

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2019-IJ-002

2019-IJ-002

Scenario-based Online Reachability Validation For CPS Fault

Prediction
Lei Bu, Qixin Wang, Xinyue Ren, Shaopeng Xing, Xuandong Li

IEEE Transactions on Computer-Aided Design of Integrated Circuits and System 2019

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. *, NO. *, AUGUST 201* 1

Scenario-based Online Reachability Validation For
CPS Fault Prediction

Lei Bu, Member, IEEE, Qixin Wang, Member, IEEE, Xinyue Ren, Shaopeng Xing, and Xuandong Li

Abstract—Unlike standalone embedded devices, behaviors of a
Cyber-Physical System (CPS) are highly dynamic. Many param-
eter values (e.g. those related to nature environment and third
party black box functions) are unknown offline. Furthermore,
distributed sub-CPSs may exchange data online. In this paper, we
first propose the concept of parametric hybrid automata (PHA) to
describe such complex CPSs. As some PHA parameter values are
unknown until runtime, conventional offline model checking is
infeasible. Instead, we propose to carry out PHA model checking
online, as a fault prediction mechanism. However, this usage is
challenged by the high time cost of state reachability verification,
which is the conventional focus of model checking. To address
this challenge, we propose that the model checking shall focus
on online scenario reachability validation instead. Furthermore,
we propose a mechanism to compose/decompose scenarios. Our
scenario reachability validation can exploit linear programming
to achieve polynomial time cost. Evaluations on a state-of-the-art
train control system show that our approach can cut online model
checking time cost from over 1 hour to within 200 milliseconds.

Index Terms—Linear Hybrid Automata, Scenario Reachability
Validation, Online Modeling and Verification, CBTC based Train
Control CPS

I. INTRODUCTION

THE inevitable convergence of computers and physical
world results in the booming of Cyber-Physical Systems

(CPSs) [41]. Many CPSs are mission/life critical (e.g. modern
train control systems, see Section II-A), hence safety is a
top concern [26] [50]. To increase safety, state reachabil-
ity verification model checking [25] before deployment is
widely adopted [26]. Conventional state reachability verifica-
tion model checking builds an offline formal model of a system
during development stage and verify if a set of predefined
unsafe-states are reachable from initial state(s). If the model
is fully accurate and unsafe-states are verified unreachable,
then the system is considered safe.

Though state reachability model checking is proven suc-
cessful for many applications (e.g. hardware design), its ap-
plication to CPSs still faces major challenges [41] [26].

Manuscript received September 20, 2018. The authors in Nanjing University
are supported in part by the National Key Research and Development Plan
(No. 2017YFA0700604), and the National Natural Science Foundation of
China (No.61632015, No.61572249, 61561146394). The author in Hong Kong
Polytechnic University is supported in part by the Hong Kong RGC GRF
PolyU 152002/18E, PolyU 152164/14E, RGC Germany/HK Joint Research
Scheme G-PolyU503/16, The Hong Kong Polytechnic Univ. fund P0009706
(G-YBXW), P0009367 (G-YBMW), P0010792 (G-YN37), P0000157 (1-
BBWC), P0013879 (1-BBWH), P0001888 (4-ZZHD), and P0008501 (G-
UA7L).

L. Bu, X. Ren, S. Xing and X. Li are are with State Key Laboratory of Novel
Software Technology, Department of Computer Science and Technology,
Nanjing University, Nanjing, China. E-mail: bulei@nju.edu.cn

Q. Wang is with Department of Computing, The Hong Kong Polytechnic
University, Hong Kong. E-mail: csqwang@comp.polyu.edu.hk

Challenge 1: Due to the coexistence of discrete and con-
tinuous dynamics in CPSs, hybrid automaton [34] becomes
the de facto standard (and often inevitable) modeling tool
for CPSs. However, as CPS behavior is highly dynamic,
some parameters of the hybrid automaton model cannot be
accurately predicted offline [19]. This makes offline system
modeling difficult, even impractical. Take the train control
system of Section II-A for example, many key parameter
values (e.g. wind velocity, rail conditions etc.) have to be
sensed online. Some other parameter values are configured
by third party black box functions online. There is no offline
model to accurately predict these parameter values; even
narrow bounds for these parameter values are hard to find.
In addition, dynamics of a CPS can be further complicated by
online data exchange between its distributed sub-CPSs, which
are hard to be modeled as conventional automata events with
no data payloads.

