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Abstract Missing checks for untrusted inputs used in security-sensitive operations is one of the major causes of various

vulnerabilities. Efficiently detecting and repairing missing checks are essential for prognosticating potential vulnerabilities

and improving code reliability. We propose a systematic static analysis approach to detect missing checks for manipulable

data used in security-sensitive operations of C/C++ programs and recommend repair references. First, customized security-

sensitive operations are located by lightweight static analysis. Then, the assailability of sensitive data used in security-

sensitive operations is determined via taint analysis. And, the existence and the risk degree of missing checks are assessed.

Finally, the repair references for high-risk missing checks are recommended. We implemented the approach into an automated

and cross-platform tool named Vanguard based on Clang/LLVM 3.6.0. Large-scale experimental evaluation on open-source

projects has shown its effectiveness and efficiency. Furthermore, Vanguard has helped us uncover five known vulnerabilities

and 12 new bugs.

Keywords static analysis, missing check, vulnerability detection, repair recommendation

1 Introduction

The whole field of software engineering is premised

on writing correct code without vulnerabilities as well

as defending attacks[1]. It is difficult especially for

C/C++ programmers, because both languages force

programmers to make fundamental decisions on han-

dling security-sensitive operations (SSO) such as mem-

ory management. Besides, even experienced industrial

developers will make mistakes during programming due

to the lack of attention on the attack protection for

these security-sensitive operations.

To improve the correctness of program, vul-

nerability detection plays one of the most im-

portant roles. Unfortunately, an automatic ap-

proach to precisely detecting arbitrary types of

vulnerabilities does not exist according to Rice’s

theorem[2]. Thus, the state-of-the-art security re-

search has focused on digging specific vulnerabilities

buried in code such as buffer overflow[3,4], integer

overflow[5,6], use-after-free[7,8], memory leakage[9,10],

null pointer dereference[11,12], and out-of-bound

errors[13,14] by static and dynamic approaches in-

cluding static analysis[15−17], taint analysis[18], sym-

bolic execution[19,20], concolic execution[21,22], model

checking[23,24], and fuzzing[25,26], etc.

However, it is a fact that missing checks for manipu-

lable data used in security-sensitive operations is one

of the major causes of various severe vulnerabilities.

Therefore, efficiently identifying and repairing missing

checks in realistic software are essential for the prog-
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noses of potential vulnerabilities and the improvement

of code security, especially in the early development

stage.

Several approaches have been proposed to detect

missing checks. Chucky[27] detects missing checks by

machine learning (i.e., anomaly detection algorithm).

It identifies missing checks for security APIs usage

based on the assumption that missing checks are rare

events compared with the correct conditions imposed

on security-critical objects in software. But the feed-

back from industry developers indicates that missing

checks occur a lot during a development stage. There-

fore, it is more suitable for analyzing stable code since

the assumption is not valid in the early development

stage. RoleCast[28] statically explores missing security

authorization checks without explicit policy specifica-

tions in the source code of web applications. It ex-

ploits common software engineering patterns and a role

specific variable consistency analysis algorithm to de-

tect missing authorization checks. However, RoleCast

is tightly bounded to web applications coded in PHP

and ASP.

To prognosticate potential vulnerabilities and im-

prove code correctness, we propose a systematic static

approach to detect missing checks for manipulable data

used in security-sensitive operations in C/C++ pro-

grams. It could be used for stable code as well as pro-

grams under development. First, customized security-

sensitive operations (e.g., sensitive API usage, array-

index access, division and modular arithmetic) are lo-

cated with lightweight static analysis based on the ab-

stract syntax tree (AST)[29], call graph (CG)[30] and

control flow graph (CFG)[31] of the target program.

Second, sensitive data used in these security-sensitive

operations is checked to see whether it is manipulable

by outside inputs via inter-procedural static taint ana-

lysis. Third, a data flow based backward analysis algo-

rithm is applied to explore protection checks from the

locations of security-sensitive operations: if no proper

protection checks exist, then a missing check is identi-

fied. Further, the risk degree of detected missing checks

is assessed based on its context metrics. At the same

time, the corresponding repair references for the de-

tected high-risk missing checks are recommended. At

last, details of the high-risk missing check and recom-

mended repair references are reported.

We have developed an automated and cross-

platform tool named Vanguard on the top of

Clang/LLVM 3.6.0, and conducted large-scale experi-

ments on open-source projects to demonstrate its effec-

tiveness and efficiency. The results indicate that Van-

guard is able to detect missing checks in open-source

projects with low false positive (i.e., 13.23% on ave-

rage) and low time overhead (e.g., 619 s for 500k lines

of code in Php-5.6.16).

We summarize the main contributions of this paper

as follows.

• A purely static detection and repair recommenda-

tion approach for missing checks was proposed to prog-

nosticate potential vulnerabilities and improve the code

correctness of C/C++ programs.

• A cross-platform tool named Vanguard was imple-

mented on top of Clang/LLVM 3.6.0. It is capable of

identifying high-risk missing checks in realistic projects

and recommending useful repair references.

• Large-scale experimental evaluation on open-

source projects was performed to demonstrate the ef-

fectiveness and efficiency of Vanguard. Furthermore, it

ultimately leads us to uncover five known vulnerabili-

ties and 12 new bugs.

The rest of the paper is organized as follows. Section

2 introduces the motivation example and formal defini-

tion of the missing check. Section 3 presents a detailed

description of the proposed approach. Section 4 intro-

duces the details of implementation and optimization

mechanism. Section 5 gives the experimental evalua-

tion results. Section 6 presents and discusses related

work. Finally, we conclude the work in Section 7.

2 Missing Checks

The section illustrates an example of missing checks

for four kinds of security-sensitive operations and gives

the formal definition of the missing check.

2.1 Motivation Examples

Missing checks for security-sensitive operations us-

ing manipulable data may result in many severe types

of vulnerabilities and a lot of disastrous attacks. For

example, CVE-2013-0422 is a vulnerability caused by

the missing check for a sensitive access-control function

in Java 7, which has been utilized to install malware

on millions of hosts by attackers[27]. Recently, “A7-

Insufficient Attack Protection” has been proposed as a

new type of top 10 security risks by OWASP in 2017 1○.

Missing protection checks for manipulable data used in

1○OWASP2017. https://www.owasp.org/index.php/Category:OWASP Top Ten Project, July 2019.
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security-sensitive operations (i.e., missing checks) is an

indicator of insufficient attack protection.

Intuitively, a code snippet is illustrated in Fig.1

for better understanding of missing checks for different

security-sensitive operations. The dividend, operand,

index and len are untrusted data. They could be ma-

nipulated by outside attack inputs i and upMsg when

used in four types of security-sensitive operations, e.g.,

division arithmetic, modular operation, array-index ac-

cess, and security-sensitive function call without proper

protection checks.

Fig.1. Code sample of missing checks.

• Missing Check for Division Arithmetic. The ma-

nipulable data dividend is used as a dividend in division

arithmetic at line 8 without confirming that dividend

is not equal to zero as annotated at line 7, which will

result in a divide-by-zero error.

• Missing Check for Modular Operation. The ma-

nipulable data operand is used as the second operand

in modular operation at line 17 without guaranteeing

that operand is not equal to zero as annotated at line

16, which may lead to a modulus-by-zero error.

• Missing Check for Array-Index Access. The ma-

nipulable data index is used as the subscript of an array

at line 25 without checking that index is in the range

of array’s capacity as annotated at line 24, which will

cause an out-of-bounds error.

• Missing Check for Sensitive API Usage. The ma-

nipulable data len is used as an argument of a security-

sensitive function call (i.e., memcpy) at line 34 without

comparing len as annotated at line 33, which could give

rise to a buffer-overflow vulnerability.

