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Abstract—Model checking is a mainstream method for for-
mal verification of communicating sequential processes (CSP).
Existing CSP Model Checkers are incapable of verifying
multiple properties concurrently in one run of a model checker.
In addition, the properties to be verified are described with
CSP in most model checkers, which is good for refinement
checking, but leads to limited description power and weak
generality. In order to tackle the two problems, answer set
programming(ASP), which is completely free of sequential de-
pendencies, is used to construct a CSP bounded model checking
framework, where the CSP model checking problem is turned
into a computation problem of answer sets. CTL is extended
with events to describe the properties to be verified. In addition,
preprocessing technique of properties is proposed for the sake
of reducing the expense spending on replicated verification of
the same sub formulas. An ASP based description system is
constructed for complete description of various CSP processes
and automatic generation of parallel processes. We integrated
all the methods into a CSP model checker - ACSPChecker.
The feasibility and efficiency of our methods are illustrated by
the experiments with a classic concurrency problem - dining
philosophers problem.

Keywords-Communicating Sequential Processes, Bounded
Model Checking, CTL, Preprocess, Answer Set Programming.

I. INTRODUCTION

Model checking [1] [2] is one of the most important

and powerful formal verification techniques. It has been

widely and successfully used in analysis and verification of

various domains including computer hardware, communi-

cation protocol and concurrent system. Main stream model

checking methods include bounded model checking [3] [4],

compositional checking [5], assume-guarantee reasoning [6]

and module model checking [7] etc.

Communicating sequential processes (CSP) [8] [9], is one

of the two original process algebras. It allows the precise

description and analysis of event-based concurrent systems.

Some CSP model checking tools have been developed,

such as Failure Divergence Refinement(FDR) [10] [12] [13],

Process Analysis Toolkit(PAT) [14], SymFDR [15], ProB

[16] [17], ARC [19] and so on.

However, there are two common shortages of all the

existing CSP model checkers. The first is inability to verify

multiple properties concurrently in one run of a model

checker. Multiple runs of a model checker cause massive

overhead in context switching. Moreover, the problem of

repeated verification of the same sub property is not consid-

ered, which limits verification efficiency since the same sub-

formula in the specification of different properties must be

handled respectively. The second is that most of CSP model

checkers use CSP process as the specification language of

properties. This description method is good for refinement

checking, but is not as common as temporal logic formulas.

And it is not suitable for expressing liveness properties [11].

This paper reports our attempts to apply answer set

programming(ASP) [26] [27] to CSP model checking. ASP

is a declarative logic programming paradigm for solving

combinational search problems with the feature of complete-

ly free of sequential dependencies. In order to achieve the

ability to verify multiple properties concurrently in one run

of a model checker, an ASP based CSP bounded model

checking framework is established, which turns the CSP

model checking problem into the computation problem of

answer sets. The properties to be verified are specified

by computation tree logic(CTL) [32] extended with events,

which is much more common and expressive. Furthermore,

a preprocessing procedure for a set of properties formulas is

proposed for the sake of avoiding the overhead of replicated

validation of the same sub formulas, thus improving the

verification efficiency. An ASP based description system of

CSP processes is constructed. It is not only to be used to

describe various forms of basic processes, but also allows

several processes to be composed automatically to generate

a new parallel process. All the methods are integrated into

a CSP model checker - ACSPChecker. The feasibility and

efficiency of our methods are illustrated by the experiments

with a classic concurrency problem - dining philosophers

problem.
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II. RELATED WORKS

FDR [10] [12] is a model checking tool for CSP developed

by A.W.Roscoe and C.A.R.Hoare of Oxford University.

A hybrid high/low level approach is adopted to compute

the operational semantic of a process in FDR. It builds

up a system gradually with the hierarchical state space

compression technique. The compression technique makes

FDR could check systems such as a network of 1020 states

[13] .

Recently, efficient SAT solvers have greatly broadened

the horizons of symbolic model checking [18], and bounded

model checking [3] [4] has been proved to be an extreme-

ly powerful technique. Some works on symbolic model

checking of CSP have been done, including OBDD-based

refinement checker ARC [19], SAT based bounded refine-

ment checker SymFDR [15] and so on. ARC outperforms

FDR in a few cases, but the OBDD encoding is complex

and especially sensitive to the variable ordering. SymFDR

integrate SAT-based BMC and temporal k-induction into

FDR focusing on the CSP trace model, which is sufficient

to verify safety properties. Experiments indicate that in

some complex combinatorial problems, SymFDR signifi-

cantly outperforms FDR.

