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1 RESTORE: Retrospective Fault Localization
2 Enhancing Automated Program Repair
3 Tongtong Xu, Liushan Chen , Yu Pei , Tian Zhang, Minxue Pan , and Carlo A. Furia

4 Abstract—Fault localization is a crucial step of automated program repair, because accurately identifying program locations that are

5 most closely implicated with a fault greatly affects the effectiveness of the patching process. An ideal fault localization technique would

6 provide precise information while requiring moderate computational resources—to best support an efficient search for correct fixes. In

7 contrast, most automated program repair tools use standard fault localization techniques—which are not tightly integrated with the

8 overall program repair process, and hence deliver only subpar efficiency. In this paper, we present retrospective fault localization: a

9 novel fault localization technique geared to the requirements of automated program repair. A key idea of retrospective fault localization

10 is to reuse the outcome of failed patch validation to support mutation-based dynamic analysis—providing accurate fault localization

11 information without incurring onerous computational costs. We implemented retrospective fault localization in a tool called RESTORE—

12 based on the JAID Java program repair system. Experiments involving faults from the DEFECTS4J standard benchmark indicate that

13 retrospective fault localization can boost automated program repair: RESTORE efficiently explores a large fix space, delivering state-of-

14 the-art effectiveness (41 DEFECTS4J bugs correctly fixed, 8 of which no other automated repair tool for Java can fix) while

15 simultaneously boosting performance (speedup over 3 compared to JAID). Retrospective fault localization is applicable to any

16 automated program repair techniques that rely on fault localization and dynamic validation of patches.

Ç

17 1 INTRODUCTION

18 AUTOMATED program repair has the potential to trans-
19 form programming practice: by automatically building
20 fixes for bugs in real-world programs, it can help curb the
21 large amount of resources—in time and effort—that pro-
22 grammers devote to debugging [1]. While the first viable
23 techniques tended to produce patches that overfit the few
24 tests typically available for validation [2], [3], automated
25 program repair tools have more recently improved preci-
26 sion (see Section 5.2 for a review) to the point where they
27 can often produce genuinely correct fixes—equivalent to
28 those a programmer would write.
29 A crucial ingredient of most repair techniques—and
30 especially of so-called generate-and-validate approaches [4]—
31 is fault localization. Imitating the debugging process fol-
32 lowed by human programmers, fault localization aims to

33identify program locations that are implicated with a fault
34and where a patch should be applied. Fault localization in
35program repair has to satisfy two apparently conflicting
36requirements: it should be accurate (leading to few locations
37highly suspicious of error), but also efficient (not taking too
38much running time).
39In this paper, we propose a novel fault localization
40approach—called retrospective fault localization, and presented
41in Section 3—that improves accuracy while simultaneously
42boosting efficiency by integrating closely within standard
43automated program repair techniques. By providing a more
44effective fault localization process, retrospective fault localiza-
45tion expands the space of possible fixes that can be searched
46practically. Retrospective fault localization leverages muta-
47tion-based fault localization [5], [6] to boost localization accu-
48racy. Since mutation-based fault localization is notoriously
49time consuming, a key idea is to perform it as a derivative of
50the usual program repair process. Precisely, retrospective
51fault localization introduces a feedback loop that reuses, instead
52of just discarding them, the candidate fixes that fail validation
53to enhance the precision of fault localization. Candidate fixes
54that pass some tests that the original (buggy) program failed
55are probably closer to being correct, and hence they are used
56to refine fault localization so that other similar candidate fixes
57aremore likely to be generated.
58We implemented retrospective fault localization in a tool
59called RESTORE, built on top of JAID [7], a recent generate-
60and-validate automated program repair tool for Java.
61Experiments with real-world bugs from the DEFECTS4J
62curated benchmark [8] indicate that retrospective fault
63localization significantly improves the overall effectiveness
64of program repair in terms of correct fixes (for 41 faults in
65DEFECTS4J, 8 more than any other automated repair tool for
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66 Java at the time of writing) and boosts its efficiency (cutting
67 JAID’s running time to a third or less). Other measures of
68 performance, discussed in detail in Section 4, suggest that
69 retrospective fault localization improves the efficiency of
70 automated program repair by supporting accurate fault
71 localization with comparatively moderate resources.
72 Generality. While our prototype implementation is based
73 on the existing tool JAID, retrospective fault localization
74 should be applicable to any program repair tools that use
75 fault localization and rely on validation through testing. To
76 demonstrate the approach’s generality, we extended SimFix
77 [9]—another state-of-the-art automated repair tools for
78 Java—with retrospective fault localization. The experimental
79 results comparing SimFix with and without retrospective
80 fault localization (reported in Section 4.2.3) indicate that ret-
81 rospective fault localization is applicable also to different
82 implementations, where it similarly brings considerable per-
83 formance improvements without decreasing effectiveness.
84 Contributions.This papermakes the following contributions:

85 1) Retrospective fault localization: a novel fault locali-
86 zation approach tailored for automated program
87 repair techniques based on validation;
88 2) RESTORE: a prototype implementation of retrospective
89 fault localization, demonstrating how retrospective
90 fault localization can work in practice;
91 3) An experimental evaluation of RESTORE on real-world
92 faults from DEFECTS4J, showing that retrospective
93 fault localization significantly improves the effi-
94 ciency by boosting effectiveness and, simulta-
95 neously, performance.
96 4) An implementation of retrospective fault localization
97 atop the SimFix program repair technique, indicating
98 that it is viable to improve also other generate-and-
99 validate repair techniques.

100 Replication. A replication package with RESTORE’s imple-
101 mentation and all experimental data is publicly available at:
102 http://tiny.cc/9xff3y.

103 2 AN EXAMPLE OF RESTORE IN ACTION

104 The Closure Compiler is an open source tool that optimizes
105 JavaScript programs to achieve faster download and execu-
106 tion times. One of the refactorings it offers—renaming clas-
107 ses so that namespaces are no longer needed— is based on
108 class ProcessClosurePrimitives whose methods
109 modify calls to common namespace manipulation APIs. In
110 particular, method processRequireCall processes calls
111 to the goog.require API and determines if they can be
112 removed without changing program behavior.
113 Listing 1 shows part of the method’s implementation,
114 which is defective:1 according to the tool documentation, a
115 call to goog.require should be removed (lines 6 and 7) if
116 (i) the required namespace can be resolved successfully
117 (provided != null), or(ii) the tool is configured to remove
118 all the calls to goog.require unconditionally (require-
119 sLevel.isOn()). But the code in Listing 1 only checks
120 condition (i) on line 5, and hence does not remove unresolv-
121 able calls even when condition (ii) holds.

122Listing 1: Faulty method processRequireCall from
123class ProcessClosurePrimitives in project Closure
124Compiler.

1251 private void processRequireCall(NodeTraversal t,

1262 Node n, Node parent) {

1273 ProvidedName provided = providedNames.get(...);

1284 ...

1295 if (provided != null) {

1306 parent.detachFromParent();

1317 compiler.reportCodeChange();

1328 }

1339 }

134Listing 2: Fix written by tool developers (replacing line 5
135in Listing 1), and also produced by RESTORE.

136if (provided != null || requiresLevel.isOn()) {

137Using some of the tests that come with Closure Compiler’s
138source code, the RESTORE tool described in the present paper
139produces the fix shown in Listing 2, which is identical to the
140one written by Closure Compiler’s tool developers—and
141completely fixes the bug. At the time of writing, RESTORE is
142the only automated program repair tool capable of correctly
143fixing this bug2.
144The features of method processRequireCall and its
145enclosing class ProcessClosurePrimitives contribute
146to making the bug challenging for generate-and-validate
147automated repair tools. First, class and method are rela-
148tively large (Class ProcessClosurePrimitives has
1491233 lines and method processRequireCall has 40
150lines), which is a challenge in and of itself for precise fault
151localization. Second, attribute requiresLevel is never
152referenced in the faulty version of processRequireCall
153and is used only once after initialization in the whole class;
154thus, expression requiresLevel.isOn()—which is nee-
155ded for the fix—is unlikely to be selected by techniques that
156look for fixing “ingredients” mainly in a fault’s context.
157RESTORE’s retrospective fault localization is crucial to
158ensure that the necessary fixing expression is found in rea-
159sonable time: RESTORE takes around 32 minutes to produce
160the fix in Listing 2) and to rank it first in the output. This
161indicates that RESTORE’s search for fixes is not only efficient
162but also effective.
163In the rest of the paper we explain how RESTORE works
164(Section 3), and demonstrate its consistent performance
165improvements on standard benchmarks of real-world bugs
166(Section 4).

1673 HOW RESTORE WORKS

168Retrospective fault localization is applicable in principle to
169any generate-and-validate automated program repair tech-
170nique to improve its efficiency. To make the presentation
171more concrete, we focus on how retrospective fault localiza-
172tion is applicable on top of the JAID [7] automated program
173repair tool. We call the resulting technique, and its support-
174ing tool, RESTORE.

1. Fault Closure113 in DEFECTS4J [8] and Table 3.
2. Nopol was able to produce a valid, but incorrect, fix to the

fault [10].
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175 3.1 Overview

176 Fig. 1 illustrates howRESTOREworks at a high level, and how it
177 enhances a traditional automated program repair technique
178 by retrospective fault localization (boxes in grey in Fig. 1).
179 Input. RESTORE inputs a Java program P (a collection of
180 classes), with a faulty method fixme, and a set T of test
181 cases exercising P ; precisely, tests T are partitioned into
182 passing tests T@ and failing tests T�. Since each run of
183 RESTORE actually only uses tests that exercise fixme, we
184 assume, without loss of generality, that T only includes
185 such tests.
186 Fault Localization identifies program locations and states
187 (called snapshots) that are indicative of faulty behavior.
188 According to heuristics based on dynamic and static meas-
189 ures, each snapshot receives a suspiciousness score—the higher,
190 the more suspicious; snapshots ranked according to their sus-
191 piciousness score are input to the next step: fix generation.
192 Fix Generation builds several modifications of input pro-
193 gram P for each snapshot in order of suspiciousness. The
194 modifications try to mutate P ’s behavior in a way that
195 avoids reaching the suspicious snapshot’s state. Fix gener-
196 ation’s output is a sequence of candidate fixes that needs to
197 be validated.
198 (Full) Fix Validation tests each candidate fix to determine
199 whether it actually fixes the fault exposed by T�. In tradi-
200 tional automated program repair, fix validation runs all
201 available tests T against each fix candidate, and only out-
202 puts candidates that pass all tests—ranked according to the
203 suspiciousness of the snapshots they were derived from.
204 Hence, fix validation is often the most time-consuming step
205 of traditional automated program repair. Since it is done
206 downstream from fix generation—as the last step of the
207 whole fixing process—validation requires a large number of
208 fix candidates to maximize the chance of finding some valid,
209 possibly correct, fixes, which exacerbates the performance
210 problem.
211 Partial Fix Validation is the lightweight form of validation
212 of candidate fixes used by RESTORE to support retrospective
213 fault localization. By only running a subset of the available
214 tests T , partial fix validation aims to quickly detect behav-
215 ioral changes in some of the candidates with respect to the
216 program P under fix.
217 Mutation-based fault localization improves the precision
218 and effectiveness of fault localization by using retrospective

219information coming from partial validation. Based on this
220information, the suspiciousness score of snapshots is
221revised to become more discriminatory.
222Exploring a Larger Fix Space.With retrospective fault local-
223ization, the top-ranked snapshots have a higher chance of
224leading to valid fixes when used in the following phases of
225the repair technique—and thus to correct fixes ranked high
226in the overall output. Conversely, a higher-precision fault
227localization technique means that fewer candidates need to be
228generated and (fully) validated, leading to an overall faster
229process. In turn, RESTORE’s more efficient search of the fix
230space allows it to explore a larger space in comparable—often
231shorter—time, ultimately leading to discovering fixes that
232are outside JAID’s fix space.

