

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2019-IC-002

2019-IC-002

Easy Modelling and Verification of Unpredictable and

Preemptive Interrupt-driven Systems
Minxue Pan, Shouyu Chen, Yu Pei, Tian Zhang, Xuandong Li

International Conference on Software Engineering 2019

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

Easy Modelling and Verification of Unpredictable
and Preemptive Interrupt-driven Systems

Minxue Pan†‡∗, Shouyu Chen†§, Yu Pei¶, Tian Zhang†§∗ and Xuandong Li†§∗
†State Key Laboratory for Novel Software Technology, Nanjing University, China

‡Software Institute, Nanjing University, China
§Department of Computer Science and Technology, Nanjing University, China

¶Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

mxp@nju.edu.cn, remainxy@gmail.com, csypei@comp.polyu.edu.hk, {ztluck,lxd}@nju.edu.cn

Abstract—The widespread real-time and embedded systems
are mostly interrupt-driven because their heavy interaction
with the environment is often initiated by interrupts. With the
interrupt arrival being unpredictable and the interrupt handling
being preemptive, a large number of possible system behaviours
are generated, which makes the correctness assurance of such
systems difficult and costly. Model checking is considered to be
one of the effective methods for exhausting behavioural state
space for correctness. However, existing modelling approaches for
interrupt-driven systems are based on either calculus or automata
theory, and have a steep learning curve. To address this problem,
we propose a new modelling language called interrupt sequence
diagram (ISD). By extending the popular UML sequence diagram
notations, the ISD supports the modelling of interrupts’ essential
features visually and concisely. We also propose an automata-
based semantics for ISD, based on which ISD can be transformed
to a subset of hybrid automata so as to leverage the abundant
off-the-shelf checkers. Experiments on examples from both real-
world and existing literature were conducted, and the results
demonstrate our approach’s usability and effectiveness.

Index Terms—Interrupt-driven systems, Sequence diagrams,
System modelling, Model checking.

I. INTRODUCTION

Interrupt-driven systems, where processing is initiated by

interrupt requests, are gaining popularity since interrupts are a

key design primitive for software systems that actively make

interactions among system components and closely interact

with the environment. They are commonplace in all styles

of computing platforms, including safety-critical embedded

platforms, low-power mobile platforms and high-end infor-

mation systems [1]. Particularly, most cyber-physical systems

are interrupt-driven, since interrupts are an extremely common

form of concurrency that the control software uses to obtain

sensor data from its physical environment [2], and enable

timely response to outside stimuli in a power-efficient way

[1]. However, interrupts can cause problems, for many of

them can happen at an arbitrary time and preempt the running

tasks, which adds non-determinism and concurrency to the

systems. This poses challenges to the development of reliable

interrupt-driven systems, as designers have to explicitly handle

unpredictable system behaviour caused by interrupts. As a

consequence, interrupt-driven systems are error-prone [3], [4],

[5], and need extensive efforts for quality assurance.

∗ Corresponding author.

Testing is one of the primary ways to assure the quality of

systems. However, existing testing techniques for sequential

programs [6], [7] or even concurrent programs [8], [9] have not

addressed the problems caused by interrupts adequately. They

often cannot identify or capture the concurrency brought about

by interrupts precisely. To address this limitation, researchers

have tried interrupt scheduling algorithms that fire interrupts

at proper points of time [5], or suitable test adequacy criteria

to guide and evaluate the testing process [4]. Nonetheless,

testing of interrupt-driven systems can still be insufficient. The

generation of interrupt requests is usually random and non-

deterministic, and the interrupt handling is often preemptive

and nested, which results in that the number of possible system

behaviours grows exponentially in the number of occurred

interrupts, while defects related to specific behaviour are

difficult to detect by testing approach [5].

Model checking, on the other hand, can rigorously verify a

system’s behaviour by exhaustively exploring the state space of

a software system. Recent studies have noticed the significance

and uniqueness of interrupt-driven systems, and new modelling

languages are proposed. For example, interrupt time automata

(ITA) [10], [11] are proposed to model multi-task systems

with interrupts. They form a subclass of stopwatch automata

[12], where the real-valued variables (with a rate of 0 or

1) are organised along priority levels. ITA are powerful in

expressiveness, however, we argue that industrial designers

may find them difficult to use. When modelling with ITA,

designers have to consider all possible interleavings of states,

as well as the clocks that specify the timing requirements. On

the other hand, UML sequence diagrams [13] offer an intuitive

and visual way of describing interactions among system com-

ponents and the environment. They are widely used in industry.

According to a survey conducted in [14], sequence diagrams

were recognised as one of the most frequently used diagrams,

and system analysts and programmers admitted that they

rely most on sequence diagrams along with class diagrams

to capture requirements and exchange information. However,

sequence diagrams are still inadequate to model interrupt-

driven systems. Interrupts’ arrival can be unpredictable, and

their handling is preemptive and prioritised. Time could be

a complex concept too, since the execution time of tasks

and interrupt service routines (ISRs) can be interrupted and

212

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00037

For Research Only

resumed. These interrupt-specific features are not supported

by sequence diagrams. To overcome these limitations, we

propose the Interrupt Sequence Diagram (ISD) which extends

the sequence diagram with interrupt modelling mechanisms.

The extension adopts the UML standard notation for easy

comprehension. We propose to introduce a new Combined-
Fragment “int” to specifically model interrupts. A Combined-

Fragment int can model an interrupt’s unpredictable arrival

and its handler’s prioritised preemptive execution. As for time,

tasks/ISRs in interrupt-driven systems can often be preempted

during execution, which means the actual execution time

does not equal to the time duration from the beginning to

the completion of the tasks/ISRs. Considering that the UML

sequence diagram only supports the latter form of timing

constraints, which is not sufficient for interrupt-driven systems,

we propose a new kind of timing constraints called task
constraints to model the actual execution time of tasks/ISRs.

To facilitate formal verification, we also provide an

automata-based semantics for ISD. We use integration au-

tomata (IA) [15], [16], a subset of hybrid automata, to interpret

the semantics of ISD, which, also enables the employment

of the abundant off-the-shelf hybrid automata checkers for

verification. We conducted multiple case studies with the

state-of-the-art tool SpaceEx [17], and the experiment results

consistently showed that our approach can effectively find

defects. Particularly, we believe that the best trait of ISD is

that it is easy to learn and use, and therefore, we conducted

an experiment to compare the usability of ISD and ITA. The

results confirmed ISD’s good usability. The main contributions

of this paper are:

• We propose a novel modelling language ISD to specify

the interrupt-driven systems. To our best knowledge, ISD

is the first sequence diagram based language which sup-

ports the specification of interrupt’s unpredictable arrival,

prioritised preemptive handling and the time suspension

and resumption;

• We propose an automata-based semantics for ISD, based

on which ISD can be transformed to hybrid automata for

correctness checking;

• We developed a tool named ISDChecker, which is, to our

knowledge, the first available tool that checks graphical

models for interrupt-driven systems. Evaluation on pre-

vious studied and real-world cases shows ISDChecker’s

effectiveness and usability.

The rest of the paper is organised as follows. In the next

section, we introduce the UML sequence diagram and a

modelling example. Section 3 proposes the ISD’s notation,

and Section 4 presents its automata-based semantics. Section

5 conducts a series of experiments to evaluate our approach’s

usability, effectiveness and efficiency. Section 6 discusses the

related work, and Section 7 draws the conclusion.