Refinement checking [20] is the major verification method

embedded in FDR, SymFDR and ARC. A limit of the

method is that it is not good for description and verifica-

tion of liveness properties [21]. In [22], some evidences

are also presented to show that refinement-based approach

does not seem to be suited for verifying certain temporal

properties. Moreover, the properties to be verified in these

model checkers are specified as CSP processes, which is

not as common as temporal logic formulas, such as Linear

Temporal Logic(LTL) and Computation Tree Logic(CTL)

[32].

PAT [14] is another CSP model checker. Different from

the tools mentioned above, it supports automated refinement

checking and model checking of LTL extended with events.

An on-the-fly approach is adopted to reduce the computation

expense of normalization, and PAT outperforms FDR in

some cases. In the paper, we apply another commonly used

property description language- CTL to specify the properties

to be verified.

In literature, there already exists some work on applying

declarative programming to the verification of software

systems [29], the main motivation is to show that the

declarative programming is a convenient language to model

other languages and is a competitive tool for validation.

Literature [23] summarizes Michael Leuschels ten years

of experience using declarative programming (Prolog in

particular) for developing tools to validate high-level formal

specification languages, ranging from process algebras such

as CSP to model-based specifications such as Z and B [25].

It shows that the logic programming is a good foundation for

developing and animating new specification languages [24].

ProB [16] [17] is a new animation and model checking tool

for CSP developed by Michael Leuschel using Prolog tech-

nology. Similarly, a more declarative programming language

- ASP [26] [27] is used in the implementation of our method.

E. Ternovska presents an ASP based BMC method for ver-

ifying abstract state machine(ASM) models [28]. It illustrat-

ed how to translate an ASM and a temporal property into a

logic program and to solve the BMC problem by computing

an answer set for the logic program. K. Heljanko proposes

symbolic model checking as a promising application area

for answer set programming in [29] [30]. Additionally, E.

De Angelis introduces a framework based on ASP for the

synthesis of concurrent programs satisfying given behavioral

and structural properties [31]. This method gives us hint on

automatically combining several processes to generate a new

parallel process using ASP rules.

III. PRELIMINARIES

A. CSP

Let Σ be a finite alphabet of visible events with τ ,
√ ∈ Σ

. τ denotes the invisible silent action and
√

is a successful

termination of a process-a special action which is visible but

uncontrollable from outside and can only occur at last. For

a given process P , we denotethe set of all visible events that

P can perform [8] [9] by αP ∈ Σ
√

.

Definition 1: A CSP process is defined recursively via the

following grammar:

P ≡ STOP |SKIP |CHAOS|DIV |X : A→ P (x)|μX :
A • F (X)|P1 � P2|P1|P2|P1 ‖ P2

STOP represents a deadlocked process, which is not

capable of communicating any visible or τ actions. The

process SKIP denotes successful termination and is willing

to perform
√

at any time. CHAOS is a process that may

non-derministically perform events from A. It may as well

refuse to do anything at all. DIV denotes a livelock, a

process that is engaged in performing an infinite loop of

internal τ actions without ever communicating with the

external environment. The prefix process X : A → P (x)
initially offers the environment to perform any event a from

A and subsequently behaves like P (a). μX : A • F (X)
denotes a recursive process.P1 � P2 and P1|P2 denote,

respectively, external and internal choice of P1 and P2.

Parallel composition of processes P1 and P2 is written as

P1 ‖ P2, where shared events must be synchronized by

both processes whose alphabet contains the events.

Definition 2: (Process P with bounded k: P k) Let P
be a process, then P k is a process where the parallel step

of all parallel operators in the process is bounded to k.

