

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2019-IW-002

2019-IW-002

GUI-Guided Repair of Mobile Test Scripts
Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, and Xuandong Li

International Conference on Software Engineering: Companion Proceedings 2019

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

GUI-Guided Repair of Mobile Test Scripts

Minxue Pan†‡∗, Tongtong Xu†§, Yu Pei¶, Zhong Li†§, Tian Zhang†§∗ and Xuandong Li†§∗
†State Key Laboratory for Novel Software Technology, Nanjing University, China

‡Software Institute, Nanjing University, China
§Department of Computer Science and Technology, Nanjing University, China

¶Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

mxp@nju.edu.cn, xttluck@gmail.com, csypei@comp.polyu.edu.hk, zzlexp@gmail.com, {ztluck,lxd}@nju.edu.cn

Abstract—Graphical User Interface (GUI) testing has been
the focus of mobile app testing. Manual test cases, containing
valuable human knowledge about the apps under test, are often
coded as scripts to enable automated and repeated execution
for test cost reduction. Unfortunately, many test scripts may
become broken due to changes made during app updates. Broken
test scripts are expected to be updated for reuse; however,
the maintenance cost can be high if large numbers of test
scripts require manual repair. We propose an approach named
METER to repairing broken test scripts automatically when
mobile apps are updated. METER novelly leverages computer
vision techniques to infer GUI changes between two versions
from screenshots and uses the GUI changes to guide the repair
of test scripts. In experiments conducted on 18 Android apps,
METER was able to repair 78.3% broken test scripts.

Index Terms—Mobile apps, GUI testing, Test script repair,
Computer vision, OCR.

I. INTRODUCTION

Mobile apps are frequently updated to remain competitive

in the market. Unfortunately, frequent updates may also cause

problems. With shorter developing time for each update, the

quality of apps becomes more difficult to guarantee.

Testing is still the mainstream quality assurance approach

for mobile apps. Due to the event-driven nature and gesture-

based interactions, GUI testing is now one of the most widely

used methodologies for testing mobile apps [1]. GUI tests

used in industry are typically programmed or recorded as

scripts to enable automated and repeated execution by test

harnesses/tools. For such scripts to comprehensively cover

the business logic of apps, human testers often need to

invest valuable time to transcribe their domain knowledge and

experience. However, test scripts may become broken after the

app is updated and its GUI changed. Maintenance cost can be

high if it is to be done manually and the number of test scripts

that need fixing is large.

Mobile apps typically support a rich set of GUI features for

good user experience, and they often have GUI elements in

image than in text to make the GUI more attractive, which

poses challenges in test script repair. We propose an approach

called METER (MOBILE TEST REPAIR) to automatically

repairing broken test scripts when mobile apps are updated.

∗ Corresponding author.
This research was supported by the National Natural Science Foundation of

China (No. 61502228), the Hong Kong RGC General Research Fund (GRF)
(PolyU 152703/16E) and The Hong Kong Polytechnic University internal fund
(1-ZVJ1 and G-YBXU).

METER determines if the update affects a GUI element or

a screen via computer vision (CV) techniques, and retains

or repairs a test action based on if the GUI elements and

screens associated with the action’s execution are influenced

by the update. We implemented our approach in a tool also

called METER and carried out experiments on 18 open-

source Android apps. METER was able to automatically repair

78.3% broken Android test scripts, which speaks well for its

effectiveness.

II. RELATED WORK

The idea of test script repair for desktop applications is first

proposed in [2], which devises a model-based approach called

GUI Ripper. Work [3] extends [2] by adding a mechanism to

obtain the application model through reverse engineering. GUI

code changes, either recorded in an IDE [4] or extract through

code analysis [5], are also used to repair test cases.

Studies target mobile domain are just emerging. In two

recent studies [6], [7], model-based tools for Android GUI

test repair are proposed. Both assume that precise models of

the app are already prepared as inputs to guide the test repair,

whereas it is known that considerable manual effort is required

for constructing or perfecting such models.

Computer vision techniques have been used to help users

write GUI test scripts, e.g., Sikuli [8] and JAutomate [9].

These approaches, however, cannot process GUI changes, and

therefore, are not capable of repairing broken test scripts.

III. APPROACH OVERVIEW

Fig. 1 illustrates the overview of METER. Given the version

N and N+1 of a mobile app and the test scripts for version N as

inputs, METER first executes the test scripts on version N, to

ensure all the scripts can pass without failures. Meanwhile, for

each test action in the script, METER records the screenshots

after the test action is executed, as well as the position and

size of the widget on which the action is performed. With this

knowledge, METER maintains an execution history for each

test script, which will serve as the guideline for the subsequent

script repair for version N+1. Then METER tries to execute

the test scripts on version N+1. This time, METER takes a

screenshot before executing a test action, and queries the

execution history to obtain the screenshot and widget recorded

for version N before executing the same test action in the same

test script. By leveraging a set of computer vision techniques,

326

2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion)

2574-1934/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-Companion.2019.00137

For Research Only

Version N 1

Version N

Query

Fig. 1: Overview of METER

including the contour detection, Scale-Invariant Feature Trans-

form and OCR, METER extracts and maps he text elements

and non-text GUI elements between the two screenshots, to tell

whether the two screenshots can be considered mapped. Note

that in METER, two screenshots are mapped not by image pixel

comparison but by GUI elements mapping. Therefore, when

two screenshots are mapped, METER has already mapped

the GUI elements within the same screen page. Repairs that

can be performed locally, i.e., the modification, movement or

replacement of a widget within the current page, will be tried.