II. SEQUENCE DIAGRAM AND MOTIVATING EXAMPLE

UML sequence diagrams form a class of important UML

interaction models. Each of them describes a set of interac-

tive scenarios, as Fig. 1 shows an example. There are two

SD satellite spin

GUTTCUCC

e0 e1
e2

e3

e5 e4
e7

e6
e8e9

loop (1,3)
e10 e11

e12
e13

m1
m2

m3
m4
m5

m6

m7

Fig. 1. A sequence diagram example

dimensions in a sequence diagram. The vertical dimension

represents time, and the horizontal dimension consists of dif-

ferent lifelines representing participating entities. Information

exchange between lifelines is carried out by messages repre-

sented by arrows. In the simplest form, a sequence diagram

depicts the desired exchange of messages and corresponds

to a single execution of the system. To specify complex

scenarios conveniently, sequence diagram supports operations

such as choice and iteration through CombinedFragments (or

fragments for short). A fragment is defined by an interaction

operator and one or more interaction operands. The notation

for a fragment is a solid-outline rectangle, and the operator is

shown in a pentagon in the upper left corner of the rectangle.

Each operand is composed of a subset of messages in the

diagram. In this paper, we consider three most frequently used

interaction operators, which are loop, alt and opt. The operator

loop designates that the fragment represents a loop, so its

operand will be repeated a number of times. A guard that

may include a lower and an upper number of iterations of the

loop can be associated with the fragment. Fig. 1 shows an

example of the loop fragment, where the iteration times is

restricted from 1 to 3 times. The operator alt designates that

the fragment represents a choice of behaviour. At most one

of the operands will be chosen, and the chosen operand must

have a guard expression that evaluates to true at this point

in the interaction. The operator opt has a similar meaning

as the operator alt, except that it has only one operand. The

fragment opt specifies the behaviour where either the operand

happens or nothing happens. In this paper, we enforce strict

sequencing on the fragments. Consequently, a fragment will

cover all lifelines, so that when the execution control of flow

enters a fragment, all lifelines enter the fragment.

Sequence diagrams are popular in industry, because they

help designers focus on the most frequent or critical scenar-

ios. However, they are insufficient to model interrupt-driven

systems. To support this claim, we present a real-world case

of designing the spin action in a satellite controlling system.

The original sequence diagram provided by the designers

was an informal sketch, which we revised to conform to

the UML standard and to exclude sensitive information. As

shown in Fig. 1, the spin action, involving four participating

213

For Research Only

entities, consists of three operations. In the first operation,

the Command Centre (CC) sends an inquiry to the satellite’s

Computing Unit (CU) about the status of the satellite (Message

m1 and m2). Then, in the second operation, CU informs CC

that it is going to produce the instructions for the satellite to

spin an angle to better absorb sunlight, and in the meantime,

will not response to CC commands (Message m3). Then CU

sends the instructions to the thruster (TT) to be executed

(Message m4) and TT acknowledges CU when the spin action

is completed (Message m5). In the third operation, the satellite

communicates with the Ground Unit (GU) periodically to

exchange information (Message m6 and m7). The commu-

nication cannot be interrupted by other operations, or the

communication link would be lost. Should the interpretation of

the diagram in Fig. 1 strictly follow the UML specification,

the system should be running without problems, because in

a UML sequence diagram, events corresponding to message

sending and receiving are subject to predefined partial orders

deduced from the visual order of the diagram (see [13] for

more details about the partial orders among events). Thus, in

Fig. 1, e4 would be considered to happen after e2, and e10 after

e9, which means the three operations happen in sequential

order. However, this sequence does not cover all the actual

system behaviours. In reality, the operation of CC querying

CU and the operation of CU communicating with GU are both

interrupts, so their arrivals are unpredictable. Even worse, the

former has a higher priority than the latter, which means that

the inquiry from CC to CU is not obliged to happen before CU

and GU’s communication, but can interrupt the communication

process and cause a problematic behaviour. The engineers

had not noticed the problem and implemented the system

as designed, which resulted in a costly failure during the

system integration test. To prevent this kind of disaster, it

is expected that the problematic behaviour be captured by

the designs and found by some sort of checking methods.

Unfortunately, because of the partial orders enforced on the

events, it is impossible for a UML sequence diagram to specify

unpredictable interrupts. In the following section, we propose a

smooth extension to the UML sequence diagrams to allow the

specification of unpredictable and preemptive interrupt-driven

system behaviours.

III. INTERRUPT SEQUENCE DIAGRAM

The Interrupt sequence diagram (ISD) is an extension of the

UML sequence diagram to model interrupt-driven systems. We

notice that the occurrences of interrupts are often spontaneous

and unpredictable, and therefore, propose a new fragment

called int, consisting of one operator and one operand, to

model interrupts. The operator int declares that the fragment

represents an interrupt behaviour, whose syntax is:

‘int’ 〈priority exp〉 [〈occur bound〉] [‘[’〈mask cond〉*‘]’].

priority exp models the interrupt’s priority, occur bound spec-

ifies the times the interrupt can occur and the separation in time

between two consecutive interrupt arrivals, and mask cond
models the interrupt mask condition. In the following, we give

detailed explanations about different parts of the int fragment.

ISD satellite spin

GUTTCUCC

e0

int (p=2) [COMP_FLAG=1] QUERY

e1

e2
e3

e5
e4 {COMP_FLAG:=0}

e7
{COMP_FLAG:=1} e6

e8e9

int (p=1) (1,3) COMM
e10 e11

e12
e13

0.5≤e2-e1≤0.8

30≤e8-e7≤35

0.6≤(e3-e0)↑≤1
0.1≤e6-e4≤0.1 1≤e11-e10≤2 2≤(e13-e10)↑≤5

0.2≤e9-e8≤1.4

m1
m2

m3

m4

m5

m6

m7

Fig. 2. An interrupt sequence diagram example

A. Order of Events

The events in the operand of the int fragment specify the

execution process of the interrupt arrival and handling. As an

event will not belong to two interrupts, no overlapping of two

int fragments is allowed. To depict interrupt’s unpredictabil-

ity, it is required that there should be no partial orders deduced

from the visual orderings of messages between the events from

inside and outside an int fragment, respectively. For example,

in Fig. 2, e2 and e4 are two events inside and outside an int
fragment, respectively, and thus there is no ordering requiring

that e2 occur before e4.

To specify the prioritised preemption of interrupts, a pri-
ority expression is proposed, defined as 〈priority exp〉::=
‘(p=’〈priority〉‘)’, where 〈priority〉::=non-negative natural.
The priority of the int fragment comes from the priority of

the interrupt and applies to all the events in the fragment.

To be consistent, we assign a default priority to the entire

diagram, which applies to events not in any int fragment. In

fact, excluding the int fragments, the entire diagram with its

enclosed loop, alt and opt fragments can also be viewed as

a fragment, except its priority is the lowest. From now on, we

use the term interaction fragment indiscriminately to represent

the int fragment or the diagram excluding all int fragments.

The priority of the interaction fragments introduces a new kind

of orderings among events: when the execution control of flow

is in an interaction fragment of priority p1, it can move to

another interaction fragment of priority p2 if p2 > p1, but not

vice versa. Formal semantics of the int fragment is presented

in Sec. IV-B4.

Let us revisit the example of the satellite spin and re-model

it with ISD, as shown in Fig. 2. There are two int fragments:

QUERY and COMM. QUERY has a priority of 1, and COMM

has a priority of 2. So, events in int COMM can occur after

the occurrence of e10 and before the occurrence of e12, causing

the communication between CU and GU to fail. With the help

of int fragments, a defect of the design can be revealed.