2.2 Formal Definition

As illustrated in Fig.2, a program consists of a se-

quence of numbered statements, i.e., assignments, func-

tion calls, sequence executions, conditionals, and loops

as defined by stmt. id represents a local variable and

formal parameter of functions, and constant represents

a constant variable. We use♦b and♦u to represent typ-

ical binary and unary operations respectively. ♦m rep-

resents member operator “.” or “→”, and [] represents

array accesses. It is an abstract program containing all

important features of C/C++. A transition system for

the program could be defined as Definition 1.

Fig.2. Program composition.
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Definition 1 (Transition System). Let TS =

(S,Act,→, I, AP, L) be a transition system for a pro-

gram, where:

• S = Taint(V ar)× Check(V ar) is a set of states,

Taint(V ar) represents whether the variable V ar is

tainted or not, and Check(V ar) represents whether

V ar is checked or not,

• Act is a set of statements,

• →⊆ S ×Act× S is defined by the following rule:

ti−1
αi

→֒t ti, ci−1
αi

→֒c ci

<ti−1, ci−1>
αi−→<ti, ci>

,

where αi is the act, →֒t ⊆ Tnt(V ar) × Act ×

Taint(V ar), →֒c ⊆ Check(V ar)×Act× Check(V ar),

• I ⊆ S is a set of initial states,

• AP = Taint(V ar)∪Check(V ar) is a set of atomic

propositions, and

• L = S → 2AP is a labeling function.

Furthermore, we give the formal definition of miss-

ing checks based on the definition of transition system

as follows.

Definition 2 (Missing Check). Let ρ = < s0
α1−→

s1
α2−→ s2...si−1

αi−→ si... > be an execution path whose

action sequence is “α1α2...αi...”. There is a missing

check on ρ iff ρ satisfies the following conditions.

1) ∃ αi ∈ SSO ⊆ Act, where SSO is a set of

security-sensitive operations. It represents that αi is

a security-sensitive operation.

2) For αi in condition 1, ∃ d ∈ SD(αi) ∧ ti−1(d) =

T , where SD is a function to obtain the data used in

αi. It represents that the sensitive data d used in αi is

tainted.

3) For d in condition 2, c1(d)∨c2(d)∨...∨ci(d) = F .

It represents that there are no attack protection checks

for d and related variables.

3 Approach

The overview of Vanguard is illustrated in Fig.3.

The inputs are the source code of a C/C++ program

and the configuration file. The outputs are identified

missing check warnings and recommended repair ref-

erences. Vanguard detects missing checks by the four

steps: 1) security-sensitive operations location, 2) ar-

guments assailability judgment, 3) insufficient protec-

tion assessment, and 4) repair protection recommenda-

tion. Note that because the detection techniques for

four types of missing checks are similar, the description

of the approach is based on the example of detecting

missing checks for sensitive APIs usage in the follow-

ing.

Vanguard first locates customized security-sensitive

operations (SSO) with lightweight static analysis on the

abstract syntax tree, call graph and control flow graph

of the target program. Second, sensitive data used in

SSO (i.e., dividend in division arithmetic, the modulus

in modular operation, index of array access, and argu-

ments of security-sensitive function calls) is obtained to

determine whether it is assailable by outside attack in-

put. It is achieved by checking whether it is tainted or

not by static taint analysis. Third, if sensitive data is

tainted, then a backward data-flow analysis is applied

to explore whether there are protection checks for the

tainted data or related variables. If not, then a missing

check is identified. Vanguard will extract its context

metrics, and estimate its risk degree based on the sum

of these metrics values. Finally, Vanguard generates

warnings and repair references for the detected high-

risk missing checks.

To illustrate the processes of Vanguard to detect

missing checks, we apply Vanguard on the code snippet

in Fig.1. The function EntryFun at line 46 is an entry

function that calls recvmsg, DIV msg, MOD msg,

Security-
Sensitive
Operation
Location 

Argument
Assailability
Judgement 

Insufficient
Protection

Assessment 

Repair
Protection

Recommendation

Repair
Reference

User
Configuration

Taint Source
&&

Propagation
Rules 

 

Context
Metrics

Warning
Report

Source
Code

Fig.3. Overview of Vanguard.
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ARRAY msg, and FUNC msg. recvmsg is a library

function in charge of receiving messages from the out-

side.

First, security-sensitive operations, i.e., division

operator at line 8, modulus arithmetic at line 17, ar-

ray index array[index] at line 25, sensitive function call

memcpy at lines 34 and 43, are located as well as their

arguments (i.e., dividend, operand, index, buf , and

len). Notice that sensitive data (i.e., the buf and len

used as arguments of memcpy) is obtained according

to our configuration item “memcpy : 0 + 2”, which

represents that the first and the third arguments of

“memcpy” need to be checked.

Second, the sensitive data is judged to see whether

it is assailable by outside attack input using static taint

analysis. Our static taint analysis regards the argument

i of EntryFun as tainted. upMsg is the return value of

the library function recvmsg configured in our black-

list. It is tainted since the return value of a library func-

tion in the black-list is tainted by default. Thus, upMsg

is marked as tainted too. Local variables dividend,

operand, index, and len are all tainted, because they

are influenced by the taint source i and upMsg through

statements at lines 6, 15, 23, and 32 based on our taint

analysis rules listed in Table 1. Therefore, these tainted

variables can be manipulable by outside attack input.

Third, Vanguard explores whether there are protec-

tion checks for the tainted data or related variables.

Taking the argument len as an example, Vanguard ex-

plores proper protection checks for len and its related

expression (i.e., msg → msg len) before the call site

of the sensitive API memcpy. There are no protection

checks for tainted len and related variables in functions

FUNC msg and EntryFun. Thus, it is marked as a

missing check. Furthermore, the context metrics listed

in Table 2 are extracted to calculate its risk degree.

Note that the configuration item CheckLevel is set to

1 here.

At last, Vanguard will generate detailed informa-

tion about the missing check as a warning as shown

in Fig.4. Similarity, Vanguard is able to detect other

types of missing checks.

Meanwhile, repair references for the missing check

are generated based on existing protection checks (e.g.,

line 42 in FUNC2 msg) for the same function in the

project. They are exported into an XML as Fig.5.

3.1 Security-Sensitive Operations Location

Locating SSOs is the first step to detect missing

checks. A lightweight static analysis is performed on

the abstract syntax tree of the target program to locate

SSOs based on the configuration file. The configuration

of SSOs is formally represented as Fig.6. CheckItem

is a configurable item for a security-sensitive operation.

It consists of the type, expression list, and argument

list of the security-sensitive operation. Type represents

types of security-sensitive operations. If the type is

FUNCTION , then OpList is a list of function names.

If the type is OTHERS, then OpList is a list of ex-

pressions including division and modulus operand and

the array index. ArgList is the location of sensitive

data that needs to be checked in the security-sensitive

operation.