2333.2 Basic Automated Program Repair

234This section describes the basic process of automated pro-
235gram repair—as implemented in generate-and-validate
236repair tools such as JAID and RESTORE. Then, Section 3.3
237presents retrospective fault localization in RESTORE, showing
238how it enhances the basic repair process described here.

2393.2.1 State Abstraction: Snapshots

240Snapshots are fundamental abstractions of a program’s runs.
241A snapshot is a triple h‘; e; vi, where ‘ is a location in the pro-
242gram’s control-flow graph, e is a Boolean expression, and v
243is a Boolean value (true or false). Intuitively, h‘; e; vi
244records the information that a program’s run reaches loca-
245tion ‘with expression e evaluating to v.
246RESTORE builds snapshots by enumerating different
247Boolean expressions e that refer to program features visi-
248ble at ‘, and by evaluating such expressions in all runs of
249tests T .

2503.2.2 Fault Localization

251Fault localization assigns a suspiciousness score suðsÞ to each
252snapshot s. Intuitively, suðsÞ should capture the likelihood
253that s is the source of failure.
254Tools like JAID use a form of spectrum-based fault localiza-
255tion [11], which roughly corresponds to giving a higher sus-
256piciousness to s ¼ h‘; e; vi the more often e evaluates to v at ‘
257in runs of failing tests than in runs of passing tests. In
258RESTORE, we call JAID’s fault localization basic fault localization;

Fig. 1. An overview of how RESTORE works. RESTORE can improve the performance of any generate-and-validate automated program repair tool. Such
a tool inputs a faulty program and some test cases exercising the program. The first, crucial, step of fixing is fault localization, which determines a list
of snapshots: program states that are indicative of error; for each suspicious snapshot, fix generation builds a number of candidate fixes of the input
program by exploring a limited number of program mutations that may avoid the suspicious states; fix validation reruns the available tests on each
candidate built by fix generation; only candidates that pass all tests are valid fixes, which are the tool’s output to the user. RESTORE kicks in during the
first run of such a program repair tool, by introducing a feedback loop (in grey) that improves the effectiveness of fault localization. RESTORE performs
a partial fix validation, whose goal is quickly identifying candidate fixes that fail validation—which are treated as mutants of the input program; infor-
mation about how mutants’ behaviors differ from the input program supports a mutation-based fault localization step that sharpens the identification
of suspicious snapshots. As we demonstrate in Section 4, RESTORE’s feedback loop significantly improves effectiveness and efficiency of automated
program repair.
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259 RESTORE uses it to determine a suspiciousness score suBðsÞ for
260 each snapshot s—bootstrapping the fix generation phase.
261 More precisely, JAID applies Wong et al.’s Heuristic III
262 [12] to classify the suspiciousness of snapshots rather than
263 statements—as more commonly done in fault localization.
264 A snapshot s’s suspiciousness combines a static analysis
265 score (measuring the syntactic similarity of the snapshot
266 expression e and the code around location ‘) and a dynamic
267 score (measuring the relative frequency with which e ¼ v in
268 a failing rather than in a passing test). Some recent experi-
269 ments [13] indicate that JAID’s effectiveness does not signifi-
270 cantly depend on the details of the spectrum-based fault
271 localization algorithm: running JAID using other common
272 algorithms for fault localization (such as Ochiai [11] or
273 Tarantula [14]) leads to very similar numbers of valid and
274 correct fixes.

275 3.2.3 Fix Generation

276 For each snapshot h‘; e; vi, fix generationmodifiesP ’smethod
277 fixme (the one being fixed) in ways that affect the value of e at
278 ‘. Fix generation processes snapshots in decreasing order of
279 suspiciousness, building multiple modifications of fixme for
280 the same snapshot; eachmodification is a fix candidate.
281 RESTORE generates fix candidates in two steps. First, it
282 enumerates code snippets (called actions in [7]) that (a) mod-
283 ify the state of an object referenced in e, (b) modify a subex-
284 pression of e in the statement at ‘, (c) if ‘ is a conditional
285 statement if (c) ..., modify expression c, or (d) modify
286 the control flow at ‘ (for example with a return statement).
287 Second, it injects a code snippet action into fixme using
288 any of the five schemas in Fig. 2: oldStatement is the
289 statement at ‘ in fixme, which the whole instantiated schema
290 replaces to generate a fix candidate.
291 Each fix candidate C can be seen as a mutant of input
292 program P that originates from one snapshot s; we write
293 sðCÞ ¼ s to denote the snapshot s that candidate C ori-
294 ginates from. To cull the search space of generated fixes,
295 it is customary to builds fix candidates for at most the
296 top N snapshots in order of suspiciousness; in JAID,
297 N ¼ NS ¼ 1500.

298 3.2.4 Fix Validation (and Ranking)

299 Since fix generation is “best effort” and based on the partial
300 information captured by snapshots, it is followed by a vali-
301 dation step that reruns all available tests. A fix candidate C
302 is valid if it passes all available tests T : tests T� failing on the
303 input program are passing on C, and tests T@ passing on
304 the input program are still passing on C (no regression
305 errors).
306 Typically, more than one fix candidate C fixing the same
307 input program P is valid; we rank all such valid fixes in
308 decreasing order of suspiciousness of the snapshot used to

309generate C—that is in decreasing order of suðsðCÞÞ. The
310overall output of automated program repair is thus a list of
311valid fixes ranked according to suspiciousness.

3123.3 Retrospective Fault Localization in RESTORE

313The ultimate goal of automated program repair is finding
314fixes that are not only valid—pass all available tests—but
315correct—equivalent to those a competent programmer,
316knowledgeable of the program P under repair, would write.
317The traditional automated program repair process pre-
318sented in Section 3.2 can be quite effective at producing cor-
319rect fixes but is limited in practice by two related
320requirements: 1) since the accuracy of fault localization
321greatly affects the chances of success of the whole repair
322process, we would like to have a fault localization technique
323that incorporates as much information as possible; 2) since
324the process is open loop (no feedback), we have to generate
325as many candidate fixes as possible to maximize the chance of
326finding a correct one. Improving accuracy and generating
327many candidate fixes both exacerbate the already significant
328problem of long validation times (for example, validation
329takes up 92.8 percent of JAID’s overall running time [7]).
330More crucially, they require to bound the search space of
331possible fixes to a size that can be feasibly explored. But, by
332definition, shrinking the fix space makes some bugs impos-
333sible to fix.
334Retrospective fault localization, as implemented in
335RESTORE, addresses these two requirements with comple-
336mentary solutions: 1) it performs a preliminary partial fix
337validation, which runs much faster than full validation and
338whose primary goal is to supply more dynamic information
339to fault localization; 2) using the information from partial
340validation, it complements JAID’s fault localization with pre-
341cise mutation-based fault localization. Such a feedback-driven
342mutation-based fault localization drives more efficient fur-
343ther iterations of fix generation, producing a much smaller,
344often higher-quality, number of candidate fixes that can
345undergo full validation taking a reasonable amount of time.
346The greater efficiency is then traded off against fix space
347size: RESTORE can afford to explore a larger space of candidate
348fixes, thus ultimately fixing bugs that are out of JAID’s (and
349other repair tools’) capabilities.

3503.3.1 Initial Fix Generation

351The initial iteration of fix generation in RESTORE works simi-
352larly to basic automated program repair: fault localization
353(Section 3.2.2) assigns a basic suspiciousness score suBðsÞ to
354every snapshot s (using spectrum-based fault localization
355as in JAID); and fix generation (Section 3.2.3) builds fix candi-
356dates for the most suspicious snapshots.
357As we have already remarked, JAID’s spectrum-based
358fault localization often takes a major part of the total fixing
359time, as it involves monitoring the values of many snapshot
360expressions in every test execution; for example, it takes 51–
36199 percent of JAID’s total time on 16 hard faults [7]. To cut
362down on this major time cost, RESTORE selects a subset TB of
363all tests T to be used in basic fault localization using nearest
364neighbor queries [15]. The selected tests TB include all fail-
365ing tests T� as well as the passing tests with the smallest dis-
366tance to those failing. The distance between two tests t1; t2 is

Fig. 2. Schemas to build candidate fixes from a code snippet action
built from snapshot h‘; e; vi, where oldStatement is the statement at ‘
in method fixme under fixing.
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367 calculated as the Ulam distance3 Uðfðt1Þ;fðt2ÞÞ, where fðtÞ
368 is a sequence with all basic blocks of fixme’s control-flow
369 graph sorted according to how many times each block is
370 executed when running t. This way, passing tests that are
371 behaviorally similar to failing tests are selected as “more
372 useful” for fault localization since they are more likely to be
373 sensitive to fixes of the fault. Take, for example, the condi-
374 tional at lines 5–7 in Listing 2; two tests t1 and t2 such that
375 provided != null at line 5 both execute the conditional
376 block, and hence will have a shorter Ulam distance than t1
377 and another test t3 that skips the conditional block (such
378 that provided == null at line 5). Subset TB is used only to
379 bootstrap RESTORE’s initial fix generation without dominat-
380 ing the overall running times.
381 During initial fix generation, RESTORE builds fix candi-
382 dates for the N1 ¼ NS �NP most suspicious snapshots
383 (whereas JAID builds candidates for the NS most suspicious
384 snapshots). Parameter NP is 10 percent (i.e., NP ¼ 0:1) by
385 default; this works because retrospective fault localization
386 can be as effective as JAID’s basic fault localization with a
387 fraction of the snapshots.

388 3.3.2 Partial Fix Validation

389 Partial fix validation aims at quickly extracting dynamic
390 information about the many candidate fixes built by the ini-
391 tial iteration of fix generation. To strike a good balance
392 between costs (time spent on running tests) and benefits
393 (information gathered to guide mutation-based fault locali-
394 zation), partial fix validation follows the simple strategy of
395 running only the tests T� that were failing on the input pro-
396 gram P . still has a good chance of providing valuable infor-
397 mation for fault localization, since it detects whether the
398 failing behavior has changed in some of the fix candidates.
399 If a candidate fix happens to pass all tests T�, it immedi-
400 ately undergoes full validation (Section 3.3.6) for better
401 responsiveness of the fixing process (outputting valid fixes
402 as soon as possible).