To ensure the repair is correct, METER also checks whether

the two screenshots after executing the test action are mapped

or not.

Having local repair is not sufficient when METER cannot

locate the widget for the test action to be executed on version

N+1 or map the screenshots either before or after executing

the test action. To increase the repairing ability, METER also

includes a global repair module, which currently consists of

two repair methods. One focuses on repairing the failure

caused by moving a widget to another screen in the app.

The other focuses on repairing the failure caused by changing

redirecting relations between app screens, e.g., the triggering

of a menu item opens a different page.

After the repair, the output is the repaired test scripts, as

shown in Fig. 1. Meanwhile, these repaired test scripts have

already been successfully executed on version N+1, so the

testing of version N+1 is also completed provided that all the

scripts can be repaired.

IV. EVALUATION

To evaluate the effectiveness and efficiency of METER in

repairing GUI test scripts for mobile apps, we conducted

experiments that apply METER to 18 Android apps from

previous studies, which are shown in Table I.

We downloaded multiple versions of each selected app,

chose the latest version as the updated one, and an earlier

version as the base one. We asked nine postgraduate students

in Computer Science, each with at least two-year experience

in mobile application development and testing, to write test

scripts to achieve around 50% statement coverage for the base

versions of the apps. These test scripts are the ones to be

repaired on the updated versions.

The experiments were run on a Samsung Galaxy S6 phone

and a MacBook Air laptop running Mac OS X10 with one

Quad-core 1.7GHz CPU and 8 GB memory.

For each app, Table I gives its name (APP), the two versions

used (VERSIONS), the number of test scripts we prepare for

TABLE I: Android Apps used as subjects in the experiments.

APP VERSIONS #S #B #R TIME

SuperGenPass 2.2.3→3.0.0 5 3 2 157.27
OI File Manager 2.0.5→2.2.2 29 17 13 213.33
Remote Keyboard 1.6→1.7 9 5 5 17.06
SMS Scheduler 1.37→1.48 19 2 2 32.36
Tasks Astrid To-Do List 4.9.14→5.0.2 22 1 1 74.21
Lighting Web Browser 4.4.2 → 4.5.1 23 9 9 222.29
DumbphoneAssistant 0.4→0.5 6 4 4 35.43
SysLog 2.0.0→2.1.1 5 3 1 88.41
Budget Watch 0.18→0.2 14 3 1 125.60
Pedometer 5.16→5.18 5 1 1 44.65
Who Has My Stuff? 1.0.24→1.0.30 10 2 1 34.10
Notepad 1→1.12 10 6 5 24.41
A2DP Volume 2.12.4 → 2.12.9 8 2 2 37.34
K-9 Mail 5.207→5.4 39 11 9 413.92
AnyMemo 10.8→10.10.1 31 6 6 102.12
Auto answer & callback 1.9→2.3 17 10 9 133.23
AnkiDroid 2.6→2.8.3 29 5 1 502.28
Open Camera 1.40.0→1.42.2 17 13 9 132.12

Total - 327 120 94 2603.46

the app (#S), the number of broken test scripts on the updated

version (#B), the number of repaired test scripts (#R), and the

repair time (TIME) recorded in minutes.

Overall, 327 test scripts were written, among which 120 test

scripts were broken on the updated version. METER success-

fully repaired 94 test scripts, demonstrating a 78.3% repair

rate. The total time cost of repairing test scripts for all the

apps amounts to 2603.46 minutes, with the maximum repairing

time 502.3 minutes and the minimum 17 minutes. Given that

the application of METER is fully automatic and requires

no human intervention, we believe the overall efficiency of

METER is acceptable.

V. CONCLUSION

In this paper, we propose METER—a novel approach to

automatically repairing GUI test scripts for mobile apps based

on computer vision techniques. Experimental evaluation of

METER on 18 real-world Android apps shows that METER

is both effective and efficient.

REFERENCES

[1] C. Hu and I. Neamtiu, “Automating GUI testing for android applications,”
in Proceedings of AST ’11. ACM, 2011, pp. 77–83.

[2] A. M. Memon and M. L. Soffa, “Regression testing of GUIs,” in
Proceedings of ESEC/FSE ’11. ACM, 2003, pp. 118–127.

[3] A. M. Memon, “Automatically repairing event sequence-based GUI test
suites for regression testing,” ACM Trans. Softw. Eng. Methodol., vol. 18,
no. 2, pp. 4:1–4:36, 2008.

[4] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and M. Pezzè,
“Automated GUI refactoring and test script repair,” in Proceedings of
ETSE ’11. ACM, 2011, pp. 38–41.

[5] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving GUI-
directed test scripts,” in Proceedings of ICSE ’09. IEEE Computer
Society, 2009, pp. 408–418.

[6] X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and X. Li,
“ATOM: automatic maintenance of GUI test scripts for evolving mobile
applications,” in Proceedings of ICST ’17. IEEE Computer Society,
2017, pp. 161–171.

[7] N. Chang, L. Wang, Y. Pei, S. K. Mondal, and X. Li, “Change-based test
script maintenance for android apps,” in Proceedings of QRS ’18. IEEE
Computer Society, 2018, pp. 215–225.

[8] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using GUI screenshots
for search and automation,” in Proceedings of UIST ’09. ACM, 2009,
pp. 183–192.

[9] E. Alégroth, M. Nass, and H. H. Olsson, “JAutomate: A tool for system-
and acceptance-test automation,” in Proceedings of ICST ’13. IEEE
Computer Society, 2013, pp. 439–446.

327

For Research Only