For example, if the security-sensitive operation is

sensitive API usage, then its configuration is a list of

Table 1. Taint Propagation Rules

Type Rule

stmt s Γ
s
−→ Γ ′

expre Γ (e) → τ ∧ Γ (constant) = U

e1♦be2 Γ (e1) = τ1, Γ (e2) = τ2 ⇒ Γ (e1♦be2) = τ1 ⊕ τ2

♦ue Γ (e) = τ ⇒ Γ (♦ue) = τ

e1♦me2 Γ (e1) = τ ⇒ Γ (e1♦me2) = τ

e1[e2] Γ (e1) = τ ⇒ Γ (e1[e2]) = τ

e1 ← e2 Γ (e2) = τ, e1 ← e2 ⇒ Γ (e1) = τ

&e1 ← e2 Γ (e2) = τ,&e1 ← e2 ⇒ Γ (e1) = τ

s; s′ Γ
s
−→ Γ1, Γ1

s′

−→ Γ2 ⇒ Γ
s;s′

−−→ Γ2

if ∀e′ ∈ assigned(s) ∪ assigned(s′), Γ3(e′) = Γ (e)⊕ Γ1(e′)⊕ Γ2(e′)

while i = 0, Do ∀e′ ∈ assigned(s), Γi(e′) = Γ (expr) ∪ Γi(e′); i++;Until Γi == Γi−1

call func Γ (e1) = τ1, ..., Γ (en) = τn, Γg(id1←e1,...,idn←en) = τ, Γ
expr←call g
−−−−−−−−−→⇒ Γ ′

[expr:τ |G(id1←τ1,...,idn←τn)]
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Table 2. Context Metrics

No. Metric Semantics

01 Num Arithmetic Op Total number of basic arithmetic operations such as “+, –, *, %, ++, – –, etc.” in the function

02 Num Shift Op Total number of shift operations such as ≫ and ≪ in the function

03 Num Bit Op Total number of bit operations such as “&” and “|” in the function

04 Num Pointer Var Total number of pointer type variables in the function

05 Num Array Var Total number of array type variables in the function

06 Num UserDefine Var Total number of user-defined type variables in the function

07 Num BasicType Var Total number of basic type variables such as int, char, string, float and double in the function

08 Num Local Var Total number of local variables in the function

09 Num Global Var Total number of global variables in the function

10 Num Para Var Total number of variables acting as function parameters

11 Num Para Expr Total number of expressions acting as function parameters

12 Num Taint Para Total number of tainted variables and expressions in in function parameters

13 Num BasicArith ParaExpr Total number of basic arithmetic operations acting as function parameter expressions

14 Num ShiftOp ParaExpr Total number of shift operations appeared in function parameter expressions

15 Num BitOp ParaExpr Total number of bit operations appeared in function parameter expressions

16 Num Sizeof ParaExpr Total number of sizeof functions appeared in parameter expresssions

17 Num Loop Total number of loops in the function

18 Num NestedLoop Total number of nested loops in the function

19 Num BasicVar InLoop Total number of basic variables appeared in the loop

20 Num ArrayVar InLoop Total number of array type variables appeared in the loop

21 Num PointerVar InLoop Total number of pointer type variables appeared in the loop

22 Num UserDefineVar InLoop Total number of user-defined type variables appeared in the loop

23 Num PointerArith InLoop Total number of pointer arithmetic operations in the loop

24 Num PointerArith Function Total number of pointer arithmetic operations in the function

25 Num Return Var Total number of variables involved in the return statement of the function

26 Num FunctionCallExpr Total number of function call expressions in the function

27 Num LibraryCallExpr Total number of library API call expressions in the funciton

28 Num Sensitive CallExpr Total number of security sensitive function and library call expressions in the funciton

29 Cyclomatic complexity Cyclomatic complexity of the function

30 Num Instrction Total number of instructions in the function

CheckItems with the format as follows.

FUNCTION : fName : Args

Fig.4. Missing check warning.

Fig.5. Repair references for sensitive API usage.

Fig.6. Configuration files.

FUNCTION represents that the type of security-

sensitive operation is a function call. fName is a list

of sensitive functions’ names including memory-related

functions (e.g., malloc, memset, and memcpy), string-

related functions (e.g., strcpy, and strncpy) and self-

defined sensitive functions in the projects. Args repre-

sents the location of arguments. These arguments need

to be examined whether they are assailable by outside

attack input. Note that “0” represents the first argu-

ment, “–1” represents all arguments. We could specify

multiple arguments with “+” such as “0 + 1” when we

want to check the first and the second arguments in the

function.

For each function in the target program, a corre-

sponding CFG is constructed based on its AST. Then
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each statement of every basic block is analyzed by

traversing the CFG. If the type of a statement is

“call func”, then we will check whether its callee’s

name “CalleeName” is matched with a sensitive func-

tion’s name. If the CalleeName is matched with one

fName, then a security-sensitive API usage is located.

Furthermore, the sensitive data used as the actual ar-

guments in the function call is obtained according to

the Args specified in the configuration file.

The process of other SSOs like division arithmetic,

modulus operation, and array-index access is similar to

the handling of security-sensitive API usage.

3.2 Arguments Assailability Judgment

Once a security-sensitive operation and its argu-

ments (i.e., sensitive data) are identified, the next step

is to judge the assailability of the sensitive data. How

to effectively identify if the sensitive data used in the

security-sensitive operation is exploitable by outside in-

put is one of main technical challenges. We overcome

the challenge by using static taint analysis.

Our static taint analysis consists of intra-procedural

and inter-procedural analysis. First, intra-procedural

taint analysis is used to obtain taint relations between

local variables and formal parameters of every function.

Then, inter-procedural taint analysis is performed to

traverse the call graph of the program in inverse topo-

logical order and spread the taint status of entry func-

tion to related functions’ formal parameters.

Specifically, all the inputs from outside are regarded

as taint sources ς , which is defined formally as below.

ς = {x|x ∈ ArgsEntry ∪ ApiRet},

where ArgsEntry represents the set of arguments of

entry functions and ApiRet represents the return value

of external APIs. The default taint status of an APIs’

return value is configured using a user-defined white-list

and a black-list.

3.2.1 Intra-Procedural Analysis

Let τ = {T, U} be the taint type domain for our

static taint analysis. T and U indicate the tainted

and untainted labels respectively. We define Vars =

LocalV ars ∪ FormalParams for each function of the

target program. LocalV ars is a set of local variable

expressions in the function and FormalParams is a

set of formal parameters of the function. We associate

an environment to Vars by defining a mapping Γ from

Vars to taint types in the following way.

Γ : Vars→ τ.

In order to handle programs that involve the pres-

ence of expressions, a binary operator ⊕ : τ × τ → τ

was defined as follows.

x⊕ y

{

U, if x = U ∧ y = U,

T, if x = T ∨ y = T,

where x and y are expressions of the left and the right

side of some operations. U indicates the taint status is

false and T represents the taint status is true. The bi-

nary operator ⊕ will be used to compute the taint state

of expressions that depend on other variable expres-

sions. For instance, if the taint states of expr1, expr2

are t1, t2 respectively, and epxr3 = expr1+expr2, then

the taint state t3 for expr3 will be computed as t1⊕ t2.

In order to support inter-procedural taint analysis,

an environment for each function is built. It can be

reused in different calling contexts. Type variable G

is defined with respect to a function environment Γ

as the tuple of variables (x1, x2, ..., xn) on which the

type variable depends. It denotes G(x1, x2, ..., xn) =

Γ (x1) ⊕ Γ (x2) ⊕ ... ⊕ Γ (xn). Furthermore, we extend

the ⊕ operator to Γ environments.

Γ = Γ1 ⊕ Γ2 ⇐⇒ ∀x ∈ V ars, Γ (x) = Γ1(x)⊕ Γ2(x).

Let Funcs be a set of functions in the program. We

associate an environment Γ for each function as fol-

lows. We associate type variable G(x) for each formal

parameter x. ret is created to hold the type of func-

tion’s return value. The taint type for the return value

of the function is a combination of type variables cor-

responding to the formal parameters and values from

τ . A mapping between functions and their associated

environments is represented below:

Γfunc : Funcs→ (V ars→ τ).

Initially, Γfunc contains the mappings for library

functions. The mappings for user-defined functions will

be added when the taint analysis rules listed in Ta-

ble 1 are applied. Note that assigned(stmt) represents

a set of the left expressions of assignment statement

and G(idi) ← τi represents the instantiating of type

variable G(idi) with τi.

