Software Engineering Group
Department of Computer Science
Nanjing University
http:/ﬁeg.nju.edu.cn

NJU Software
Engineering Group

Technical Report No. NJU-SEG-2018-1C-003

2018-1C-003

Vanguard: Detecting Missing Checks for Prognosing Potential
Vulnerabilities

Lingyun Situ, Linzhang Wang, Yang Liu, Bing Mao, Xuandong Li

Internetware 2018

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is
prohibited.

Vanguard: Detecting Missing Checks for Prognosing Potential
Vulnerabilities

Lingyun Situ
Nanjing University
Nanjing, China
situlingyun@seg.nju.edu.cn

Bing Mao
Nanjing University
Nanjing, China
maobing@nju.edu.cn

ABSTRACT

It is challenging to have a general solution to precisely detect arbi-
trary vulnerabilities. Thus security research has focused on detect-
ing specific types of vulnerabilities. Missing checks for untrusted
inputs used in security-sensitive operations are one of the major
causes of various serious vulnerabilities. Efficiently detecting miss-
ing checks is essential for identifying insufficient attack protections
and prognosing potential vulnerabilities. This paper proposes a
systematic static approach to detect missing checks for manipula-
ble data used in security-sensitive operations in C/C++ programs.
We first locate customized security-sensitive operations with light-
weight static analysis; then judge assailability of sensitive data used
in security-sensitive operations via static taint analysis; finally, as-
sess the existence and risk degree of missing checks using static
analysis. We have implemented the approach into an automated
and cross-platform tool, named Vanguard, on top of Clang/LLVM
3.6.0. Experimental results on open-source projects have shown its
effectiveness and efficiency. Furthermore, Vanguard has led us to
uncover five known vulnerabilities and two unknown bugs.

CCS CONCEPTS

« Security and privacy — Software security engineering; Vul-
nerability scanners;

KEYWORDS
Missing Checks, Static Analysis, Vulnerability Prognosis

ACM Reference format:

Lingyun Situ, Linzhang Wang, Yang Liu, Bing Mao, and Xuandong Li. 2018.
Vanguard: Detecting Missing Checks for Prognosing Potential Vulnerabil-
ities. In Proceedings of The Tenth Asia-Pacific Symposium on Internetware,
Beijing, China, September 16, 2018 (Internetware ’18), 10 pages.
https://doi.org/10.1145/3275219.3275225

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Internetware ’18, September 16, 2018, Beijing, China

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6590-1/18/09...$15.00
https://doi.org/10.1145/3275219.3275225

Linzhang Wang
Nanjing University
Nanjing, China
lzwang@nju.edu.cn

Yang Liu
Nanyang Technological University
Singapore
yangliu@ntu.edu.sg

Xuandong Li
Nanjing University
Nanjing, China
Ixd@nju.edu.cn

1 INTRODUCTION

The whole field of software engineering is premised on writing cor-
rect code without vulnerabilities as well as defending attacks [28]. It
is difficult to achieve in practice, especially for C/C++ programmers,
because both languages force programmers to make fundamental
decisions on handling security-sensitive operations like memory
management. Besides, even experienced industrial developers will
make mistakes during programming due to the lack of attention
on attack protection details for security-sensitive operations.

To improve the correctness of software code, vulnerability detec-
tion plays one of the most important roles. Unfortunately, an auto-
matic approach to precisely detect arbitrary types of vulnerabilities
does not exist according to Rice’s theorem [33]. Thus, the state of
art security research has focused on digging specific kinds of vul-
nerabilities buried in code, such as buffer overflow [12, 19], integer
overflow [15, 42], use-after-free [22, 41], memory leakage [24, 37],
s [14, 39], out-of-bound errors [6, 20], by all kinds of static and
dynamic approaches including static analysis [25, 40], taint analy-
sis [9, 27], symbolic execution [8, 26], concolic execution [31, 32],
model checking [7,16], fuzzing [36, 38] etc.

However, missing checks for manipulable data used in security-
sensitive operations are one of the major causes of various specific
severe vulnerabilities including all the ones mentioned above. Fur-
thermore, missing checks belong to “A7-Insufficient Attack Protec-
tion", which has been proposed as a new type of Top 10 security
risks by OWASP [5] in 2017. Theréfore, efficiently identifying miss-
ing checks in realistic software is essential for identifying insuffi-
cient attack protections and prognosing potential vulnerabilities,
especially in the early development stage.

Several approaches have been proposed to detect missing checks.
Chucky [43] detects missing checks by a lightweight intra pro-
cedural static taint analysis and anomaly detection algorithm. It
identifies missing checks for security APIs usage based on the as-
sumption that missing checks are rare events compared with the
correct conditions imposed on security-critical objects in software.
Therefore, it is more suitable for analyzing mature code since the
assumption is usually not valid in early development stage. Role-
Cast [34] statically explores missing security authorization checks
without explicit policy specifications in the source code of web ap-
plications. It exploits common software engineering patterns and a

https://doi.org/10.1145/3275219.3275225
https://doi.org/10.1145/3275219.3275225

Internetware ’18, September 16, 2018, Beijing, China

role specific variable consistency analysis algorithm to detect miss-
ing authorization checks. However, RoleCast is tightly bounded to
web applications coded in PHP and ASP.

To identify insufficient attack protections and prognosis poten-
tial vulnerabilities, we propose a systematic static approach to de-
tect missing checks for manipulable data used in security-sensitive
operations in C/C++ programs in this paper. It can be used for
mature code as well as programs under development stage. First,
customized security-sensitive operations (e.g. security-sensitive
functions call, array-index access, and division and modular arith-
metics) are located with lightweight static analysis on the abstract
syntax tree [21], call graph (CG) [29] and control flow graph (CFG)
[35] of the target program. Second, sensitive data used in the located
security-sensitive operations are judged to see whether they are ma-
nipulable by outside attack inputs viastatic taint analysis including
inter-procedural and intra-procedural taint analysis. Third, a data
flow based backward analysis algorithm is applied to explore attack
protection checks started from the locations of security-sensitive
operations: if no protection checks exist, then a missing check is
identified. Further, the risk degree of detected missing checks is as-
sessed based on the context features. At last, details of the detected
missing checks are reported as warnings.

We have developed an automated and cross-platform tool, named
Vanguard, on top of Clang/LLVM 3.6.0. We have also conducted
experiments on several open-source projects to demonstrate its
effectiveness and efficiency. The results indicate that Vanguard is
able to detect missing checks in open-source projects such as PHP,
OpenSSL, Pidgin, Libpng, and Libtiff with low false positive (i.e., 19
% in average) with low time overhead (e.g., 619s for 500KLOC in
PHP-5.6.16). Also, Vanguard has been adopted by industry users and
integrated into their testing platform for improving the correctness
of products under development. Vanguard has also led us to uncover
five known vulnerabilities and two unknown bugs.