214

For Research Only

B. Interrupt Mask

Designers often use interrupt masks to prevent some less

important interrupts from interfering with more crucial tasks.

The ISD supports modelling the interrupt masks by using

mask variable updates and tests. Each interrupt mask is

modelled by a mask variable, with a value from {0, 1}. The

enablement or disablement of the interrupt mask is achieved

by setting the variable’s value to 1 or 0, respectively. In UML

sequence diagrams, the values of variables are updated via

actions associated with messages, whereas in ISD we need a

more accurate mechanism to model mask variables since the

enablement/disablement of interrupts always happens at the

beginning or the end of uninterruptible operations. Thus, the

ISD supports variable updating actions to be associated with

events, since it is the events that represent the beginning and

the ending of message processing.

An int fragment can have mask conditions, which

are defined as 〈mask cond〉::= 〈mask variable〉‘=1’, where

〈mask variable〉::=letter tokens. The events in the int frag-

ment can happen when all mask conditions are evaluated

as 1, or no mask condition is provided. For example, the

int fragment COMM in Fig. 2 has one mask condition

“COMP FLAG=1”. Therefore, the events in this fragment can

happen when variable COMP FLAG is set to 1.

C. Modelling of Time

The other mechanism to reduce the unpredictability imposed

by interrupts is the timing specification. Timing specification

can specify the timing properties of the system. Designers

can designate the time point or interval in which an interrupt

could happen, or the duration of the interrupt handler, to

restrict interrupts’ behaviour and reduce their uncertainty. For

example, suppose that a system consists of one uninterruptible

task and one interrupt. If some timing constraints specify that

the interrupt would not occur during the execution of the task,

no interrupt mask would need to be disabled, which could save

the computing resource and time. In UML sequence diagrams,

the timing mechanisms are all about the time duration between

two events, which specifies how much time has passed from

the occurrence of one event till the other. By using event

names to represent the occurrence time of events, the timing

constraint can be defined as a ≤ e − e′ ≤ b (a, b are real

numbers, b may be ∞), which requires that the time duration

from the occurrence of e′ till the occurrence of e be within

the range [a, b]. Although this kind of timing constraints is

sufficient for most systems, they cannot meet the need to

specify interrupt-driven systems. The designers of interrupt-

driven systems often need to specify the actual execution

time of a task, however, it is not the time duration between

the task’s start and completion events, for its execution can

be interrupted by unpredictable interrupt occurrences. For

example, in the satellite spin example in Fig. 2, although

one may know that executing the interrupt COMM (from

the occurrence of e10 to that of e13) requires 2 to 5 time

units, it is incorrect to model this time information using

2 ≤ e13 − e10 ≤ 5, because the execution of COMM can be

suspended by QUERY. We provide a new mechanism called

task constraint. A task constraint, denoted as a ≤ (e−e′) ↑≤ b,
is about two events e and e′ satisfying that both events are from

the same interaction fragment f . The value of (e − e′) ↑ is

computed as the time duration from the occurrence of e′ till

the occurrence of e, subtracting the time when the diagram’s

execution control of flow is not in f . For example, the task

constraint 2 ≤ (e13−e10) ↑≤ 5 in Fig. 2 specifies the time that

the execution control of flow stays in the fragment COMM is

between 2 to 5 time units. Formal semantics of timing and

task constraints are given in Section IV-B5.

Furthermore, it is possible to specify the minimum and

maximum times an interrupt can occur, and, for interrupt

that can occur multiple times, the minimum separation in

time between two consecutive interrupt arrivals. We use

the expression occur bound to specify these timing require-

ments, which is defined as 〈occur bound〉::=‘(’〈min〉‘,’〈max〉
[‘,’〈separation〉]‘)’, where 〈min〉::=positive natural, 〈max〉 ::=
positive natural (greater than or equal to 〈min〉) | ‘∞’,
〈separation〉::=positive real. Without an explicit occur bound,

the interrupt is supposed to occur exactly once by default, and,

without the separation field provided, arbitrary separation time

(positive real) is allowed. For example, the occur bound (1, 3)
of the int fragment COMM specifies that it can occur 1 to 3

times, and the minimum separation time can be arbitrary.

D. ISD Syntax

Now we can formally define the syntax of ISD as follows.

Definition 1: An interrupt sequence diagram (ISD) is a tuple

D = (L,E,M,R, V, U, F, C), where

• L is a finite set of lifelines;

• E is a finite set of prioritised events whose elements are

pairs (e, p), where e is the event and p is its priority.

• M is a finite set of messages. For each m ∈ M , m =
(e, e′), where e, e′ ∈ E correspond to the sending and

the receiving of m, respectively;

• R : E → L is a labelling function which maps each event

e ∈ E to a its sending (receiving) lifeline R(e) ∈ L;

• V is a finite set of message orderings whose elements

are a pair (m,m′) (m,m′ ∈ M) such that m visually

precedes m′;
• U is a finite set of mask variable updates, whose el-

ement is a tuple (var, val, e) where var is a variable,

val ∈ {0, 1} is the updated value and e ∈ E is the event

associated with the variable update;

• F = Floop ∪ Falt ∪ Fopt ∪ Fint is a finite set of

fragments. Each element f ∈ F is a tuple (o, g,Mf)
where o ∈ {loop, alt, opt, int} is the operator, g is the

guard expression of f , and Mf ∈ 2M is a subset of M ;

• C is a finite set of timing constraints and task constraints.

IV. IA BASED SEMANTICS

We define an automata-based semantics for ISD to facilitate

formal verification. The semantics of ISD is interpreted by

integration automata (IA), which are a special case of hybrid

215

For Research Only

automata. In this section, we will first visit the concept of IA,

followed by the presentation of the semantics definition.

A. Integration Automata

Hybrid automata are finite automata extended with a finite

set of real typed variables whose values change continuously at

each location. The change rates of the variables are designated

by the flow conditions associated with locations. There are also

invariants in each location indicating that the conditions need

to be satisfied when the location is active. Transitions between

locations are guarded by jump conditions on the variables, and

their executions may reset some of the variables by the reset
actions. If the invariants, jump conditions and reset actions

are all linear expressions over the variables, and the flow

conditions specifying the allowed values of the first derivatives

of the variables are either 0 or 1, then the hybrid automata are

called integration automata. We can see that the restriction on

flow conditions of integration automata makes it suitable to

model time suspension and resumption. Formal definitions of

the integration automata can be found in [16].

B. ISD Semantics

We follow the generally agreed semantics of the basic

fragment and the alt, opt and loop fragments. Furthermore,

we define the semantics for the int fragment, task constraints

and mask variables designed for modelling interrupts.

A common approach to interpreting sequence-based dia-

grams using automata is to use one automaton for every object

and their parallel composition for the whole diagram [18],

[19]. The composition requires the synchronisation between

different object automata, which is achieved by using syn-

chronisation labels corresponding to the message names. Since

transitions with the same synchronised label must happen

simultaneously, it is impossible to distinguish the message

sending and receiving events over time. In interrupt-driven

systems, the time duration between events plays a vital role in

correct system functions. Thus, in contrast to this approach,

we propose to use fragment as a basic unit for semantics

interpretation, similar to [20].