3.2.2 Inter-Procedural Analysis

The original call graph of the program is traversed

with a depth-first search algorithm for the sake of ob-

taining a non-recursive call graph (CG) in topological

order. Then, Algorithm 1 is applied on the call graph
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to perform inter-procedural taint analysis, and spread

taint status of entry function to related formal parame-

ters of functions.

Algorithm 1. BFSTaintSpread (CG, fEnvs)

Input: CG: non-recursive call graph;
fEnvs: function taint environment
Output: fEnvs′: updated function taint environment

1 foreach v ∈ CG do

2 color[v] = WHITE;
3 end

4 s= CG.start();
5 color[s]= GRAY;
6 ENQUEUE(Q, s);
7 while Q ! = EMPTY do

8 u=DEQUEUE(Q);
9 Callees = u.callees;

10 foreach v ∈ Callees do

11 TaintPropagationThroughCall(u, v);
12 end

13 if color[v] == WHITE then

14 ENQUEUE(Q,v);
15 end

16 color[u]= BLACK;

17 end

As illustrated in Algorithm 1, the inputs are the call

graph CG and taint environments fEnvs storing taint

relations between formal parameters and local vari-

ables. The outputs are taint environments fEnvs′ stor-

ing the taint information of formal parameters and re-

lations between formal parameters and local variables.

Our inter-procedural taint analysis starts at entry func-

tion s of call graph CG and analyzes the program from

top to bottom in breadth-first-search order. The para-

meters of the entry function are tainted. The call graph

is traversed for spreading taint statuses from the top

entry function’s parameters to their related functions’

formal parameters. For each function, we spread the

caller’s actual arguments’ taint statuses to the callee’s

formal parameters. If multiple functions are calling

the same function, then the callee’s formal parameters’

taint statuses are the combination of its callers’ actual

arguments’ taint statuses. In this way, we obtain taint

relations between taint sources and formal parameters

of each function.

3.2.3 Establishing Tainted Data Pool

Furthermore, we establish a taint data pool Θ

based on the results from intra-procedural and inter-

procedural analysis. It can be represented as a mapping

from expression e ∈ Exprs associated with context en-

vironment ξ(e) = (FunctionDecls, Blocks, Stmts) to

its taint status.

Θ : (FunctionDecls, Blocks, Stmts, Expres)→ τ,

which makes it convenient to judge taint status of sen-

sitive data. What we need is to collect and provide

related information ξ(data) when locating a security-

sensitive operation and its sensitive arguments. The

information includes function declaration, block, state-

ment and argument expression, which are represented

as FunctionDecl, CFGBlock, Stmt and Expr in Θ re-

spectively.

3.3 Insufficient Protection Assessment

If a security-sensitive operation using one or more

taint data is identified, then it is possible to be exploited

by the outside attack input. We perform the insufficient

protection assessment by 1) exploring the existence of

related protection checks and 2) further estimating the

risk degree of detected missing checks based on its con-

text metrics.

3.3.1 Exploring Protection Checks

A backward data-flow analysis is performed to ex-

plore whether there are proper protection checks for

taint data or related variables in the body of the caller

and the caller’s ancestors. Note that there is a config-

uration item with the format as follows.

CheckLevel : N,

which determines the levels of caller’s ancestors we

will explore along one path of the call graph. When

CheckLevel is equal to zero, Vanguard will explore

proper protection checks in the body of the caller

invoking the security-sensitive operations. When

CheckLevel is equal to one or more, Vanguard will ex-

plore the bodies of the caller, the caller’s parents, and

even the ancestors.

Intuitively, the strategy of exploring proper protec-

tion checks is illustrated in Fig.7. Starting from the

location of security-sensitive operation using tainted ar-

gument data in the grey node, Vanguard will explore

the body of the caller and the caller’s ancestors along

every path of the call graph according to the check level.

Check Level = 2

Check Level = 1

Check Level = 0

Fig.7. Check levels.

First, we mark argument data used by the located

sensitive operation as taint source and apply backward
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taint analysis to each statement in the body of the

caller or caller’s ancestors. Second, if we find a con-

ditional statement such as IfStmt, WhileStmt, ForStmt

or SwitchStmt and their judging conditions contain the

tainted expressions affected by tainted argument data,

we regard it as a proper protection check (represented

as the black node). Otherwise, if all the variables oc-

curred in the conditions of detected conditional state-

ments are not affected by tainted argument data along

one path (represented as the imaginary arrows) of the

call graph, then we identify a missing check.

How to define the proper check condition to detect

missing checks is one of the key technical challenges

of the approach. For division and modular operations,

the condition is simple (i.e., the operand is not equal

to zero). For array-index-access, the condition is the

boundary of the array. But for sensitive-API usage,

the condition is diverse and hard to define precisely.

We determine the missing checks for security-sensitive

APIs usage by checking if the taint argument occurs in

the existing conditions of protection checks. The way to

define the proper check is not precise but useful in prac-

tice. We implement this strategy based on the assump-

tion that if the developers are aware of adding protec-

tion check for the security-sensitive operation and sen-

sitive data, then the developers should write the right

protection check condition. This assumption is usually

true in practice, especially for experienced developers.

3.3.2 Estimating Risk Degree

The missing check is an indicator of insufficient at-

tack protection. However, it may not necessarily result

in a real exploitable vulnerability, which can be trig-

gered by outside attack input. In other words, a miss-

ing check may be extremely dangerous in some con-

texts, but acceptable in the others. Thus, it is nece-

ssary to estimate the risk degree of missing checks in

their specific contexts for better assessing insufficient

attack protection.

We propose a context metrics-based approach to

achieve the goal of estimating the risk degree of a

missing check in its context. The underline thought

is that if the function that has a detected missing

check is more complicated, then the missing check is

more dangerous and the consequence is more serious

if external attackers exploit it. Therefore, we compute

the function’s context complexity based on its context

metrics[32] listed in Table 2 to represent the potential

risk degree of detected missing checks.

Once a missing check is identified, context metrics

listed in Table 2 of the function with the detected miss-

ing check will be extracted via static analysis. Then,

the risk degree is calculated based on the values of these

metrics using the following equation.

RiskDegree =
N
∑

i=1

ContexMetric(i).

When the risk degree is larger than the user-defined

acceptance limit, a missing check warning is generated,

and the detailed information about the missing check

will be reported into an XML file as Fig.4. The risk de-

gree of missing checks could be used to filter warnings.

We set the acceptance limit to 50 when performing the

evaluation in the following. The reason why we set this

limit to 50 is that it could filter some functions with

low context complexity.

3.4 Repair Protection Recommendation

We first summarize the implementation types of ex-

isting proper protection checks, and then propose an

approach to generate protection check conditions for

various missing checks.

3.4.1 Summary of Implementing Protection Checks

We manually analyze the source code of large-scale

open source projects, and study the implementation

ways of protection checks for sensitive data used in

security-sensitive operations. There are five common

ways of implementing protection checks. We take a

code sample with the division operation to illustrate

the five implementation types of protection check in

the following.

Type 1. Implement the protection check by If state-

ment as Fig.8.

Fig.8. Deploy constraint protection using IfStmt.

Type 2. Implement the protection check by

While/For/Switch statement as Fig.9.

Fig.9. Deploy constraint protection using WhileStmt.
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Type 3. Implement the protection check by assert

statement as Fig.10.

Fig.10. Deploy protection check using assert.

Type 4. Implement the protection check by self-

defined check function as Fig.11.

Fig.11. Deploy protection check using check function.

Type 5. Implement the protection check by ternary

expression as Fig.12.

Fig.12. Deploy protection check using ternary.

Type 1 is mostly used among the above five types

of protection check implementation ways. Thus, our

repair reference is exported with the style of IfCheck.