403 3.3.3 Mutation-Based Fault Localization

404 In mutation-based fault localization [5], [6], we compare the
405 dynamic behavior of many different mutants of a program.
406 A mutant is a program variant produced by changing the
407 program’s code in some ways—for example, by changing a
408 comparison operator. A mutant M of a program P is killed
409 by a test t when M behaves differently from P on t; that is,
410 either P passes t whileM fails it, or P fails t whileM passes
411 it. A killed mutant M indicates that the locations where M
412 syntactically differs from P are likely (if M fails) or unlikely
413 (ifM passes) to be implicated with the failure triggered by t.
414 RESTORE’s retrospective fault localization treats candidate
415 fixes as higher-order mutants—that is, mutants of the input
416 programP thatmay includemultiple elementarymutations—
417 and interprets partial fix validation results of those higher-
418 order mutants in a similar way to help locate faults more
419 accurately. In particular, adapting [6]’s heuristics to our

420context, we assign a suspiciousness score suMðCÞ to each can-
421didate fixC:

suMðCÞ ¼ jT� \ killedðCÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijT�j � jkilledðCÞjp ; (1)

423423

424where killedðCÞ � T� is the set of all tests that kill C—and
425thus T� \ killedðCÞ are the tests that fail on input program
426P and pass on C. Formula (1) assigns a higher suspicious-
427ness to a candidate fix the more failing tests it manages to
428pass, indicating that C might be closer to correctness than P .
429In order to combine the output of mutation-based and
430basic fault localization, we assign a suspiciousness score
431suMðsÞ to each snapshot s based on the suspiciousness (1) of
432candidates. Each candidate fix D is generated from some
433snapshot sðDÞ; let SUðDÞ be the largest suspiciousness score
434of all candidate fixes E generated from the same snapshot
435sðDÞ asD:

SUðDÞ ¼ max
E

�
suMðEÞ j sðEÞ ¼ sðDÞ� :

437437

438Then, the mutation-based suspiciousness score suMðsÞ of a
439snapshot s ¼ h‘; e; vi is the average of SUðDÞ across all candi-
440date fixes D generated from a snapshot with the same loca-
441tion ‘ as s (and any expression and value):

suMðh‘; e; viÞ ¼ mean
D

�
SUðDÞ j sðDÞ ¼ h‘; �; �i� : (2)

443443

444The maximum selects, for each snapshot, the candidate fix
445generated from it that is more “successful” at making failing
446tests pass. Then, all snapshots with the same location get the
447same “average” suspiciousness score. Intuitively, the aver-
448age pools the information from different fixes that target dif-
449ferent locations and pass partial validation.
450Finally, we combine the basic suspiciousness score suB
451and the mutation-based suspiciousness score suM into an
452overall total ordering of snapshots according to their suspi-
453ciousness:

s1 � s2 ,
�
‘1 6¼ ‘2 ^ suMðs1Þ � suMðs2Þ

�
_ �

‘1 ¼ ‘2 ^ suBðs1Þ � suBðs2Þ
�;

455455

456where s1 ¼ h‘1; e1; v1i and s2 ¼ h‘2; e2; v2i. That is, snapshots
457referring to different locations are compared according to
458their mutation-based suspiciousness, and snapshots refer-
459ring to the same location are compared according to their
460basic suspiciousness—because they have the samemutation-
461based suspiciousness score. As discussed in Section 3.2.2,
462RESTORE assigns a basic suspiciousness score to each snapshot;
463whereas the mutation-based suspiciousness score (2) is the
464same, by definition, for all snapshots with the same location.
465An Example of How MBFL Works. To get a more intuitive
466idea of how mutation-based fault localization can help find
467suitable fix locations in RESTORE, let’s consider again fault
468Closure113 in DEFECTS4J—shown in Fig. 1 and discussed in
469Section 2.
470A single failing test case T� ¼ ft�g triggers the fault by
471reaching line 5 with provided == null: execution skips
472the then branch (lines 6 and 7), which eventually leads to a
473failure.
474During the initial round of fix generation, RESTORE does
475not produce any valid fix, because a key fix ingredient
476(expression requiresLevel.isOn()) is further out in the

3. The Ulam distance [16] of two sequences is the minimum number
of delete, shift, and insert operations to go from one sequence to
another. For example, the Ulam distance Uðs1; s2Þ of s1 ¼ a b c t u and
s2 ¼ a b t c u is 2 (delete c from s1 and insert it back after t).
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477 fix search space. However, it generates 16 candidate fixes
478 that happen to pass the originally failing T� because they all
479 force execution through lines 6 and 7 by changing condition
480 provided != null on line 5. For example, one such fixes
481 replaces it with provided != null k provided == null.
482 None of these 16 candidates is valid (because they all fail
483 other, previously passing, tests) but, instead of simply being
484 discarded, they all are reused as evidence—to increase the
485 suspiciousness score of line 5: (i) suMðCÞ ¼ 1 for each of
486 these 16 candidates, because jT�j ¼ 1 and killedðCÞ ¼ T�;
487 (ii) SUðCÞ ¼ suMðCÞ for the same candidates, because they
488 all have the same (maximum) value of suspiciousness; (iii)
489 suMðh‘ ¼ 5; �; �iÞ ¼ 1 for all snapshots that target line 5.
490 Since no other candidates generated in this round change
491 the suspiciousness of other locations, the net result is that
492 the following iterations of fix generation will preferentially
493 target fixes at line 5. This biases the search for fixes so that
494 RESTORE goes deeper in this direction of the fix search space,
495 which eventually leads to generating the correct fix shown
496 in Listing 2—which indeed targets line 5 with a suitable
497 condition.

498 3.3.4 Retrospective Loop Iteration

499 Equipped with the refined fault localization information
500 coming from mutation-based fault localization, RESTORE

501 decides whether to iterate the retrospective fault localiza-
502 tion loop—entering a new round of initial fix generation
503 (Section 3.3.1)—or to just use the latest fault localization
504 information to perform a final fix generation (Section 3.3.5).
505 While the retrospective feedback loop could be repeated
506 several times (until all snapshots are used to build candi-
507 dates), we found that there are diminishing returns in per-
508 forming many iterations. Thus, the default setting is to stop
509 iterating as soon as mutation-based fault localization
510 assigns a positive suspiciousness score suMðsÞ to some snap-
511 shot s; if no snapshot gets a positive score, we repeat initial
512 fix generation.

513 3.3.5 Final Fix Generation

514 Snapshots ranked according to the � relation drive the final
515 generation of fixes. Final fix generation runs when retro-
516 spective fault localization has successfully refined the suspi-
517 ciousness ranking of snapshots (Section 3.3.4)—hopefully
518 identifying few promising snapshots. Thus, final fix genera-
519 tion generates fixes only for snapshots corresponding to the
520 NL most suspicious locations—with NL ¼ 5 by default.
521 During final fix generation, RESTORE can even afford to
522 trade off some of the greater precision brought by retrospec-
523 tive fault localization for a larger fix space to be explored:
524 whereas JAID builds fix candidates based only on expres-
525 sions found in method fixme (the method being fixed),
526 RESTORE may also consider expressions found anywhere in
527 fixme’s enclosing class. RESTORE can efficiently search such a
528 larger fix space, thus significantly expanding its overall fix-
529 ing effectiveness.

530 3.3.6 (Full) Fix Validation

531 The final validation is, as in basic automated program
532 repair, full—that is, uses all available tests T and validates
533 candidate fixes that pass all of them. This validation has a

534higher chance of being significantly faster than in basic
535automated program repair: first, it often has to consider
536fewer candidate fixes (Section 3.3.5) selected according to
537their mutation-based suspiciousness; second, several candi-
538date fixes have already undergone partial validation against
539failing tests T� (Section 3.3.2), and thus only need to be vali-
540dated against the originally passing tests T@.
541Fixes that pass validation are output to the user in the
542same order of suspiciousness � as the snapshots used to
543generate them. Thus, RESTORE’s overall output is a list of
544valid fixes ranked according to suspiciousness.

5454 EXPERIMENTAL EVALUATION

546We implemented the RESTORE technique in a tool, also called
547RESTORE, based on the JAID program repair system. Our exper-
548imental evaluation assesses to what extent RESTORE is an
549effective automated program repair tool by comparing: (i)
550RESTORE’s results on high-level metrics, such as bugs correctly
551fixed, to other program repair tools for Java; (ii) RESTORE’s
552results on fine-grained metrics, such as the effectiveness of
553fault localization, to JAID—a state-of-the-art repair tool for Java
554which RESTORE directly extends; (iii) the effects of extending
555SimFix—another recent generate-and-validate repair tool for
556Java—with retrospective fault localization ( RESTORE’s key
557technical improvement). Overall, the evaluation indicates
558that RESTORE is a substantial advance in general-purpose
559automated program repair for Java. Different parts of the
560evaluation have different levels of granularity, so that the we
561can also track which ingredients used by RESTORE are effective
562andwhichmetrics they impact.

563

564RQ1: What is RESTORE’s effectiveness in fixing bugs?
565In RQ1, we consider RESTORE from a user’s per-
566spective: how many valid and correct fixes it can
567generate.
568

569RQ2: What is RESTORE’s performance in fixing bugs?
570In RQ2, we consider RESTORE’s efficiency: how
571quickly it runs versus how large a fix space it
572explores.
573

574RQ3: How well does retrospective fault localization (RFL)
575work in RESTORE?
576In RQ3, we zoom in on RESTORE’s fault localization
577technique to assess how efficiently it drives the
578search for a valid fix.
579

580RQ4: How robust is RESTORE’s behavior when its internal
581parameters are changed?
582In RQ4, we evaluate the impact of disabling
583features like partial validation and of changing
584some parameters that regulate retrospective fault
585localization.
586

587RQ5: Is retrospective fault localization generally applicable
588to generate-and-validate program repair techniques?
589In RQ5, we look for evidence that retrospective
590fault localization is applicable not only to JAID but
591also to other automated program repair techniques.
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593 on high-level metrics to the 13 state-of-the-art automated
594 program repair systems for Java listed in Table 2. To our
595 knowledge these 13 tools include all recent Java repair tools
596 evaluated on DEFECTS4J and published, at the time of writ-
597 ing, in major software engineering conferences in the last
598 couple of years.

599 4.1 Subject Faults

600 As it has become customary when evaluating automated
601 program repair tools for Java, our experiments use real-
602 world faults in the DEFECTS4J curated collection [8]. DEFECTS4J
603 includes hundreds of faults from open-source Java projects;
604 each fault comes with at least one test triggering the fail-
605 ure—in addition to other passing or failing tests—as well as
606 a programmer-written fix for the fault. Table 1 shows basic
607 measures of size for DEFECTS4J’s 357 faults in 5 projects.