The main contributions of this paper are as follows:

o A systematic static approach to detect missing checks was
proposed to identify insufficient attack protections and de-
fend potential vulnerabilities in C/C++ code. It is suitable
for mature code and programs under development.

o A cross-platform tool, named Vanguard, was implemented
on top of Clang/LLVM 3.6.0, which is capable of identifying
missing checks in realistic projects automatically. It has been
adopted by industry users to help them defend potential
vulnerabilities in industry-level projects.

e Experimental evaluation on open-source projects was con-
ducted to demonstrate Vanguard’s effectiveness and effi-
ciency. Furthermore, it ultimately leads us to uncover five
known vulnerabilities and two unknown bugs.

The rest of this paper is organized as follows. Section 2 intro-
duces the concept and formal definition of missing check. Section 3
presents an overview and detailed description of our approach. Sec-
tion 4 introduces the details of implementation and optimization.
Section 5 gives the experimental evaluation results. Related works
are discussed in Section 6 before we conclude the current work in
Section 7.

Lingyun Situ, Linzhang Wang, Yang Liu, Bing Mao, and Xuandong Li

#define MAX_LEN 100;

1
2| char array[MAX_LEN];

3
4| void DIV_msg(int i, MSG* msg){

5 int quot;

6 int dividend=msg->msg_len;

7 // if(dividend == @) return;

8 quot = (i / dividend);

9 /* dividend may be equal to zero*/
10 printf("quot is: %d\n", quot);
1] 3
12

13| void MOD_msg(int i, MSG* msg){
14 int quot;

15 int operand=msg->msg_len;

16 // if (operand == @) return;

17 quot = (i % operand);

18 /* operand may be equal to zero x/

19 printf("quot is: %d\n", quot);

20| 3}

21

22| void ARRAY_msg(int i, MSG* msg){

23 int index = i + msg->msg_len;

24 // if (index >= MAX_LEN || index < @) return;
25 array[index] = msg->msg_value;

26 /* index may be out of array bound x/
2713

28

29| void FUNC_msg(MSG* msg){

30 char* buf=(char*)malloc(MAX_LEN);

31 if (buf == NULL) return;

32 int len = msg->msg_len;

33 // if (len > MAX_LEN) return;

34 memcpy (buf , upMsg->msg_value, len);
35 /* len may be larger than MAX_LEN =*/
36/ }

38| void. EntryFun(int i){

39 MSG# upMsg =recvmsg(); //get msg from outside
40 DIV_msg(i, upMsg);

4] MOD_msg(i, upMsg);

42 ARRAY_msg (i, upMsg);

43 FUNC_msg(upMsg);

Listing 1: Code samples of missing checks

2 MISSINGCHECKS

This section introduces examples of missing checks firstly, and then
provides the formal definition.

2.1 Motivation Examples

Missing checks for security-sensitive operations using manipulable
data may result in many severe types of vulnerabilities and various
disastrous attacks. For example, CVE-2013-0422 is a vulnerability
caused by missing check for a sensitive accegs-control function
in Java 7, which has been utilized to install malware on millions
of hosts by attackers [43]. Recently, “A7-Insufficient Attack Pro-
tection" has been proposed as a new type of Top 10 security risks
by OWASP [5] in 2017. Thus, missing check, i.e., missing attack
protection checks for manipulable data used in security-sensitive
operations, is an indicator of insufficient attack protection.

Intuitively, code samples are illustrated in Listing 1 for a better
understanding of missing checks. dividend, operand, index and len
are untrusted data, which are manipulable by outside attack inputs
i and upMsg. They are used in four types of security-sensitive
operations (SS0O), i.e. division arithmetic, modular operation, array-
index access, and security-sensitive function call without protection
checks.

Vanguard: Detecting Missing Checks for Prognosing Potential Vulnerabilities

e Missing Check for Division Arithmetic: The manipula-
ble data dividend is used as a dividend in division arithmetic
at line 8 without confirming that dividend is not equal to
zero as commented at line 7, which will result in a divide-by-
zero error. It is defined as a “missing divide-zero protection
check".

Missing Check for Modular Operation: The manipula-
ble data operand is used as the second operand in modular
operation at line 17 without guaranteeing that operand is
not equal to zero‘as commented at line 16, which may lead to
a modulus-by-zero error. It is defined as a “missing mod-zero
protection check".

e Missing Check for Array-Index Access: The manipula-
ble data index is used as the subscript of an array at line
25 without checking that'indéxisin the range of array’s
capacity as commented at linie 24, which will cause an out-
of-bounds error. It is defined as a “missing array-index-bound
protection check".

Missing Check for Sensitive Function Call: The manip-
ulable data len is used as an argument of a security-sensitive
function call (i.e., memcpy) at line 34 without comparing
len and size of buf as commented at line 33, which could
give rise to a buffer-overflow vulnerability. It is defined as a
“missing argument-constraint protection check".

2.2 Formal Definition

stmts = id « expr
| call_func
| s s
| if expr then s else s
| while expr do s
expre == id
| constant
| e1 ¢p e
| 0y €
| e1 om e
| e1 [e2]
call funcc == e« call func (id =e)*
funcf = signature func_body
signature := fname id"
func_body := stmt

A program consists of a sequence of numbered statements, i.e.,
assignments, function calls, sequence executions, conditionals, and
loops, as defined by stmt. id represents local variables and formal
parameter of functions, and constant represent constant variables.
We use ¢p, and ¢y, to represent typical binary and unary operations,
Om to represent member operator “.” or “—”, and [] to represent
array accesses. This language contains all important features of
C/C++. Based on this language grammar, we give the definition of

a missing check in Definition 2.1.

Definition 2.1. (Missing Check): Let TS = (S, Act, —,I, AP, L)
be a transition system for a program, where:
o S = Taint(Var)x Check(Var) is a set of states, Taint(Var) repre-
sents whether the variable Var is tainted or not, and Check(V ar)
represents whether Var is checked or not.

Internetware 18, September 16, 2018, Beijing, China

<error>
</Event>
<file>C:/src/tainted_mem.c</file>
<Callerfunction>MEM_msg</Callerfunction>
<Sensitivefunction>memcpy</Sensitivefunction>
<Description>
[memcpy] is a sensitive operation
using tainted data:[len]
Location [C:/src/tainted_mem.c:34:15.]
Call Stack: EntryFun; MEM_msg; memcpy;
</Description>
<riskDegree>75<riskDegree>
<line>35</line>
</Event>
</error>

Listing 2: Missing Check Warnings

e Act is a set of statements.
e —C S X Act XS is defined by the following rule:

[24) 24
ti-1 =t 1i,Ci—1 ¢ Ci

@
< tj—1,Ci—1 >—5< ti,ci >

where «; is the act, <»; C Taint(Var) X Act X Taint(Var), —. C
Check(Var) x Act X Check(Var).

I C S is a set of initial states.

AP = Taint(Var) U Check(Var) is a set of atomic propositions.
o L =5 — 24P is a labeling function.

a a a .
Let p =< s —> S| —> $3...5_1 —> Sj... > be an execution path

whose action sequence is “ajay...;...". There is a missing check
on p iff p satisfies the following conditions:

(1) d ane SSO C Act, where SSO is a set of security-sensitive
operations. It represents that «; is a security-sensitive operation.

