

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2019-IW-003

2019-IW-003

Improving Automated Program Repair with Retrospective Fault

Localization
Tongtong Xu

International Conference on Software Engineering: Companion Proceedings 2019

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion)

Improving Automated Program Repair with
Retrospective Fault Localization

Tongtong X u1’2
1 Department of Computing, The Hong Kong Polytechnic University, China

2 State Key Laboratory for Novel Software Technology, Nanjing University, China

Abstract—Although being recognized as a critical step in
automated program repair, fault localization has been only
loosely coupled into the fixing process in existing program
repair approaches, in the sense that fault localization has limited
interactions with other activities in fixing.

We propose in this paper to deeply integrate fault localization
into the fixing process to achieve more effective and efficient
program repair. Our approach introduces a feedback loop in
fixing between the activities for locating the fault causes and those
for generating and evaluating candidate fixes. The feedback loop
enables partial evaluation results of candidate fixes to be used
to locate fault causes more accurately, and eventually leads to
fixing processes with improved effectiveness and efficiency.

We have implemented the approach into a tool, named
Re s t o r e , based on the J a id program repair system. Experiments
involving faults from the De f e c t s 4J standard benchmark indi-
cate that the integrated fault localization can boost automated
program repair: Re s t o r e produced valid fixes to 63 faults and
correct ones to 38 faults, outperforming any other state-of-the-art
repair tool for Java while taking 36% less running time compared
with J a id .

I. In t r o d u c t io n

In the past few years, research on automatically proposing
simple fixes to program faults, i.e., automated program repair
(APR), attracted a lot of attention. Given a fault manifested
by some failing test(s), APR techniques aim to suggest valid
fixes that can make the program pass the failing test(s) and a
regression test suite. An important category of APR techniques
propose fixes in a generate-and-validate (G&V) fashion, i.e.,
they first generate and then check a large amount of candidate
fixes to find out if any condidate can make all the tests pass.
Given the search-based nature of G&V APR techniques, good
knowledge about the fault’s whereabouts is critical for their
success, and those techniques typically apply fault localization
to gather that knowledge.

Despite its enormous importance, fault localization has been
only loosely coupled into the fixing process with G&V APR
so far. In most cases, fault localization is a one-off activity
that takes place at the beginning of fixing [1], [2], [3], [4],
employing spectrum-based techniques [5], [6], [7] to decide
the order in which locations are used for generating fixes.
On the one hand, spectrum-based fault localization, while
easy to implement, has only limited effectiveness [8]; On the
other hand, they miss the opportunity to make use of the
extra information produced during fixing to facilitate locating
the fault. The negative consequences of that include correct
program elements being attempted in vain during fixing and

suboptimal fixing performance in the end. Approaches like
GenProg [9], [10], [11] and AE [12] are based on genetic pro­
gramming. In such approaches, variants of the faulty program
that pass more tests stand a better chance to survive to the
next generation, essentially tuning the fixing process to focus
on more promising locations on-the-fly. These approaches,
however, did not perform well in evaluations, partly because
the number of tests passed does not provide enough guidance
and the search “can easily devolve into random search” [13].

We propose in this paper a novel technique to deeply
integrate fault localization into the fixing process so that
G&V APR can become more effective and more efficient.
Specifically, the new technique combines spectrum-based and
mutation-based techniques into a feedback loop for more
accurate fault localization. Spectrum-based fault localization
(SBFL) is computationally inexpensive but with limited ef­
fectiveness; Mutation-based fault localization (MBFL) can
be more effective but is considerably more expensive. To
benefit from the high effectivenss while not suffering from the
potential high cost of MBFL, instead of generating mutants of
the faulty program by applying mutation operators, the new
technique drives MBFL using higher-order mutants derived
from candidate fixes.

We have implemented the technique into a tool named
Re s t o r e . Re s t o r e is based on the Ja id APR tool for Java, which
abstracts the states of a faulty program during its execution
using a rich set of boolean typed expressions and uses the state
information to guide fault localization and fix generation. Ja id
was able to propose valid fixes to 31 faults, and correct fixes to
25 faults, from the De f e c t s 4J benchmark [14], In comparison,
Re s t o r e was able to produce valid fixes to 63 faults and correct
fixes to 38, outperforming all existing repair tools for Java
while taking 36% less running time than Ja id .

While Re s t o r e is based on the existing tool Ja id , our
technique is applicable to any program repair tools that use
fault localization and validate patches through tests. Since
Ja id remains one of the most effective automated repair tools
for Java at the time of this writing, the experimental results
indicate the potential of the new fault localization technique
to be integrated into other program repair tools.