608 4.2 Experimental Protocol

609 Each experiment runs RESTORE, JAID, or another tool to com-
610 pletion on a fault in DEFECTS4J. In each run we record several
611 measures such as:

612#V: number of valid fixes in the output;
613C: rank of the first correct fix in the output;
614T: overall wall-clock running time;
615T2V: wall-clock time until the first valid fix is found;
616T2C: wall-clock time until the first correct fix is found;
617C2V: number of fixes that are checked (generated and vali-
618dated) until the first valid fix is found;
619C2C: number of fixes that are checked (generated and vali-
620dated) until the first correct fix is found.
621Measures C2V and C2C include all kinds of validation. For
622example, RESTORE performs partial and full validation (see
623Section 3.3.2 and Section 3.3.6); JAID uses only one kind of
624(full) validation.
625Correctness. We determined correct fixes by manually
626going through the output list of valid fixes and comparing
627each of them to DEFECTS4J’s manually-written fix for the fault
628under repair: a valid fix is correct if it is semantically equiva-
629lent to the fix manually written by the developers and
630included in DEFECTS4J. Conservatively, we mark as incorrect
631fixes that we cannot conclusively establish as equivalent in
632a moderate amount of time (around 15 minutes per fix).
633Hardware/software setup. All the experiments ran on the
634authors’ institution’s cloud infrastructure. Each experiment
635used exclusively one virtual machine instance, running
636Ubuntu 14.04 and Oracle’s Java JDK 1.8 on one core of an
637Intel Xeon Processor E5-2630 v2 with 8 GB of RAM.

6384.2.1 Statistics

639Table 4 reports detailed summary statistics directly compar-
640ing RESTORE to JAID. For each measure m taken during the
641experiments (e.g., time T), let Jm;k and Rm;k denote the value
642of m in JAID’s and in RESTORE’s run on fault k. We compare
643RESTORE to JAID using these metrics (illustrated and justified
644below) [17]:

645

P
RestoreP
Jaid

: the ratio
P

k Jm;k=
P

k Rm;k expressing the relative

646cost of RESTORE over JAID for measurem.

TABLE 1
Basic Measures of size for projects in DEFECTS4J.

PROJECT FULL NAME KLOC #TESTS #FAULTS

Chart JFreechart 96 2205 26
Closure Closure Compiler 90 7927 133
Lang Apache Commons-Lang 22 2245 65
Math Apache Commons-Math 85 3602 106
Time Joda-Time 27 4130 27

TOTAL 320 20109 357

For each PROJECT in DEFECTS4J, its FULL NAME, the size KLOC in thousands of
lines of code, the number of tests #TESTS, and the number of distinct faults
#FAULTS.

TABLE 2
A Quantitative Comparison of RESTORE With 13 Other Tools for Automated Program Repair on DEFECTS4J Bugs

TOOL VALID ANY POSITION FIRST POSITION TOP-10 POSITION UNIQUE

CORRECT PRECISION RECALL CORRECT PRECISION RECALL CORRECT PRECISION RECALL

RESTORE 98 41 42% 11% 19 20% 5% 29 30% 8% 8
ACS [19] 23 18 78% 5% 18 78% 5% 18 78% 5% 12
CapGen [20] 25 22 88% 6% 21 84% 6% 22 88% 6% 3
Elixir [21] 41 26 63% 7% 26 63% 7% 26 63% 7% 0
HDA [22] ? 23 ? 6% 13 ? 4% 23 ? 6% 3
JAID [7] 31 25 81% 7% 9 29% 3% 15 48% 4% 1
jGenProg [23] 27 5 19% 1% 5 19% 1% 5 19% 1% 1
jKali [23] 22 1 5% 0% 1 5% 0% 1 5% 0% 0
Nopol [23] 35 5 14% 1% 5 14% 1% 5 14% 1% 2
SimFix [9] 56 34 61% 10% 34 61% 10% 34 61% 10% 12
SketchFix [24] 26 19 73% 5% 9 35% 3% ? ? ? 0
SketchFixPP [24] ? 34 ? 10% ? ? ? ? ? ? 2
ssFix [25] 60 20 33% 6% 20 33% 6% 20 33% 6% 1
xPar [19], [22] ? 4 ? 1% ? ? ? 4 ? 1% 0

For each program repair TOOL, the table references the source of its experimental evaluation data reported here: the number of bugs that the tool could fix with a
VALID fix; the number of bugs that the tool could fix with a CORRECT fix; and the resulting PRECISION (correct=valid) and RECALL (correct=357, where 357 is the
total number of DEFECTS4J faults used in the experiments). For tools whose data about the POSITION of fixes in the output ranking is available, the table breaks
down the data separately for fixes ranked in ANY POSITION, in the FIRST POSITIONS, and in the TOP-10 POSITION. (These measures do not change for tools that output
at most one fix per fault.) The rightmost column UNIQUE lists the number of distinct bugs that only the tool can correctly fix. Question marks represent data not
available for a tool.
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647 mean( JAID- RESTORE): the mean difference (using arithmetic
648 mean) meankðJm;k 	Rm;kÞ expressing the average addi-
649 tional cost of JAID over RESTORE for measurem.
650 bl; bb; bh: the estimate bb and the 95 percent probability interval
651 ðbl; bhÞ of the slope b of the linear regression
652 Rm;k ¼ aþ b � Jm;k expressing RESTORE’s measure m as a
653 linear function of JAID’s.
654 bx;xh: for the same linear regression, the estimate bx
655 and the 95 percent probability upper bound xh of the
656 crossing ratio (where the regression line crosses the “no
657 effect” line).
658 Each summary statistics compares RESTORE to JAID on
659 faults on which the statistics is defined for both tools; for
660 example, the mean difference of measure C (rank of first cor-
661 rect fix) is over the 23 faults that both RESTORE and JAID can
662 correctly fix.
663 Interpretation of Linear Regression. A linear regression
664 y ¼ aþ b �x estimates coefficients a (intercept) and b (slope)
665 in a way that best captures the relation between x and y. A
666 linear regression algorithm outputs estimates ba and bb and
667 standard errors �a and �b for both coefficients: the “true”
668 value of a coefficient c lies in interval ðcl; chÞ, where
669 cl ¼ bc	 2 �c 
 bc 
 bcþ 2 �c ¼ ch, with 95 percent probability.
670 In our experiments, values of x measure JAID’s perfor-
671 mance and values of y measure RESTORE’s;4 thus, the linear
672 regression line expresses RESTORE’s performance as a linear
673 function of JAID’s. The line y ¼ x (that is, a ¼ 0 and b ¼ 1)
674 corresponds to no effect: the two tool’s performances are
675 identical. In contrast, lines that lie below the “no effect” line
676 indicate that RESTORE measures consistently lower than JAID;
677 since for all our measures “lower is better”, this means that
678 RESTORE performs better than JAID. Plots such as those in
679 Fig. 4 display the estimated regression line with a shaded
680 area corresponding to the 95 percent probability error inter-
681 val; thus we can visually inspect whether the difference
682 with respect to the dashed “no effect” line is significant
683 with 95 percent probability by checking whether the shaded
684 area lies under the dashed line.
685 Analytically, RESTORE is significantly better than JAID at the
686 95 percent probability level if the 95 percent probability
687 upper bound bh on the regression slope’s estimate satisfies
688 bh < 1: the slope is different from (in fact, less than) the “no
689 difference” value 1 with 95 percent probability.
690 Since this notion of significant difference does not consider
691 the intercept, it only indicates that RESTORE’s is better asymp-
692 totically; to ensure that the difference is significant in the
693 range of values that were actually measured, we consider the
694 crossing ratiobx ¼ ðx	minðJaidÞÞ=ðmaxðJaidÞ 	minðJaidÞÞ,
695 which expresses the coordinate x ¼ x where the regression
696 line y ¼ baþ bbx crosses the “no effect” line y ¼ x relative to
697 JAID’s range of measured values (the crossing ratio upper
698 bound xh is computed similarly but using the upper bounds
699 ah and bh of a’s and b’s 95 percent probability intervals). A
700 large crossing ratiomeans that RESTORE is better than JAID only
701 on “hard” faults, whereas a small crossing ratio means that
702 RESTORE is consistently better across the experimented range,
703 as illustrated in the example of Fig. 3.

704Summarizing Data With Linear Regression. Using linear
705regression to model data that doesn’t “look” linear may
706seem unsound. However, it is not a problem in our case
707given how we use linear regression: not to predict the perfor-
708mance of RESTORE on yet to be seen inputs, but simply to
709summarize the experimental data in a way that accounts for
710some measurement errors (and hence is more robust than
711just summarizing the raw data). After all, the essence of lin-
712ear regression is a mechanism to “learn about the mean and
713variance of some measurement, using an additive combina-
714tion of other measurements” [18], which is all we use it for
715in analyzing our experimental data.

7164.2.2 Robustness of Retrospective Fault Localization

717As described in Section 3.3.2, retrospective fault localization
718initially performs a partial validation of candidate fixes—
719using only failing tests. To understand the usefulness of
720partial validation, we built RESTORE-FULL: a variant of RESTORE

721that only performs full validation—always using all avail-
722able tests.5 In Section 4.3.4, we compare RESTORE and
723RESTORE-FULL on DEFECTS4J faults.
724In its current implementation, RESTORE’s behavior depends
725on several parameters: it uses the NS ¼ 1500 most suspici-
726ous state snapshots for fixing (Section 3.2.3); it adds NP ¼
72710 percent more snapshots in each iteration of retrospective
728fault localization, and performsNI ¼ 0 extra iterations after a
729new suspicious location has been found (Section 3.3); it tar-
730gets theNL ¼ 5most suspicious locations for final fix genera-
731tion (Section 3.3.5). To understand whether these parameters
732influence RESTORE’s behavior, we modified one of them at a
733time and ran RESTORE on the same DEFECTS4J faults with these
734different settings. In Section 4.3.4, we report how changing
735each parameters affects the number of faults repaired with
736valid fixes, the number of faults repaired with correct fixes,
737and the running time across all faults where RESTORE is able to
738produce at least one valid fix.

Fig. 3. Visual explanation of linear regression lines. The two regression
lines y1 ¼ 130þ 0:5x and y2 ¼ 30þ 0:5 y have the same slope but differ-
ent intercepts. Therefore, y2 crosses the “no effect” line y0 ¼ x at
�x2 ¼ 60, much earlier than y1 that crosses it at �x1 ¼ 260. The crossing
ratio scales the crossing coordinates �x1 and �x2 over the range of values
on the x axis. If the range is the whole x axis from 0 to 400, the crossing
ratios are simply x1 ¼ �x1=400 ¼ 0:15 and x2 ¼ �x2=400 ¼ 0:65, which indi-
cate that y1 is above y0 for only 15 percent of the data, and y2 for 65 per-
cent of the data.

4. In Section 4.3.5, xmeasures SimFix’s performance and ymeasures
the performance of SimFix+ (SimFix with retrospective fault
localization).

5. Since full validation may blow up the running time when many
tests are available for a fault, we do not run RESTORE-FULL to completion
but set a cut-off time equal to twice overall running time of RESTORE on
the fault.
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739 4.2.3 General Application of Retrospective Fault

740 Localization

741 To support our claim that retrospective fault localization is
742 applicable to program repair tools other than JAID, we imple-
743 mented it atop the SimFix [9] automated program repair
744 system.6 We picked SimFix because it is a state-of-the-art
745 repair technique for Java (as shown in Table 2, it correctly
746 fixes the largest number of DEFECTS4J bugs when only one

747fix per bug is considered) and because its source code and
748replication package are publicly available.
749The key mechanism of retrospective fault localization is
750the feedback loop that uses the information gathered during
751partial validation of candidate fixes to tune fault localiza-
752tion; this mechanism is general—and hence it is present
753both in RESTORE and SimFix+. On the other hand, how the
754feedback loop collects and processes information, and pre-
755cisely when it does so depends on the details of the tech-
756nique to which retrospective fault localization is applied.
757Let’s see what peculiarities of SimFix affected our imple-
758mentation of retrospective fault localization in SimFix+.