(2) For @; in condition (1), 3 d € SD(«;) A ti—1(d) = T, where
SD is a/function to.obtain the data used in ;. It represents that the
sensitive data d tised in «; is tainted.

(3) For d in‘condition (2), c1(d)Vca(d)V...Vei(d) = F.Itrepresents
that there are no attack protection checks for d and related variables.

3 APPROACH

The overview of Vanguard is illustrated in Fig. 1. The inputs include
the source code of a target C/C++ program and the configuration file.
The output is a warning report of identified missing checks. Van-
guard detects missing checks by three steps: (1) security-sensitive
operations location, (2) arguments assailability judgment, and (3)
insufficient protection assessment.

First, Vanguard locates customized security-sensitive operations
(SSO) with lightweight static analysis on the abstract syntax tree,
call graph and control flow graph of the target program. Second, sen-
sitive data used in SSO (i.e., dividend in division arithmetic,modulus
in modular operation, index of array access, and arguments of
security-sensitive function calls) are obtained to judge whether
they are assailable by outside attack input, i.e., to decide whether
they are tainted using static taint analysis. Third, if a sensitive
data is tainted, then a backward data-flow analysis is applied to ex-
plore whether there are attack protection checks for tainted data or
related variables. If not, then a missing check is identified, and Van-
guard extracts its context features, and adds these features’ value
to estimate its risk degree. At last, Vanguard generates a warning
report for the missing checks in high-risk context.

Internetware ’18, September 16, 2018, Beijing, China

Lingyun Situ, Linzhang Wang, Yang Liu, Bing Mao, and Xuandong Li

Security-Sensitive
Operations Location

Source Code I >

Arguments Assailability
Judgment

Insufficient Protection
Assessment

Warning
Report

Y

| Configuration

Taint Sources &
Analysis Rules

Context
Feature

Figure 1: Overview of Vanguard

Example. To illustrate the processes of Vanguard to detect miss-
ing checks , we apply Vanguard on the sample code in Listing 1. The
function EntryFun at line 38 isan entry function that calls recomsg,
DIV_msg, MOD_msg, ARRAY _msg,and FUNC_msg. The recvmsg
is a library function in charge of réceiving messages from outside.

First, security-sensitive operations, i.e. division operator “/” at
line 8, modulus arithmetic “%” at'line 17, array index array[index]
at line 25, and sensitive function call memcpy at line 34; are located
as well as their arguments dividend, operand, index, buf, and len.
Notice that the sensitive data buf and len used as arguments of
memcpy are obtained according to our configuration item “memcpy :
0 + 27, which represents that the first and third arguments of
“memcpy” need to be checked.

Next, these sensitive data are judged to see whether they are as-
sailable by outside attack input (i.e., tainted or not) using statie
taint analysis. Our static taint analysis marks the argument i of
EntryFun as tainted. upMsg is the return value of the library func-
tion recuvmsg configured in our black-list. Notice that default taints
the return value of a library function in black-list. Thus, upMsg
is marked as tainted too. Then local variables dividend, operand,
index, and len are all tainted, because they are influenced by the
taint source i and upMsg through statements at line 6, 15, 23, and
32 based on our taint analysis rules listed in Table 1. Thus, these
tainted variables can be manipulable by outside attack input.

After that, Vanguard explores whether there are related protec-
tion checks for these tainted data or related variables. Taking the ar-
gument len as an example, Vanguard explores proper attack protec-
tion checks for len and its related expressions like msg — msg_len
before the call site of the sensitive function call memcpy. There
are no precondition checks for tainted len and related variables in
function FUNC_msg and EntryFun. Thus, it is marked as a miss-
ing check. Furthermore, context features listed in Table 2 are ex-
tracted to compute its risk degree. Notice that the configuration
item CheckLevel is set to 1 here. At last, Vanguard will generate
detailed information about the missing argument-constraint pro-
tection check and report it as a warning in an XML file as Listing 2.
Similarity, Vanguard is able to detect other missing checks.

3.1 Security-Sensitive Operations Location

Locating SSOs is the first step to detect missing checks. A light-
weight static analysis is performed on the abstract syntax tree of
the target program to locate SSOs based on configuration file.
The configuration of SSOs is formally represented as follows,
where CheckItem is a configurable item for a security-sensitive op-
eration. It consists of the type, expression list, and argument list of
the security-sensitive operation. Type represents types of security-
sensitive operations. If type is FUNCTION, then OpList is a list

of function names. If the type is OTHERS, then OpList is a list of
expressions containing division and modulus operators and array
accesses. ArgList is the location of sensitive data that need to be
checked in the security-sensitive operation.

CheckItem == Type: OpList : ArgList

Type == FUNCTION: OTHERS
OpList == ExprTypet
ArgList == NUMBER*

For example, sensitive API usage are security-sensitive opera-
tions, which are configured as a list of CheckItems with the format
as follows:

FUNCTION : fName : Args

FUNCTION represents that the type of security-sensitive oper-
ation is function, fName is a list of sensitive functions’ names
related to memory operations (e.g., malloc, memset, and memcpy)
and sensitive API usage (e.g., FTP_StrCpy and FTP_StrnCpy), and
Args represents location of arguments we need to examine whether
they are assailable by outside attack input or not. Note that “0”
represents the first argument, “-1” represents all arguments, and
we couldspecify multiple arguments with “+" (e.g. “0+1+2”) if we
want to check multiple arguments in the function.

For each function in the target program, a corresponding CFG is
constructed based on its AST. Then each statement of every basic
block is analyzed by traversing the CFG. If a statement belongs to
the type of “call_func”, thén we will check whether the callee’s
name “CalleeName” of the “call_fun¢” is matched with a sensitive
function’s name. If CalleeName is matched with one fName, then
a security-sensitive function call isdocated. Furthermore, the sensi-
tive data data used as the actual arguments in the function call is
obtained according to Args specified in configuration file.

The location of other SSOs like division arithmetic, modulus
operation, and array-index access is similar to the handling of
security-sensitive function calls, and we omit the details here.

3.2 Arguments Assailability Judgment

Once a security-sensitive operation and its arguments (i.e., the sen-
sitive data data) are identified, the next step is to analyze the taint
status of sensitive data to judge whether they are assailable by out-
side attack input using static taint analysis.

Our static taint analysis consists of intra-procedural and inter-
procedural analysis. First, intra-procedural taint analysis is used to
obtain taint relations between local variables and formal parameters
of every function. Then, inter-procedural taint analysis is performed
to traverse the call graph of the program in an inverse topological
order and spread taint status of entry function to related functions’
formal parameters.