Example 1: P = a → b → c → d → STOP ||a → e →
b→ d→ STOP = a→ e→ b→ c→ d→ STOP . If the

parallel step k is set equal to 3, then P 3 = a→ e→ b.
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B. ASP
Let A be an atom, a literal takes the form A or ∼ A,

where A is a positive literal and ∼ A is a negative literal; A
and ∼ A are called complementary literals[3]. An extended

disjunctive logic program is a set of rules, and each rule r
is of the form:

L1 ∨ ... ∨ Lk : −Lk+1, ..., Lm, not Lm+1, ..., not Ln

where n ≥ m ≥ k ≥ 0, each Li is a literal, and notice

the negation as failure (NAF), head(r)=L1, ..., Lk is the head

of r, pos(r)=L1, ..., Lm and neg(r)=Lm+1, ..., Ln are the

positive and negative literals present in body respectively.

In particular, a rule without head is called a constraint.
The computation of answer sets corresponding to ASP

logic programs is performed by ASP solvers, such as DLV

[33], Smodel [34] and Cmodel [35].

C. BMC
Bounded model checking [3] [4] is a sound but generally

incomplete technique that focuses on searching for coun-

terexamples of bounded length only. The underlying idea is

to fix a bound k and unwind the implementation model for

k steps, thus considering behaviours and counterexamples of

length at most k. In practice, BMC is conducted iteratively

by progressively increasing k until one of the following

happens: (1) a counterexample is detected. (2) k reaches

a pre-computed threshold which indicates that the model

satisfies the specification. (3) the model checking instance

becomes intractable.

IV. ASP BASED FRAMEWORK OF CSP BOUNDED

MODEL CHECKING

The structure of ASP based CSP bounded model checking

framework is shown as Fig.1.

Figure 1. ASP based CSP BMC framework

As illustrated in Fig.1, the framework consists of six

modules The modeling module describes the system to be

verified with CSP. The specification module specifies the

properties with CTL extened with events. A sharedDAG de-

scribing multiple properties will be constructed through the

preprocessing module. The module for ASP representation

of CSP processes is not only used to represent various basic

CSP processes, but also be used to generate the composition-

al processes (parallel processes in particular) automatically.

The ASP representation of Existential Computation Tree

Logic(ECTL) formulas encodes every ECTL formulas as

ASP predicates and rules. In the verification module, BMC

is adopted to alleviate the state explosion problem. At last,

ASP encoded CSP model and properties formulas are input

into an ASP solver to complete the verification.

Our framework for CSP model checking has some fea-

tures as follows:

1. Model Checking of CTL extended with events. Our

framework supports model checking of CTL extended with

events, which allows us to specify and validate properties

based on states and events.

2. Verification of multiple properties concurrently in one
run of the model checker. ASP is completely free of se-

quential dependencies. Thanks to the feature, our method

can verify multiple properties concurrently in one run of

our model checker.

3. Preprocessing of properties formulas to avoid repeat-
ed verification of same sub-properties. The preprocessing

technique is proposed to eliminate redundant information of

multiple properties to be verified, and thus avoiding overhead

of repeated verification of same sub properties.

In the framework, CSP model checking problem is turned

into a computation problem of answer sets. The core ver-

ification idea is searching the state space represented by

ASP to validate if there exists an assignment in the state

space satisfying the given property. If it does, the label

corresponding to the property will occur in the answer sets,

otherwise it will not. For example, if the property ϕ holds for

process P , then ϕ(P ) must occur in the answer set finally.

V. PREPROCESSING AND ASP ENCODING OF CTL

FORMULAS EXTENDED WITH EVENTS

CTL is extended with events for the sake of description

of properties based on states and events in this section.

Definition 3: The CTL formulas extended with events are

as follows:

ϕ ::= e|s|¬ψ|(ψ1 ∧ ψ2)|(ψ1 ∨ ψ2)|(ψ1 → ψ2)|
AXψ|EXψ|AFψ|EFψ|AGψ|EGψ|A[ψ1Uψ2]|E[ψ1Uψ2]

where e ranges over
∑√

. s represent the state, A represent

all the paths, E represents exist one path at least, X
represent the next state, F represent some state in the future,

G represent all the state in the following and U represent

until.

Let P be a process, then P k is a process where each

execution behavior of P is bounded to k steps. Thus
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π = {P0, e0, P1, e1, · · · , ei−1, Pi, ei, · · ·Pk} be an execu-

tion path of process P k, Pi is the ith subsequent process of

P k, 0 ≤ i ≤ k
The satisfiability relationship |= of process P k and

extended CTL formulas ϕ is defined inductively as follows:

Pk |= e ⇔ ∃π, ei = e(0 ≤ i ≤ k), ei ∈ π.