TABLE 3
Summary of the Experimental Results

FAULT ID #TEST RESTORE JAID

PROJECT ID LOC P F #V C T T2V T2C #V C T T2V T2C

chart 1 32 37 1 291 221 28.5 7.5 21.6 536 84 54.1 5.6 19.9
chart 9 38 1 1 17 - 14.4 3.3 - 52 43 72.2 3.6 20.8
chart 11 32 15 1 1 1 19.4 17.6 17.6 0 - - - -
chart 24 6 0 1 2 1 26.7 25.0 25.0 2 1 16.8 15.0 15.0
chart 26 108 23 22 213 3 32.7 11.5 12.2 82 1 53.6 15.2 15.2
closure 5 98 56 1 4 1 247.3 186.3 186.3 2 - 975.9 493.5 -
closure 11 18 2261 2 434 20 846.8 167.5 201.5 0 - - - -
closure 14 97 3005 3 1 1 355.0 123.5 123.5 0 - 672.2 - -
closure 18 122 3929 1 1 1 561.4 101.5 101.5 5 1 1367.1 518.0 518.0
closure 31 122 3835 1 12 1 570.6 118.4 118.4 9 8 1440.1 1068.2 1181.5
closure 33 27 259 1 171 141 290.8 19.2 266.7 2720 1 258 6.9 6.9
closure 40 46 305 2 5 1 25.9 6.1 6.1 4 1 119.5 27.4 27.4
closure 46 11 10 3 161 116 24.1 4.2 21.3 0 - - - -
closure 62 45 45 2 122 90 37.5 10.3 30.4 87 31 126.7 8.1 31.9
closure 63 45 45 2 122 49 34.8 8.8 20.3 87 31 127.1 8.1 31.7
closure 70 19 2337 5 1 1 127.9 105.3 105.3 5 1 70.4 31.9 31.9
closure 73 70 482 1 1 1 49.2 39.4 39.4 1 1 473.4 413.5 413.5
closure 86 39 52 7 1 1 8.9 6.1 6.1 0 - - - -
closure 113 39 26 1 1 1 48.7 32.5 32.5 0 - 26.8 - -
closure 115 69 151 5 761 1 853.4 4.3 4.3 0 - - - -
closure 118 23 19 2 4 3 33.0 24.6 29.7 0 - 12.3 - -
closure 119 124 764 1 2 2 113.5 94.9 113.4 0 - - - -
closure 125 15 538 1 103 103 154.1 13.1 151.0 98 - 131.3 9.7 -
closure 126 95 71 2 39 1 103.6 7.8 7.8 425 1 601.4 8.4 8.4
closure 128 9 61 1 14 1 37.8 9.3 9.3 0 - - - -
closure 130 36 301 1 15 4 239.1 216.9 221.4 0 - - - -
lang 6 24 35 1 51 5 142.3 6.6 19.7 0 - - - -
lang 33 11 0 1 3 1 21.7 11.6 11.6 7 1 11.0 5.5 5.5
lang 38 6 33 1 69 18 6.7 1.5 4.0 28 4 10.7 1.1 1.2
lang 45 37 0 1 40 - 35.6 6.5 - 68 34 105.1 9.6 58.5
lang 51 51 0 1 37 1 8.1 4.2 4.2 424 46 188.4 5.4 15
lang 55 6 4 1 29 10 12.5 1.1 3.0 15 3 3.6 0.4 0.9
lang 59 17 2 1 12 7 31.7 5.0 11.8 0 - - - -
math 5 22 5 1 225 1 43.1 3.2 3.2 61 1 11.3 0.6 0.6
math 32 52 6 1 2 1 10.2 9.2 9.2 5 4 37.5 18.9 32.2
math 33 40 21 1 2 2 114.9 74.0 74.1 0 - 251.6 - -
math 50 125 3 1 812 94 489.2 98.5 137.6 1101 28 1502.6 54.3 93.5
math 53 5 19 1 10 9 60.0 25.2 51.3 10 6 19 11.1 13.3
math 59 2 0 1 2 1 3.4 2.4 2.4 0 - 0.9 - -
math 80 15 16 1 1450 936 86.9 13.2 65.2 3877 1366 156.7 2.8 58.0
math 82 15 13 1 44 22 63.9 3.6 25.5 13 9 33.1 3.4 22.7
math 85 43 12 1 235 5 16.7 3.9 3.9 709 4 68.3 1.5 1.5
time 19 31 721 1 38 30 15.5 10.4 14.8 0 - - - -

TOTAL 1887 19518 88 5560 - 6047.1 1645.0 425.9 10433 - 8998.7 2747.7 2625.0

For each fault in DEFECTS4J (identified by its PROJECT name and ID) that RESTORE or JAID can correctly fix: the size LOC of the faulty method being repaired (in lines
of code), and the number of Passing and Failing tests exercising the method; for each tool RESTORE and JAID: the number #V of Valid fixes; the position C of the first
Correct fix in the output; the wall-clock running time T to completion; the wall-clock running time until the first valid fix (T2V) and the first correct fix (T2C) are
found. All times are in minutes.

6. We used the latest revision c2a5319 from SimFix’s repository
https://github.com/xgdsmileboy/SimFix.
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759 A key difference between JAID (and hence RESTORE) and
760 SimFix is that the latter’s fault localization process, like most
761 automated repair techniques’, targets statements as possible
762 fault locations—rather than snapshots. Precisely, SimFix
763 applies the Ochiai [11] spectrum-based fault-localization
764 technique to rank statements according to their suspicious-
765 ness. For each statement above a certain suspiciousness
766 rank, SimFix searches for “donor code” (code snippets in the
767 same project that are similar to those close to the suspicious
768 statement), extracts modification patterns from the donors,
769 and builds candidate fixes by matching these patterns to the
770 suspicious statement. To winnow the many candidate fixes
771 that are generated by this process, it tries to match them
772 against a “catalog” of fixes—which is generated by mining
773 programmer-written repairs during a preliminary phase
774 done once before running SimFix on all bugs. As soon this
775 process determines one fix that is valid (i.e., passes all avail-
776 able tests), SimFix stops.
777 We call SimFix+ the modified version of SimFix we built
778 by adding retrospective fault localization. Just like RESTORE,
779 SimFix+ undergoes a feedback loop: after a few candidate
780 fixes are generated, their partial validation results inform a
781 more accurate iteration of fault localization. In SimFix+, each
782 iteration of the feedback loop uses MP percent more code
783 snippets for each suspicious statement to generate a few can-
784 didates fixes to “seed” retrospective fault localization. MP is
785 set to 20 percent for the initial iterations and 10 percent for
786 the others, which is usually sufficient to generate enough
787 candidates to drive the process; if this is not the case (namely,
788 it generates less than 20 candidates), SimFix+ repeatedly
789 increasesMP , by 10 percent each time, until at least 20 candi-
790 dates are produced or all code snippets are used.
791 Like in RESTORE, partial validation in SimFix+ runs only
792 the failing tests for the current bug. As soon it finds a candi-
793 date fix that passes at least one failing test (“the mutant is
794 killed”), the candidate’s fixing location increases its suspi-
795 ciousness score, and hence SimFix+ immediately begins a
796 new iteration that generates all fixes at that location and vali-
797 dates them. This behavior is different fromRESTORE’s—where
798 a new iteration only begins after all candidates have under-
799 gone partial validation—but is consistent with SimFix’s stan-
800 dard behavior of stopping as soon as it finds one valid fix.
801 In Section 4.3.5, we experimentally compare SimFix and
802 SimFix+ by running both on DEFECTS4J faults. Each fixing

803experiment used exclusively one virtual machine instance
804running Ubuntu 16.04 on two cores of an Intel Xeon Proces-
805sor E5-2630 and 8 GB of RAM. Using the same setting as in
806the original experiments [9], each SimFix (and SimFix+) run
807is forcefully terminated after a 300-minute timeout if it is
808still running.

8094.3 Experimental Results

810In this section, we report the experiment results as answers
811to the research questions.

8124.3.1 RQ1: Effectiveness

813RQ1 assesses the effectiveness of RESTORE in terms of the valid
814and correct fixes it can generate.
815Since most automated program repair tools for Java have
816been evaluated on the same DEFECTS4J bugs as RESTORE, we
817can compare precision and recall of the various tools in
818Table 2.7 RESTORE and JAID can output multiple, ranked valid
819fixes for the same bugs; in contrast, other tools often stop
820after producing one valid fix. We keep this discrepancy into
821account in Table 2 by reporting different values of precision
822and recall according to whether we consider all valid fixes,
823only those in the top-10 positions, or only those produced in
824the top position (the first produced).
825Valid fixes. RESTORE produced at least one valid fix for 97
826faults in DEFECTS4J. As shown in Table 2, that is more than
827any other automated repair tools for Java.
828On the 36 faults that JAID can also handle, RESTORE often
829produces fewer valid fixes than JAID: overall, RESTORE produ-
830ces 56 percent (1	 0:44) fewer valid fixes than JAID; and pro-
831duces more valid fixes for only 13 faults. As we’ll see later,
832RESTORE also produces more correct fixes than JAID; thus,
833fewer valid fixes per bug can be read as an advantage in
834these circumstances.
835Correct fixes. RESTORE produced at least one correct fix for
83641 faults in DEFECTS4J—when considering all fixes for the
837same bug. As shown in Table 2, that is more than any of the
838other automated repair tools for Java, and constitutes a 21
839percent increase (7 faults) over the runners-up SimFix and
840SketchFix according to this metric. RESTORE correctly fixed 8
841faults that no other tool can currently fix, in addition to the 6
842faults that only RESTORE and JAID can fix. This indicates that
843RESTORE’s fix space is somewhat complementary to other
844repair tools for Java.
845The output list of valid fixes should ideally rank correct
846fixes as high as possible—so that a user combing through the
847list would only have to peruse a limited number of fix sugges-
848tions. For the 23 faults that both RESTORE and JAID correctly fix,
849the two tools behave similarly on the majority of bugs:
850RESTORE ranks the first correct fix 1 position higher than JAID

851on average; and ranks it lower in 11 faults. Even thought this
852difference between the two tools is limited, RESTORE still fixes
85318 more bugs than JAID, and ranks first 8 of them. In addition,
854Fig. 4b suggests that RESTORE’s advantage over JAID emerges
855with “harder” faults with many valid fixes—where a reliable
856ranking ismore important for practical usability.

TABLE 4
Summary Statistics of the Experiments

For each MEASURE: the relative cost

P
RestoreP
Jaid

of RESTORE over JAID; the mean

cost difference meanðJaid	RestoreÞ between JAID and RESTORE; the esti-
mate bb of slope b expressing RESTORE’s cost as a linear function of JAID, with
95 percent probability interval ðbl; bhÞ; the estimate bx and upper bound xh on
the crossing ratio x.