Vanguard: Detecting Missing Checks for Prognosing Potential Vulnerabilities

Table 1: Taint Analysis Rules

Types Rule

expre I'(e)— v AI'(constant)=U
eidper I'(er) =7, I'(e2) =12 = I'(e10pe2) =11 ® 12
oye TI(e)=t=>T(0yue)=r1
e1omes I'(e))=17=T(e10mer) =1
eife2] T(e)=7=T(eilea]) =7
ep—e I(e)=1,ep6e2=>T(e1)=1
&ei— e I(e))=1,&e —ey=T(e1)=r1

s;s TSNS L= 25n
if ve e assigned(stmt) U assigned(stmt/),
ny(e)) = [(e) @ Ii(e) ® Iz(e)
while i=0,Do
ve e assigned(stnit); Fl-(e') =TI'(expr)U F,-(e');
i++;
Until I'; == T4
call_func I(e1)=1,....I(en) = 1p, Lytidien,idne—en) = Ts

exprecall g ’

= I,

[expriz|G(idi 11, .o idn—1n)]

Specifically, all the inputs from outside are regarded as taint
sources ¢, which is defined formally as below:

¢ = {x|x € ArgsEntry U ApiRet}

where ArgsEntry represents the set of arguments of entry functions
and ApiRet represents the return value of external APIs. The default
taint status of an APIs’ return value is configured using a white-list
and a black-list by users. Let 7 = {T, U} be the taint type domain for
our static taint analysis. T and U indicate the tainted and untainted
labels respectively.

3.2.1 Intra-procedural Analysis. For each function in target pro-
gram, we define Vars = LocalVars U FormalParams, LocalV ars is
a set of local variable expressions in the function, FormalParams
is a set of formal parameters of the function. We associate an envi-
ronment to Vars by defining a mapping I from Vars to taint types
in the following way:

I':Vars — 7.

In order to handle programs that involve presence of expressions,
a binary operator @ : 7 X 7 — 7 was defined as follows:

U x=UAy=U
x®y
T x=Tvy=T

where x and y are expressions of the left and right side of some
operations op. The binary operator & will be used to compute the
taint state of expressions that depend on other variable expressions.
For instance, if the taint states of expr1, expr2 are t1, t2, and epxr3 =
exprl + expr2, then the taint state 3 for expr3 will be computed
as t1 @ t2.

In order to support inter-procedural taint analysis, an environ-
ment for each function is built. It can be reused in different call-
ing contexts. Type variable G is defined with respect to a func-
tion environment I" as the tuple of variables (x1,x2,...,xn) on
which the type variable depends. It denotes G(x1,x2,...,Xpn) =
[(x1) ®I'(x2)® ... ® I'(xy,). Furthermore, we extend the @ operator
to I' environments:

F=nely iff VxeVars = I'(x)=1TI1(x)® I2(x)

Internetware 18, September 16, 2018, Beijing, China

Algorithm 1: BFSTaintSpread (CG, fEnuvs)
Input: CG: non-recursive Call Graph; fEnuvs: tait environment
of vars and formal parameter

Output: fEm)s/: updated taint environment
foreach v in CG do

L color[v] = WHITE ;
s= CG.start() ;
color[s]= GRAY;
ENQUEUE(Q;s);
while Q != EMPTY do

7 u=DEQUEUE(Q);

8 foreach v in callee(u) do

9 L TaintPropagationThroughCall(u,v)
10 if color[v]==WHITE then
1 | ENQUEUE(Q.v)

12 color[u]= BLACK;

-

)

©

'S

=

o

Let Funcs be a set of functions in program. We associate an
environment I" for each function as follows. We associate type
variable G(x) for each formal parameter x. ret is created to hold
the type of function’s return value. The taint type for return value
of the function is a combination of type variables corresponding
to the formal parameters and values from 7. A mapping between
functions and their associated environment is represented below:

Tfune » Funcs — (Vars — 1)

Initially, Ity contains the mappings for library functions. The
mappingsfor user-defined functions will be added when the taint
analysis rules list inTable 1 are applied.

Note that assigned(stmt) represents the set of left expressions
of assignmentstatements in stmt, and G(id;) < 7; represents the
instantiation of typewariable G(id;) with ;.

3.2.2 Inter-procedural Analysis. The original call graph of the
program is traversed with a depth-first search algorithm for the
sake of obtaining a non-recursive call graph (CG) in topological
order. Then, BFSTaintSpread. algorithm is applied on the CG to
perform inter-procedural taint analysis, spreading taint status of
entry function to related formal parameters of functions.

As illustrated in Algorithm 1, the inputs are call graph CG and
taint environments fEnvs storing taint.selations between formal
parameters and local variables. The outputs are taint environments
fEnvs storing taint information of formal paraimeters as well as
relations between formal parameters and local variables. Our inter-
procedural taint analysis starts at entry function s of call graph
CG and analyzes the program from top to bottom in breadth-first-
search order. The parameters of the entry function are tainted. The
call graph is traversed for spreading taint statuses from top entry
function’s parameters to their related functions’ formal parameters.
For each function, we spread the caller’s actual arguments’ taint
statuses to callee’s formal parameters. If multiple functions are call-
ing the same function, then the callee function’s formal parameters’
taint statuses are the combination of its callers” actual arguments’
taint statuses. In this way, we obtain taint relations between taint
sources and formal parameters of each function.

Internetware ’18, September 16, 2018, Beijing, China

Q\bp ’P
.

Figure 2: N Level Check

CheckLevel =2
CheckLevel = 1

CheckLevel =0

Furthermore, we established taint data pool © based on the re-
sults from intra-procedural and inter-procedural analysis. It can
be represented as a mapping from expression e € Exprs associated
with context environment &(e) = (FunctionDecls, Blocks, Stmts) to
its taint status.

© : (FunctionDecls, Blocks, Stints, Expres) —

which makes it continent to judgé taint status of sensitive data.
What we need is to collect and provide related information &(data)
when locating a security-sensitive operation and its sensitive ar-
guments data. These information include funection declaration,
block, statement and argument expression, they are represented as
FunctionDecl, CFGBlock, Stmt and Expr in O respectively.

3.3 Insufficient Protection Assessment

If a security-sensitive operation using one or more taint data is
detected, then it is possible to be exploited and attacked by outside
input. We perform insufficient protection assessment by exploring
the existence of related attack protection checks and (2) further
estimating the risk degree of detected missing check in its context
based on context features. The basic idea is that if there is a missing
check and the function context that the missing check occurred is
complex, then the missing check is more likely to be dangerous.

A backward data-flow analysis is performed to explore whether
there are proper attack protection checks for taint data or related
variables in the body of caller and caller’s ancestors. Note that there
is a configuration item with the format below:

CheckLevel : N

which determines the levels of caller’s ancestors we will explore
along one path of the call graph. When the CheckLevel is equal to
“0", Vanguard will explore proper attack protection checks in the
body of caller invoking the security-sensitive operations. When
the CheckLeuvel is equal to “1" or more, Vanguard will explore the
bodies of the caller, caller’s parents, and even ancestors.

Intuitively, the strategy of exploring proper attack protection
checks is illustrated in Fig. 2. Starting from the location of security-
sensitive operation using tainted argument data in the grey node.
Vanguard will explore the body of caller and caller’s ancestors along
every path of call graph according to the check level.

