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Abstract—Although being recognized as a critical step in 
automated program repair, fault localization has been only 
loosely coupled into the fixing process in existing program 
repair approaches, in the sense that fault localization has limited 
interactions with other activities in fixing.

We propose in this paper to deeply integrate fault localization 
into the fixing process to achieve more effective and efficient 
program repair. Our approach introduces a feedback loop in 
fixing between the activities for locating the fault causes and those 
for generating and evaluating candidate fixes. The feedback loop 
enables partial evaluation results of candidate fixes to be used 
to locate fault causes more accurately, and eventually leads to 
fixing processes with improved effectiveness and efficiency.

We have implemented the approach into a tool, named 
Re s t o r e , based on the J a id  program repair system. Experiments 
involving faults from the De f e c t s 4J standard benchmark indi-
cate that the integrated fault localization can boost automated 
program repair: Re s t o r e  produced valid fixes to 63 faults and 
correct ones to 38 faults, outperforming any other state-of-the-art 
repair tool for Java while taking 36% less running time compared 
with J a id .

I. In t r o d u c t io n

In the past few years, research on automatically proposing 
simple fixes to program faults, i.e., automated program repair 
(APR), attracted a lot of attention. Given a fault manifested 
by some failing test(s), APR techniques aim to suggest valid 
fixes that can make the program pass the failing test(s) and a 
regression test suite. An important category of APR techniques 
propose fixes in a generate-and-validate (G&V) fashion, i.e., 
they first generate and then check a large amount of candidate 
fixes to find out if any condidate can make all the tests pass. 
Given the search-based nature of G&V APR techniques, good 
knowledge about the fault’s whereabouts is critical for their 
success, and those techniques typically apply fault localization 
to gather that knowledge.

Despite its enormous importance, fault localization has been 
only loosely coupled into the fixing process with G&V APR 
so far. In most cases, fault localization is a one-off activity 
that takes place at the beginning of fixing [1], [2], [3], [4], 
employing spectrum-based techniques [5], [6], [7] to decide 
the order in which locations are used for generating fixes. 
On the one hand, spectrum-based fault localization, while 
easy to implement, has only limited effectiveness [8]; On the 
other hand, they miss the opportunity to make use of the 
extra information produced during fixing to facilitate locating 
the fault. The negative consequences of that include correct 
program elements being attempted in vain during fixing and

suboptimal fixing performance in the end. Approaches like 
GenProg [9], [10], [11] and AE [12] are based on genetic pro­
gramming. In such approaches, variants of the faulty program 
that pass more tests stand a better chance to survive to the 
next generation, essentially tuning the fixing process to focus 
on more promising locations on-the-fly. These approaches, 
however, did not perform well in evaluations, partly because 
the number of tests passed does not provide enough guidance 
and the search “can easily devolve into random search” [13].

We propose in this paper a novel technique to deeply 
integrate fault localization into the fixing process so that 
G&V APR can become more effective and more efficient. 
Specifically, the new technique combines spectrum-based and 
mutation-based techniques into a feedback loop for more 
accurate fault localization. Spectrum-based fault localization 
(SBFL) is computationally inexpensive but with limited ef­
fectiveness; Mutation-based fault localization (MBFL) can 
be more effective but is considerably more expensive. To 
benefit from the high effectivenss while not suffering from the 
potential high cost of MBFL, instead of generating mutants of 
the faulty program by applying mutation operators, the new 
technique drives MBFL using higher-order mutants derived 
from candidate fixes.

We have implemented the technique into a tool named 
Re s t o r e . Re s t o r e  is based on the Ja id  APR tool for Java, which 
abstracts the states of a faulty program during its execution 
using a rich set of boolean typed expressions and uses the state 
information to guide fault localization and fix generation. Ja id  
was able to propose valid fixes to 31 faults, and correct fixes to 
25 faults, from the De f e c t s 4J benchmark [14], In comparison, 
Re s t o r e  was able to produce valid fixes to 63 faults and correct 
fixes to 38, outperforming all existing repair tools for Java 
while taking 36% less running time than Ja id .

While Re s t o r e  is based on the existing tool Ja id , our 
technique is applicable to any program repair tools that use 
fault localization and validate patches through tests. Since 
Ja id  remains one of the most effective automated repair tools 
for Java at the time of this writing, the experimental results 
indicate the potential of the new fault localization technique 
to be integrated into other program repair tools.