Related work. Recently, Timperley et al. [15] investigated
the application of MBFL in APR. In their study, single-edit
changes were used to mutate the faulty program, then both the
original and mutated programs were run against all tests, and
the test results were compared to compute the suspiciousness

2574-1934/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-Companion.2019.00066

159

For Research Only

Fig. 1: An overview of how Re s t o r e works.

values for the locations. No significant improvement on the
final repair performance was observed in the study, supposedly
because simple single-edit mutations were not enough to reveal
the subtle differences among programs [15]. Compared with
using first order mutants generated solely for the purpose of
fault localization, the design in Re s t o r e offers two advantages.
First, as candidate fixes, higher-order mutants stand a better
chance for affecting the test results. Second, results from run­
ning the mutants against the tests are directly useful for both
fault localization and fix validation, reducing the performance
overhead.

II. How Re s t o r e W ORKS

Fig. 1 depicts an overview of the fixing process using
Re s t o r e . Re s t o r e expects as input a faulty Java program P , a
faulty method fixne, and a set T of test cases for P , where
at least one test fails due to the fault under repair.

Fixing starts with first identifying a preliminary fist of
suspicious state snapshots1 through SBFL. In the feedback
loop that follows, a small number of candidate fixes are first
generated from selected state snapshots and then partially
validated, i.e., evaluated using only a subset of tests from T,
to assess their impacts on the faulty program. Next, the results
of partial validation are used to calculate the suspiciousness
values of program locations based on the formula given
in [16], Afterwards, if some suspicious locations are found
or all candidates have been validated, the loop terminates and
the suspicious scores of snapshots are revised to become more
discriminatory; Otherwise the loop will continue and partially
validate more fix candidates. In the end, all candidate fixes at
the suspicious locations are generated and fully validated, i.e.,
checked against all tests from T , and valid fixes that can make
all tests pass are ranked by their desirability before reported
to the user.

With the integrated fault localization, the top-ranked snap­
shots have a higher chance of leading to valid fixes when
used in the following phases of the repair technique. The
higher-precision fault localization technique means that fewer
candidates need to be generated and (fully) validated, leading
to an overall faster process. In turn, Re s t o r e ’s more efficient
search of the original fix space allows it to explore a larger
space in comparable time, ultimately leading to the potential
of valid fixes that are outside j a id ’s fix space.

1In Ja i d , a state snapshot s = ((, e , v) captures the evaluation resu lt v o f
a pred ica te e at a p rogram location l.

TOOL VALID CORRECT UNIQUE PRECISION RECALL

R e s t o r e 63 38 5 60% 11%

ACS [17] 23 18 12 78% 5%
CapGen [18] 25 22 3 88% 6%
Elixir [19] 41 26 ? 63% 7%
HDA [20] ? 23 3 ? 6%
Ja i d [4] 36 25 1 69% 7%
SimFix [21] 56 34 11 61% 10%

SketchFix [22]
2 6

?
19
34

2
0

7 3 %

?
5%

10%
ssFix [23] 60 20 1 33% 6%

TABLE I: Comparison between Re s t o r e and state-of-the-art program repair
tools for Java.

III. Ex p e r im e n t a l Ev a l u a t io n

As it has become customary to evaluate automated program
repair tools for Java, our experiments use real-world faults in
the De f e c t s 4J collection [14], De f e c t s 4J includes 357 faults
from 5 open-source Java projects; each fault comes with at
least one test triggering the failure in addition to other passing
or failing tests.

Effectiveness. Tab. I reports on the number of faults that
Re s t o r e was able to repair with a valid fix (VALID) or a
correct fix (CORRECT), the number of faults no other tool
can currently fix (UNIQUE), and the corresponding precision
(CORRECT/v a l i d) and recall (CORRECT/357) achieved. The
table also compares the results of Re s t o r e with those of the
other APR tools for Java. Re s t o r e was able to repair, with a
valid or a correct fix, the most faults from De f e c t s 4J. Re s t o r e ,
ACS, and SimFix can exclusively repair 5 , 12, and 11 faults,
respectively, which suggests r e s t o r e ’s fix space is somewhat
complementary to other repair tools for Java.

Efficiency. Re s t o r e often runs faster than Ja id , even though
it explores a larger fix space. Compared with that of Ja id ,
the overall running time of Re s t o r e is 36% shorter and the
required time for Re s t o r e to produce a valid fix is 14% shorter.

