set T = T1 ∪T2 of tests, we regard c as valid, w.r.t. T .

Dynamic validation stops once a valid constraint is found; that
constraint is returned by Doc2smt as the function constraint form.
No constraint will be returned if no valid one is found.

3.6 Implementation Details

We have implemented the technique described above into a tool,
also named Doc2smt. The tool integrates the Stanford CoreNLP
Toolkit [10] to build the dependency graphs and find matches for
patterns in translation rules. Domain models are constructed based
on the Eclipse Modelling Framework [20] (EMF). The Eclipse OCL
Toolkit [4] is used to statically validate constraint clauses and trans-
late candidate constraints into SMT-LIB format.

Doc2smt, however, is not tightly bound to any of the specific
tools it uses. Other tools providing similar functionalities can be
easily integrated into Doc2smt and replace existing components.

4 EVALUATION

We conduct an experimental evaluation on Doc2smt to address the
following research questions:

RQ1: How effective is Doc2smt? In RQ1, we carefully analyse
for how many methods Doc2smt is able to generate con-
straints and what quality the constraints have.

RQ2: How efficient is Doc2smt? In RQ2, we focus on the cost
of applying Doc2smt to generate functional constraints, and
the breakdown of the overall time cost into the time for
candidate clause generation, static validation, and dynamic
validation.

RQ3: How useful are the generated constraints? In RQ3, we
assess the usefulness of the constraints in terms of the im-
provements they bring to symbolic-execution-based test gen-
eration.

4.1 Subjects

To answer RQ1 and RQ2, we choose 10 common container classes
from the Java Collections Framework1 (JCF), since container classes
are notorious for their complexity that affects program analysis,

1https://docs.oracle.com/javase/8/docs/technotes/guides/collections/

Figure 10: Enhanced domainmodel used in the experiments.

Note that most public methods listed in the documentations

are omitted here for brevity reasons. Also note that EInt and

EBoolean are counter-types of int and boolean in EMF.

and yet they are among the most widely used libraries. All the
methods described in the documentation of container classes are
used as the subjects in our experiments. Columns class and #m of
Table 4 show the subject classes and the number of subject methods
chosen from each class.

To answer RQ3, we searched through 4 classes from JCF and the
Apache Commons Collections2 (ACC) for static methods manipu-
lating variables of primitive types and methods of the 10 container
classes. Targeting such methods is simply to ease the running of
SPF, since it could be non-trivial to run SPF depending on the char-
acteristic of methods. Static methods are preferred by SPF, as they
do not require the instantiations of objects, which may require
specific values. Same are the methods only containing primitive
variables and invoking methods with functional constraints. We
gather in total 16 such methods as our subjects. Table 3 gives infor-
mation about the context classes of the methods and the types of
container objects the methods manipulate.

4.2 Experimental Protocol

Our experiments are divided into two parts. We apply Doc2smt
to generate constraints for methods from the 10 container classes
in the first part, and use the generated constraints to produce test
suites for 16 utility methods in the second part.

In the first part of experiments, for each subject method, we first
use a simple script to extract the summary from Javadoc documen-
tation, then feed it to Doc2smt. Doc2smt translates the summary
into constraint clauses in OCL syntax. During domain model en-
hancement, we select the missing entities reported by Doc2smt
with counts of occurrences greater than No = 10, and only add
the relevant ones to the domain model. As the result, we construct
the enhanced domain model, as shown in Figure 10, for the classes.
Note that, for brevity reasons, the model only shows entities that
are extra to the public methods specified in class documentations or
meta-operations. Public methods listed in the class documentations

2https://commons.apache.org/proper/commons-collections/

For Research Only

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/
https://commons.apache.org/proper/commons-collections/

Technical Report, August 2019, Nanjing, China Renhe Jiang, Minxue Pan, Yu Pei, Tian Zhang, and Xuandong Li

Table 4: For each class from package java.util, the numbers of methods used as the subject (#m), valid (#v) and correct (#c) constraints

produced, and candidate constraint clauses generated (#l); the numbers of well-formed constraint clauses retained (#wf-l) andmethods with

well-formed constraints (#m’) after static validation; the numbers of well-formed constraints checked until finding the first valid (#wf-c),

solutions for SMT constraints generated by Z3 (#solu), and tests produced (#test) during dynamic validation; the overall running time of