Algorithm 1: Algorithm of constructing an automaton for

a basic fragment

1 construct the initial location q0;
2 for each non-final location q that has no outgoing edges do
3 Acquire the set L of events in the path from q0 to q;
4 for any event e ∈ (E − L) do
5 if any event e′ satisfying (e′ ≺ e) ∈ O is in L then
6 construct a location q′ and a transition (q, e, q′);
7 for any location q′′(q′′ �= q′) do
8 L′ ← set of events in the path from q0 to q′;
9 L′′ ← set of events in the path from q0 to q′′;

10 if L′ = L′′ then
11 q′′ ← merge q′ and q′′;
12 change (q, e, q′) to (q, e, q′′);
13 end
14 end
15 if q has no outgoing edges then
16 mark q as final;
17 end

objA

ISD Basic

m1

objB objC

e1 e2

m2
e4 e3

q0 q1

q2

q3

q4
e1

e2

e3

e3

e2

q6

e4

e4
q5

e2

Fig. 3. A basic fragment and its corresponding automaton

1) The Basic Fragment: The simplest form of ISD is a

basic fragment that does not have any nested fragments. The

behaviour of a basic fragment is a set of event sequences,

which are permutations of events, satisfying a partial order

relation of events deduced from the visual orderings. So, to

interpret the behaviour of a basic fragment, we can use an

automaton, of which the set of event sequences along all paths

is equivalent to the set of event sequences of the fragment.

Given a basic fragment, let E be its event set and O be the

set of event orderings where e ≺ e′ indicates that e must

occur before e′. Algorithm 1 takes E and O as its input and

outputs an automaton to interpret the fragment. It focuses only

on the event sequences, while the timing and task constraints

are handled in Sec. IV-B5. We use an example to explain the

algorithm. Fig. 3 shows the example of a basic fragment and

its corresponding automaton. The fragment has a set of events

E = {e1, e2, e3, e4} and a set of event orderings O = {e1 ≺
e2, e1 ≺ e3, e3 ≺ e4}. Suppose we follow Algorithm 1 and

has constructed a part of the automaton, which is drawn in thin

lines. Now for location q3, we acquire the set L = {e1, e3}
which comprises events in the path from q0 to q3 (line 3).
Following line 4 we pick event e2 because it is in E − L.

Since e1 is already in L, the condition in line 5 is satisfied,

and a location q′ and a transition (q3, e2, q
′) is constructed

(line 6). Location q′ is not shown in Fig. 3 because when

executing line 7-10, we find that the set of events in the path

from q0 to q′ is the same as from q0 to q4. Since q4 is an

existing location, we merge q′ into q4 (line 11) and change

(q3, e2, q
′) to (q3, e2, q4) (line 12). Then we loop back to line

4, pick event e4, and construct new locations and transitions

in the same manner. When q6 is picked, since there are no

events left for q6 to grow outgoing edges, we mark it final.

Obviously, for the constructed automaton, there is only one

initial location, and it is easy to prove that there is only one

final location as follows. Suppose there are more than one

final location. Since the events along each path to the final

locations are all the same, the final locations can be merged

as one. Guaranteeing that there is only one initial location and

one final location is useful when the automaton needs to be

connected with other automata to interpret nested fragments.

216

For Research Only

ISD Ioop

objA objB

loop (3,5)

e2
m1

e1

c:=0

c<5
c:=c+1

e1

q0

q1

e2

c≥3

qf

q’f

t0

t1

t2
tf tb

Fig. 4. A loop fragment and its corresponding automaton

2) The loop Fragment: We require a strict sequencing

for the loop fragment, which means that the events in one

iteration can happen only when all the events in previous

iterations have happened. If the loop fragment contains just

one basic fragment, we interpret it with the automaton A
constructed by Algorithm 1 with the following modifications.

Let q0 be the initial location, and qf be the final location

of A. The automaton AL interpreting the loop fragment is

constructed based on A as follows:

• add a new transition tb from qf to q0 to form loops;

• construct a new location q′f , and add a new transition tf
from q0 to q′f . Make q′f as the final location and qf as

the non-final location;

• use a variable c to count the iteration times. Initialise c
to 0 on the transition to q0, and increase c by 1 on tb;

• for the guard (a, b) restricting the iteration times, assign

a constraint c < b to tb, and a constraint c ≥ a to tf .

Fig. 4 shows an example. For the ISD in Fig. 4, locations q0,

q1 and qf and transitions t0, t1 and t2 constitute the automaton

obtained by applying Algorithm 1. Transition tb is added to

form the loop, and its condition c < 5 ensures that the iteration

times will not exceed 5 (this condition is checked before the

increase of c). Location q′f and transition tf are added so that

when exiting the loop, there is a condition c ≥ 3 ensuring that

the iteration times will be at least 3.

If there are other fragments nested, the interpretation can

be done from inside to outside recursively. Specifically, for

an enclosing fragment that has nested fragments, we first

interpret the nested ones. Without the nested fragments, the

rest of the enclosing fragment is divided into separate parts

which are later interpreted individually. Then the automaton

corresponding to the entire fragment can be obtained by

connecting one automaton’s final location to the other’s initial

location, following the visual orderings of the nested fragments

and the parts they separated in the enclosing fragment. The

only exception is that the nested fragment is an int fragment,

which will be discussed in Sec. IV-B4.
3) The alt and opt Fragments: In the alt fragment, each

operand has a guard condition. The events in an operand can

happen only if the guard of this operand is true when the

control of flow reaches the fragment, similar to the if-else
structure in programming languages. To interpret an alt
fragment, we first use two automata A1 and A2 for the two

ISD alt

objA objB

alt

e2
m1

e1

e1

q0

q1

e2

q2

t1

t2

[x>0]

e4
m2 e3

[x≤0]

e3

q3

q4

e4

q5

t3

t4

qi

qf

x>0 x≤0ti1 ti2

tf1 tf2

Fig. 5. An alt fragment and its corresponding automaton

operands o1 and o2, respectively, and then compose them into

a single one as follows:

• construct a location qi and add transitions ti1 and ti2 from

qi to the initial locations of A1 and A2, respectively;

• construct a location qf and add transitions tf 1 and tf 2
from the final locations of A1 and A2 to qf , respectively;

• add the guard condition of o1 to transition ti1, and that

of o2 to transition ti2;

• make qi the initial location and qf the final location of

the composed automaton.

An example is shown in Fig. 5. The parts in dotted boxes

are the two automata interpreting the two operands of the alt
fragment. The reason we use two new location qi and qf is

to ensure that every automaton corresponding to one fragment

has only one initial location and one final location, to simplify

the interpretation of nested fragments.

The opt fragment can be viewed as a special case of the

alt fragment with only one operand. Its interpretation is more

straightforward: the operand is interpreted first, and the guard

condition is added to the initial transition to the initial location.

4) The int Fragment: Since the occurrence of interrupts is

unpredictable, it is required that the events in the int fragment

have no partial orders with events outside the fragment. In

other words, the events in the int fragment and the enclosing

fragment form two independent event sets, and therefore, the

int fragment and its enclosing fragment can be interpreted

separately.

In interrupt-driven systems, when an interrupt request oc-

curs, it is accepted when its priority is higher than the current

task and the interrupt mask (if there is any) is enabled. When

the preemptive interrupt completes, it returns the control of

execution to the preempted task if there is no interrupt request

of higher priority. We refer to this interrupt handling mech-

anism to interpret the relationship between the two automata

corresponding to an int fragment and its enclosing fragment.