First, we mark argument data used by the located sensitive op-
eration as taint source and apply backward taint analysis to each
statement in the body of caller or caller’s ancestors. Then, if we find
a IfStmt and there are variables occurred in the condition of these
conditional statements affected by tainted argument data. Then we
regard it is as a proper protection check (represented as the block
node); Otherwise, if all the variables occurred in the conditions of
detected conditional statements are not affected by tainted argu-
ment data along one path (represented as the imaginary arrows)

Lingyun Situ, Linzhang Wang, Yang Liu, Bing Mao, and Xuandong Li

Table 2: Context features

No. Feature Names Feature Meaning
1 NumOfArg Num of arguments
2 NumOfPlus Num of "+" in arguments
3 NumOfMinus Num of "-" in arguments
4 NumOfMultiply Num of "*" in arguments
5 NumOfDivide Num of "/" in arguments
6 NumOfDelively Num of "%" in arguments
7 NumOfSimpleVar Num of simple vars in arguments
8 NumOfCompositeVar ~ Num of composite vars in arguments
9 NumOfSizeof Num of sizeof Ops in arguments
10 NumOfCallerVar Num of variables in caller
11 NumOfCallerCallExpr ~Num of CallExpr in caller
12 CalleeHasBody Whether the callee has body
13 NumOfInBinary Num of arguments in binary ops
14 NumOfBinaryOP Num of binary Ops in caller
15 NumOfTaintArg Num of tainted arguments

of the call graph, then we identify a missing check. More precisely,
we will check whether the tainted data is zero for the division and
modular operations. For array-index access, we will further check
if the tainted data is within the bound of the array.

Note that the way to define proper check is not accurate enough
but useful in reality based on the assumption that if developers are
aware of adding protection check for security-sensitive operation,
then the developer will write right protection check conditions.
Furthermore, context features listed in Table 2 of function with
detected missing check will be extracted to represent its risk degree.

4 'IMPLEMENTATION

An automated and cross-platform tool called Vanguard was devel-
oped based on Clang/LLVM 3.6.0, the architecture is illustrated in
Fig. 3. Vanguard consists of four modules: (1) Preprocessor, which
is used to obtain abstract syntax tree, control flow graph, and call
graph of the target program; (2)-TaintAnalyzer, which is in charge
of establishing taint datapool using static intra-procedural and
inter-procedural taint analysis; (3) Detector, which will identify
missing checks via lightweight static analysis; and (4) RiskEstima-
tor, which estimates the risk degrée of detected missing checks in
their contexts by computing context complexity.

Memory Optimization. In order to avoid the crash while an-
alyzing large-scale projects with Vanguard in a limited memory
environment, a cache mechanism for ASTs’ read and write is pro-
posed to optimize memory usage. The key idea is to preserve latest
used ASTs in memory with an AST queue, and users configure the
maximal length of AST queue according to practical memory limit.

Taint Analysis Optimization. In order to accelerate the speed
of static taint analysis to judge assailability of sensitive data used in
security-sensitive operations, a tainted data pool consisting of each
variable expression’s taint types is established and stored with the
format of 32bit unsigned int type array. It turns taint propagation
analysis into bit computation of two-bit arrays of related variable
expressions. Meanwhile, a query interface for assessing taint state
of a variable is provided. It can be used for identifying a variable
taint state conveniently and quickly.

Besides, Vanguard has been adopted by industry users and in-
tegrated into their testing platform for improving the correctness

Vanguard: Detecting Missing Checks for Prognosing Potential Vulnerabilities

Vanguard
RiskEstimator
context features risk index complexity degree
extractor loader computer
Detector
sensitive operations argument assailability protection check
locator examiner explorer

TaintAnalyzer

| intra-procedural analysis | inter-procedural analysis |

Preprocessor.
(AST/Control Flow Graph/Call Graph)

| Clang/livm 3.6.0 |

| Linux or window operating system |

Figure 3: Architecture of Vanguard

of their products under development. The core source code of Van-
guard is available for download from https://github.com/stuartly/
MissingCheck.

5 EVALUATION

Experimental evaluation was conducted on a computer with 64-bit
Ubuntu 16.04 LTS system, a processor of Intel(R) Xeon(R) CPU
E5-1650 v3 @3.5GHz and 8GB RAM. The evaluation is designed to
answer the following three research questions:

e Q1: How is the effectiveness of Vanguard ?
e Q2: How is the efficiency of Vanguard ?
e Q3: What is the comparison results with other tools?

5.1 Effectiveness of Vanguard (Q1)

We evaluated its effectiveness from three aspects: (1) Accuracy of
static taint analysis; (2) False positive of missing check detection;
(3) Ability to uncover vulnerabilities caused by missing checks.

5.1.1 Accuracy Analysis of TaintAnalyzer. The effectiveness of
missing check detection are relied on the accuracy of TaintAnalyzer.
We collected and specified some typical testing programs [1] to
validate correctness of TaintAnalyzer. As illustrated in Listing 3, it
is a typical example to verify accuracy of taint propagation situation
containing pointer, reference and function, which is one of the most
difficult situations of taint analysis. We first specified the analyzed
results of TaintAnalyzer as comments, which are obtained by query
interface mentioned above in practice. Then we manual audit the
code to validate the accuracy of results in comment.

We set tainted() in black list, then return value of tainted() is
tainted. Next, we manually analyze testing code from test_pointer.
The x is tainted by taint source at line 23; Member variable m of
p1 is assigned by x at line 28. A struct object is regarded as an
entirety, if one member is tainted, then whole struct is tainted, so
p1 is tainted. Furthermore, al and p2 are tainted too since they are

Internetware 18, September 16, 2018, Beijing, China

int tainted();

1

2

3| struct A{

4 int m;

50 3;

6

71 int func(int in){

8 int a = in;

9 return a; /* TaintValue (func)=Gamma(in)=x/

10|}

12| int pointer_param_in(intx pin){

13 int x = xpin;

14 return x; /*TaintValue (func) = Gamma(in)x*/
15| 3}

16

17| intx ref_param_out(int& pout){
18 pout = tainted();

19 return & pout;

200}

22| int test_pointer (){

23 int x = tainted(); /*x= taintedx/

25 struct A al;

26 struct A* pl = &al;

27 struct A*x p2 = pl; /*al, pl, p2 = untaintedx/
28 pl->m = x; /*xal, pl, p2= taintedx/

29

30 int ¢ = func(x); /*c= tainted=/

31 int retl = pointer_param_in(&c);

32 /* retl= tainted=*/

33

34 int b = 1; /* b = untainted=/
35 int* ret2 = ref_param_out(b);
36 /* b = tainted ret2= taintedx/

38 return 0;
394 }

Listing 3: Testing for taint analysis of pointer and
reference

pointing the same address; The initial value of variable ¢ is return
value of func(x)at line 30, and taint type of func() is Gammaf(in),
which means the taint type of return value of func() is deter-
mined by its actual argument. Its actual argument x is tainted,
so c is tainted; Line 31 is a taint propagation situation of function
pointer as argument. The taint type of return value of function
pointer_param_in is Gamma(pin); similar as func(), is determined
by the taint type of its actual argument. The actual argument of
pointer_param_in is address of c, c is tainted, so ret1 is tainted;
At line 34, b is initialized by number 1, then b is not tainted. b
is the actual argument of ref_param_out(). Due to the definition
of function ref_param_out(), the reference argument pout will be
tainted and return its address, so the actual argument and return
value of ref_param_out() are tainted, thus b and ret2 are tainted.
By comparing with the results in comments, we can prove our static
taint analysis algorithm is correct and accurate.