To deal with Challenge 1, this paper proposes parametric
hybrid automata (PHA) to model CPSs with unknown param-
eter values offline and complex online data exchanges (see
Section II). PHAs can be composed to describe large complex
CPSs. Offline model checking of PHAs is infeasible due to the
value-unknown parameters. To address this problem, a natural
strategy is to carry out online model checking [10], [19], [21],
[42], [46] instead, i.e. to use model checking as an online fault
prediction mechanism. The basic idea is as follows: during
runtime, we periodically sense/collect the values of all related
CPS parameters (the period is thus called the “online model
checking period”), and concretize the PHAs into conventional
hybrid automata [34]. We then carry out model checking of the
updated model to predict if the CPS can reach any unsafe states
in future (i.e. carry out state reachability verification model
checking). If so, an alarm is raised to trigger an application-
dependent fall-back plan. If not, we run the CPS till the next
online model checking period starts. In each online model
checking period, if the model checking cannot finish within
a short deadline, to play safe, we always raise an (possibly
false) alarm to trigger the fall-back plan anyways [42]. In this
way, no major system failure can happen in case of a deadline
miss. That said, we still need to speed up the online model
checking. This is due to two reasons:
D1 Frequent deadline misses cause frequent false alarms and

triggering of the fall-back plan. This harms equipment
and user experience in the long run. Furthermore, this
fosters negligence among human operators, which can
lead to critical failures. In order to reduce deadline
misses, we need faster online model checking.

D2 Even if deadline misses are eliminated, faster online

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

model checking is always preferred, as it can raise a
(positive) alarm sooner, hence win more time to carry
out the fall-back plan.

However, speeding up the online model checking faces
another challenge.

Challenge 2: It is well known that hybrid automata state
reachability verification (i.e. given hybrid automata and initial
state(s), check if certain state(s) is/are reachable) is very diffi-
cult and time-costly [34]. In fact, although given a rectangular
hybrid automaton with special restrictions, the state reacha-
bility problem is decidable with PSPACE, if we relax any
restriction, the problem will be undecidable [31], [32], [35],
[36]. One main reason for this is state explosion [51]: hybrid
automata state space can easily explode due to the tangling of
discrete and continuous behavior, and the increasing of number
of CPS subsystems. Again take the train control systems of
Section II-A for example, a metropolitan subway can often
run a dozen of trains on a single track in parallel. To model
such a composed CPS with conventional approach, a Cartesian
product of at least a dozen of hybrid automata is needed, which
implies at least 612 work modes of the holistic system model
(see Fig. 2 (A), each train has at least 6 work modes): an
astronomical scale that is computationally inhibiting.

To address Challenge 2, we propose online scenario reach-
ability validation model checking of PHA to replace state
reachability verification model checking. This proposal is
based on the empirical needs of industry. In practice, industry
knows Challenge 2 for a long time, hence does not insist
on discovering all reachable unsafe states (i.e. completeness
of model checking) in a CPS. Instead, very often, industry
only demands to know if the CPS can reach certain unsafe
states in certain work mode via certain sequence of actions.
That is, if certain “scenario” can happen [45]. Our proposal
formalizes this demand as the online scenario reachability vali-
dation model checking. Furthermore, we propose a mechanism
to compose/decompose scenarios. When the PHA is linear,
online scenario reachability model checking can finish within
polynomial time using linear programming (LP).

We evaluated our proposal upon a state-of-the-art com-
munication based train control (CBTC) system, a typical
life/mission critical CPS. The results show that our proposal
can shrink online model checking time cost from over 1 hour
to within 200 milliseconds.