Doc2smt (t), the time spent on candidate constraint clause generation (tg), static validation (tsv), and dynamic validation (tdv). All times are

in seconds.

constraint gen s-v d-v time

class #m #v #c #l #wf-l #m’ #wf-c #solu #test t tg tsv tdv

Collection 19 9 9 604K 160 13 32 644 900 2253.57 0.69 3.45 2246.67
Set 16 11 11 2737K 142 13 25 812 1100 2801.97 0.70 112.99 2576.00
HashSet 9 8 8 65K 37 8 8 530 800 1354.21 0.31 5.97 1342.26
TreeSet 27 24 23 4831K 192 25 34 1884 2400 5275.49 1.67 380.04 4515.41
List 28 17 17 13901K 206 21 28 704 1418 1720.41 1.60 376.99 966.43
ArrayList 31 16 16 14415K 234 20 27 758 1362 1799.77 1.16 376.95 1045.88
LinkedList 40 34 33 13864K 483 37 48 1473 3152 2538.53 1.67 297.81 1942.90
Map 25 15 15 10077K 222 18 21 908 1439 3263.13 10.07 425.82 2411.49
HashMap 24 15 15 10141K 213 18 23 839 1445 4019.82 9.20 410.13 3199.56
TreeMap 40 33 33 8506K 288 35 39 2223 3245 7325.49 3.65 948.28 5428.94

Total 259 182 180 79141K 2177 208 285 10775 17261 32352.39 30.72 3338.43 25675.54

are omitted in the figure. Each phase of static validation is config-
ured to run for at most 2 minutes. In dynamic validation, Doc2smt
is configured to generate at most Nt = 100 different tests for each
method and find at most Ns = 100 solutions for each candidate
constraint.

We decide whether a valid constraint is correct or not through
manual inspection. We are aware that manual assessment may
cause a major threat to the construct validity of our findings. To
mitigate the threat, two authors independently examine the quality
of each valid constraint reported by Doc2smt. A constraint is only
marked as correct if both authors agree that the constraint properly
captures all the functionalities of the corresponding method. We
leave a detailed analysis of constraint correctness for future work.

Besides whether a valid constraint is produced and whether that
constraint is indeed correct, we also record the following measures
for the run of Doc2smt on each method:

#l: number of candidate constraint clauses in OCL gener-
ated;

#wf-l: number of well-formed constraint clauses in OCL re-
tained after static validation;

#wf-c: number of well-formed candidate constraints dynami-
cally validated until a valid one is found;

#solu: number of solutions the solver produces for all the can-
didate constraints;

#test: number of tests generated for all the methods;
tg: wall-clock time for OCL expression generation;
tsv: wall-clock time for static validation;
tdv: wall-clock time for dynamic validation;

In the second part of experiments, we use generated constraints
to enhance the capability of Symbolic Pathfinder (SPF) [16] in test
suite generation. SPF is a symbolic execution engine for Java, built
on the top of the Java PathFinder (JPF) model checker. It introduces
a customised bytecode instruction factory to augment the concrete
execution semantics of Java programs with symbolic execution,
and it attaches a field attribute to each variable for storing the
symbolic value of the variable. The enhanced SPF (ESPF) modi-
fies the interpretation of invoke instructions in Java programs in

such a way that, when an invocation to a method with functional
constraint in SMT is encountered, it incorporates the constraint in
the same way as is done during the translation from OCL to SMT
(Section 3.4).

To generate tests for a utility method, we launch SPF/ESPF with
an initial test for that method. Once entering the method body,
SPF/ESPF exhaustively examines all possible execution paths of
the method and reports the corresponding path conditions one
by one. We then send each path condition to the Z3 solver. If the
solver can find a solution to the condition and a test can actually
be constructed using the solution to cover a new path, a new test
has been generated. In this way, we are able to produce a group of
new tests, each covering a distinct path than the initial test does.
In this part of the experiments, SPF and ESPF are both configured
to run on each method until either 100 different tests are generated
or the 2-minute time limit is reached, and we record the number
of new tests generated. Our choice of such completion criteria is
motivated by the “small-scope hypothesis”, which claims that many
defects can be triggered with small inputs and witnessed using
short executions [2].

Our experiments were conducted on a desktop computer running
Ubuntu 16.04 on a Intel Core i7-6700 CPU (3.4GHz) and 16G RAM.
The time out for each invocation to Z3 is set to 20 seconds.