3.4.2 Approach of Generating Repair References

Repair References of Missing Checks for Division

and Modular Arithmetic. The constraint protection

conditions for the missing checks of division and modu-

lar arithmetic are clear and determined (i.e., the

operand is not equal to 0). When we identify a missing

divide-zero or mod-zero check, we could generate the re-

pair protection references for it. The repair references

for dividend acting as division operand, and operand

acting as modular operand in Fig.13 are as follows.

Fig.13. Repair references for divide-zero and mod-zero.

Repair References of Missing Checks for Array-

Index Access. Because the boundary information for

different array-index accesses is different, the protec-

tion conditions for different array index accesses are

different too. In order to generate useful repair refe-

rences for missing array-index-bound checks, we pro-

pose a static array boundary information construction

method based on the extraction of array base, index

and declaration size[33]. Once an array is located based

on the ArraySubscriptExpr in Clang AST, the base

and the index of the array are extracted, which could

be easily achieved using Clang APIs. Then, we iden-

tify the declaration location of the array and obtain its

declaration size based on the array base information.

Note that we could only extract the array declaration

size when the array variable is not an external variable,

since AST does not preserve an external variable’s size

information. At last, we construct the array boundary

condition based on its index and size information. Each

index should be less than the declaration size of the ar-

ray. Furthermore, if the type of the index is signed, then

the index should be no less than zero. For example, the

repair reference for index is as shown as Fig.14.

Fig.14. Repair references for array-index access.

Repair References of Missing Checks for Sensitive

API Usage. For missing checks of sensitive APIs usage,

it is difficult to specify their constraint conditions due to

the diversity of security-sensitive functions and their ar-

guments. Thus, we generate repair references for miss-

ing argument-constraint checks based on the existing

protection checks information for the same security-

sensitive APIs. We first collect all the proper security

check conditions at the same time of detecting missing

checks as presented in Subsection 3.3.1. Then we clas-

sify the collection of protection checks according to the

sensitive APIs and rank them based on the frequency

of their occurrence in the project. At last, we integrate

the information into a dataset of protection checks C,

which could be denoted as below.

C : fName, ProperCheck, Frequency,

where fName is the function name of the sensitive

APIs, ProperCheck is the existing protection check
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condition, and Frequency represents the occurrence

number of the check conditions in the project.

When a missing argument-constraint check is identi-

fied, Vanguard searches the dataset of protection checks

using the name of the security-sensitive API, and rec-

ommends top 5 mostly used protection checks as repair

references for the missing check warning as illustrated

in Fig.5. Note that our repair recommendations are just

references for developers who are in charge of fixing the

detected missing checks. We do not insert these repair

references automatically and the handling of fixing is

handled by developers manually based on developers’

professional knowledge.

4 Implementation

An automated and cross-platform tool called Van-

guard was developed based on Clang/LLVM 3.6.0. The

architecture of Vanguard is illustrated in Fig.15. It con-

sists of five modules: 1) Preprocessor, which is used to

obtain abstract syntax tree, control flow graph, and call

graph of the target program; 2) TaintAnalyzer, which

is in charge of establishing taint data pool using static

intra-procedural and inter-procedural taint analysis; 3)

Detector, which will identify missing checks for four

kinds of security-sensitive operations with high accu-

racy and performance; 4) RiskEstimator, which esti-

mates the risk degree of detected missing checks in their

contexts by extracting context metrics; 5) RepairRec-

ommender, which recommends repair references for de-

tected missing checks based on the constraint semantic

and existing protection checks.

Memory Optimization. In order to improve the abi-

lity of Vanguard to analyze large-scale projects in a

limited memory environment, a cache mechanism for

the read and the write operations of ASTs is proposed

to optimize memory usage. The key idea is to preserve

the latest used ASTs in memory with an AST queue.

Linux or Windows Operation System

Clang/LLVM 3.6.0

AST/Control Flow Graph/Call Graph 

Intra Procedural Analysis Inter Procedural Analysis

Sensitive Operation 
Locater

Argument Assailability 
Examiner

Protection Check
Explorer

Context Metrics Extracter Risk Degree Evaluator

Protection Check Collecter

Vanguard

Preprocessor

RiskEstimator

RepairReommender

Detector

TaintAnalyzer

Repair Reference Ranker

Fig.15. Implementation of Vanguard.
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The users could configure the maximal length of AST

queue according to practical memory limit.

Taint Analysis Optimization. In order to accele-

rate the speed of determining the assailability of sensi-

tive data used in security-sensitive operations, a tainted

data pool consisting of each variable expression’s taint

type is established and stored with the format of 32-

bit unsigned int type array. It turns taint propagation

analysis into the bit computation of two-bit arrays of

related variable expressions. Meanwhile, a query inter-

face for assessing taint status of a variable is provided.

It can be used for identifying a variable taint type con-

veniently and quickly.

Configurable Optimization. In order to improve the

flexibility of static taint analysis, taint sources and taint

propagation rules are set to be configurable.

1) Taint sources are configurable to focus on situa-

tions that users are interested in. The return values of

library functions in the whitelist are all not tainted by

default, and the return values of library functions in the

blacklist are all tainted by default.

2) Taint propagation rules are configurable to

achieve adaptive accuracy and complexity, and avoid

over-tainting by handling some complex statements.

Open Source. The core source code of Vanguard is

online available 2○.

5 Evaluation

A large-scale experimental evaluation was con-

ducted on a computer with 64-bit Ubuntu 16.04 LTS

system, a processor of Intelr Xeonr CPU E5-1650 v3

@3.5 GHz and 8 GB RAM. And the evaluation is de-

signed to answer the following research questions.

RQ1. How is the effectiveness of Vanguard?

RQ2. How is the efficiency of Vanguard?

RQ3. How is the performance of Vanguard com-

pared with other tools?

5.1 Effectiveness

We evaluate the effectiveness of Vanguard from four

aspects: 1) accuracy of static taint analysis; 2) accuracy

of missing check detection; 3) ability to prognosticate

vulnerabilities; 4) usability of repair references.

5.1.1 Accuracy of Static Taint Analysis

The effectiveness of missing check detection relies

on the accuracy of static taint analysis. A set of typical

testing programs 3○ is selected to perform the evalua-

tion. The reason why we choose the benchmark is that

the benchmark contains all taint propagation situations

including the pointer, reference and function calls. In

addition, it is usually used to validate the effectiveness

of taint analysis techniques. For intuitively, we present

a typical code sample in Fig.16 to show the accuracy

of our taint analysis. The results from our taint ana-

lysis are specified as comments in the code. We will

manually audit the code to validate the accuracy of the

results in the following.

Fig.16. Code sample for taint analysis of pointer and reference.

As we can see from Fig.16, the function tainted()

is in the blacklist. The return value of tainted() is

tainted, thereby x is tainted by taint source at line

25. We regard a struct object as an entirety. If

2○https://github.com/stuartly/MissingCheck, July 2019.
3○Taint analysis benchmark. https://github.com/dceara/tanalysis/tree/master/tanalysis/tests, July 2019.
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any member of the struct is tainted, then the whole

struct is tainted. The member variable m of p1 is

assigned by x at line 31, and p1 is tainted. Further-

more, a1 and p2 are tainted too since they are pointing

the same address. The initial value of variable c is the

return value of func(x) at line 33, and the taint type

of func() is Gamma(in), which means the taint type of

return value of func() is determined by its actual argu-

ment. Its actual argument x is tainted; thus c is tainted.