In summary, the contributions of this paper include:
1) We propose a novel approach based on the notion of

“PHA execution trace” to rigorously define the PHA mod-
eling language, which supports modeling offline value-
unknown parameters, and online data exchange.

2) Also, using the “PHA execution trace” notion, we rigor-
ously redefine the scenario reachability verification.

3) We propose for online verification, we should conduct
scenario reachability instead of state reachability due to
the computational efficiency.

4) We conduct comprehensive study on a real-case CBTC
system to show the expressability of PHA, and the appli-
cability of the scenario reachability online verification.

The rest of the paper is organized as follows. Section II
proposes our parametric hybrid automata design together with

our motivating application. Section III proposes our scenario
reachability validation framework. Section IV evaluates our
methods. Section V discusses related work. Section VI con-
cludes the paper.

II. PARAMETRIC HYBRID AUTOMATA

In this section, we first introduce a motivating example: a
typical CPS, where Challenge 1 exists. We then propose the
formal definition of parametric hybrid automata to model such
CPSs.

A. Motivating Application: CBTC

Modern train control systems are typical CPSs and they
play key roles to the safety and efficiency of railway systems.
Several train control systems exist nowdays [33] [47]. Among
these, communication based train control system (CBTC) is
arguably the most advanced, and is still evolving. It is widely
adopted by many subway systems and train systems, and is
a candidate solution for China’s latest high speed railway
systems [47].

Without loss of generality, in the following we describe a
CBTC system developed for an urban railway system in China.
The CBTC uses data communications between trains and
various control facilities to guarantee the safety and efficiency
of operations. It consists of two main parts: ground systems
and onboard systems. The ground systems’ radio block centers
(RBCs) periodically poll the runtime state/context parameter
values of all running trains in the CBTC. The RBCs then send
control parameters, particularly, movement authorities (MAs),
to the onboard systems of respective trains. The MA specifies
an end-of-authority (EOA) point on the track ahead of the
train [49] [27], along with other parameter values. Based on
the received MA, EOA, and other current state/context pa-
rameters, each onboard system plans future train movements.
Particularly, the onboard system plans/updates legal operating
velocity ranges for various work modes and a safe braking
point (SBP) ahead of the train on the track. The train is free
to move within the planned legal operation velocity ranges
under corresponding work modes before reaching the SBP.
Once the train reaches the SBP, it shall immediately apply
standard braking (SBraking), and is supposed to reach a full
stop in 50 seconds before hitting the EOA point. A train must
communicate with its RBC every 0.5 seconds to update the
MA (includig the EOA), and then update the legal operating
velocity ranges and SBP. If the train runs for 5 consecutive
seconds without receiving any signals from the RBC, then
it shall assume communication failure and start emergency
braking (EBraking). The emergency braking is supposed to
reach a full stop in 20 seconds. Fig. 1 illustrates the above
CBTC concepts.

However, the software modules to compute the MAs, EOAs,
legal operation velocity ranges, and SBPs are third party black
box modules. Their correctness is not fully dependable. To
add redundancy for better dependability, regulations require
our CBTC system to monitor two key safety rules.
R1 During EBraking, a train must not reach the train ahead

of it on the track.

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Fig. 1. Illustration of a CBTC System

R2 During SBraking, a train must not exceed its EOA.

To check if the CBTC system ensures R1 and R2, we need a
formal model of the CBTC. However, many context parameter
values of the CBTC are unavailable offline: this includes the
black box third party software modules’ outputs, and context
parameters such as wind speed and railway conditions (e.g.
the railway condition may change due to rain, snow, or ice).
In other words, we face Challenge 1 described in Section I.

B. Parametric Hybrid Automata Formal Definition

To address Challenge 1 in CBTC modeling, we propose the
concept of parametric hybrid automata (PHA), where offline
value-unknown context parameters are modeled as variables.
Specifically, given a global set of real value state parameter
variables X , a global set of real value context parameter
variables P , where

P ∩ X = ∅, (1)

a global set of event labels L, and a function S : L 7→ 2X∪P ,
where S(l) ⊆ X ∪ P (∀l ∈ L) specifies the set of state and
context parameter variables shared (e.g. by data communica-
tions) by an event labeled l, we define the following.