4.3 Experimental Results

In this section, we report the experimental results as answers to
the three research questions.

4.3.1 RQ1: Effectiveness. Table 4 shows that, in total, Doc2smt
was able to generate valid constraints for 182 of the 259 subject
methods, achieving an overall success rate of 70%, which suggests
Doc2smt is highly applicable. Among the 182 valid constraints,
180 are indeed correct. The overall high quality of the results in-
dicates that Doc2smt is effective in generating strong functional
constraints. Figure 11 depicts the distribution of contributions by
different translation rule categories in the experiments. It is clear
from the figure that each rule category is needed to successfully
handle a significant number of methods.

For Research Only

Documentation-Based Functional Constraint Generation for Library Methods Technical Report, August 2019, Nanjing, China

Figure 11: For each translation rule category, the number of valid

constraints whose generation involves at least one application of a

rule from that category.

The valid constraints for methods TreeSet::descendingSet and
LinkedList::pollLast, however, were actually incorrect. The first
method should return a navigable set of the same elements in the
treeset but with a reversed navigation order. Since we did not pro-
vide the meta-operation to test the quality of navigable set objects
properly, dynamic validation had to make do with the more general
comparison defined for set objects. The criteria for valid constraints
is therefore weakened, allowing the incorrect constraint to survive
the dynamic validation. The second method should retrieve and re-
move the last element of a list, or return null if the list is empty. For
the method, Doc2smt failed to generate any test that can expose
the discrepancy between the result constraint and the method’s
semantics in its current settings. WhileDoc2smt also generated the
correct constraint for the method, the constraint is further down
the list of all candidates, compared with the one Doc2smt returns,
and is therefore missed by the tool.

Doc2smt was not able to produce any valid postcondition for
75 methods. We manually check these methods and identify four
reasons for the failures: 1) Doc2smt failed to produce any well-
formed constraint clause for 51 methods due to incomplete domain

model. For example, since type Comparator is not part of the domain
model, Doc2smt cannot generate any clause for method TreeMap::

comparator, which returns an object of type Comparator, that passes
the static validation; 2) For 6 other methods, while Doc2smt was
able to generate the correct candidate constraints, the constraints
were pruned out since Z3 solver was not able to find any solution
to them. For example, while the generated constraint for method
TreeMap::values correctly stipulates that the result collection con-
tains all the symbols in the map that are associated with a particular
key, it is regarded invalid since Z3 returned unknown when solving
it; 3) Due to limitations in the linguistic analysis, Doc2smt was not
able to properly handle the summaries and produced only invalid
constraints for 7 methods; 4) Part of the semantics was only implied,
instead of explicitly provided, in the documentations for 11 meth-
ods. Therefore Doc2smt failed to capture those constraints and
produced only partial constraints for the methods, which were then
invalidated during dynamic validation. For example, the documen-
tation for method Set::toarray requires that the result contains
all elements in the set, but not that the result should only contain
elements from the set. The generated constraint reflects only the
weak specification given in the method summary and admits solu-
tions that do not comply with the actual dynamic behaviors of the
method.

Table 5: Numbers of additional classes (#cls), operations (#op), and

properties (#pr) in the enhanced domainmodel, compared with the

primitive domain model.

#cls #op #pr total

3 24 13 40

As listed in Table 4, Doc2smt generated, for all the subject meth-
ods, nearly 80 million candidate constraint clauses, among which
only 2177 validated successfully with the domain model and are
well-formed, leading to 285 well-formed constraints checked on
208 methods and 182 valid constraints produced. These numbers
suggest that Doc2smt explores a fairly large space in constructing
candidate constraint clauses, and its remaining steps are effective
in pruning the invalid constraints and reporting only the ones of
high quality.

4.3.2 RQ2: Efficiency. Since the generation process is not com-
pletely automated, we examine the efficiency of Doc2smt from
two different aspects: the time cost for running the Doc2smt tool
and the amount of manual effort required to prepare the inputs.

Table 4 also shows the time it takes for Doc2smt to produce the
valid constraints and the breakdown of that into the time spent
on each of the three main steps, i.e., candidate constraint gener-
ation, static validation, and dynamic validation. In total, it took
Doc2smt 539 minutes to produce all the valid constraints, averag-
ing to 53.9 minutes for each class or 2 minutes for each method.
Among the three main steps, dynamic validation is by far the most
time-consuming, which is understandable given its nature of dy-
namic analysis.