Based on above analysis, we can know that TaintAnalyzer is
able to analysis various C/C++ expressions and taint propagation
situations correctly, including propagation of variable definition and
assignment (line 8, 13, 18, 23), propagation of return value(line 23, 30,
31, 35), propagation of structure, pointer and reference assignment
(line 25-28) and propagation of pointer and reference as function
arguments(line 12, 17, 31, 35).

https://github.com/stuartly/MissingCheck
https://github.com/stuartly/MissingCheck

Internetware ’18, September 16, 2018, Beijing, China

Time-CodeLine

Time-File Time-Function

Time Overhead
Time Overhead
@
8
Time Overhead

Figure 4: Time overhead with growth of scale

5.1.2 False Positive of Missing Check Detection. Furhtermore,
we choose PHP, Openssl, Pidgin, Libtiff, Libpng as testing targets to
count the false positive of missing check detection. They are chosen
because (1) related work like Chucky [43] have analyzed them; (2)
they vary from different scale and have vulnerabilities caused by
missing checks reported in CVE/NVD [4]. We used Vanguard to
analysis above projects and asked third party to count the false pos-
itive of our report about various missing attack protection checks,
the result is illustrated in Table 3, where AST queue.is set to 100,
security-sensitive function is a set of memory related functions like
“memcpy" .etc.

The results show that our Vanguard is able to identify missing
checks accurately with low false positive, i.e. 19% in‘average. The
causes of false positives are mainly due to two situations: (1) “if(a)
sensitive-op((size_t)a)" or “if(a) sensitive-op(a+b*c)", the taint data
is a expression with multiple variables, and one variable is checked.
(2) Some checks occur in the WHILE, FOR, SWITCH and ASSERT
statements, while we only analyze the situation of IF statement. It
can be improved in future work.

5.1.3 Discovery of Vulnerabilities. By add vulnerable functions
of above projects as security-sensitive operations into configura-
tion, Vanguard’s ability to identify missing checks is able to lead us
to uncover some known vulnerabilities posted in National Vulnera-
bility Database (NVD) [4] in open source projects as illustrated in
Table 4. Furthermore, Vanguard has helps us to find two unknown
crash bugs in open source projects jabberd2 [2] [3], which is a
widely used XMPP protocol server.

1| /* turn an xml file into a config hash %/
int config_load_with_id(config_t c, const char xfile,
const char =xid)

N

3
L
5 char buf[1024], *next;
6
7
8

for(i = 1; i < bd.nad->ecur && rv == 0; i++)
{

91 ..

10 next = buf;

11 for(j = 1; j < len; j++)

12 {

13 strncpy(next, bd.nad->cdata + path[j]l->

iname, path[j]l->1lname);

14 next = next + path[j]l->1lname;

15 *next = '.';

16 next++;

17 3}

18 next--;

19 *next = '\0';

200 L.

210 3

Listing 4: Missing check of Jabberd2.

One example is illustrated in in Listing 4. The function con-
fig_load_with_id is in charge of turning an xml config file into a

Lingyun Situ, Linzhang Wang, Yang Liu, Bing Mao, and Xuandong Li

1000.00 6000
5898 5898

750.00 4500

500.00 3000

Time (s)
Memory (MB)

250.00 1500

0.00 0
50 150 250 350 450 550 650 750
© TIME(S) MEMORY/(MB)

Figure 5: Result of memory optimizing

config hash. The array of path is a reference of result of passing
config file. In the loop at line 7, strncpy is a security sensitive mem-
ory operation. The loop is trying to copy data from bd.nad->cdata
+ path[j]->iname to buf. The path is a tainted data affected by out-
side input xml config. There is a missing check for the total size
of path[i]->Iname. The size of buf is 1024, a buffer overflow may
happy if the total size of path[i]->Iname is larger then 1024. We
have used dynamic testing to validate the potential vulnerability
and construct a test case to trigger the bug. It will make the XMPP
protocol server crash.

Based on above observations, we can know that Vanguard is
able to detect various missing attack protection checks effectively
with low false positive, and its ability to identify missing checks
can help to uncover known vulnerabilities. It also can be helpful for
identifying potential vulnerabilities for further validating, which
narrows the field of unknown vulnerability detection.

5.2 Efficiency of Vanguard (Q2)

We evaluate the efficiency of Vanguard from two aspects: (1) perfor-
mance of static taint analysis on typical code samples; (2) scalability
of missing check detection on open source projects.

5.2.1 Performance of TaintAnalyzer. We selected taint analysis
benchmark [1]mentioned in [10] to evaluate the performance of
our static taint analysis algorithm . The reason we choose these
programs as benchmark is: (1) they are typical programs used by
other taint analysis works; and (2) they are implementations of
some complex algorithms with various taint propagation situations
involving pointer, array, structure and so on. The result is illustrated
in Table 6.

Where Loc represents the code liné of the project. AST is number
of AST files, it also equals to the number of source file. Total is total
occurrence number of variables. Because the taint environment of
each basic block is diffident, and taint typés of variables are context-
sensitive, Total count the occurrence numbers/of all the variables
in all the blocks, i.e. Total = 3, fNumOfBB * fNumOfVar. TVar is
occurrence number of taint variables. TPerc =TVar Total, which
represents the dependence degree between program variables and
outside input. T(s) is the time of taint analysis, and Sp(M) is memory
cost.

Based on above observations, we can known that our static
taint analysis has good performance in dealing with different scale
projects, the time and memory overhead of TaintAnalyzer is low.
For instance, it is able to analysis mailx a program with 10K line
code in 2.58s with 76.7MB memory cost. It also indicates that it is
able to analysis various complex programs with all kinds of C/C++
expressions and structures such as pointer, array, reference and so
on.