7. Since these experimental all refer to the same set of bugs (without
cross-validation), precision and recall have a narrower scope as effec-
tiveness metrics here than they have in the context of information
retrieval.
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857 Precision. While it can correctly fix more bugs, RESTORE

858 has a precision that is lower than other repair tools. In
859 designing RESTORE we primarily aimed at extending the fix
860 space that can be explored effectively by leveraging retro-
861 spective fault localization; since there is a trade off between
862 explorable fix space and precision, the latter is not as high
863 as in other tools that targeted it as a primary goal.
864 Extended fix space. RESTORE explores a larger fix space than
865 JAID, since it can also use expressions outside method fixme

866 in the same class to build fixes (Section 3.3.5). In all experi-
867 ments when RESTORE could produce valid fixes, 68,344 can-
868 didate fixes produced during final fix generation belong to
869 the extended fix space (and hence cannot be produced by
870 JAID). Among them, 2,049 candidates are valid (correspond-
871 ing to 52 faults); and 9 are correct (one for each of 9 faults).
872 In all, the extended fix space enabled RESTORE to generate
873 valid fixes for 17 more bugs than JAID, correct fixes for 9
874 more bugs than JAID; and correct fixes for 5 of the 8 bugs
875 that only RESTORE can correctly fix among all tools (Table 2).
876 Multi-line fixes. Four of the bugs correctly fixed by
877 RESTORE (Closure40, Closure46, Closure115, and Closure128)
878 have programmer-written fixes in DEFECTS4J that change
879 multiple lines. For example, project developers fixed the
880 buggy method of bug Closure128:

881 1 static boolean isSimpleNumber(String s) {

882 2 int len = s.length();

883 3 for (int index = 0; index < len; index++) {

884 4 char c = s.charAt(index);

885 5 if (c < ‘0‘ || c > ‘9‘) return false;

886 6 }

887 7 return len > 0 && s.charAt(0) != ‘0‘;

888 8 }

889 by adding if (len == 0) return false; before line 3
890 and changing line 7 to return len == 1 k s.charAt(0) !

891 = ’0’;. RESTORE, instead, just changed line 7 to

892if (len == 1) return true;

893else return len > 0 && s.charAt(0) != ‘0‘;

894RESTORE’s conditional return is equivalent to the program-
895mer-written fix even though it only modifies one location.
896Such complex fixes demonstrate how RESTORE manages to
897combine bug-fixing effectiveness and competitive perfor-
898mance: this fix was the first valid fix in the output, gener-
899ated in less than 10 minutes.

900RESTORE can correctly fix 41 faults in DEFECTS4J when
901allowing multiple fixes for the same bug; 19 of these
902faults are fixed by the first fix output by RESTORE.
903RESTORE trades off a lower precision for a larger fix
904space, which includes correct fixes for 8 faults that no
905other tools can fix.

9064.3.2 RQ2: Performance

907RQ2 assesses the performance of RESTORE in terms of its run-
908ning time.
909Total Time. RESTORE’s wall-clock total running time per
910fault ranged between 1.5 minutes and 21 hours, with a
911median of 53 minutes. This means that RESTORE achieves a
912speedup of 3.1 (1=0:32) over JAID;Fig. 4c indicates that the
913major difference in favor of RESTORE is particularly
914marked for the harder faults—which generally require
915long running times.
916Comparing with other tools in terms of running time
917would require to replicate their evaluations using uniform
918experimental settings—something we did not do in this
919experimental evaluation. Nevertheless, it is plausible other
920tools have an overall significant running time too: HDA,
921ACS, ssFix, Elixir, CapGen, and SimFix are all based on min-
922ing external code to learn common features of correct fixes;
923this process is likely time consuming—even though it
924would be amortized over a consequent long run of the

Fig. 4. Comparison of JAID andRESTORE on variousmeasures. For eachmeasurem, a point with coordinates x ¼ Jm;k; y ¼ Rm;k indicates that JAID costed
Jm;k ofm on fault kwhile RESTORE costedRm;k ofm on fault k. The dashed line is y ¼ x; the solid line is the linear regressionwith y dependent on x.
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925 tools—but is not present in RESTORE (or JAID). This indicates
926 that RESTORE’s performance is likely to remain competitive
927 overall, and that retrospective fault localization can bring a
928 performance boon. Performing more fine-grained experi-
929 mental comparisons belongs to future work.
930 Time to Valid/Correct. Especially important for a repair
931 tool’s practical usability is the time elapsing until a fix
932 appears in the output. All else being equal, shorter times
933 mean that users can start inspecting fix suggestions ear-
934 lier—possibly supporting a more interactive usage—so that
935 the whole repair process can be sped up. On average,
936 RESTORE outputs the first valid fix 83 minutes before JAID—a
937 3.4 speedup (1=0:29) according to the linear regression line;
938 and the first correct fix 64 minutes before JAID—a 2.3
939 speedup (1=0:43). While Figs. 4d and 4e suggest that these
940 averages summarize a behavior that varies significantly
941 with some faults, it is clear that RESTORE’s is substantially
942 faster in many cases—especially with the “harder” faults
943 that require long absolute running times. Cutting the run-
944 ning times in less than half on average in these cases results
945 in speedups that often span one order of magnitude, and
946 sometimes even two orders of magnitudes.
947 RESTORE’s performance is the combined result of explor-
948 ing a larger fix space than JAID (which takes more time) and
949 using retrospective fault localization (which speeds up fault
950 localization). That RESTORE finds many more correct fixes
951 while simultaneously often drastically decreasing the run-
952 ning times indicates that its fault localization techniques
953 bring a decidedly positive impact with no major downsides.

954 RESTORE is usually much faster than JAID even though it
955 explores a larger fix space: 3.1 speedup in total running time;
956 3.4 speedup in time to the first valid fix; 2.3 speedup in time to
957 the first correct fix.

958 4.3.3 RQ3: Fault Localization

959 Retrospective fault localization is RESTORE’s key contribution: a
960 novel fault localization technique that naturally integrates
961 into generate-and-validate program repair algorithms. RQ1
962 and RQ2 ascertained that retrospective fault localization
963 indirectly improves program repair by supporting search-
964 ing a larger fix space while simultaneously improving per-
965 formance. In RQ3 we look into how retrospective fault
966 localization is directlymore efficient.

967Checked to Valid/Correct. To this end, we follow [26]’s sur-
968vey of fault localization in automated program repair and
969compare the number of fixes that are checked (generated and
970validated) until the first valid (C2V, called NFC in [26]) and
971the first correct (C2C) fix is generated. The smaller these
972measures the more efficiently fault localization drives the
973search for a valid or correct fix.
974RESTORE needs to check 57 percent fewer (1	 0:43) fixes
975than JAID until it finds the first valid fix. RESTORE significantly
976improves measure C2C too: it needs to check 36 percent
977(1	 0:64) fewer fixes than JAID until it finds the first correct
978fix. Even though JAID is more efficient on some faults,
979Figs. 4f and 4g show that RESTORE prevails in the clear
980majority of cases, as well as in the harder cases that require
981to check many more candidate fixes (exploring a larger
982search space); the difference is clearly statistically signifi-
983cant (slope under 0.4 with 95 percent confidence, and the
984overlap of regression line and “no effect” line is only for
985small absolute values of C2V and C2C, as also reflected by the
986crossing ratio). These results are direct evidence of retro-
987spective fault localization’s greater precision in searching
988for fault causes.
989Candidate fixes as mutations. Retrospective fault locali-
990zation treats candidate fixes as mutants. As described in
991Section 3.3.3, a candidate that passes at least one previously
992failing test (during partial validation) increases the suspi-
993ciousness ranking of all snapshots associated with the
994candidate’s location. Such candidate fixes sharpen fault
995localization, and hence we call them sharpening candidates.
996If a sharpening candidate is furthermore associated with a
997location where a correct fix can be built (according to the
998correct fixes actually produced in the experiments or in
999DEFECTS4J) we call it plausible.
1000Table 5 measures sharpening and plausible candidates in
1001different categories. Only 2 percent of all candidates are
1002sharpening; however, the percentage grows to 9 percent for
1003faults RESTORE can build a valid fix for; and to 12 percent for
1004faults RESTORE can build a correct fix for. These cases are
1005those where retrospective fault localization achieved prog-
1006ress; in some cases (plausible candidates) it even led to find-
1007ing program locations where a correct fix can be built.
1008Table 5 also shows that sharpening and plausible candi-
1009dates are 9 percent for faults with a single failing test case in
1010DEFECTS4J. These can be considered “hard” faults because of
1011the limited information about faulty behavior; retrospective
1012fault localization can perform well even in these conditions.
1013Table 6 looks at RESTORE’s fault localization feedback
1014loop, which is repeated until retrospective fault localization
1015has successfully refined the suspiciousness ranking. While
1016some faults require as many as ten iterations, in most cases

TABLE 5
How Retrospective Fault Localization Achieves Progress

# LOCALIZED CANDIDATES SHARPENING PLAUSIBLE

CORRECT 41 41 23,529 2,582 511
VALID 98 75 84,989 7,348 2,762
ALL 357 107 495,359 9,854 3,377
SINGLE 74 57 61,530 5,307 2,108

Each row focuses on faults in one category: those that RESTORE can repair with
a CORRECT fix; with a VALID fix; ALL faults in DEFECTS4J; and those with a SINGLE

failing test. In each category, the table reports how many faults are in total (#);
for how many RESTORE’s fault localization can find a location suitable to build
a correct fix (LOCALIZED, either because RESTORE actually built a correct fix or
because the DEFECTS4J reference fix modifies that location); the number of CAN-

DIDATES used as mutants in retrospective fault localization; how many of these
candidates are SHARPENING and PLAUSIBLE.

TABLE 6
How Many Times Retrospective Fault Localization Iterates

ITERATIONS

1 2 3 4 5 6 7 8 9 10

VALID 86 3 0 0 3 1 2 0 1 2
CORRECT 35 2 0 0 1 1 1 0 1 0

Among all faults in DEFECTS4J that RESTORE could repair with a VALID or a COR-

RECT fix, how many ITERATIONS RESTORE’s feedback loop went through to
sharpen fault localization.
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1018 gests that candidate fixes are often “good mutants” to per-
1019 form fault localization—and they provide information that
1020 is complementary to that available with simpler spectrum-
1021 based techniques.

1022 RESTORE’s retrospective fault localization improves the effi-
1023 ciency of the search for correct fixes: on average, 57 percent
1024 fewer fixes need to be generated and checked until a valid one
1025 is found. The candidate fixes generated by RESTORE are effective
1026 as mutants to perform fault localization.