Manual effort needed in the experiments involves creating the
12 domain specific translation rules, enhancing the primitive do-
main model with 40 extra elements, and crafting SMT constraints
encoding the semantics of 26 meta-operations in domain models. In
phase I static validation, Doc2smt reports 261 errors due to missing
entities in total. Since most errors occurred less than 10 times, we
only had to check 44 missing entities manually. Table 5 lists the
numbers of additional classes, operations, and properties added to
enhance the primitive domain model.

In view thatDoc2smt generated correct constraints for 180meth-
ods from 10 classes, and many of the domain specific translation
rules can be reused to process other Java library methods, we con-
sider the amount of manual effort involved in applying Doc2smt
as moderate. We leave a more systematic and quantitative investi-
gation into this aspect for future work.

4.3.3 RQ3: Usefulness in test generation. In total, espf generated
683 new tests for the 16 utility methods, while spf was only able to
generate 24 new tests for 3 methods. Table 6 shows that spfwas not
able to generate any new test on 13 methods. The reason is that spf
will use concrete, instead of symbolic, values when encountering
objects it cannot generate symbolic expressions for, e.g. a container
symbolic input. Under such a circumstance, no path condition will
be constructed from the execution, therefore no new inputs can
be generated to drive the execution to explore a different path. For
ESPF, we increase its capability to interpret container objects and
method invocations, to explore more feasible paths.

For Research Only

Technical Report, August 2019, Nanjing, China Renhe Jiang, Minxue Pan, Yu Pei, Tian Zhang, and Xuandong Li

Table 6: Comparison between spf and espf in test suite generation.

For each tool and each method, the number of new tests generated

and the time spent to achieve that in milliseconds.

espf spf

method t ms t ms

Collections.indexedBinarySearch 15 659 6 120
Collections.reverse 2 175 0 71
Collections.max 9 4741 0 68
Collections.rotate1 12 33352 9 634
Collections.rotate2 13 25084 9 233
Collections.indexOfSubList 98 4442 0 42
Collections.lastIndexOfSubList 93 9094 0 41
Collections.disjoint 19 3070 0 42
CollectionUtils.containsAll 96 120084 0 72
CollectionUtils.containsAny 17 2388 0 81
ListUtils.intersection 7 98181 0 89
ListUtils.subtract 99 10347 0 52
ListUtils.union 0 845 0 54
ListUtils.retainAll 99 45248 0 40
ListUtils.removeAll 99 24428 0 52
MapUtils.invertMap 5 3782 0 49

Total 683 385920 24 1740

Regarding the execution time, it is understandable that spf exe-
cutes much faster than espf, since little symbolic execution, and
analysis in consequence, can be done there. Such experimental re-
sults suggest that the constraints generated by Doc2smt can be
used to effectively improve test generation.

4.4 Limitations

While preconditions and exceptions that might be raised during
its execution are also important information regarding a method’s
interface, and useful for analyzing code that invokes the method,
we focus on generating strong functional constraints that capture
the postconditions of library methods in this work. One interesting
direction we plan to explore in the future is to advance theDoc2smt
approach to extract also method preconditions and class invariants
from documentations.

In this work, we evaluate the effectiveness and efficiency of
Doc2smt on public methods defined in ten container classes from
the Java Collections Framework. While experimental results show
that Doc2smt is reasonably effective and efficient on the meth-
ods, all these classes implement popular data structures with well-
defined interfaces, and they may not be a good representative of
libraries in other areas and/or languages. In the future, we will
conduct larger scale experiments on more methods from various
libraries to understand better the applicability of our approach.

5 RELATEDWORK

The work of this paper is based on results from multiple research
areas. For space reasons, this section briefly reviews researches in
specification inference and model-driven engineering that have the
largest influences on this work.