Vanguard: Detecting Missing Checks for Prognosing Potential Vulnerabilities

Internetware 18, September 16, 2018, Beijing, China

Table 3: Effectiveness and Efficiency of Vanguard

missing checks warnings(false positive warnings)

Project AST | Func Loc Time SpM) ~divide/mod-zero array-index-bound | argument-constraint Average False Positive
Php-5.6.16 634 8499 497602 619.93 2793.2 43(14) 34(2) 196(83) 36%
Openssl-1.1.0 | 580 | 5692 | 284518 | 448.23 | 8584 7(1) 32(6) 28(6) 19%
Pidgin-2.11.0 38 966 328153 37.57 471.7 27(3) 16(4) 63(11) 16%
Libtiff-4.0.6 83 | 6290 | 66855 | 1552 | 1528 57(5) 5(1) 1(1) 10%
Libpng—l.S.Zl 60 337 24621 17.69 176.9 3(0) 4(0) 13(3) 15%

Table 4: Discovery of Vulnerabilities

Project File Function Vulnerability

Openssl-1.1.0 stalen_dtls.c BUF_MEM_grow_clean CVE-2016-6308

Pidgin-2.10.11 protocol.¢ mxit_send_invite CVE-2016-2368
Libpng-1.5.21 pngrutil.c png.read_IDAT_data CVE-2015-0973
Libtiff-4.0.6 tif_fax3.c _TIFFFax3Fillruns CVE-2016-5323
Libtiff-4.0.6 tif_packbits.c TIFFGetField CVE-2016-5319

5.2.2 Scalability of Missing. CheckDetection. As we can see from
Table 3, Vanguard finishes analyzing PHP-5.6.16 in 619.93s, which
is a project with more than 490 thousand lines code. Furthermore,
we count the time-overhead of Vanguard on project PHP-5.6.16
with increment of AST files, code lines, and functions. All the plots
in Figure 4 have shown Vanguard’s complexity of is nearly linear,
which is scalable on large size of projects.

In addition, the effect of our memory optimizing in Vanguard
is evaluated by analyzing PHP-5.6.16 with setting different size of
AST queue. The result in Figure 5 indicates that Vanguard is capable
of analyzing PHP-5.6.16 with lower space-cost when size of AST
queue is smaller.

Obviously, Vanguard will load ASTs more frequently and cost
more time at same time. But when size of AST queue is larger than
the number of total ASTs of target project (e.g. 634 for PHP-5.6.16),
the space-time cost will stay stable (e.g. 5898MB and 304s) since all
ASTs will be loaded into memory at the beginning.

Based on above observations, we can know that Vanguard is capa-
ble of dealing with different large-scale projects with low space-time
cost, and its complexity is nearly linear. Meanwhile, our memory
optimizing technique is effective. It allows Vanguard to be used in
different environments with limited memory resources adaptively.

5.3 Comparison with Other Tools (Q3)

Existing work to detect missing checks are mainly Chucky [43]
and RoleCast [34] as far as we know. We compare Vanguard with
Chucky and RoleCast from three aspects: (1) Kinds of programming
languages; (2) Types of missing checks; (3) Average false positive.

Table 5: Vanguard, Chucky and RoleCast

C C++ PHP JSP
missing divide-zero check v v
missing mod-zero check v v
missing array-index-bound check v v
missing sensitive-APIs usage check | V' Vi e .
missing security logic check T T . .
missing sql-injection check . .
Tool: Vanguard(v) Chucky(T) RoleCast(e)
False Positive: 19% <20% 23%

As we can see from Table 5, Vanguard and Chucky are able to
handle C/C++ languages while RoleCast focus on PHP and JSP. All
three tools are capable of detecting missing checks for sensitive APIs
usage, meanwhile Vanguard can detect missing check for divide-
zero, mod-zero and array-index-bound, Chucky and RoleCast can
detect missing checks for security logic. Furthermore RoleCast can

Table 6: Performance of TaintAnalyzer

Project Loc AST Total TVar TPerc(%) T(s) Sp(M)

Circles 84 1 197 164 83.25 0.95 0
Queue 227 2 244 79 32.38 0.33 0
ABR 408 3 626 300 47.92 0.64 0
Huffman 499 5 809 426 52.66 0.74 20.6
mailx 14609 29 47643 15449 32.43 2.58 76.7

handle missing checks for sql-injection. In terms of false positive
of detection, three tools have approximative accuracy.

6 RELATED WORK

6.1 Taint Analysis

Taint analysis [18] [10] attempts to identify variables that have
been tainted with user controllable input. Static taint analysis [27]
[23] can achieve higher code coverage without runtime overhead
compared with dynamic taint analysis [30] [13]. Meanwhile the
disadvantage is that it will loss a certain degree of accuracy for
lack of dynamic information. Dytan [13] is a general framework
for dynamic taint analysis. Pixy [17] applies static taint analysis
to detect SQL injection, cross-site scripting or command injection
bugs in PHP scripts. Safer [11] is a tool combining taint analysis
with control dependency analysis to detect control structures that
can be ftriggered by untrusted user input. Inspired by [13], we
design and implement an extensible static taint analysis including
intra-procedural and inter-procedural analysis with features of
controllable taint sources and taint propagation rules. It is used to
judge whether sensitive data used by security-sensitive operators
is assailable by attack input or not.

6.2 Missing Check Detection

Chucky [43] is a missing check detection tool usingintra-procedural
static taint analysis and machine learning. It identifies missing
checks for security logic and APIs usageé based on/assumption that
missing checks are rare events. Therefore, it is more suitable for
analyzing mature code due to the assumption are usually not valid
in early development stage. Different from Chucky’s detection for
missing check using machine learning, Vanguard identifies miss-
ing checks by pure static analysis including intra-procedural and
inter-procedural taint analysis. Vanguard is able to identify missing
checks for more types of security sensitive operations including
division arithmetic, modulus operation, array-index access. Our
tool is aimed to improve code’s correctness, which can be used on
mature code and programs at development stage.

RoleCast [34] is a static analysis tool to identify security-related
events such as database writes in web applications, using a consis-
tent web application pattern without specification. Then, it exploits
common software engineering patterns and a role specific vari-
able consistency analysis algorithm to detect missing authorization

Internetware ’18, September 16, 2018, Beijing, China

checks. This approach is tightly bounded to web applications writ-
ten in PHP and JSP, while Vanguard can be applied to common
software systems written in C/C++ language.

7 CONCLUSIONS

Vanguard, an automatic static detection system for missing checks
in C/C++ programs is designed and implemented on top of Clang/L-
LVM 3.6.0, which is aimed at improving correctness of software
code by identifying insufficient attack protections. It is able to iden-
tify missing checks by (1) locating customized security-sensitive
operations with lightweight static analysis; (2) judging assailability
of sensitive data used in security-sensitive operations via static taint
analysis; (3) assessing existence and risk degree of missing checks
using static analysis and complexity computation. Experimental
results on open source projectshave shown Vanguard’s effective-
ness and efficiency. Furthermore; Vanguard has been adopted by
industry users. And it’s ability to identify missing checks has led
us to uncover five known vulnerabilities and two unknown bugs.

8 ACKNOWLEDGEMENT

The paper was partially supported by the National Key Research
and Development Plan (No. 2016YFB1000802), the National Natural
Science Foundation of China (No. 61472179, 61561146394, 61572249),
the Doctoral Creative Innovation Research project of Nanjing Uni-
versity (2016014).

REFERENCES

[1] 2009. TaintAnalysisBenchmark. https://github.com/dceara/tanalysis/tree/master/
tanalysis/tests. (2009).