1027 4.3.4 RQ4: Robustness

1028 RQ4 investigates whether RESTORE’s overall effectiveness
1029 and running time are affected by changes in features and
1030 parameters of its algorithms.
1031 Partial validation. Table 7 summarizes some key perfor-
1032 mance measures about RESTORE, and compares them to the
1033 same measures for RESTORE-FULL—a variant of RESTORE that
1034 only uses full validation as discussed in Section 4.2.2.
1035 RESTORE-FULL is clearly less effective than RESTORE, as the
1036 former misses valid fixes for 11 faults and correct fixes for 14
1037 faults that the latter can find. It is also slower than RESTORE;
1038 in fact, much slower than what suggested by the 40-minute
1039 difference per fault reported in Table 7. Remember that
1040 RESTORE-FULL is forcefully terminated after it runs for twice
1041 as long as RESTORE on each fault. With this cap, RESTORE-FULL

1042 could not complete its analysis for 17 of the 98 faults where
1043 RESTORE produces valid fixes, and it could not even finish
1044 the first round of mutation-based fault localization for 13 of
1045 them. ( RESTORE could produce a correct fix for 11 out of
1046 these 13 faults.) Therefore, partial validation is an important
1047 ingredient to make retrospective fault localization scale up,
1048 and hence be effective.
1049 Parameters. Table 8 shows how some key performance
1050 measures about RESTORE change as we individually change
1051 the value of each of four parametersNS , NP , NI , andNL.
1052 The more snapshots NS are used for fixing, the more
1053 valid and correct fixes RESTORE can generate. A closer look
1054 indicates a monotonic behavior: if RESTORE can fix a fault
1055 using s snapshots, it can also fix it using t > s snapshots.
1056 Unsurprisingly, increasing NS also increases the running
1057 time. Since the number of correctly fixed faults increases
1058 only by a few units, whereas the running time increases
1059 substantially, it seems a case of diminishing returns.
1060 In contrast, the effects of changing the percentage NP of
1061 snapshots used in each iteration of retrospective fault locali-
1062 zation are very modest—both on the running time and on
1063 the number of valid and correct fixes. Increasing NI—that

1064is, iterating retrospective fault localization even after it has
1065contributed to refining the ranking of suspicious locations—
1066also has a modest effect on effectiveness but noticeably
1067increases the running time. Overall, RESTORE’s behavior is
1068not much affected by how snapshots are sampled, but
1069repeating retrospective fault localization beyond what is
1070needed tends to decrease RESTORE’s efficiency without any
1071clear advantage.
1072Thedefault value of parameterNL—thenumber ofmost sus-
1073picious locations used for final fix generation (Section 3.3.5)—
1074seems to strike a good balance between effectiveness and effi-
1075ciency: increasingNL does not lead tofixingmore faults, but vis-
1076ibly increases the running time; decreasing it reduces the
1077running time, but also fixes fewer faults.

1078Partial validation is crucial for the efficiency of retrospective
1079fault localization. RESTORE’s effectiveness is usually only
1080weakly dependent on the values of internal parameters.

10814.3.5 RQ5: Generalizability

1082By comparing SimFix to SimFix+ (our variant of SimFix that
1083implements retrospective fault localization) RQ5 analyzes
1084the applicability of retrospective fault localization to tools
1085other than RESTORE.
1086Both SimFix and SimFix+ can build valid fixes for the
1087same 64 faults in DEFECTS4J. SimFix can generate valid fixes
1088for another 4 faults that SimFix+ cannot, and hence can fix
108968 faults in total; conversely, SimFix+ can generate valid
1090fixes for another 7 faults that SimFix cannot, and hence can
1091fix 71 in total. In the case of the 4 faults that only SimFix can
1092repair, SimFix’s simple spectrum-based fault localization
1093was sufficiently precise to guide the process to success (by
1094ranking high locations that lead to suitable donor code). In
1095contrast, the donor code leading to candidates that are use-
1096ful for mutation-based fault localization (see Section 4.2.3)
1097was ranked low; thus, SimFix+’s retrospective fault localiza-
1098tion took multiple iterations and a long time to go through

TABLE 7
Comparison Between RESTORE’s and RESTORE-FULL’s Effective-

ness and Performance

VALID CORRECT TIME

RESTORE 98 41 122.4
RESTORE-FULL 87 27 160.6

The number of DEFECTS4J faults with VALID fixes, with CORRECT fixes, and the
average running TIME (in minutes) per fault in RESTORE compared to those in
RESTORE-FULL ( RESTORE with only full validation).

TABLE 8
How Changing Parameters Affects RESTORE’s Behavior

PARAMETER VALUE VALID CORRECT TIME

NS

800 90 39 101.5
�1500 98 41 127.0
3000 103 42 180.4

NP

5% 98 39 126.6
�10% 98 39 127.0
20% 99 40 133.5

NI

�0 98 41 127.0
2 100 41 140.4
4 100 40 169.1
6 100 41 181.6

NL

2 91 33 96.8
�5 98 41 124.5
10 98 41 149.9

For each PARAMETER that control RESTORE’s algorithms, the table reports the
number of DEFECTS4J faults with VALID fixes, with CORRECT fixes, and the aver-
age running TIME per fault of RESTORE with different VALUEs of the parameter.
Values marked with an asterisk (*) are defaults; in the experiments where a
parameter has a non-default value, all other parameters are set to their defaults.
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1100 minute timeout. The cases of the 7 faults that only SimFix+
1101 can repair are opposite: spectrum-based fault localization
1102 was imprecise, hampering the performance of SimFix,
1103 whereas mutation-based fault localization could success-
1104 fully complete its analysis and sharpen the suspiciousness
1105 ranking as required by these 7 faults.
1106 As shown in Fig. 5, both SimFix and SimFix+ can build
1107 correct fixes for the same 33 faults in DEFECTS4J. SimFix can
1108 generate correct fixes for 1 other fault that SimFix+ cannot,
1109 and hence can correctly fix 34 faults in total; conversely,
1110 SimFix+ can generate correct fixes for another 2 faults that
1111 SimFix cannot, and hence can correctly fix 35 in total. As in
1112 the case of the valid fixes, the differences are due to higher
1113 ranks of locations that lead to suitable donor code against
1114 lower ranks of donor code that is useful for mutation-based
1115 fault localization (or vice versa) in certain conditions.
1116 How does SimFix+ compares to SimFix on the large
1117 majority of DEFECTS4J faults where both tools are successful?
1118 For the 64 DEFECTS4J faults that both can repair with at least
1119 a valid fix, Fig. 6a and Fig. 6c visually compare total running
1120 time (T2V)8 and number of candidates checked (C2V) until a

1121valid fix is found. When both SimFix and SimFix+ are suc-
1122cessful, the latter is decidedly more efficient: the summary
1123statistics of Table 9 confirm that it takes 69 percent of the
1124running time, and needs to check 60 percent as many candi-
1125dates. For the 33 DEFECTS4J faults that both tools can repair
1126with a correct fix, the advantage of SimFix+ over SimFix in
1127terms of total running time (T2C) and number of candidates
1128checked (C2C) until a correct fix is found is also evident, as
1129shown in Figs. 6a, 6c, and Table 9.
1130Unlike RESTORE—which “uses” some of the efficiency
1131brought by retrospective fault localization to explore a
1132larger fix space than JAID—SimFix+ has exactly the same fix
1133space as SimFix. What we found in this section’s experi-
1134ments is consistent with this design choice: SimFix+ has an
1135effectiveness that is very similar to that of SimFix (precisely,
1136slightly better precision and recall); retrospective fault local-
1137ization brings clear improvements but mostly in terms of
1138efficiency. Trading off some of this greater efficiency to
1139explore a larger fix space belongs to future work.

1140Retrospective fault localization implemented atop SimFix cuts
1141down the running time of the tool by 30 percent or more, with-
1142out negatively affecting bug-fixing effectiveness.

11434.4 Threats to Validity

1144Construct Validity. Threats to construct validity are con-
1145cerned with whether the measurements taken in the evalua-
1146tion realistically capture the phenomena under investigation.
1147An important measure is the number of correct fixes—
1148fixes that are semantically equivalent to programmer-writ-
1149ten fixes for the same fault. Since correctness is manually
1150assessed, different programmers may disagree with the
1151authors’ classifications in some cases. To mitigate the threat,
1152we follow the common approach [7], [23] of being conserva-
1153tive: fixes that do not clearly have the same behavior as the
1154programmer-written ones are regarded as incorrect.
1155Several measures could be used to assess the perfor-
1156mance of automated program repair tools. In our evalua-
1157tion, we focus on measures that have a clear impact on
1158practical usability—especially number of valid and correct
1159fixes, and running time.
1160When, in Section 4.3.3, we zoom in to analyze the behavior
1161of different aspects of RESTORE’s fault localization technique,

Fig. 5. Faults in DEFECTS4J bugs for which SimFix and SimFix+ can build
correct fixes.

Fig. 6. Comparison of SimFix and SimFix+ on various measures. For
each measure m, a point with coordinates x ¼ u; y ¼ v indicates that
SimFix costed u on a certain fault while SimFix+ costed v on the same
fault. As in Fig. 4, the dashed line is y ¼ x; the solid line is the linear
regression with y dependent on x.

TABLE 9
Summary Statistics of the Experiments on SimFix and SimFix+

For each MEASURE: the relative cost

P
SimFix+P
SimFix

of SimFix+ over SimFix; the

mean cost difference meanðSimFix	 SimFix+Þ between SimFix and Sim-
Fix+; the estimate bb of slope b expressing RESTORE’s cost as a linear function
of SimFix, with 95 percent probability interval ðbl; bhÞ; the estimate bx and
upper bound xh on the crossing ratio x.

8. Since SimFix and SimFix+ stop after one valid fix is built, total
running time T and running time T2V until a valid fix is found coincide.
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1162 we use the number of fixes generated and validated until the
1163 first valid fix is found. This measure has been used by other
1164 evaluations of fault localization in program repair [26] because
1165 it assesses the overall effectiveness of fault localization in guid-
1166 ing the search for valid fixes—instead ofmeasures, such as the
1167 rank of program locations, narrowly focused on the standard
1168 output of fault localizationwithout context [27].
1169 Our summary statistics in Table 4 follow recommended
1170 practices [17]; in particular, we used statistics that are easy
1171 to interpret, and based statistical significance on whether
1172 “an estimate is at least two standard errors away from some
1173 [...] value that would indicate no effect present” [28].
1174 Internal Validity. Threats to internal validity are mainly
1175 concerned with factors that may affect the evaluation results
1176 but were not properly controlled for.
1177 One obvious threat to internal validity are possible bugs
1178 in the implementation of RESTORE, or in the scripts we used
1179 to run our experiments. To address this threat, we reviewed
1180 our code and our experimental infrastructure between
1181 authors, to slash chances that major errors affected the
1182 soundness of our results.
1183 Another possible threat comes from comparing RESTORE to
1184 tools other than JAID based on the data of their published
1185 experimental evaluations—without repeating the experiments
1186 on the same system used to run RESTORE. This threat has only
1187 limited impact: we do not compare RESTORE to tools other than
1188 JAID on measures of performance—which require a uniform
1189 runtime environment—but only onmeasures of effectiveness
1190 such as precision and recall—which record each tool’s bug-
1191 fixing capabilities on the sameDEFECTS4J benchmark.
1192 External Validity. Threats to external validity are mainly
1193 concerned with whether our findings generalize—support-
1194 ing broader conclusions.
1195 DEFECTS4J has become accepted as an effective benchmark
1196 to evaluate dynamic analysis and repair tools for Java,
1197 because of the variety and size of its curated collection of
1198 faults. At the same time, as with every benchmark, there is
1199 the lingering risk that new techniques become narrowly
1200 optimized for DEFECTS4J without ascertaining that they do
1201 not overfit the benchmark. As future work, we plan to carry
1202 out evaluations on faults from different sources, to
1203 strengthen our claims of external validity.
1204 Both the implementation and the evaluation of RESTORE are
1205 based on the JAID repair system, and hence the fine-grained
1206 evaluation of RESTORE focused on how it improves over JAID.
1207 To demonstrate that most of the ideas behind retrospective
1208 fault localization (Section 3) are applicable to other generate-
1209 and-validate automated program repair techniques, we also
1210 implemented retrospective fault localization on top of Sim-
1211 Fix [9]—another state-of-the-art program repair technique
1212 for Java. Generalizing retrospective fault localization to work
1213 with repair techniques that are even more different—for
1214 example, based on synthesis—belongs to future work.