Line 34 presents a taint propagation situation of func-

tion pointer as an argument. The taint type of return

value of function pointer param in is Gamma(pin) de-

termined by the taint type of its actual argument. The

actual argument of pointer param in is the address of c

and c is tainted; thus ret1 is tainted. At line 37, b is ini-

tialized by 1, and then b is not tainted. b is the actual

argument of ref param out(). Due to the definition of

function ref param out(), the reference argument pout

will be tainted and return its address; thus the actual

argument and the return value of ref param out() are

tainted, and b and ret2 are tainted. By comparing the

results in comments with analyzed results, we can prove

our static taint analysis is correct and accurate.

Based on the above analysis, we could conclude

that our static taint analysis is able to analyze various

C/C++ expressions and taint propagation situations

correctly. More specifically, it could handle the propa-

gation of variable definition and assignment (lines 8,

14, 18, and 25), return value (lines 25, 33, 34, and 38),

the propagation of structure, pointer and reference as-

signment (lines 25–28), the propagation of pointer and

reference as function arguments (lines 12, 17, 31, 35),

etc.

5.1.2 Accuracy of Missing Check Detection

In order to evaluate the accuracy of detecting miss-

ing checks, we use Vanguard to analyze the selected

large-scale open source projects and count the false

positive manually. These open source projects are cho-

sen because 1) related work like Chucky[27] has analyzed

some of them; 2) they are widely used and under the

active maintenance; 3) they have enough diversity in

terms of scale and functionality. We use Vanguard to

analyze the selected projects and ask the third party

to count the false positive of reported warnings. We

determine a missing check warning as a false positive

when we manually find a protection check for its sensi-

tive data in the function or its caller.

The result is illustrated in Table 3. Note that AST

represents the number of abstract syntax trees, Func

represents the number of functions, Loc represents code

lines, T (s) represents the analysis time in seconds, and

Sp(M) represents the memory overhead in megabytes.

The total warnings and the false positive warnings are

Table 3. Effectiveness and Efficiency of Detecting Missing Checks

Project AST Func Loc T (s) Sp(M) Missing Check Warnings False Positive

Divide/Mod-Zero Array-Index Sensitive-API

Php-5.6.16 634 8 499 497 602 619.93 2 793.2 43 (14) 34 (2) 96 (7) 13.29%

Openssl-1.1.0 589 5 692 284 518 448.23 858.4 7 (1) 32 (6) 28 (3) 14.93%

Pidgin-2.11.0 38 966 328 153 37.57 471.7 27 (3) 16 (4) 63 (6) 12.26%

Libpng-1.5.21 60 337 24 621 17.69 176.9 3 (0) 4 (0) 13 (3) 15.00%

Libxml2-2.9.9 88 4 618 230 235 47.82 707.1 23 (0) 10 (2) 25 (0) 3.45%

Libtiff-4.0.6 80 790 69 608 18.48 207.3 72 (6) 6 (4) 4 (0) 12.19%

Tengine-2.2.3 127 1 663 173 830 118.87 1 135.5 22 (3) 5 (0) 83 (2) 4.54%

WavPack-5.1.0 23 245 32 923 5.54 78.4 14 (8) 0 (0) 99 (3) 9.73%

Libsass-3.5.5 46 726 29 812 7.11 477.0 4 (8) 4 (0) 29 (7) 18.91%

Jasper-2.0.14 54 674 30 352 12.23 169.1 22 (2) 0 (0) 1 (0) 8.69%

Espruino-2v01 96 1 997 1 141 645 19.97 335.7 8 (3) 8 (1) 6 (3) 31.82%

Libvips-v8.7.4 411 5 333 167 730 1 378.80 1 095.1 236 (4) 13 (2) 27 (4) 5.71%

ImageMagick-7.0.8 255 3 519 564 420 564.33 1 032.2 168 (23) 6 (2) 110 (1) 9.42%

Libgit2-v0.27.7 431 5 973 188 113 668.13 815.2 3 (1) 6 (0) 51 (3) 6.56%

Libharu-2.3.0 58 807 151 996 11.28 225.0 17 (9) 15 (0) 2 (0) 26.47%

Tsar-1.0 30 129 6 138 10.37 149.7 19 (5) 8 (0) 1 (0) 17.85%

Coreutils-8.30 395 1 757 206 751 117.91 10.2 55 (12) 9 (2) 49 (8) 19.48%

Nasm-2.14.02 81 684 93 954 23.04 458.1 0 (0) 4 (3) 18 (0) 13.62%

Libssh2-1.8.0 57 368 31 589 11.34 220.9 1 (0) 7 (1) 20 (1) 7.14%

Libpostal-v1.1.a 43 787 578 235 87.52 1 256.5 9 (2) 0 (0) 64 (8) 13.69%

Average false positive 15.44% 15.43% 7.48% 13.23%
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represented with format of X(Y ), where X is the num-

ber of total warnings and Y is the number of false

positive warnings. When we perform the evaluation,

the AST queue is set to 100, and the security-sensitive

function is a set of memory-related and string-related

functions such as memcpy, strcpy and so on.

As we can see from Table 3, Vanguard is able

to identify missing checks accurately with low false

positive, i.e., 13.23% on average. More precisely, the

false positive is 15.44% for detecting missing divide-

zero and mod-zero checks, 14.43% for detecting miss-

ing array-index-bound checks, and 7.48% for detecting

missing argument-constraint checks for sensitive API

usage. The cause of false positives is mainly due to the

limitation of protection check types we are handling.

Some protection checks are implemented using the as-

sert statement, self-defined check function. But we only

consider the implementation type 1 and type 2 of im-

plementing protection checks, i.e, IfStmt, WhileStmt,

ForStmt, and SwitchStmt. The support for type 3–

type 5 will be improved in the future work.

5.1.3 Ability to Prognosticate Vulnerabilities

By adding known vulnerable functions of above

projects as security-sensitive functions into the configu-

ration file, Vanguard’s ability to identify missing checks

is able to lead us to uncover some known vulnerabilities

posted in National Vulnerability Database (NVD) 4○ in

open source projects as illustrated in Table 4. Note that

the reason why we choose the five known vulnerabilities

is that their root causes are missing checks according to

the CVE descriptions. Thus, they are suitable to verify

the effectiveness of detecting missing checks.

Table 4. Discovery of Known Vulnerabilities

Project File Function Vulnerability

Openssl-1.1.0 stalen dtls.c BUF MEM grow clean CVE-2016-6308

Pidgin-2.10.11 protocol.c mxit send invite CVE-2016-2368

Libpng-1.5.21 pngrutil.c png read IDAT data CVE-2015-0973

Libtiff-4.0.6 tif fax3.c TIFFFax3Fillruns CVE-2016-5323

Libtiff-4.0.6 tif packbits.c TIFFGetField CVE-2016-5319

Furthermore, Vanguard has helped us find 12 new

bugs which have been confirmed by the maintainers of

the open-source projects. Please refer to our website 5○

for more details. Some of them have been validated

using dynamic approaches. More specifically, two un-

known bugs have been verified by fuzzing that they

could be used to crash the jabberd2 6○ 7○, which is a

widely used XMPP protocol server. Fig.17 presents an

instance.

The function config load with id is in charge of

turning an XML config file into a config hash. The

array of the path is a reference of the result of passing

config file. In the loop at line 7, strncpy is a security

sensitive memory operation. The loop is trying to copy

data from bd.nad → cdata + path[j] → lname to buf.

path is a tainted data affected by outside input XML

config. There is a missing check for the total size of

path[j] → lname. The size of buf is 1 024, a buffer over-

flow is triggered if the total size of path[j] → lname is

larger than 1 024. Fig.17. Missing check of Jabberd2.

4○National vulnerability database. https://nvd.nist.gov, July 2019.
5○Website of Vanguard. https://sites.google.com/view/missing-check/home, July 2019.
6○Bug1. https://github.com/jabberd2/jabberd2/issues/159, July 2019.
7○Bug2. https://github.com/jabberd2/jabberd2/issues/160, July 2019.