Let AI (qI0 and qIf are the initial and final locations,

respectively) be the IA interpreting an int fragment and AE

(qE0 and qEf are the initial and final locations, respectively)

be the IA interpreting its enclosing fragment. It is assumed that

all events in AE have lower priorities than those in AI , which

can be guaranteed by composing the automata corresponding

int fragments in ascending order of priorities. Then the IA

217

For Research Only

ISD int

objA objB

int (p=1)

e2
m1

e1

e1
qE0 qE1

e2
AE

e4
m2 e3

x=1
n:=1

e3 e4

x=1
n:=2 x=1

n:=3 n=1

n=2 n=3

qEf

qI0 qI1 qIf

AI
[x=1]

Fig. 6. An int fragment and its corresponding automaton

e1 e2
ċ1=1

e3 e4

ċ2=1
ċ1=1
ċ2=1

ċ1=1
ċ2=1

ċ1=1
ċ2=0

ċ1=1
ċ2=0

ċ1=1
ċ2=0

c1:=0
c2:=0

c1≤10
4≤c2≤5

qE0 qE1 qEf

qI0 qI1 qIf

Fig. 7. Interpretation of task and timing constraints

A having the equivalent behaviour as the ISD consisting of

both the int and its enclosing fragments can be obtained by

composing AI and AE as follows:

• for any location qi of AE , add a transition from qi to qI0
of AI and associate it with a variable assignment n := i
and the interrupt mask condition of the int fragment if

there is any;

• for any location qi of AE , add a transition from qIf to

qi and associate it with a guard condition n = i;
• make qE0 and qEf as the initial and final locations of A,

respectively.

In the example shown in Fig. 6, the two parts in dotted boxes

labelled with AI and AE are the automata corresponding to

the int fragment and its enclosing fragment, respectively. In

a location of AE , e.g., qE1, the control of flow can transfer

to AI , provided that the interrupt mask x equals to 1. The

assignment n := 2 on the transition from qE1 to qI0 ensures

that when exiting from AI , the control of flow would return

to qE1 by taking the transition with guard condition n = 2.

5) The Timing and Task Constraints: Besides the com-

mon timing constraints, the ISD offers the new notion of

task constraints. Whereas timing constraints can be easily

interpreted by clock constraints in timed automata [21], the

task constraints are beyond the expressiveness of the classic

clock constraints. Suppose that we have a task constraint

a ≤ (e − e′) ↑≤ b. When the control of flow is not in the

fragment to which e and e′ belong, the clock needs to freeze,

which means a change in the clock flow rate. Fortunately, the

IA supports this change of rate for variables.

For each timing constraint a ≤ e − e′ ≤ b, we use one

variable c to represent a clock. We make the initialisation c :=
0 at the transition with label e′, and set a flow condition ċ = 1
in every location. At the transition with label e, the value of c
equals to the time duration e−e′, so we add the jump condition

a ≤ c ≤ b to the transition. Fig. 7 shows the same automaton

as the one in Fig. 6 with the addition of the interpretation of

the timing and task constraints (assignments and conditions

irrelevant to time are omitted). Suppose for the ISD in Fig. 6,

there is a timing constraint e2 − e1 ≤ 10 specifying that the

deadline for the completion of transferring message m1 should

within 10 time units, and a task constraint 4 ≤ (e2−e1) ↑≤ 5
specifying that the actual time for transferring m1 takes 4 to

5 time units. Then for the timing constraint e2 − e1 ≤ 10, we

generate a variable c1, initialise c1 on the edge labelled with

e1, and add a constraint c1 ≤ 10 on the edge labelled with e2.

The flow condition of c1 is set to ċ1 = 1 in all locations.

For each task constraint, we also generate a variable c′ and

initialise it to 0 at the transition labelled e′. Different than the

timing constraints, the variable c′ does not increase in all the

locations but only in those corresponding to the interaction

fragment to which e and e′ belong (recall that the term

interaction fragment can represent either the int fragment or

the diagram excluding all int fragments). Therefore, locations

corresponding to the interaction fragment to which e and e′

belong are equipped with a flow condition ċ′ = 1; while other

locations are equipped with a flow condition ċ′ = 0. In this

way, when reaching the transition with label e, the value of

the variable c′ would represent the actual execution time that

the control of flow stays in the same interaction fragment

between the occurrences of e and e′, so the jump condition

a ≤ c′ ↑≤ b can be added to that transition. For example, for

the task constraint 4 ≤ (e2 − e1) ↑≤ 5, a variable c2 is used

and initialised on the edge labelled with e1, and a constraint

4 ≤ c2 ≤ 5 is associated with the edge labelled with e2. The

flow conditions in locations qI0, qI1 and qIf corresponding

to the int fragment are set to ċ2 = 0, and in locations qE0,

qE1 and qEf corresponding to the enclosing fragment are set

to ċ2 = 1.

C. Specification and Verification of Properties

Whereas the ISD models how the system behaves, the

properties to be checked are captured by property specification.

For ISD, the property needs to specify both temporal orderings

and time durations between events. Motivated by our goal

of easy modelling and verification, we propose a simple

specification language defined as 〈spec clause〉::=〈e1〉‘≺’〈e2〉
|〈min〉‘≤’〈e2〉‘-’〈e1〉‘≤’〈max〉, where 〈e1〉::=event name,
〈e2〉::=event name (e2 �= e1), 〈min〉::=non-negative real,
〈max〉 ::= non-negative real (greater than or equal to 〈min〉) |
‘∞’. A specification is composed of one or more spec clauses.

e1 ≺ e2 specifies that e1 occurs before e2 in temporal order,

and min ≤ e2 − e1 ≤ max specifies that the time duration

from the occurrence of e1 to that of e2 is between [min,max]
time units. The specification language is sufficiently expressive

in specifying various properties in interrupt-driven systems.

For example, for the property of timeout freeness, one can

use 0 ≤ e2− e1 ≤ bound to specify that for a task starting by

event e1 and completing by event e2, it shall not exceed the

given time bound.

218

For Research Only

The verification is to check whether there is a behaviour

in the IA that can reach the final location and satisfies the

negation of the properties, and if so, the properties are not

satisfied, and a counterexample represented by the behaviour

is reported. For a property of the form e1 ≺ e2, its negation is

e2 ≺ e1, and we first find all paths in which e2 occurs before

e1 and then check if any behaviour of such paths can reach

the final location. For a property of the form min ≤ e2−e1 ≤
max, its negation is e2 − e1 < min and e2 − e1 > max (if

max �=∞). We translate the negation to clock constraints, add

them to the IA, and check if there is a behaviour that reaches

the final location. The checking of the existence of behaviours

reaching the final location is essentially a reachability analysis

problem and can be solved by exploiting the existing hybrid

automata checkers.

V. EXPERIMENTAL EVALUATION

We implemented our approach as a prototype called ISD-
Checker, which supports the modelling and verification of ISD.

The graphical modelling interface is based on UMLet [22]

which is a free, open-source UML tool. The verification is

conducted by transforming the ISD to an IA based on the ISD

semantics, and feeding the IA to SpaceEx [17], which is a

state-of-the-art tool for verifying safety properties of hybrid

systems. Note that there is no restriction of the choice of

hybrid automata checkers so long as the verification of IA

is supported.

Our approach of modelling and verifying interrupt-driven

systems with ISDs aims to guarantee the correctness of the

systems. Ideally, it should be effective in finding counterex-

amples, and at the same time, easy to use. Therefore, our

evaluation addresses the two following research questions:

• RQ1: Can our approach effectively detect problems in
interrupt-driven system models?

• RQ2: Is ISD easy to use compared with existing mod-
elling languages for interrupt-driven systems?