] 2017. Bugl. https://github.com/jabberd2/jabberd2/issues/160. (2017).

] 2017. Bug?2. https://github.com/jabberd2/jabberd2/issues/159. (2017).
4] 2017. National Vulnerability Database. https://nvd.nist.gov. (2017).

] 2017. OWASP2017. https://www.owasp.org/index.php/Category:OWASP_Top_
Ten_Project. (2017).
Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy
Bounds Checking: An Efficient and Backwards-Compatible Defense against Out-
of-Bounds Errors.. In USENIX Security Symposium. 51-66.
Béatrice Bérard, Michel Bidoit, Alain Finkel, Francois Laroussinie, Antoine Petit,
Laure Petrucci, and Philippe Schnoebelen. 2013. Systems and software verification:
model-checking techniques and tools. Springer Science & Business Media.
Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:
three decades later. Commun. ACM 56, 2 (2013), 82-90.
Jun Cai, Peng Zou, Jinxin Ma, and Jun He. 2016. SwordDTA: A dynamic taint
analysis tool for software vulnerability detection. Wuhan University Journal of
Natural Sciences 21, 1 (2016), 10-20.
Dumitru Ceara, Marie-Laure Potet, Grenoble INP ENSIMAG, and Laurent
MOUNIER. 2009. Detecting Software Vulnerabilities-Static Taint Analysis.
Vérimag-Distributed and Complex System Group, Polytechnic University of
Bucharest (2009).
Richard Chang, Guofei Jiang, Franjo Ivancic, Sriram Sankaranarayanan, and
Vitaly Shmatikov. 2009. Inputs of coma: Static detection of denial-of-service
vulnerabilities. In Computer Security Foundations Symposium, 2009. CSF’09. 22nd
IEEE. IEEE, 186-199.
Gang Chen, Hai Jin, Deqing Zou, Bing Bing Zhou, Zhenkai Liang, Weide Zheng,
and Xuanhua Shi. 2013. Safestack: Automatically patching stack-based buffer
overflow vulnerabilities. IEEE Transactions on Dependable and Secure Computing
10, 6 (2013), 368-379.
[13] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 international symposium on
Software testing and analysis. ACM, 196-206.
Ankush Das and Akash Lal. 2017. Precise Null Pointer Analysis Through Global
Value Numbering. arXiv preprint arXiv:1702.05807 (2017).
Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2015. Understanding integer
overflow in C/C++. ACM Transactions on Software Engineering and Methodology
(TOSEM) 25, 1 (2015), 2.
Frangois Dupressoir, Andrew D Gordon, Jan Jiirjens, and David A Naumann.
2014. Guiding a general-purpose C verifier to prove cryptographic protocols.
Journal of Computer Security 22, 5 (2014), 823-866.

(9]

[10]

[11

[12]

[14]

[15

[16

Lingyun Situ, Linzhang Wang, Yang Liu, Bing Mao, and Xuandong Li

(17]

(18]

[19]

[20

[21

[22

[23]

[24]

[25

™
2

[27

[28

[29

[30

[31

[33

[34

(35]

[36

N
furg

=
i)

"~
&

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A static
analysis tool for detecting web application vulnerabilities. In Security and Privacy,
2006 IEEE Symposium on. IEEE, 6-pp.

Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
2011. DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation..
In NDSS.

Uday P Khedker. 2014.
arXiv:1412.5400 (2014).
Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 802-811.

Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In
The BSD Conference. 1-2.

Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. 2015. Preventing Use-after-free with Dangling Pointers
Nullification.. In NDSS.

Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried
Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mcdaniel. 2014. I know what
leaked in your pocket: uncovering privacy leaks on Android Apps with Static
Taint Analysis. arXiv preprint arXiv:1404.7431(2014).

Mengchen Li, Yuanjun Chen, Linzhang Wang, and Guoging Xu. 2013. Dynami-
cally validating static memory leak warnings. In Proceedings of the 2013 Interna-
tional Symposium on Software Testing and Analysis. ACM, 112-122.

Peng Li and Baojiang Cui. 2010. A comparative study on software vulnerabil-
ity static analysis techniques and tools. In Information Theory and Information
Security (ICITIS), 2010 IEEE International Conference on. IEEE, 521-524.

You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. 2013. Steering symbolic
execution to less traveled paths. In ACM SigPlan Notices, Vol. 48. ACM, 19-32.
Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu. 2015. TaintPipe:
Pipelined Symbolic Taint Analysis.. In USENIX Security, Vol. 15.

Krerk Piromsopa and Richard] Enbody. 2011. Survey of Protections from Buffer-
Overflow Attacks. Engineering Journal 15, 2 (2011), 31-52.

Barbara G Ryder. 1979. Constructing the call graph of a program. IEEE Transac-
tions on Software Engineering 3 (1979), 216-226.

Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In Security and privacy (SP), 2010 IEEE
symposium on. IEEE, 317-331.

Kouishik Sen. 2007. Concolic testing. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering. ACM, 571-572.
Hyunmin Seo and Sunghun Kim. 2014. How we get there: A context-guided
search strategy in coneolic testing. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 413-424.
Michael Sipser. 2006:-Introduction to the Theory of Computation. Vol. 2. Thomson
Course Technology Boston.

Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. 2011. Rolecast: finding
missing security checks when you do not know what checks are. ACM SIGPLAN
Notices 46, 10 (2011), 1069-1084:

James Stanier and Des Watson. 2013. Intermediate representations in imperative
compilers: A survey. ACM Computing Surveys (CSUR) 45, 3 (2013), 26.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting fuzzing through selective symbolic execution. In
Proceedings of the Network and Distributed System Security Symposium.

Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting memory leaks statically
with full-sparse value-flow analysis. IEEE Transactions on Software Engineering
40, 2 (2014), 107-122.

Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: brute force
vulnerability discovery. Pearson Education.

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013.-Sok: Eternal war
in memory. In Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 48-62.
David Wagner, Jeffrey S Foster, Eric A Brewer, and Alexander Aiken. 2000. A
First Step Towards Automated Detection of Buffer Overrun Vulnerabilities.. In
NDSS. 2000-02.

Mingxin Wang and Jingfu Zhao. 2015. A free boundary problem for the predator—
prey model with double free boundaries. Journal of Dynamics and Differential
Equations (2015), 1-23.

Tielei Wang, Tao Wei, Zhigiang Lin, and Wei Zou. 2009. IntScope: Automati-
cally Detecting Integer Overflow Vulnerability in X86 Binary Using Symbolic
Execution.. In NDSS. Citeseer.

Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad Rieck. 2013.
Chucky: Exposing missing checks in source code for vulnerability discovery. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 499-510.

Buffer Overflow Analysis for C. arXiv preprint

https://github.com/dceara/tanalysis/tree/master/tanalysis/tests
https://github.com/dceara/tanalysis/tree/master/tanalysis/tests
https://github.com/jabberd2/jabberd2/issues/160
https://github.com/jabberd2/jabberd2/issues/159
https://nvd.nist.gov
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