For Research Only



986 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

Based on the above analysis, we could conclude that

Vanguard is able to prognosticate potential bugs and

vulnerabilities.

5.1.4 Usability of Repair References

Our repair references mainly refer to the constraint

conditions for sensitive date used in security-sensitive

operations. The usability is usually validated by deve-

lopers who are in charge of fixing detected missing

checks. In order to avoid the subjectivity of man-

ual validation to some extent, we randomly choose 100

security sensitive functions with precondition security

checks in projects Php-5.6.18, Openssl-1.1.0, Pidgin-

2.10.11, Libtiff-4.0.6, Libpng-1.5.21, and Libxml2-2.9.9.

We first delete these checks, then use Vanguard to de-

tect these missing checks, and furthermore analyze the

recommended repair references. By comparing the re-

pair references with protection checks we deleted be-

fore, we determine the usability of repair references.

If a repair reference contains the protection checks we

deleted, then it is direct usage. If the repair reference

could be slightly modified to be the same as the original

protection checks, it is indirect usage.

The results are collected and illustrated in Table 5.

It shows that more than 66.83% recommended repairs

are useful, and nearly 16.5% recommended repairs are

used directly. In addition, we observe that the repair

reference recommendation performs better in projects

with more reused code because these projects will have

more similar precondition security checks.

Table 5. Effectiveness of Repair References

Project Repair Direct Indirect

Reference Usage (%) Usage (%)

Php-5.6.16 499 18 53

Openssl-1.1.0 497 19 49

Pidgin-2.10.11 258 13 41

Libtiff-4.0.6 487 18 55

Libpng-1.5.21 491 16 48

Libxml2-2.9.9 398 15 56

Summary. Based on the above observations (i.e.,

Subsection 5.1.1–Subsection 5.1.3), we could positively

answer RQ1 that Vanguard is able to detect various

missing checks effectively with low false positive and

recommend useful repair references.

5.2 Efficiency

We evaluate the efficiency of Vanguard from two as-

pects: 1) performance of static taint analysis on typical

code samples; 2) scalability of missing check detection

on open source projects.

5.2.1 Performance of Static Taint Analysis

We select a taint analysis benchmark mentioned in

[34] to evaluate the performance of our static taint ana-

lysis algorithm. The reasons why we choose these pro-

grams are: 1) they are typical programs used by other

taint analysis studies[35], and 2) they are implemen-

tations of some complex algorithms with various taint

propagation situations involving pointer, array, struc-

ture and so on.

The result is illustrated in Table 6. Note that Loc

represents the code lines of the project. AST is the

number of AST files, and it also equals the number

of source files. Total represents the total occurrence

number of variables. Because the tainted environment

of each basic block is different, and taint types of vari-

ables are context-sensitive, Total counts the occurrence

number of all the variables in all the blocks. TV ar is

the occurrence number of taint variables. TPerc is the

result of TVar divided by Total, which represents the

dependence degree between program variables and out-

side input. T (s) is the execution time of taint analysis in

seconds, and Sp(M) is memory overhead in megabytes.

As we can see from Table 6, we could know that

our static taint analysis performs well in dealing with

different scale projects, and the time and memory over-

head of taint analysis is low. For instance, it is able

to analyze a program with 10k line code (i.e., Mailx) in

2.58 s with 76.7 MB memory cost. It also indicates that

Table 6. Performance of TaintAnalyzer

Project Loc AST Total TV ar TPerc(%) T (s) Sp(M)

Circles 84 1 197 164 83.25 0.95 0.0

Queue 227 2 244 79 32.38 0.33 0.0

ABR 408 3 626 300 47.92 0.64 0.0

Huffman 499 5 809 426 52.66 0.74 20.6

ArmAssembler 2 071 3 65 024 9 173 14.11 1.69 40.4

Mailx 14 609 29 47 643 15 449 32.43 2.58 76.7
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it is able to analyze various complex programs with all

kinds of C/C++ expressions and structures such as the

pointer, array, reference and so on.

5.2.2 Scalability of Missing Check Detection

We also count the size of analyzed projects as well as

their time and memory overhead. As can be seen from

Table 3, Vanguard could finish analyzing Php-5.6.16 in

619.93 s, which is a project with more than 500 000 lines

code. It proves that Vanguard could handle large-scale

projects.

Furthermore, we count the time-overhead of Van-

guard on project Php-5.6.16 with the increment of AST

files, functions and code lines. All the plots in Fig.18

have shown that Vanguard’s complexity is nearly linear,

which is scalable on a large size of projects. In addi-

tion, the effect of our memory optimizing in Vanguard

is evaluated by analyzing Php-5.6.16 with setting the

different sizes of the AST queue. The result in Fig.19

indicates that Vanguard is capable of analyzing Php-

5.6.16 with lower space-cost when the size of the AST

queue is smaller. Obviously, Vanguard will load ASTs

more frequently and cost more time at the same time.

But when the size of the AST queue is larger than the

number of total ASTs of the target project (e.g., 634 for

Php-5.6.16), the space-time cost will stay stable (e.g.,

5 898 MB and 304 s) since all ASTs will be loaded into

memory at the beginning.

Summary. Based on the above observations (i.e.,

Subsection 5.2.1 and Subsection 5.2.2), we could posi-

tively answer RQ2 that Vanguard is capable of dealing

with large-scale projects efficiently with low time-space

overhead.

5.3 Comparison

As far as we know, the existing studies to detect

missing checks are mainly Chucky[27] and RoleCast[28].

We first compare Vanguard with Chucky and RoleCast

from three aspects: 1) kinds of programming languages,

2) types of missing checks, and 3) average false positive.

The information is specified in Table 7. Note that the

average false positive rates of Chucky and RoleCast are

collected from their papers[27,28].
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Fig.18. Time overhead with the growth of scale. (a) Number of Files. (b) Number of Functions. (c) Number of code lines.
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Table 7. Vanguard, Chucky and RoleCast

Capability Vanguard Chucky RoleCast

Support Language C/C++ C/C++/PHP/JSP PHP/JSP

Detect missing div-zero check 3 7 7

Detect missing mod-zero check 3 7 7

Detect missing array-index-bound check 3 7 7

Detect missing sensitive-API-usage check 3 3 3

Detect missing sensitive-logic check 7 3 3

Detect missing sql-injection check 7 7 3

Average false positive 13% 20% 23%

As we can see from Table 7, Vanguard and Chucky

are able to handle C/C++ languages while RoleCast

focuses on PHP and JSP languages. All of the three

tools are capable of detecting missing checks for sensi-

tive APIs usage. In addition, Vanguard can also detect

missing checks for divide-zero, mod-zero, and array-

index-bound. Chucky and RoleCast can also detect

missing checks for security logic. RoleCast can also

handle missing checks for sql-injection. In terms of

average false positive of detection, Vanguard performs

better.

Furthermore, we perform strict comparison experi-

mental evaluation for Chucky and Vanguard on the

same project (i.e., libpng-1.2.44) with the same

sensitive APIs (i.e., “png memcpy”, “png malloc”,

“png free”, and “strcpy”). The reason why we choose

the project is summarized as follows. 1) The project

is analyzed by Chucky and the corresponding configu-

ration (i.e., source/sink symbols) is specified in [27]; 2)

Chucky is difficult to use due to the lack of maintenance

in practice. It is hard to analyze other projects without

fixing Chucky’s bugs such as the issue in GitHub 8○. We

use Chucky and Vanguard to analyze the libpng-1.2.44

for specified sensitive APIs. We collect all Vanguard’s

missing check warnings, and select Chucky’s warnings

whose anomaly scores are larger than 0.5. The results

are presented in Table 8.