A. RQ1: Approach Efficacy

To conduct the experiments, we searched papers published

after year 2010 using keywords “interrupt driven”, “interrupt

program”, “interrupt software”, “interrupt system”, “embed-

ded system” or “real-time system” combined with keywords

“verification”, “testing”, “analysis” or “model checking”, and

collected 18 closely related to interrupt-driven system papers,

from whose references we snowballed 7 more related papers

published after year 2000. We studied these papers to collect

cases that satisfy the following criteria: (1) they are not

toy cases without realistic settings, and (2) they have been

detailedly presented using models, programs and/or textual

descriptions. As most papers just use one or two cases and

many of them are toy cases, in the end, 5 cases were collected

from the existing literature. We modelled these cases with ISD,

which are shown in Column case name with references. To

evaluate the effectiveness of ISDChecker, we expect the cases

to contain problems so that we can check whether ISDChecker

can find these problems. The case ADC Bug itself has a

data race problem. For the other 4 cases, medical monitor
and car controller have execution time bound requirements,

and we modified the time values in ISDs to violate the

requirements. The timeout problems in cases attitude display
and fridge controller were manually inserted, as the original

examples did not mention any temporal or time properties. We

also consulted the experts in the aerospace area and acquired

6 flawed design cases. These cases were modelled with UML

sequence diagram and we revised them with ISD. In total, 11

cases were studied, as shown in Table I.

The experiments were conducted on a DELL PC with

3.4GHz Quad-Core CPU, 16GB RAM and OS of Ubuntu

16.04. The version of SpaceEx is 0.9.8f. The results are

shown in Table I. For each of the 11 cases, ISDChecker was

able to find a counterexample, whose error type is shown in

Column type. In total, 3 race counterexamples and 8 timeout
counterexamples are found, which are consistent with the

ones identified by manual inspection. This confirms that ISD-

Checker can effectively find problems in the design models by

exhausting the state space. We did not compare our approach

with other approaches such as model checking with ITA, since

our approach is the only one targeting sequence diagram based

models, and moreover, to our best knowledge, there are no

tools for model checking interrupt-driven systems available at

the time of this writing. For the evaluation of efficiency, we

have recorded the sizes of the ISDs and the corresponding

IA, and the model transforming time and the checking time.

The size of the ISD includes the number of entities (# entity),

messages (# msg.), constraints (# cons.), int fragments (# int.)
and different priorities of the int fragments (# prior.). The size

of the IA includes the number of the total locations (# loc.),
transition (# trans.), and variables (# var.). The verification

time consists of two parts: one from the transformation of

models (transform), and the other from the execution of the

checker (check). The cases are arranged from top to bottom in

the table in ascending order of first # int. and then #msg.. The

number of int fragments in an ISD has a dominant impact

on the number of transitions in the corresponding IA, as it is

possible for each location transformed from a non-int fragment

to have transitions connecting locations transformed from an

int fragment. The number of messages has a dominant impact

on the number of locations, since events and their partial

orders, which decides the number of locations, are deduced

from messages. As we can see from Table I, the number

of each kind of elements in a case’s ISD is all below or

around 10, which is clearly manageable for human designers,

however, a small increase in the scale of an ISD can result

in a significant increase in that of the corresponding IA. For

example, a moderate sized ISD for the satellite spin example

in Fig. 2 has an corresponding automaton with 21 locations

and 76 transitions; and with just 1 more int fragment and

7 more messages, the task rotate case has a corresponding

automaton with 80 locations and 560 transitions. Nevertheless,

the model transformation process only took 12-123 ms, which

indicates that the cost is almost negligible. By exploiting the

advanced hybrid automata checker, the checking time is also

219

For Research Only

TABLE I
EXPERIMENTAL RESULTS OF VERIFYING INTERRUPT-DRIVEN CASES

case name type #entity # msg. # cons. # int. # prior. # loc. # trans. # var. transform (ms) check (s)

ADC Bug[5] race 4 5 6 1 1 12 28 10 12 0.05
fridge controller[23] timeout 7 8 8 1 1 18 38 12 15 0.40
altitude display[24] timeout 6 9 5 1 1 20 36 10 16 0.16
medical monitor[25] timeout 7 9 11 1 1 20 44 15 16 3.78

time sync race 4 11 4 1 1 30 80 11 73 1.24
orbit upload race 5 6 6 2 1 21 82 16 58 19.7

backup computing timeout 4 6 7 2 2 16 56 14 62 1.70
system tick timeout 4 7 6 2 2 17 56 12 16 1.62
satellite spin timeout 4 7 7 2 2 21 76 14 24 5.01

car controller[2] timeout 8 11 9 3 2 31 170 18 96 1879
task rotate timeout 11 14 7 3 1 80 560 15 123 2751

TABLE II
COMPARISON OF FAMILIARITY DEGREES WITH ISD AND ITA

familiar with none of SD simple SD fragments

none of FSM 2(2, 0, 0)/I 6(5, 1, 0)/II 5(4, 1, 0)/III
FSM 0(0, 0, 0)/IV 5(2, 3, 0)/V 7(1, 5, 1)/VI
HA 0(0, 0, 0)/VII 0(0, 0, 0)/VIII 1(0, 0, 1)/IX

TABLE III
COMPARISON OF USABILITY DEGREES OF ISD AND ITA

Group I II III V VI IX Total

no./time(s) n t n t n t n t n t n t n t
1st:ISD 0 ∗ 2 16 4 12 4 15 5 13 1 10 16 13
1st:ITA 0 ∗ 0 ∗ 0 ∗ 0 ∗ 1 47 1 36 2 42
2nd:ISD 1 14 4 13 4 11 3 13 7 12 1 10 20 12
2nd:ITA 0 ∗ 0 ∗ 0 ∗ 2 46 2 41 1 27 5 40

∗ : the average time is not computed since no subjects have completed the task.

acceptable for taking several seconds for moderate sized cases

and 30-40 minutes for large sized ones to exhaust all state

space.

From the above discussion, we can derive the answer to

RQ1: Our approach can effectively detect design defects for
interrupt-driven systems in an efficient way.

B. RQ2: Approach Usability

In addressing RQ1, we have seen that the IA transformed

from an ISD is much larger. It is natural to think that modelling

with ITA would be more difficult, as larger models are often

less manageable. In order to have a more convincing result

about the usability of our approach, we conducted a controlled

experiment. It is known that before users can use formal

methods, they must be well trained [26]. The training cost

not only affects the users’ decision upon whether to use the

method but also reflects usability. Thus, one of our goals

is to evaluate the training cost of ISD compared with ITA.

The other goal is to compare the time costs to correctly

develop a specification with ISD and ITA. The subjects of the

experiments are students in our department consisting of 14
undergrads, 10 graduate students and 2 PhD students. First, we

profiled the subjects for their prior knowledge. We asked the

subjects to first answer two questions: Are you familiar with

the basic knowledge of sequence diagram (without fragments)/

finite state machines? If any answer is yes, then following

up questions are asked: Are you familiar with the concepts

of fragments/ hybrid automata? Based on the answers, each

subject was assigned to one of the nine groups, as shown in

Table II (subjects familiar with fragments are also familiar

with simple SD, and those familiar with HA are also familiar

with FSM). In each cell, the first number is the total number

of subjects, and the three numbers in the parentheses are

the number of undergrads, master students and PhD students,

respectively. The Roman number after the slash is the label

assigned to each group. As shown in Table II, among the 26
subjects, 24 subjects are familiar with sequence diagrams, and

13 subjects have learned the usage of fragments; whereas only

half of the subjects know how to model with the finite state

machine, and only 1 subject has used hybrid automata.