Definition 1: A parametric hybrid automaton (PHA) is a
tuple H = (X , P , L, V , V 0, E, α, β, γ), where

1) X ⊆ X and P ⊆ P are two finite set of variables
respectively representing the state parameters and context
parameters of H . Context parameters’ dynamics are
controlled by external entities (such as nature environ-
ment, or third party black box functions). Their values
can be sampled online but are unknown offline. Given
context parameters values, state parameters’ dynamics are
determined.

2) V is a finite set of locations; V 0 ⊆ V is the set of initial
locations.

3) E is a finite set of events, whose elements (i.e. events)
are of the form (v, l, φ, ψ, v′), where

a) v, v′ ∈ V are respectively the source and destination
locations for this event.

b) l ∈ L is the label for the event. If l is used by this PHA
alone, the event is called a local event. Otherwise, the
event is a shared event.

c) φ is a finite set of guards. In case φ 6= ∅, the ith (i = 1,
2, . . .) element of φ is of the form fφ,i(Yφ,i) 6 aφ,i,
where Yφ,i ⊆ X ∪ P is the set of state or context
parameter variables involved in the guard, aφ,i ∈ R is

a constant1. φ are conditions that must all sustain to
trigger the event.

d) If the event is a shared event and φ = ∅, i.e. the event
cannot be triggered locally, then the event is called
a received event. A received event must have S(l) ∩
(X ∪ P) = ∅. If the event is a shared event but not a
received event, the it is called a sent event (when a sent
event happens, S(l)∩(X∪P) are the data sent to other
PHAs in the system via matching received event(s), see
Def. 1.3e and Def. 2).

e) ψ is a finite set of resets. In case ψ 6= ∅, the
ith (i = 1, 2, . . .) element of ψ is of the form
xψ,i := fψ,i(Yψ,i), where xψ,i ∈ X ∪ P , and{
Yψ,i ⊆ X ∪ P ∪ S(l) for a received event
Yψ,i ⊆ X ∪ P otherwise .

4) L def
= {l|∃(v, l, φ, ψ, v′) ∈ E}.

5) α is a labeling function, which maps each location v ∈
V to a location invariant, which is a set of parameter
constraints. In case α(v) 6= ∅, the ith (i = 1, 2, . . .)
element of α(v) is of the form fα(v),i(Yα(v),i) 6 aα(v),i,
where Yα(v),i ⊆ X ∪ P , and aα(v),i ∈ R.

6) β is a labeling function, which maps each location v ∈ V
to a set of flow conditions. In case β(v) 6= ∅, the
ith (i = 1, 2, . . .) element of β(v) is of the form
ẋβ(v),i = fβ(v),i(Yβ(v),i), where xβ(v),i ∈ X , Yβ(v),i ⊆
X ∪ P , and fβ(v),i is a formula involving element(s) of
Yβ(v),i. When Yβ(v),i = ∅, fβ(v),i(Yβ(v),i) can be either
a constant in R, or a range in R. In the latter case (without
loss of generality, suppose fβ(v),i(∅) = [aβ(v),i, bβ(v),i]),
we define ẋβ(v),i = [aβ(v),i, bβ(v),i] meaning xβ(v),i is
varying in a rate between aβ(v),i and bβ(v),i. ∀v ∈ V ,
∀x ∈ X , there is one and only one flow condition.

7) γ is a labeling function, which maps each location v ∈ V 0

to a set of initial conditions. In case γ(v) 6= ∅, the ith
(i = 1, 2, . . .) element of γ(v) is of the form xγ(v),i :=
aγ(v),i, where xγ(v),i ∈ X , aγ(v),i is either a real constant
or a context parameter in P . ∀v ∈ V 0, ∀x ∈ X , there is
at the most one initial condition. �

A group of PHAs can be composed to a more complex
system. The composition is a PHA generated by synchronizing
all the component PHAs based on shared events.