Various techniques have been proposed to infer specifications
for programs at various levels. Dynamic invariant detection [5, 8]

infers invariants by dynamically running a program and using ma-
chine learning algorithms to analyze the execution traces, while
other approaches try to improve specification quality by combining
dynamic analysis with static analysis [13] or by exploiting other
information, e.g., programmer-written contracts, in programs [15].
Many works have also been done to facilitate specification gener-
ation by analyzing documentations written in natural language.
ALICS [14] is the first approach that analyses API documents to gen-
erate code contracts. Its text analysis engine translates sentences
in API descriptions into first-order logical expressions based on
pre-defined shallow parsing semantic templates [14], which are
are analogous to patterns in our translation rules, and the expres-
sions are then translated to code contracts based on a predefined
mapping from predicates to programming constructs. ALICS does
not aim to produce strong functional constraints capturing the full
semantics of APIs, while Doc2smt tries to generate specifications
that are as complete as possible. Zhai et al. [23] propose to construct
model implementations for Java APIs based on documentations.
The model implementations are simpler compared to the original
ones and hence easier to analyze. The text analysis engine they
use generates a grammatical tree for a sentence, transforms such a
tree to produce variants, and uses pre-defined patterns to match
tree structure and generate code snippets. Zhou et al. [24] extracts
constraints about exceptions both from source code and documen-
tations to detect defects of API directives. Compared with these
techniques, Doc2smt works on dependency graphs and general
translation rules, and it uses a domain model to manage domain
knowledge and validate generated constraint clauses. To the best
of our knowledge, Doc2smt is the first NLP-based approach to
generating specifications that are good enough to be utilised by
techniques like symbolic execution, which hold a high expectation
for the soundness and completeness of its input specifications.

The idea behind this paper is inspired by the work that uses
model-driven techniques to facilitate the documentation analysis.
Text2Test [19] is an approach to building models from use case
specifications, and it facilitates engineers to revise their use cases
based on the construction and analysis of models. The UMTG [21]
approach generates system test cases from use case specifications.
It first combines techniques in natural language processing and
domain models to generate an use case test model from a specifi-
cation, then derives test cases from the generated model. GUEST
[12] is a rule-based approach to extract goal and use case models
from natural language requirements documents. The idea of using
a domain model to manage domain knowledge in this paper is in-
spired by UMTG, and the design of translation rule in this paper is
inspired by the goal extraction rules proposed in GUEST.

6 CONCLUSIONS

Program specifications are important assistances to simplify API
analysis tasks instead of struggling with code. Library documen-
tation can be regarded as a high-level specification but is hard for
computers to understand. In this paper, we propose the Doc2smt
technique to generate formal, functional constraints from natural
language documentations for library methods, based on a library
domain model, a divide and conquer algorithm, and a group of
translation rules. Our experimental results show that Doc2smt

For Research Only

Documentation-Based Functional Constraint Generation for Library Methods Technical Report, August 2019, Nanjing, China

generates correct constraints for 180 collection APIs among all 259
subjects, and the average generating time is about 2 minutes. The
generated constraints increase the number of new tests produced by
SPF on 16 realistic collection manipulating methods by 28.5 times,
which confirms the efficacy of our work.

REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison-Wesley, Boston, MA,
USA.

[2] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. 2002.
Evaluating the "Small Scope Hypothesis". (10 2002).

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-LIB Standard:

Version 2.6. Technical Report. Department of Computer Science, The University
of Iowa. Available at www.SMT-LIB.org.

[4] Damus Christian, SÃąnchez-Barbudo H. Adolfo, Uhl Axel, Willink Edward, and
contributors. 2018. OCL Documentation.

[5] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy:
Dynamic Symbolic Execution for Invariant Inference. In Proceedings of the 30th

International Conference on Software Engineering (ICSE ’08). ACM, New York, NY,
USA, 281–290.

[6] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340.

[7] Leonardo de Moura and Nikolaj Bjørner. 2011. Z3-a Tutorial.
[8] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999.

Dynamically Discovering Likely Program Invariants to Support Program Evolu-
tion. In Proceedings of the 21st International Conference on Software Engineering

(ICSE ’99). ACM, New York, NY, USA, 213–224.
[9] R. Jiang, Z. Chen, Z. Zhang, Y. Pei, M. Pan, and T. Zhang. 2018. Semantics-

Based Code Search Using Input/Output Examples. In 2018 IEEE 18th International

Working Conference on Source Code Analysis and Manipulation (SCAM). 92–102.
https://doi.org/10.1109/SCAM.2018.00018

[10] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Computational Linguistics (ACL) System

Demonstrations. 55–60.
[11] BertrandMeyer, Ilinca Ciupa, Andreas Leitner, and Lisa Ling Liu. 2007. Automatic

Testing of Object-Oriented Software. In Proceedings of the 33rd Conference on

Current Trends in Theory and Practice of Computer Science (SOFSEM ’07). Springer-
Verlag, Berlin, Heidelberg, 114–129.