1215 5 RELATED WORK

1216 Research in automated program repair has gained signifi-
1217 cant traction in the decade since the publication of the first
1218 works in this area [29], [30]—often taking advantage of
1219 advances in fault localization. In this section, we focus on
1220 reviewing the approaches that havemore directly influenced

1221the design of RESTORE. Other publications provide compre-
1222hensive summaries of fault localization [31] and automated
1223program repair [32], [33] techniques.

12245.1 Fault Localization

1225The goal of fault localization is finding positions in the source
1226code of a faulty program that are responsible for the fault.
1227The concrete output of a fault localization technique is a list
1228of statements, branches, or program states ranked according
1229to their likelihood of being implicated with a fault. By focus-
1230ing their attention on specific parts of a faulty program, such
1231lists should help programmers debugging and patching.
1232While this information may not be enough for human pro-
1233grammers [27], it is a fundamental ingredient of automated
1234program repair. Thus, research in fault localization has seen a
1235resurgence as part of an effort to improve automated repair.
1236Spectrum-based fault localization techniques [34], [35] are
1237among the most extensively studied. The basic idea of spec-
1238trum-based fault localization is to use coverage information
1239from tests to infer suspiciousness values of program entities
1240(statements, branches, or states): for example, a statement
1241executed mostly by failing tests is more suspicious than one
1242executed mostly by passing tests.
1243Several automated program repair techniques use spec-
1244trum-based fault localization algorithms [7], [30], [36], [37],
1245[38], [39]. Generating a correct fix, however, typically requires
1246more information than the suspiciousness ranking provided
1247by spectrum-based techniques: an empirical evaluation of
124815 popular spectrum-based fault localization techniques
1249[26] found that the typical evaluation criteria used in fault-
1250localization research (namely, the suspiciousness ranking) are
1251not good predictors of whether a technique will perform well
1252in automated program repair. This observation buttresses our
1253suggestion that fault localization should be co-designed with
1254automated program repair to perform better—as we did with
1255retrospective fault localization.
1256Fault localization needs sources of additional informa-
1257tion to be more accurate. One effective idea—pioneered by
1258delta debugging [40]—is to modify a program and observe
1259how small local modifications affect its behavior in passing
1260vs. failing runs. More recently, ideas from mutation test-
1261ing [41] and delta-debugging have been combined to per-
1262form mutation-based fault localization: randomly mutate a
1263faulty program, and assess whether the mutation changes
1264the behavior on passing or failing tests.
1265Metallaxis [6] and MUSE [5], [42] are two representative
1266mutation-based fault localization techniques. Experiments
1267with these tools indicate that mutation-based fault localiza-
1268tion often outperforms spectrum-based fault localization in
1269different conditions [5], [6]. In our work, we used a variant
1270of the Metallaxis algorithm, because it tends to perform bet-
1271ter than MUSE with tasks similar to those we need for auto-
1272mated program repair. The main downside of mutation-
1273based fault localization is that it can be a performance hog,
1274because it requires to rerun tests on a large amount of
1275mutants. Thus, a key idea of our retrospective fault localiza-
1276tion is to reuse, as much as possible, validation results
1277(which have to be performed anyway for program repair) to
1278perform mutation-based analysis.
1279In retrospective fault localization, a simple fault-localiza-
1280tion process bootstraps a feedback loop that implements a
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1281 more accurate mutation-based fault localization. RESTORE

1282 currently uses a spectrum-based technique for the bootstrap
1283 phase (see Section 3.2.2); however, other fault localization
1284 techniques—such as those based on statistical analysis [43],
1285 [44], machine learning [45], [46], or deep learning [47]—
1286 could be used instead. Even techniques that are not
1287 designed specifically for fault localization may be used, as
1288 long as they produce a ranked list of suspicious program
1289 entities. For example, MintHint [48] performs a correlation
1290 analysis to identify expressions that should be changed to
1291 fix faults. The expressions, or more generally their program
1292 locations, could thus be treated as suspicious entities for the
1293 purpose of initiating fault localization.

1294 5.2 Automated Program Repair

1295 Generate-and-Validate (G&V) remains the most widespread
1296 approach to automated program repair: given a faulty pro-
1297 gram and a group of passing and failing tests, generate fix
1298 candidates by heuristically searching a program space;
1299 then, check the validity of candidates by rerunning all avail-
1300 able tests. GenProg [30], [49] pioneered G&V repair by using
1301 genetic programming to mutate a faulty program and gen-
1302 erate fix candidates. RERepair [50] works similarly to Gen-
1303 Prog but uses random search instead of genetic
1304 programming. AE [51] enumerates variants systematically,
1305 and uses simple semantic checks to reduce the number of
1306 equivalent fix candidates that have to be validated. Par [38]
1307 uses patterns modeled after existing programmer-written
1308 fixes to guide the search toward generating fixes that are
1309 easier for programmers to understand.
1310 This first generation of G&V tools is capable of working
1311 on real-world bugs, but has the tendency to overfit the input
1312 tests [3]—thus generating many fixes that pass validation
1313 but are not actually correct [2]. A newer generation of tools
1314 addressed this shortcoming by supplying G&V program
1315 repair with additional information, often coming from mining
1316 human-written fixes. AutoFix [39] uses contracts (assertions
1317 such as pre- and postconditions) to improve the accuracy of
1318 fault localization. SPR [52] generates candidate fixes accord-
1319 ing to a set of predefined transformation functions; Prophet
1320 [53] implements a probabilistic model, learned by mining
1321 human-written patches, on top of SPR to direct the search
1322 towards fixes with a higher chance of being correct. HDA
1323 [22] performs a stochastic search similar to genetic program-
1324 ming, and uses heuristics mined from fix histories available
1325 in public bug repositories to guide the search toward gener-
1326 ating correct fixes. ACS [19] builds precise changes of condi-
1327 tional predicates, based on a combination of dependency
1328 analysis and mining API documentations. Genesis [54]
1329 learns templates for code transformations from human
1330 patches, and instantiates the templates to generate new
1331 fixes. ssFix [25] matches contextual information at the fix-
1332 ing location to a database of human-written fixes, and uses
1333 this to drive fix generation. JAID [7] uses rich state abstrac-
1334 tions in fault localization to generate correct repairs for a
1335 variety of bugs. Elixir [21] specializes in repairing buggy
1336 method invocations, using machine-learned models to pri-
1337 oritize the most effective repairs. SimFix [9] combines the
1338 information extracted from existing patches and snippets
1339 similar to the code under fix to make the search for correct
1340 fixes more efficient. CapGen [20] improves the effectiveness

1341of expression-level fix generation by leveraging fault con-
1342text information so that fixes more likely to be correct are
1343generated first. SketchFix [24] expresses program repair as a
1344sketching problem [55] with “holes” in suspicious state-
1345ments, and uses synthesis to fill in the holes with plausible
1346replacements. RESTORE and SketchFix both work to better
1347integrate phases that are normally separate in automated
1348repair—fault localization and fix validation in RESTORE, and
1349fix generation and fix validation in SketchFix.
1350Most of these tools are quite effective at generating cor-
1351rect fixes for real bugs; several of them do so by mining addi-
1352tional information. Further improvements in G&V repair
1353hinge on the capability of improving the precision of fault
1354localization. A promising option is using mutation-based
1355fault localization, which was recently investigated [56] on
1356data from the BugZoo9 repair benchmarks. [56] found no
1357significant improvement on the overall repair perfor-
1358mance—supposedly because the single-edit mutations used
1359in the study may be too simple to reveal substantial differ-
1360ences between programs variants.
1361In our retrospective fault localization, we combine muta-
1362tion testing with a G&V technique that can generate com-
1363plex “higher-order” program mutants, and tightly integrate
1364fault localization and fix generation. This way, RESTORE ben-
1365efits from the additional accuracy of mutation-based fault
1366localization without incurring the major overhead typical of
1367mutation testing.
1368Test Selection and Prioritization has been studied in the con-
1369text of G&V automated program repair to improve the effi-
1370ciency of fix evaluation. For example, techniques based on
1371genetic programming—such as GenProg [30] and PAR [38]—
1372can become very computationally expensive if they evaluate
1373all program mutations on all available tests. To improve this
1374situation, one could use all the failing tests but only a small
1375sample of the passing tests—selected randomly [57] or using
1376an adaptive test suite reduction strategy [58]. Another
1377approach is the FRTP technique [50], [59], which gives higher
1378priority to a test the more fixes it has invalidated in previous
1379iterations. RESTORE currently uses a very simple test selection
1380strategy for partial validation (Section 3.3.2) consisting in just
1381running the originally failing tests. This was quite econo-
1382mical, yet effective, in the experiments with DEFECTS4J, but
1383cannot replace a full validation step. To achieve further
1384improvements wewill considermore sophisticated test selec-
1385tion strategies in futurework.
1386Correct-by-Construction program repair techniques [37],
1387[60], [61], [62], [63] express the repair problem as a con-
1388straint satisfaction problem, and then use constraint solver
1389to build fixes that satisfy those constraints. Relying on static
1390instead of dynamic analysis makes correct-by-construction
1391techniques generally faster than G&V ones, and is particu-
1392larly effective when looking for fixes with a restricted, sim-
1393ple form.

13946 CONCLUSIONS

1395We presented retrospective fault localization: a novel fault locali-
1396zation technique that integrates into the standard generate-
1397and-validate process followed by numerous automated

9. https://github.com/squaresLab/BugZoo
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1398 program repair techniques. By executing a form of mutation-
1399 based testing using byproducts of automated repair, retro-
1400 spective fault localization delivers accurate fault localization
1401 information while curtailing the otherwise demanding costs
1402 of runningmutation-based testing.
1403 Our experiments compared RESTORE—implementing ret-
1404 rospective fault localization—with 13 other state-of-the-art
1405 Java program repair tools—including JAID, upon which
1406 RESTORE’s implementation is built. They showed that RESTORE

1407 is a state-of-the-art program repair tool that can search a
1408 large fix space—correctly fixing 41 faults from the DEFECTS4J
1409 benchmark, 8 that no other tool can fix—with drastically
1410 improved performance (speedup over 3, and candidates
1411 that have to be checked cut in half).
1412 Retrospective fault localization is a sufficiently general
1413 technique that it could be integrated, possibly with some
1414 changes, into other generate-and-validate program repair
1415 systems. To support this claim, we implemented it atop
1416 SimFix [9]—another recent automated program repair tool
1417 for Java—and showed it brings similar benefits in terms of
1418 improved efficiency. As part of future work, we plan to
1419 combine retrospective fault localization with other recent
1420 advances in fault localization—thus furthering the exciting
1421 progress of automated program repair research.
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