Definition 2: Let H1 = (X1, P1, L1, V1, V 0
1 , E1, α1, β1,

γ1) and H2 = (X2, P2, L2, V2, V 0
2 , E2, α2, β2, γ2) be two

PHAs, where
X1 ∩X2 = ∅
P1 ∩ P2 = ∅
X1 ∩ P2 = ∅
X2 ∩ P1 = ∅

. (2)

The composition of H1 and H2, denoted as H1||H2, is a PHA
H = (X , P , L, V , V 0, E, α, β, γ), where

1) X = X1 ∪X2 and P = P1 ∪ P2.
2) L = L1 ∪ L2.
3) V = V1 × V2; V 0 = V 0

1 × V 0
2 .

1Unless otherwise denoted, in this paper, a• and b• represent real valued
constants, and c• represents real valued constant coefficients, where • is a
subscript for identification purposes.

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

(A) (B)

Fig. 2. Parametric Hybrid Automata (PHA) Model of CBTC: (A) PHA for Traini (i = 1, . . . ,m); (B) PHA for RBC. The state and context parameters
(see Section II-B) of Traini are respectively Xi and Pi. Each node (a.k.a. “location”) represents a work mode. Inside of each work mode, above the dashed
line are flow conditions, i.e. dynamics on how state parameters change; below the dashed line are location invariants, i.e. constraints that state parameters
must satisfy. xi ∈ Xi represents the position of Traini on track. “ẋi = [a, b]” means although the specific controller that drives the train is a third party
black box, the velocity is controlled within range [a, b]. Each edge represents an event. Following each event’s label, a “[•]” represents the event’s guards,
i.e. local conditions that trigger the event. Note the guards of event “!UpdateMA” and “!SynRep” are omitted. The two events indeed have guards, which are
the stay duration limit of their source locations. “:=” means value assignment. f1(•), . . . , f16(•) are all third party black box functions. updatei() updates
all context parameter values in Pi (except MAi, SBPi, ni, n’i, bi, b’i, di, d’i).

4) α((v1, v2)) = α(v1)∪α(v2); β((v1, v2)) = β(v1)∪β(v2);
γ((v1, v2)) = γ(v1) ∪ γ(v2).

5) E is defined as follows:

a) for each l ∈ L1 ∩ L2, for each (v1, l, φ1, ψ1, v
′
1)

∈ E1 and (v2, l, φ2, ψ2, v
′
2) ∈ E2, E contains

((v1, v2), l, φ1 ∪ φ2, ψ1 ∪ ψ2, (v
′
1, v
′
2));

b) for each l ∈ L1\L2, for each (v1, l, φ, ψ, v
′
1) ∈ E1 and

each v2 ∈ V2, E contains ((v1, v2), l, φ, ψ, (v′1, v2));
c) for each l ∈ L2\L1, for each (v2, l, φ, ψ, v

′
2) ∈ E2 and

each v1 ∈ V1, E contains ((v1, v2), l, φ, ψ, (v1, v
′
2)).

For all m > 2, the composition of PHAs H1, H2, . . . , Hm,
denoted as H1||H2|| . . . ||Hm, is a PHA recursively defined
as H1||H2|| . . . ||Hm = H1||H ′, where H ′ = H2||H3|| . . .
||Hm. �

With the above PHA definitions, we can build offline PHA
models of the CBTC, which is shown in Fig. 2.