[12] Tuong Huan Nguyen, John Grundy, and Mohamed Almorsy. 2015. Rule-based
Extraction of Goal-use Case Models from Text. In Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New

York, NY, USA, 591–601. https://doi.org/10.1145/2786805.2786876
[13] JeremyW. Nimmer andMichael D. Ernst. 2002. Automatic Generation of Program

Specifications. SIGSOFT Softw. Eng. Notes 27, 4 (July 2002), 229–239. https:
//doi.org/10.1145/566171.566213

[14] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar. 2012. Infer-
ring method specifications from natural language API descriptions. In 2012

34th International Conference on Software Engineering (ICSE). 815–825. https:
//doi.org/10.1109/ICSE.2012.6227137

[15] Nadia Polikarpova, Ilinca Ciupa, and Bertrand Meyer. 2009. A Comparative Study
of Programmer-written and Automatically Inferred Contracts. In Proceedings of

the Eighteenth International Symposium on Software Testing and Analysis (ISSTA

’09). ACM, New York, NY, USA, 93–104. https://doi.org/10.1145/1572272.1572284
[16] Corina S. Pǎsǎreanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet,

Michael Lowry, Suzette Person, and Mark Pape. 2008. Combining Unit-level
Symbolic Execution and System-level Concrete Execution for Testing Nasa Soft-
ware. In Proceedings of the 2008 International Symposium on Software Testing and

Analysis (ISSTA ’08). ACM, New York, NY, USA, 15–26. https://doi.org/10.1145/
1390630.1390635

[17] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007.
Static Specification Inference Using Predicate Mining. In Proceedings of the 28th

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI ’07). ACM, New York, NY, USA, 123–134.
[18] John L. Singleton, Gary T. Leavens, Hridesh Rajan, and David Cok. 2018. An

Algorithm and Tool to Infer Practical Postconditions. In Proceedings of the 40th

International Conference on Software Engineering: Companion Proceeedings (ICSE

’18). ACM, New York, NY, USA, 313–314.
[19] A. Sinha, S. M. S. Jr., and A. Paradkar. 2010. Text2Test: Automated Inspection of

Natural Language Use Cases. In 2010 Third International Conference on Software

Testing, Verification and Validation. 155–164. https://doi.org/10.1109/ICST.2010.19
[20] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF:

Eclipse Modeling Framework 2.0 (2nd ed.). Addison-Wesley Professional.
[21] Chunhui Wang, Fabrizio Pastore, Arda Goknil, Lionel Briand, and Zohaib Iqbal.

2015. Automatic Generation of System Test Cases fromUse Case Specifications. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis

(ISSTA 2015). ACM,NewYork, NY, USA, 385–396. https://doi.org/10.1145/2771783.
2771812

[22] Yi Wei, Carlo A. Furia, Nikolay Kazmin, and Bertrand Meyer. 2011. Inferring
Better Contracts. In Proceedings of the 33rd International Conference on Software

Engineering (ICSE ’11). ACM, New York, NY, USA, 191–200.
[23] J. Zhai, J. Huang, S. Ma, X. Zhang, L. Tan, J. Zhao, and F. Qin. 2016. Automatic

Model Generation fromDocumentation for Java API Functions. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). 380–391. https:
//doi.org/10.1145/2884781.2884881

[24] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall. 2017. Analyzing
APIs Documentation and Code to Detect Directive Defects. In 2017 IEEE/ACM

39th International Conference on Software Engineering (ICSE). 27–37. https:
//doi.org/10.1109/ICSE.2017.11

For Research Only

https://doi.org/10.1109/SCAM.2018.00018
https://doi.org/10.1145/2786805.2786876
https://doi.org/10.1145/566171.566213
https://doi.org/10.1145/566171.566213
https://doi.org/10.1109/ICSE.2012.6227137
https://doi.org/10.1109/ICSE.2012.6227137
https://doi.org/10.1145/1572272.1572284
https://doi.org/10.1145/1390630.1390635
https://doi.org/10.1145/1390630.1390635
https://doi.org/10.1109/ICST.2010.19
https://doi.org/10.1145/2771783.2771812
https://doi.org/10.1145/2771783.2771812
https://doi.org/10.1145/2884781.2884881
https://doi.org/10.1145/2884781.2884881
https://doi.org/10.1109/ICSE.2017.11
https://doi.org/10.1109/ICSE.2017.11