To better understand how fault localization integration helps
to improve APR, we also compare the number o f fixes that are
checked until the first correct fix is found (c2c) by Ja id and
Re s t o r e ; The smaller the c2c, the more efficient the fixing
process. It turns out that Re s t o r e needs to check 51% fewer
fixes than Ja id until it finds the first correct fix.

Acknowledgment This research was partly supported by
the Hong Kong RGC General Research Fund (GRF) (PolyU
152703/16E) and The Hong Kong Polytechnic University
internal fund (1-ZVJ1 and G-YBXU).

160

For Research Only

R e f e r e n c e s

[1] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller,
“Automated Fixing of Programs with Contracts,” IEEE Transactions on
Software Engineering, vol. 40, no. 5, pp. 427-449, 2014.

[2] F. Long and M. Rinard, “Staged Program Repair with Condition Syn­
thesis,” in Proceedings o f the 2015 10th Joint Meeting on Foundations
o f Software Engineering, ser. ESEC/FSE 2015, New York, NY, USA,
2015, pp. 166-178.

[3] ------ , “Automatic patch generation by learning correct code,” in Pro­
ceedings o f the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles o f Programming Languages, ser. POPL ’16. New York, NY,
USA: ACM, 2016, pp. 298-312.

[4] L. Chen, Y. Pei, and C. A. Furia, “Contract-based Program Repair
Without the Contracts,” in Proceedings o f the 32Nd IEEE/ACM Interna­
tional Conference on Automated Software Engineering, ser. ASE 2017.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 637-647.

[5] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings o f the 20th
IEEE/ACM International Conference on Automated Software Engineer­
ing, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 273-282.

[6] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in Proceedings o f the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’05. New York, NY, USA: ACM, 2005, pp. 15-26.

[7] W. Eric Wong, Y. Debroy, and B. Choi, “A family of code coverage-
based heuristics for effective fault localization,” J. Syst. Softw., vol. 83,
no. 2, pp. 188-208, Feb. 2010.

[8] C. Pamin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings o f the 2011 International Sym­
posium on Software Testing and Analysis, ser. ISSTA ’l l . New York,
NY, USA: ACM, 2011, pp. 199-209.

[9] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings o f the IEEE
31st International Conference on Software Engineering, 2009, pp. 364—
374.

[10] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic
program repair with evolutionary computation,” Communications o f the
ACM, vol. 53, no. 5, pp. 109-116, 2010.

[11] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in 2012 34th International Conference on Software Engineering
(ICSE), ser. ICSE ’12, Jun. 2012, pp. 3-13.

[12] W. Weimer, Z. Fry, and S. Forrest, “Leveraging program equivalence for
adaptive program repair: Models and first results,” in 2013 IEEE/ACM
28th International Conference on Automated Software Engineering, Nov.
2013, pp. 356-366.

[13] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings o f the 2015 International Symposium on
Software Testing and Analysis, ser. ISSTA 2015. New York, NY, USA:
ACM, 2015, pp. 24-36.

[14] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for Java programs,” in Pro­
ceedings o f the 2014 International Symposium on Software Testing and
Analysis. ACM, 2014, pp. 437-440, http://defects4j.org.

[15] C. S. Timperley, S. Stepney, and C. Le Goues, “An Investigation
into the Use of Mutation Analysis for Automated Program Repair,”
in International Symposium on Search Based Software Engineering.
Paderbom: York, Aug. 2017, pp. 99-114.

[16] M. Papadakis and Y. Le Traon, “Metallaxis-FL: Mutation-based Fault
Localization,” Software Testing, Verification, and Reliability, vol. 25, no.
5-7, pp. 605-628, August 2015.

[17] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in Proceedings o f the
39th International Conference on Software Engineering, ser. ICSE ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 416-426.

[18] M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung, “Context-aware patch
generation for better automated program repair,” in Proceedings o f the
40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 1-11.

[19] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective
object oriented program repair,” in Proceedings o f the 32Nd IEEE/ACM

International Conference on Automated Software Engineering, ser. ASE
2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 648-659.

[20] X. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in Proceedings o f the IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering. Osaka, Japan: IEEE Computer
Society, 2016, pp. 213-224.

[21] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proceedings o f
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21,
2018, 2018, pp. 298-309.

[22] J. Hua, M. Zhang, K. Wang, and S. Khurshid, ‘Towards practical
program repair with on-demand candidate generation,” in Proceedings
o f the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 12-23.

[23] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated
program repair,” in Proceedings o f the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2017. Pis­
cataway, NJ, USA: IEEE Press, 2017, pp. 660-670.

161

For Research Only