Our CBTC system includes m trains on track and many
RBCs on ground. As all RBCs are connected by reliable back-
bone network and share information in real-time, we simplify
them as one single RBC entity. For Traini (i = 1, 2, . . . ,m)
and the RBC, the PHAs are respectively shown in Fig. 2(A)
and (B). According to the figure, the RBC polls all trains via
a “Syn” event every 0.5 second, and Traini replies its runtime
state parameter values Xi (such as position, velocity, etc.) and
context parameter values Pi (such as wind velocity, rail con-
dition etc.) via a “SynRep” event. On receiving “SynRep”, the
RBC enters the “Computing” mode, where a third party black
box function f16(•) calculates a new MA for the train. The
new MAs are sent to the trains by an “UpdateMA” event. Once
a new MA is received, a train enters the “Computing” mode to
compute a new SBP and a new legal operation velocity range
[ni, n

′
i] using third party black box functions f1(•), f2(•),

and f3(•). After that, the train enters the “Adjusting” mode

to adjust its velocity from the current range [ci, c
′
i] to the new

range [ni, n
′
i]. After the velocity adjustment, the train enters

the “Cruising” mode to cruise within the new legal operation
velocity range. In “Computing”, “Adjusting”, “Cruising”, and
“WaitingMA” mode, if the train reaches its current SBP, it
enters “SBraking” mode to apply standard braking, aiming
to stop completely in 50 seconds, and to stop before the
EOA. In “WaitingMA” or “Cruising” mode, if the train has not
communicated with the RBC for 5 consecutive seconds, the
train enters the “EBraking” mode to apply emergency braking,
aiming to stop completely in 20 seconds.

In the above PHA model, many runtime context parameter
values, such as those assigned by third party black box func-
tions (f1(•), . . . , f16(•)) and by nature environment (elements
in Pi representing wind velocity etc.), are unavailable offline.

C. Limitations of State Reachability Model Checking

Due to the existence of value-unknown context parameters
in PHA, offline model checking of PHA is impractical. How-
ever, during runtime, the values of PHA context parameters
can be known. By replacing all context parameters with their
concrete real values, the resulted PHA can be regarded as
having empty context parameter set. We call such PHA a
concrete hybrid automaton (HA), as defined in the following.

Definition 3: (Concrete PHA, LHA) Given a PHA H = (X ,
P , L, V , V 0, E, α, β, γ), if P = ∅, we say H is a concrete
hybrid automaton (HA), and simplify it as H = (X , L, V ,V 0,
E, α, β, γ). Furthermore, for the above HA H , if

1) all its guards, location invariants, and initial conditions
are linear inequalities of X;

2) each reset is of the form x := fψ(Y) (where Y ⊆ X ;
fψ(Y) is a linear expression of Y);

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3) and each flow condition is of the form ẋ = [a, b] (a, b
are constants in R and a 6 b),

then H is a linear hybrid automaton (LHA). 2 �

Therefore, instead of model checking offline PHAs, we shall
model check concretized PHAs (i.e. HAs or LHAs) online. As
pointed out by Section I, online model checking is indeed
an online fault prediction mechanism, and is proposed by
several prior works [19] [42] [10]. Conventional online model
checking focuses on state reachability verification, i.e. given
initial conditions, whether the state parameter values of the
online model can reach certain unwanted regions in the state
space, a.k.a. unsafe-states. Fig. 3 summarizes this idea. The
algorithm is called periodically every T seconds, where T is
the online model checking period. At the beginning of each
online model checking period (denoted as t0), all context
parameter values are determined, so that a concrete hybrid
automata model A of the CPS is built (see line 3 of Fig. 3).
We then model check if A can reach unsafe-states in the next
F seconds, where [t0, t0 + F] is the online model checking
time horizon. According to [42], the setting of F is application
dependent, and is given by domain experts. Also according to
[42], we shall set online model checking relative deadline (see
line 1 and 5 of Fig. 3) D = T/2. Thus, we can use two parallel
online fault prediction systems phased at T/2 to fully cover
the future time horizon. Ideally, we shall set T and D as small
as possible, to make the online model A more up-to-date, and
to predict fault faster. However, the choice of T and D are
lower bounded by the context parameter value updating time
cost and the online model checking time cost.

// online model checking called every T seconds.
1. OnlineFaultPrediction(deadline D) begin
2. t0 set to the current time;
3. update the online system model A;
4. if ((A can reach unsafe-states in [t0, t0 + F])
5. or (current time t > t0 +D)) then
6. trigger the fall-back plan; //non-blocking call.
7. end;

Fig. 3. Pseudo code of online state reachability verification model checking.