To evaluate the training cost, we prepared 2 training ses-

sions. Each session lasted 2 hours: the first one hour for ISD

and the second one hour for ITA. We were aware that both

modelling languages target the interrupt-driven systems and

share some common background knowledge, which makes

it possible for the language trained later to benefit from

the earlier training of the other one. In view of that, we

made the schedule to have ISD trained first, to reduce the

preferences that the result may have towards ISD. After the

first session, we gave the subjects a description of the example

in Fig. 2, and asked them to model the system. Again, since

it was the same modelling task, we asked the subjects to

model with ISD first to reduce the results’ preference towards

ISD. We carefully manual-checked the models and collected

the number of subjects who correctly designed the models

(Column n, Table III) in each group (Group IV, VII and VIII

have no subjects and are not considered). We also recorded

the modelling time of the subjects who gave correct models

in each group, and present the average time (in seconds)

in Table III (Column t). After the first training session, 16
subjects produced correct models with ISD, while with ITA

only 2 subjects could complete the modelling correctly. Then

we gave a more elaborative training session and assigned the

subjects a new modelling task of Case car control used in

the experiment for RQ1. This time, 20 out of 24 subjects

could model with ISD, but still, only 5 subjects could model

with ITA. From these data, we can conclude that one needs

less training time to master ISD than ITA, to which two

220

For Research Only

factors contribute most. The first one is that most people have

experience using sequence diagrams in system modelling, so

little training is needed for the basics. The second factor is

our ISDs follow the standard sequence diagram notations, and

therefore do not require much effort to learn. On the other

hand, ITA is a special kind of hybrid automata, which can be

difficult to comprehend in a short time. We also compared the

modelling time with ISD and ITA. In Table III, the average

time of using ISD is about 12 to 13 minutes, while the average

time of using ITA needs more than 40 minutes. The reason,

as the subjects reported, is that they can design the ISD model

by following a frequent scenario, and do not have to worry

about the interrupt nesting and unpredictable occurrence.

From the above discussion, we can derive the answer to

RQ2: ISD is easier to learn and use compared to the automata
theory based modelling language.

VI. RELATED WORK

We discuss some closely related work concerning modelling

and correctness checking for interrupt-driven systems.

Modelling. Prioritised preemption and interrupt mask regis-

ter (IMR) are the unique features in interrupt-driven systems,

and most modelling approaches attempt to support them. Some

of them are variants of flow graphs with extensions to model

prioritised preemption and IMR [27], [28], [29]. In [27], a

directed graph called interrupt preemption graph is proposed

where each edge corresponds to a potential preemption by an

interrupt handler, and IMR is exploited to remove unreachable

branches in the graph. Time is not considered in these studies,

whereas the behaviour of interrupt-driven systems largely

depends on the timing properties.

Timed automata [21], as a mature model for specifying tim-

ing requirements though, lack the feature of time suspension

which is critical to model the executions preempted by inter-

rupts. Hybrid automata, or more specifically the subclasses

such as integration automata, stopwatch automata [30] or

suspension automata [31] are sufficiently expressive to model

time suspension and resumption, but lack the mechanism to

model interrupt priority. Therefore, in [10], [11], Interrupt

Timed Automata (ITA) is proposed, where the states are

organised according to interrupt priorities, ranging from 1 to

n, with one active clock that can be suspended for one priority.

Whereas these models are visual and graphical, some others

are based on calculus. In [32], the algebra of communicat-

ing processes (ACP) is augmented with priorities and non-

deterministic choice to describe the working of interrupts.

Work [33] studies the “interrupt driven round robin system”

where tasks run in round-robin scheduling and interrupt ser-

vice routines perform urgent actions, and proposes to model

the system with a variant of Event B. Work [34] provides a

calculus for reasoning about interrupt-driven systems and a

type system for checking stack boundedness. Compared with

these existing modelling methods using automata theory or

calculus, the ISD is more friendly to users. With the int
fragment, mask variable and task constraint, the unpredictable

and prioritised preemptive behaviour and the time suspension

and resumption can be easily modelled.

Correctness assurance. Testing has been widely used to

create reliable embedded software [35], [5]. In [5], an interrupt

scheduler is proposed to fire interrupts at specific time points

and prohibit the firings of an interrupt at a time when the

system cannot handle it. In [4], test adequacy criteria are

introduced to measure the quality of test suites that test

interrupt-driven applications. Both studies target nesC appli-

cations in TinyOS, as the simple scheduling policy adopted by

TinyOS makes the interleaving between tasks more tractable

[4]. Nevertheless, interrupt-driven software is still hard to be

thoroughly tested since it usually contains a very large number

of executable paths.

Different from testing, static analysis and verification of

program codes focus on specific code problems, and most

of them study the subject of stack size analysis [36], [3],

[27]. Data inconsistency is of interest as well, due to the con-

currency induced by interrupts. Work [37] analyses data race

and transactional behaviour of procedures for interrupt-driven

programs synchronised via the priority ceiling protocol. Work

[38] proposes to sequentialise interrupt-driven programs into

sequential programs, and using existing numerical analysis

tools. In [39] nesC programs are transformed to POSIX threads

programs for checking race conditions. Timing analysis is also

considered, although most studies are restricted to worst-case

execution time analysis [2], such as maximum interrupt latency

[36]. Static analysis or verification of program codes need

to work on specific languages, such as codes for the Z86

architecture [36], [40], [3], or for some Atmel’s architectures

[27], [29].

Differently, our work chooses the model checking approach.

Targeting the design level, models are used to specify the sys-

tem behaviour and are not bound for the types of implementing

languages. When performing checking, the state space of the

models is exhausted, guaranteeing the correctness w.r.t. the

properties under checking. The closest work to ours is [10],

[11], where the interrupt-driven systems are modelled by ITA

for checking. As discussed, we propose ISDs for the purpose

of easy modelling.

VII. CONCLUSION

In this paper, we introduce a novel approach to modelling

and verifying interrupt-driven systems. We propose the ISD by

extending the UML sequence diagram with interrupt fragment,

mask variable and task constraint, to model the unpredictable

and preemptive system behaviour. Following the automata-

based semantics, the ISD can be automatically transformed

to IA for checking. Experiments on previous studied cases

and real-world aerospace applications consistently confirm

our approach’s effectiveness. In the usability experiment, user

performance shows that both the training cost and usage

cost of ISD are lower than the automata-based modelling

language ITA. We have implemented the proposed approach as

a prototype tool, in the hope that it could become a powerful

assistant to system designers.

221

For Research Only

ACKNOWLEDGMENT

We thank the anonymous reviewers for the valuable com-

ments. This research was supported by the National Key R&D

Program of China (No. 2017YFA0700604), National Natural

Science Foundation of China (Nos. 61502228, 61632015,

61561146394, 61472180, 61572249) and the Fundamental

Research Funds for the Central Universities (020214380045).

REFERENCES

[1] D. Kroening, L. Liang, T. Melham, P. Schrammel, and M. Tautschnig,
“Effective verification of low-level software with nested interrupts,”
in Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition. EDA Consortium, 2015, pp. 229–234.

[2] J. Kotker, D. Sadigh, and S. A. Seshia, “Timing analysis of interrupt-
driven programs under context bounds,” in Proceedings of the Inter-
national Conference on Formal Methods in Computer-Aided Design.
FMCAD Inc, 2011, pp. 81–90.

[3] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T. A. Henzinger, and
J. Palsberg, “Stack size analysis for interrupt-driven programs,” Infor-
mation and Computation, vol. 194, no. 2, pp. 144 – 174, 2004.