Pk |= s ⇔ ∃π, Pi = s(0 ≤ i ≤ k), Pi ∈ π.

Pk |= ¬ψ ⇔ P � p.

Pk |= ψ1 ∧ ψ2 ⇔ Pk |= ψ1 and Pk |= ψ2.

P k |= ψ1 ∨ ψ2 ⇔ Pk |= ψ1 or Pk |= ψ2.

Pk |= ψ1 → ψ2 ⇔ Pk
� ψ1 or Pk |= ψ2.

Pk |= AXψ ⇔ ∀π, (P1 |= ψ, k ≥ 1).
Pk |= AGψ ⇔ ∀π, (∀j ≥ 0 ∧ j ≤ k, Pj |= ψ) .

Pk |= AFψ ⇔ ∀π, (∃j ≥ 0 ∧ j ≤ k, Pj |= ψ).
Pk |= A[ψ1Uψ2] ⇔ ∀π, (∃m ≥ 0 ∧m ≤ k,

(Pm |= ψ2 ∧ ∀j < m, (Pj |= ψ1))).
Pk |= EXψ ⇔ ∃π, (P1 |= ψ, k ≥ 1).
Pk |= EGψ ⇔ ∃π, (∀j ≥ 0 ∧ j ≤ k, Pj |= ψ).
Pk |= EFψ ⇔ ∃π, (∃j ≥ 0 ∧ j ≤ k, Pj |= ψ).
Pk |= E[ψ1Uψ2] ⇔ ∃π, (∃m ≥ 0 ∧m ≤ k,

(Pm |= ψ2 ∧ ∀j < m, (Pj |= ψ1))).

In order to facilitate subsequent handling, we translate the

CTL formulas into semantically equivalent ECTL formulas.
Definition 4: (ECTL Formula) A CTL formula is a

ECTL formula iff any symbol γ in CTL formula, γ ∈
{¬,∨, EX,EF,EG,EU}.

Definition 5: (Sub formula) A ECTL formula ψ is the

sub formula of ϕ, if and only if the syntactic tree of ψ is

the sub tree of syntactic tree of ϕ.
In order to avoid repeated verification of same sub for-

mulas in a set of ECTL formulas, all the syntactic trees of

ECTL formulas will be integrated into a shared syntactic

tree (i.e. sharedDAG) by merging the same sub formulas of

different syntactic trees.
Definition 6: (SharedDAG) A sharedDAG is a directed

acyclic graph G = (V,E), where V is a set of nodes and E
is a set of edges:

(1) The out degree of each node is no larger than 2;
(2) The ECTL formulas represented by any two nodes are

different.
Given a set U of ECTL formulas, the sharedDAG could

be obtained by applying the following rules:
Rule 1( remove duplicate leaf nodes) If a syntax tree

has the same leaf nodes n1, n2, ..., nk, then remove all the

same leaf nodes except nk, and redirect all arcs into the

ni(1 ≤ i ≤ k) to nk.
Rule 2 (remove duplicate internal nodes) Let u and v

be internal nodes, the label of u and v are the same, remove

the sub tree with the root u and redirect all arcs into u to v

if conditions below are satisfied, otherwise, remove v.
(1) Both u and v have two sub-trees, and the sub-trees of

u and v are the same.
(2) Node u has one sub tree, v has two sub trees, and the

sub tree of u is the same as one of the sub trees of v.
(3) Both nodes u and v have only one sub tree, and the

sub trees of u and v are the same.

Example 2: Consider following properties of dining

philosopher problems:

(1)Pro 1: Any fork can not be picked up by two philoso-

phers at the same time.

(2)Pro 2: Any philosopher will eat if he has picked up his

forks.

The two properties above are described with extended

CTL formulas as follows:

(1) AG¬(i.pickFork.i ∧ i⊕ 1.pickFork.i)
(2) AG(i.pickFork.i→ AF (i.eat)
The formulas are input into the preprocessing procedure,

and then a sharedDAG is obtained as Fig.2(To be simple,

set i=2 ).

Figure 2. shareDAG

Intuitively, in this example, if we verify the two proper-

ties using classical labeling algorithm, ¬2.pickfrok2 will

be verified twice, but only once after preprocessing. Our

preprocessing procedure will reduce the repeated verification

overhead and improve verification efficiency especially when

the number of properties is large.