As can be seen from Table 8, Vanguard is able

to detect more missing checks than Chucky for the

same sensitive APIs, and its false positive is lower.

For sensitive-APIs “png memcpy” and “png free”, Van-

guard detects more missing checks including all the real

missing check warnings detected by Chucky. Chucky

cannot identify some missing checks, because its detec-

tion is based on anomaly detection algorithm. Chucky

detects missing checks by computing the distance be-

tween the sensitive operation and its N neighbors. If

the sensitive operation and all its neighbors do not

have the protection check, Chucky could not detect

it. For example, Vanguard found five “strcpy” with-

out checks, while Chucky could not identify them.

For sensitive API “png malloc”, Chucky detects more

missing checks than Vanguard, but four of them are

“png malloc(PNG MAX PALETTE LENGTH)”. The

size argument is a constant, not a variable. It means

that this missing check will not be exploitable by out-

side attack input. Vanguard does not report them be-

cause it identifies missing checks for each sensitive ope-

ration one by one and would report it only if its sensitive

data is tainted.

The time overhead of Chucky is much higher than

that of Vanguard. On average, Chucky consumes about

14 times time overhead than Vanguard. The reason

is that Chucky spends a lot of time on querying the

database which stores the parsed program, and query-

ing the database is time-consuming.

Summary. Based on the above observation (i.e.,

Subsection 5.3), we could positively answer RQ3 that

Vanguard performs better than existing tools in the as-

pects of supported missing check types, accuracy and

performance.

6 Related Work and Discussion

6.1 Taint Analysis

Taint analysis[34,36] attempts to identify variables

that have been tainted with user-controllable input.

Static taint analysis[18,37] can achieve higher code cov-

erage without run-time overhead compared with dy-

namic taint analysis[38,39]. Meanwhile, the disadvan-

tage is that it will lose a certain degree of accuracy for

the lack of dynamic information. Dytan[39] is a general

framework for dynamic taint analysis. Pixy[40] applies

static taint analysis to detect SQL injection, cross-site

8○Issues of Chucky. https://github.com/a0x77n/chucky-ng/issues, July 2019.
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Table 8. Comparison Between Vanguard and Chucky on Detecting Missing Checks for Sensitive-API Usage

Project Sensitive API Chucky Vanguard

Time (s) Total Num (FP Num) FP (%) Time (s) Total Num (FP Num) FP (%)

libpng 1.2.44 png memcpy 85.78 11 (5.0) 45.45 6.43 17 (2.00) 11.76

libpng 1.2.44 png malloc 123.86 10 (2.0) 20.00 6.43 4 (0.00) 0.00

libpng 1.2.44 png free 134.22 23 (7.0) 30.43 6.43 27 (5.00) 18.51

libpng 1.2.44 strcpy 31.92 0 (0.0) - 6.43 5 (0.00) 0.00

Average 93.94 11 (3.5) 31.81 6.43 13.25 (1.75) 13.20

scripting or command injection bugs in PHP scripts.

Safer[41] is a tool combining taint analysis with con-

trol dependency analysis to detect control structures

that can be triggered by untrusted user input. Inspired

by [39], we design and implement an extensible static

taint analysis framework including intra-procedural and

inter-procedural analysis with features of controllable

taint sources and taint propagation rules. It is used

to determine whether sensitive data used by security-

sensitive operators is assailable by the attack input or

not.

6.2 Missing Check Detection

Chucky[27] is a missing check detection tool us-

ing intra-procedural static taint analysis and machine

learning. It identifies missing checks for security logic

and API usage based on the assumption that the miss-

ing check is a rare event. Therefore, it is more suit-

able for analyzing mature code because its assump-

tion is usually not valid in the software under develop-

ment stage. Different from Chucky’s detection for miss-

ing checks using machine learning (i.e., anomaly de-

tection algorithm), Vanguard identifies missing checks

by pure static analysis including intra-procedural and

inter-procedural taint analysis. In addition, Vanguard

is able to identify missing checks for more types of

security-sensitive operations including division arith-

metic, modulus operation and array-index access with-

out Chucky’s assumption. Our tool is aimed to improve

the code’s correctness, which can be used on mature

code and software under the development stage.

RoleCast[28] is a static analysis tool to identify

security-related events such as database writes in web

applications by using a consistent web application pat-

tern without specification. It exploits common software

engineering patterns and a role specific variable consis-

tency analysis algorithm to detect missing authoriza-

tion checks. This approach is tightly bounded to web

applications written in PHP and JSP, while Vanguard

focuses on software written in C/C++ language.

6.3 Warnings Ranking and Validation

Z-Ranking[42] prioritizes warnings based on the fre-

quency of review results. Kim and Ernst proposed a

history-based warning prioritization (HWP) algorithm

by exploiting the relationship between warnings and

bug fixes in the software change history[43]. Li et al.[9]

proposed an approach to reduce the human validation

effort by dynamically classifying statically generated

memory leak warnings. Clarify[44] is a tool created to

improve error reporting by learning the behaviors of an

application based on the summary of its execution his-

tory. Our previous work[45] estimated the risk degree of

detected missing checks based on their context metrics.

We extend previous work[45] by adding more context

metrics.

6.4 Program Repair techniques

The mainstream program repair approaches could

be classified into syntax-based and semantic-based

techniques. Syntax-based repair techniques such as

GenProg[46], RSRepair[47] and ACS[48] require sub-

tasks including fault localization, patch generation and

execution of regression test cases. Relifix[49] utilizes

previous program versions in order to perform the au-

tomated repair of regression bugs, and it relies on

the syntactic similarity of the previous and the buggy

program. Semantics-based techniques like SemFix[50],

DirectFix[25], Angelix[51] and JFIX[52] split patch gene-

ration into two phases. First, they infer a synthe-

sis specification for the identified program statements.

Second, they synthesize a patch for these statements

based on the inferred specification. DeepFix[53] is

a multi-layered sequence-to-sequence neural network

which is trained to predict erroneous program loca-

tions along with the required correct statements. Weak-

Assert[54] is a weakness-oriented assertion recommenda-

tion toolkit. It matches the abstract syntax trees with

well-designed weakness patterns and inserts assertions

into proper locations automatically, in order to identify
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potential weakness by verification. Different from week-

assert that focuses on generating and inserting asser-

tions automatically for identifying weakness, Vanguard

focuses on recommending proper protection conditions

as repair references for developers who are in charge of

fixing detected missing checks. The fixing of missing

checks is done by developers manually. We extend our

previous work[45] to recommend constraint conditions

for four kinds of missing checks. More specifically, we

generate the repair references based on 1) constraint se-

mantic for dive-zero and mod-zero, 2) summary of array

boundary information, and 3) existing similar protec-

tion checks for the sensitive API usage.

7 Conclusions

An automatic static detection and repair recom-

mendation system (i.e., Vanguard ) for missing checks

in C/C++ programs was designed and implemented

on top of Clang/LLVM 3.6.0, which is aimed at prog-

nosticating potential vulnerabilities and improving the

correctness of programs. It is able to identify high-

risk missing checks by 1) locating customized security-

sensitive operations, 2) judging the assailability of sen-

sitive data used in security-sensitive operations via

static taint analysis, 3) assessing existence and risk de-

gree of missing checks using static analysis and con-

text metrics, and 4) recommending repair references

for high-risk missing checks. Large-scale experimen-

tal evaluation on open source projects showed the ef-

fectiveness and efficiency of Vanguard. Furthermore,

Vanguard’s ability to identify missing checks led us to

uncover five known vulnerabilities and 12 new bugs.

Future work includes automatic validation of de-

tected missing checks by dynamic analysis and improve-

ment of the automatic repair recommendation tech-

nique.
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