[4] Z. Lai, S. C. Cheung, and W. K. Chan, “Inter-context control-flow and
data-flow test adequacy criteria for nesC applications,” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2008, pp. 94–104.

[5] J. Regehr, “Random testing of interrupt-driven software,” in Proceedings
of the 5th ACM International Conference on Embedded Software. ACM,
2005, pp. 290–298.

[6] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow testing
criteria,” IEEE Trans. Softw. Eng., vol. 14, no. 10, pp. 1483–1498, Oct.
1988.

[7] M. J. Harrold and M. L. Soffa, “Efficient computation of interprocedural
definition-use chains,” ACM Trans. Program. Lang. Syst., vol. 16, no. 2,
pp. 175–204, Mar. 1994.

[8] Y. Lei and R. H. Carver, “Reachability testing of concurrent programs,”
IEEE Trans. Softw. Eng., vol. 32, no. 6, pp. 382–403, Jun. 2006.

[9] C.-S. D. Yang, A. L. Souter, and L. L. Pollock, “All-du-path coverage
for parallel programs,” in Proceedings of the 1998 ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
1998, pp. 153–162.

[10] B. Bérard, S. Haddad, and M. Sassolas , “Real time properties for
interrupt timed automata,” in Proceedings of the 2010 17th Interna-
tional Symposium on Temporal Representation and Reasoning. IEEE
Computer Society, 2010, pp. 69–76.

[11] B. Bérard, S. Haddad, and M. Sassolas, “Interrupt timed automata:
Verification and expressiveness,” Form. Methods Syst. Des., vol. 40,
no. 1, pp. 41–87, Feb. 2012.

[12] F. Cassez and K. G. Larsen, “The impressive power of stopwatches,”
in Proceedings of the 11th International Conference on Concurrency
Theory. Springer-Verlag, 2000, pp. 138–152.

[13] OMG, “UML2.0 superstructure specification,” Available at
http://www.uml.org, 2005.

[14] B. Dobing and J. Parsons, “How UML is used,” Commun. ACM, vol. 49,
no. 5, pp. 109–113, May 2006.

[15] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems,” in Hybrid Systems. Springer-Verlag, 1993, pp.
209–229.

[16] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine, “Integration graphs: A
class of decidable hybrid systems,” in Hybrid Systems. Springer-Verlag,
1993, pp. 179–208.

[17] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Proceedings of the 23rd International
Conference on Computer Aided Verification. Springer-Verlag, 2011, pp.
379–395.

[18] T. Firley, M. Huhn, K. Diethers, T. Gehrke, and U. Goltz, “Timed se-
quence diagrams and tool-based analysis: A case study,” in Proceedings
of the 2Nd International Conference on The Unified Modeling Language:
Beyond the Standard. Springer-Verlag, 1999, pp. 645–660.

[19] S. Uchitel, J. Kramer, and J. Magee, “Incremental elaboration of
scenario-based specifications and behavior models using implied sce-
narios,” ACM Trans. Softw. Eng. Methodol., vol. 13, no. 1, pp. 37–85,
Jan. 2004.

[20] A. Knapp and J. Wuttke, “Model checking of UML 2.0 interactions,” in
Proceedings of the 2006 International Conference on Models in Software
Engineering. Springer-Verlag, 2006, pp. 42–51.

[21] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, Apr. 1994.

[22] M. Auer, T. Tschurtschenthaler, and S. Biffl, “A flyweight UML mod-
elling tool for software development in heterogeneous environments,” in
Proceedings of the 29th Conference on EUROMICRO. IEEE Computer
Society, 2003, pp. 267–272.

[23] F. Pereira, F. Moutinho, and L. Gomes, “Model-checking framework
for embedded systems controllers development using IOPT Petri nets,”
in 2012 IEEE International Symposium on Industrial Electronics, May
2012, pp. 1399–1404.

[24] C. Fidge and P. Cook, “Model checking interrupt-dependent software,” in
Proceedings of the 12th Asia-Pacific Software Engineering Conference.
IEEE Computer Society, 2005, pp. 51–58.

[25] L. A. Cortes, P. Eles, and Z. Peng, “Formal coverification of embedded
systems using model checking,” in Proceedings of the 26th Euromicro
Conference., vol. 1, Sept 2000, pp. 106–113 vol.1.

[26] A. Hall, “Seven myths of formal methods,” IEEE Softw., vol. 7, no. 5,
pp. 11–19, Sep. 1990.

[27] J. Regehr, A. Reid, and K. Webb, “Eliminating stack overflow by abstract
interpretation,” ACM Trans. Embed. Comput. Syst., vol. 4, no. 4, pp.
751–778, Nov. 2005.

[28] W. Le, J. Yang, M. L. Soffa, and K. Whitehouse, “Lazy preemption
to enable path-based analysis of interrupt-driven code,” in Proceedings
of the 2Nd Workshop on Software Engineering for Sensor Network
Applications. ACM, 2011, pp. 43–48.

[29] B. Schlich, T. Noll, J. Brauer, and L. Brutschy, “Reduction of interrupt
handler executions for model checking embedded software,” in Proceed-
ings of the 5th International Haifa Verification Conference on Hardware
and Software: Verification and Testing. Springer-Verlag, 2011, pp. 5–
20.

[30] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable
about hybrid automata?” in Proceedings of the Twenty-seventh Annual
ACM Symposium on Theory of Computing. ACM, 1995, pp. 373–382.

[31] J. McManis and P. Varaiya, “Suspension automata: A decidable class of
hybrid automata,” in Proceedings of the 6th International Conference
on Computer Aided Verification. Springer-Verlag, 1994, pp. 105–117.

[32] J. Bergstra, J. Baeten, and J. W. Klop, “Syntax and defining equations for
an interrupt mechanism in process algebra,” Fundamenta informaticae:
quarterly, vol. 9, pp. 127–167, 1986.

[33] B. Stoddart, D. Cansell, and F. Zeyda, “Modelling and proof analysis
of interrupt driven scheduling,” in Proceedings of the 7th International
Conference on Formal Specification and Development in B. Springer-
Verlag, 2006, pp. 155–170.

[34] J. Palsberg and D. Ma, “A typed interrupt calculus,” in Proceedings of
the 7th International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems: Co-sponsored by IFIP WG 2.2. Springer-
Verlag, 2002, pp. 291–310.

[35] B. M. Broekman, Testing Enbredded Software. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[36] D. Brylow, N. Damgaard, and J. Palsberg, “Static checking of interrupt-
driven software,” in Proceedings of the 23rd International Conference
on Software Engineering. IEEE Computer Society, 2001, pp. 47–56.

[37] M. D. Schwarz, H. Seidl, V. Vojdani, P. Lammich, and M. Müller-Olm,
“Static analysis of interrupt-driven programs synchronized via the prior-
ity ceiling protocol,” in Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM,
2011, pp. 93–104.

[38] X. Wu, L. Chen, A. Miné, W. Dong, and J. Wang, “Numerical static
analysis of interrupt-driven programs via sequentialization,” in Proceed-
ings of the 12th International Conference on Embedded Software. IEEE
Press, 2015, pp. 55–64.

[39] J. Regehr and N. Cooprider, “Interrupt verification via thread verifica-
tion,” Electron. Notes Theor. Comput. Sci., vol. 174, no. 9, pp. 139–150,
Jun. 2007.

[40] D. Brylow and J. Palsberg, “Deadline analysis of interrupt-driven
software,” in Proceedings of the 9th European Software Engineering
Conference Held Jointly with 11th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering. ACM, 2003, pp.
198–207.

222

For Research Only