Next to give the ASP encoding of ECTL formulas. In the

following, by ϕ(P ) it is meant that ϕ is satisfied in process

P , and let π = {P0, e0, P1, e1, ei−1, Pi, ei, ..., Pk} be an

execution path of process P .

Formula 1: ϕ ≡ e . ϕ is true when e occurs in P . ϕ(P )
is true when prefix(e, P

′
, p) is true for some e and P

′
, i.e.

p is a subsequent process of P .

ϕ(P ) : −prefix(e,− , Pj), subsequent(Pj , P ).
Formula 2: ϕ ≡ s . ϕ(P ) is true when s is the subsequent

process of P .

ϕ(P ) : −subsequent(s, P ).
Formula 3: ϕ ≡ ¬ψ. ϕ(P ) is true if ψ(P ) is false.

ϕ(P ) : −not ψ(P ).
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Formula 4: ϕ ≡ ψ1 ∨ ψ2.ϕ(P ) is true if ψ1(P ) is true

or ψ2(P ) is true.

ϕ(P ) : −ψ1(P ).ϕ(P ) : −ψ2(P ).
Formula 5: ϕ ≡ EXψ. ϕ(P ) is true if there exists a

path = {P0, e0, P1, e1, ...ei−1, Pi, ei, ..., Pk} of P such that

ψ(P1) is true.

ϕ(P ) : −ψ1(P1), next(P1, P ).
Formula 6: ϕ ≡ EFψ. ϕ(P ) is true if there exists a path

π of P such that ψ(Pi) is true.

ϕ(P ) : −ψ1(Pi), subsequent(Pi, P ).
Formula 7: ϕ ≡ EGψ. ϕ(P ) is true if there exists a path

π of P such that ψ(Pi) is always true .

ϕ(P ) : −not f . f : −not ψ(Pj , subsequent(Pj , P ).
Formula 8: ϕ ≡ E[ψ1 ∪ ψ2]. ϕ(P ) is true if there exists

a path π of P such that ψ2(Pi) is always true until ψ1(Pj)
is true.

ϕ(P ) : −ψ2(Pj , subsequent(Pj , Pk), ψ1(P0...Pj−1).

VI. ASP ENCODING OF CSP PROCESSES

An ASP based description system for various forms of

CSP processes is constructed in this section.

A. Prefix Process

Definition 7: (Prefix process) Let x be an event, P and

Q are processes and x ∈ αQ,αQ = α(x → P ), then Q =
x → P describes the process Q which first engages in the

event x and then behaves exactly as described by P. We call

the x prefix, and x→ P prefix expression.

Some predicates are defined in Table I for the sake of

describing prefix processes conveniently.

Table I
PREDICATES DEFINED FOR DESCRIBING PREFIX PROCESS

Predicate Meaning
prefix(X,P,Q) Process Q is a prefix process which first engages

in the event X and then behaves as process P.
event(X,P) event X is a event of Process P, i.e. X ∈ αP .
process(P) P is a process.
next(P,Q) Process P is the direct subsequent process of Q.
subsequent(P,Q) Process P is the subsequent process of Q.
startEvent(X,P) X is the initial event of process P.
endEvent(X,P) X is the last event of process P.

The semantic rules between the above defined predicates

are presented in Table II.

Relying on the rules 1-11 in Table II, given a set of prefix

processes, process information including the alphabets, sub

processes, the initial events and end events of any processes

and so on could be produced.

Example 3: Let a philosopher sit down in his chair, pick

up and put down the forks twice and then stand up to leave.

The philosopher could be described as a CSP process Ph:

Ph = sit → pickFork → downFork → pickFork →
downFork → up→ STOP

It is easy to describe the above prefix process Ph with

prefix(X,P,Q) as the following set of atoms:

Table II
SEMANTIC RULES FOR PREFIX PROCESSES

ASP rules Name
event(X,Q):- prefix(X,P,Q). Rule 1
event(X,P):- prefix(X,P,Q). Rule 2
process(P):- prefix(X,P,Q). Rule 3
process(Q):- prefix(X,P,Q). Rule 4
next(P,Q) :- prefix(X,P,Q) Rule 5
subsequent(P,Q):- next(P,Q). Rule 6
subsequent(R,Q):- subsequent(P,Q),next(R,Q). Rule 7
startEvent(X,Q):- prefix(X,P,Q). Rule 8
endEvent(deadlock,P):- prefix(deadlock,stop,P). Rule 9
endEvent(succStop,P):- prefix(succStop,skip,P). Rule 10
endEvent(X,P1) :- endEvent(X,P2),subsequent(P2,P1). Rule 11

{prefix(pickFork, p0, ph).prefix(downFork, p1, p0)
.prefix(pickFork, p2, p1).prefix(downFork, p3, p2).pre
fix(up, stop, p3).prefix(deadlock, stop, stop).}

where prefix(deadlock, stop, stop) represents the spe-

cial process STOP , prefix(succStop, skip, skip) repre-

sents the SKIP process, and the relationship between

process p0, ..., p4 can be illustrated as the following Fig.3

Figure 3. The relationship between process p0-p4

B. Recursion Process

Definition 8: (Recursion Process) The equation X=F(X)

is said to be a recursion process, if F(X) is a guarded expres-

sion containing the process name X. The expression X=F(X)

has a unique solution with alphabet A, where A=αX. which

could be denoted by expression μX : A • F (X).

Simply, process P = x → P or P = μX : {x}(x →
X) represent a recursion process which performs event x
endlessly. By the definition of a recursion process, it can

be described with the ASP predicate prefix(X,P,Q). A

simple example is to encode process P = a → P as

prefix(a, P, P ).

C. Choice Process

Choice process is used to describe the situation where an

object may have many possible streams of behaviors.

Definition 9: (Choice process) Let x and y be different

events, P and Q be distinct processes, then R = (x →
P |y → Q) describes an object which initially engages in

either of the events x and y, and then behaves as P if the

first event was x, or as Q if the first event was y, where

α(x→ P |y → Q) = αP = αQ
Example 4: A change-giving machine which offers a

choice of two combinations of change for 10p, that is two
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5p or one 5p, one 1p, two 2p. The choice is exercised by

the customer of the machine. The object is described as a

CSP choice process as below:

CH10D = in10p → (out5p → out5p →
CH10D|out2p→ out1p→ out5p→ out1p→ CH10D)

It is easy to describe the above prefix process CH10D

with prefix(X,P,Q) as the following set of atoms.

{prefix(in10p, p, ch10D).prefix(out5p,m1, p).prefix
(out5p, ch10D,m1).prefix(out2p, n1, p).prefix(out1p,
n2, n1).prefix(out5p, n3, n2).prefix(out2p, ch10D,n3)}.

The relationship between process p,m1, n1, n2, n3 can be

illustrated as the following Fig.4.

Figure 4. The relationship between process p,m1, n1, ..., n3

VII. ASP ENCODING OF PARALLELIZATION

The composition of CSP processes provides a way for

generating more complex processes. Parallelization is one

of the most important composition ways.

Definition 10: (Parallelization) Let P and Q be process-

es, αP �= αQ, the notation P ‖ Q denotes that process P
and Q are assembled to run concurrently, events in both of

their alphabets require simultaneous participation of both P
and Q; however, events in the only alphabet of P or Q may

occur independently. Obviously, α(P ‖ Q) = αP ∪ αQ .

Let a ∈ (αP−αQ), b ∈ (αQ−αP ), c, d ∈ (αQ∩αP ), we

have the following concurrency laws governing the behavior

of P ‖ Q:

(1) P ‖ STOP = STOP
(2) (c→ P ) ‖ (c→ Q) = (c→ (P ‖ Q))
(3) (c→ P ) ‖ (d→ Q) = STOP c �= d
(4) (a→ P ) ‖ (c→ Q) = (a→ (P ‖ (c→ Q)))
(5) (c→ P ) ‖ (b→ Q) = (b→ ((c→ P ) ‖ Q)))
(6) (a → P ) ‖ (b → Q) = (a → (P ‖ (b → Q))|b →

((a→ P ) ‖ Q))
ASP predicate concurrent(P,Q,R) is introduced for the

sake of description of parallelization. It means that process p
and Q are composed to be process R through parallelization.

The ASP encoding of the concurrency laws is presented

in Table III.