Related work. Recently, Timperley et al. [15] investigated 
the application of MBFL in APR. In their study, single-edit 
changes were used to mutate the faulty program, then both the 
original and mutated programs were run against all tests, and 
the test results were compared to compute the suspiciousness
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Fig. 1: An overview of how Re s t o r e  works.

values for the locations. No significant improvement on the 
final repair performance was observed in the study, supposedly 
because simple single-edit mutations were not enough to reveal 
the subtle differences among programs [15]. Compared with 
using first order mutants generated solely for the purpose of 
fault localization, the design in Re s t o r e  offers two advantages. 
First, as candidate fixes, higher-order mutants stand a better 
chance for affecting the test results. Second, results from run­
ning the mutants against the tests are directly useful for both 
fault localization and fix validation, reducing the performance 
overhead.

II. How Re s t o r e  W ORKS

Fig. 1 depicts an overview of the fixing process using 
Re s t o r e . Re s t o r e  expects as input a faulty Java program P , a 
faulty method fixne, and a set T  of test cases for P , where 
at least one test fails due to the fault under repair.

Fixing starts with first identifying a preliminary fist of 
suspicious state snapshots1 through SBFL. In the feedback 
loop that follows, a small number of candidate fixes are first 
generated from selected state snapshots and then partially 
validated, i.e., evaluated using only a subset of tests from T, 
to assess their impacts on the faulty program. Next, the results 
of partial validation are used to calculate the suspiciousness 
values of program locations based on the formula given 
in [16], Afterwards, if some suspicious locations are found 
or all candidates have been validated, the loop terminates and 
the suspicious scores of snapshots are revised to become more 
discriminatory; Otherwise the loop will continue and partially 
validate more fix candidates. In the end, all candidate fixes at 
the suspicious locations are generated and fully validated, i.e., 
checked against all tests from T , and valid fixes that can make 
all tests pass are ranked by their desirability before reported 
to the user.

With the integrated fault localization, the top-ranked snap­
shots have a higher chance of leading to valid fixes when 
used in the following phases of the repair technique. The 
higher-precision fault localization technique means that fewer 
candidates need to be generated and (fully) validated, leading 
to an overall faster process. In turn, Re s t o r e ’s more efficient 
search of the original fix space allows it to explore a larger 
space in comparable time, ultimately leading to the potential 
of valid fixes that are outside j a id ’s fix space.

1In  Ja i d , a  state snapshot s  =  ((, e , v)  captures the  evaluation  resu lt v o f  
a  pred ica te  e  at a  p rogram  location  l.

TOOL VALID CORRECT UNIQUE PRECISION RECALL

R e s t o r e 63 38 5 60% 11%

ACS [17] 23 18 12 78% 5%
CapGen [18] 25 22 3 88% 6%
Elixir [19] 41 26 ? 63% 7%
HDA [20] ? 23 3 ? 6%
Ja i d  [ 4 ] 36 25 1 69% 7%
SimFix [21] 56 34 11 61% 10%

SketchFix [22]
2 6

?
19
34

2
0

7 3 %

?
5%

10%
ssFix [23] 60 20 1 33% 6%

TABLE I: Comparison between Re s t o r e  and state-of-the-art program repair 
tools for Java.

III. Ex p e r im e n t a l  Ev a l u a t io n

As it has become customary to evaluate automated program 
repair tools for Java, our experiments use real-world faults in 
the De f e c t s 4J collection [14], De f e c t s 4J includes 357 faults 
from 5 open-source Java projects; each fault comes with at 
least one test triggering the failure in addition to other passing 
or failing tests.

Effectiveness. Tab. I reports on the number of faults that 
Re s t o r e  was able to repair with a valid fix (VALID) or a 
correct fix (CORRECT), the number of faults no other tool 
can currently fix (UNIQUE), and the corresponding precision 
(CORRECT/v a l i d ) and recall (CORRECT/357) achieved. The 
table also compares the results of Re s t o r e  with those of the 
other APR tools for Java. Re s t o r e  was able to repair, with a 
valid or a correct fix, the most faults from De f e c t s 4J. Re s t o r e , 
ACS, and SimFix can exclusively repair 5 , 12, and 11 faults, 
respectively, which suggests r e s t o r e ’s fix space is somewhat 
complementary to other repair tools for Java.

Efficiency. Re s t o r e  often runs faster than Ja id , even though 
it explores a larger fix space. Compared with that of Ja id , 
the overall running time of Re s t o r e  is 36% shorter and the 
required time for Re s t o r e  to produce a valid fix is 14% shorter.

To better understand how fault localization integration helps 
to improve APR, we also compare the number o f fixes that are 
checked until the first correct fix is found (c2c) by Ja id  and 
Re s t o r e ; The smaller the c2c, the more efficient the fixing 
process. It turns out that Re s t o r e  needs to check 51% fewer 
fixes than Ja id  until it finds the first correct fix.
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