The ASP rules defined according to the concurrency laws

of CSP make it possible that the processes encoded with

ASP predicates could automatically composed to generate a

new parallel process with the same structure. which allows

us to describe various styles of concurrent systems of larger

scale. Note that we could bound the steps of the paralleliza-

tion of two recursion processes to control the states space.

Example 5: In dining philosophers problem, the behav-

iors of a philosopher while having dinner could be modelled

as a CSP process simply as follows :

Phi = sit → pickForki → pickForki⊕1 → eat →
downForki → downForki⊕1 → up→ Phi

Note that the ⊕ is a plus operator of mode N, represent

the right neighbor of the ith philosopher.

For simplicity, we consider a system consists of 3 philoso-

phers. The compositional process PHS could be obtained

according the CSP algebraic laws:

PHS = Ph1 ‖ Ph2 ‖ Ph3
= μX.(sit → pickFork1 → pickFork2 →

pickFork3 → eat → downFork1 → downFork2 →
downFork3 → up→ X) ‖ Ph3

= sit→ STOP
The system described using ASP are a set of prefix and

concurrent predicates:

{%Phi i=1,2,3

prefix(sit, phi 1, phi).prefix(pickForki, phi 2, phi 1).
prefix(pickForki⊕1, phi 3, phi 2).prefix(eat, phi 4, phi 3

prefix(downForki, phi 5, phi 4).prefix(downForki⊕1,
).phi 6, phi 5).prefix(up, phi, phi 6).

%parallelization
concurrent(ph1, ph2, 1).concurrent(1, ph3, 11).}
Note that the ”1” in concurrent(ph1, ph2, 1) repre-

sents the resulting process ph1 ‖ ph2. The ”11” in

concurrent(1, ph2, 11) represent process Ph1 ‖ Ph2 ‖
Ph3.

Put the predicates set and ASP rules 1-23 as the input of

ASP solver , we can get the answer set below:

{prefix(sit, 2, 1).prefix(pickFork1, 3, 2).prefix(pick
Fork2, 4, 3).prefix(pickFork3, 5, 4).prefix(eat, 6, 5).p
refix(downFork1, 7, 6).prefix(downFork2, 8, 7).prefix
(downFork3, 9, 8).prefix(up, 1, 9).prefix(sit, 12, 11).pre
fix(deadlock, stop, 12).}

where {prefix(sit, 12, 11).prefix(deadlock, stop, 12)}
is the parallel process of Ph1, Ph2, and Ph3.

VIII. EXPERIMENTAL RESULTS

All the methods discussed above are integrated into a

CSP model checker named ACSPChecker. The experimental

results are presented as follows, where the configuration

of computer is Intel Core(TM) i3-2100 CPU, 3.10GHz,

4GB(RAM), 64bit window 7.

Table IV is the situation for the model of 3 philosophers.

It is shown that the preprocessing technique has great effect

on improving the efficiency of verifying properties. The time

of multi-properties verification concurrently is smaller than

the sum of verification respectively. And the verification of

liveness properties is affected by the bounded step k, because

the k determine the size of states space of system.
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Table III
ENCODING CONCURRENCY LAWS WITH ASP RULES

ASP rules Laws Name
prefix(deadlock,stop,T):-prefix(deadlock,stop,R),process(Q),concurrent(R,Q,T). law (1) rule 12
concurrent(M,N,T1):-prefix(X,M,P),prefix(Y,N,Q),X=Y,P!=Q,event(X,P),event(X,Q),event(Y,P),event(Y,Q) rule 13

,concurrent(P,Q,T),not #mod(T,10,0),#succ(T,T1). law (2)
prefix(X,T1,T):- prefix(X,M,P),prefix(Y,N,Q),concurrent(P,Q,T), concurrent(M,N,T1). rule 14
prefix(deadlock,stop,T):-prefix(X,M,P),prefix(Y,N,Q),X!=Y,P!=Q,event(X,P),event(X,Q),event(Y,P) law (3) rule 15

,event(Y,Q),concurrent(P,Q,T).
concurrent(M,Q,T1):-prefix(X,M,P),prefix(Y,N,Q),X!=Y,P!=Q,event(X,P),not event(X,Q),event(Y,P) rule 16

,event(Y,Q),concurrent(P,Q,T),not # mod(T,10,0),#succ(T,T1). law (4)
prefix(X,T1,T):- prefix(X,M,P), prefix(Y,N,Q),concurrent(P,Q,T), concurrent(M,Q,T1). rule 17

concurrent(P,N,T1):-prefix(X,M,P),prefix(Y,N,Q),X!=Y, P!=Q,event(X,P), event(X,Q),not event(Y,P) law (5) rule 18
,event(Y,Q),concurrent(P,Q,T),not #mod(T,10,0),#succ(T,T1).

prefix(Y,T1,T):- prefix(X,M,P),prefix(Y,N,Q),concurrent(P,Q,T), concurrent(P,N,T1). rule 19
concurrent(M,Q,T1):-prefix(X,M,P),prefix(Y,N,Q),X!=Y,P!=Q,event(X,P), not event(X,Q),not event(Y,P) rule 20

,event(Y,Q),concurrent(P,Q,T),not #mod(T,10,0),#succ(T,T1).
prefix(X,T1,T):- prefix(X,M,P),prefix(Y,N,Q),X!=Y,P!=Q, event(X,P), not event(X,Q) rule 21

,not event(Y,P), event(Y,Q),concurrent(P,Q,T),concurrent(M,Q,T1).
concurrent(P,N,T1):-prefix(X,M,P),prefix(Y,N,Q),X!=Y,P!=Q,event(X,P),not event(X,Q),not event(Y,P) law (6) rule 22

,event(Y,Q),concurrent(P,Q,T),not #mod(T,10,0),#succ(T,T1).
prefix(Y,T1,T):- prefix(X,M,P),prefix(Y,N,Q),X!=Y,P!=Q,event(X,P),not event(X,Q),not event(Y,P) rule 23

,event(Y,Q),concurrent(P,Q,T),concurrent(P,N,T1).

Table IV
RESULTS OF ACSPCHECKER WITH BOUNDED K

ACSPChecker CSP Model
(DLV) Pro 1 Pro 2 Sum All

Bounded k=5 0.09/T 0.15/F 0.24 0.11
Bounded k=10 1.32/T 1.38/T 2.70 1.34
Bounded k=15 1.41/T 3.44/T 4.85 3.45
Bounded k=20 6.67/T 6.68/T 13.35 7.39

Table V
RESULTS OF ACSPCHECKER WITH DIFFERENT SOLVERS

ACSPChecker 3 5 7 8
Bounded k=10

Pro 1 1.32 11.42 37.94 85.69
DLV Pro 2 1.34 11.49 38.32 85.25

All 1.35 11.55 38.50 86.46
Pro 1 1.39 11.47 38.08 85.65

Smodel Pro 2 1.41 11.54 38.41 85.22
All 1.46 11.58 35.51 85.40

Pro 1 1.33 11.41 37.96 85.70
Cmodel Pro 2 1.33 11.52 38.29 85.27

All 1.36 11.55 38.51 85.50

Table V collects the results by increasing numbers of

philosophers, where bounded step k is set to be 10 and

the inner solver are DLV, Smodel, Cmodel respectively.

It is shown that the three ASP solvers can complete the

verification effectively. The DLV and Cmodel’s capacity are

nearly the same, DLV is better than Smodel when dealing

with system of small scale. With the increasing numbers of

philosophers, smodel perform better and better.

IX. CONCLUSION

An ASP based CSP bounded model checking framework

is established to achieve the verification of multiple prop-

erties concurrently in one run of a model checker relying

on the feature that ASP is completely free of sequential

dependencies. The framework turns the CSP model checking

problem into a computation problem of answer sets. CTL

is extented with events for specification of properties and

preprocessing technique is proposed to reduce the overhead

of replicated verification of same sub formulas. An ASP

description system is constructed, which can be used to

describe various forms of CSP processes, and it allows

several processes to be composed automatically to generate

a new parallel process. Finally all the methods are integrated

into a new CSP model checking tool - ACSPChecker. The

experiments with the classic dining philosopher’s problem

show the feasibility and efficiency of our methods.

Although preprocessing of multi-properties is helpful of

improving the efficiency of verification in our method, but

the efficiency gap with mainstream model checker such as

FDR,PAT is still big. Reducing the state space by abstraction

techniques and furthermore improving the efficiency of our

verification method will be the research emphasis in the

future.
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