In our CBTC example, we can call the online checking al-
gorithm of Fig. 3 every time the RBC enters the “Computing”
work mode, and set the deadline right before the broadcast of
“UpdateMA” event (see Fig. 2). That is, online checking period
T = 0.5 seconds, and D = 0.25 seconds. For online checking
of safety rule R1, our domain experts set online checking time
horizon length F to 25 seconds; while for R2, F is set to 50
seconds. If the online model checking confirms reachability to
unsafe-states, or a deadline is missed, the RBC shall cancel
the broadcast of “UpdateMA”, and trigger a fall-back plan.

2Note the HA and LHA concepts defined here are indeed special cases
of the more generic hybrid automata and LHA concepts proposed in [34].
Particularly, compared to generic HA and LHA, in our HA and LHA
definition, external state parameters (i.e. those in X \ X) can only be used
in resets of receiver side shared events, also Formula (1)(2) sets several
isolation constraints. We need these constraints to enforce balanced coupling
and encapsulations between PHAs. In the following, unless otherwise denoted,
HA and LHA refer to the concepts given in Def. 3.

According to Fig. 3, a deadline miss only results in in-
convenience, i.e. triggering of the fall-back plan, instead of
a disaster. Nevertheless, as pointed out by D1 and D2 in
Section I, we still want to speed up the online model checking
based fault prediction, so as to improve user experience by
reducing unnecessary triggerings of the fall-back plan; and to
win more time to carry out necessary fall-back plans.

However, this demand faces Challenge 2 described in
Section I. Basically, state reachability checking of complex
hybrid automata is undecidable [4], [36], and is known to
be time costly. Even for LHAs, state reachability checking
is computationally time expensive and undecidable [4], [34],
[36]. This is mainly due to combinatorial explosion caused
by automata composition. Take CBTC for example, a normal
scale CBTC of 12 trains results in an astronomical 612 work
modes (locations) in the composed PHA model.

Our quantitative pilot study results (see Section IV-B) also
evidence Challenge 2. According to Section IV-B, the state
reachability verification model checking time cost for merely
10 trains already exceeds 1 hour. To address Challenge 2, we
need a method to speed up online model checking.

III. SCENARIO REACHABILITY VALIDATION BASED
ONLINE MODEL CHECKING FOR PHAS

To address Challenge 2, we decide to speed up the online
checking based fault prediction of CPS. Inspired by the true
industry demand on scenario reachability validation [45], we
propose that online checking should switch focus from state
reachability verification to scenario reachability validation.
The latter turns the undecidable problem into a polynomial
time problem solvable by linear programming (LP).

A. Scenario Reachability Validation

We observe that industry knows Challenge 2 (see Section I)
for long time via practice, hence does not insist on finding all
reachable unsafe-states of a CPS (i.e. carrying out state reach-
ability verification model checking or fully coverage testing
on the CPS’s hybrid automaton). Instead, very often, industry
only demands to know if the CPS can reach certain unsafe-
states in certain work mode via certain sequence of actions,
i.e. if certain scenario can happen. In other words, considering
the current mechanism used in industry is only scenario based
simulation, industry demands scenario reachability validation
instead of state reachability verification [45].

In the following, let us first formally define scenario reach-
ability validation following our previous definitions on PHAs.

Definition 4: (State and Execution Trace of PHA) The state
of a PHA H = (X , P , L, V , V 0, E, α, β, γ) is a tuple (ν, χ),
where ν ∈ V , and χ is an evaluation of X . An execution trace
of H is a set of state of H , denoted as {(ν(t), χ(t))}t∈[0,Tfin],
where continuous time t ∈ [0, Tfin], ν(0) ∈ V 0; and for
any t ∈ [0, Tfin], χ(t) complies with all location invariants,
flow conditions, initial conditions (if any), guards (if any),
and resets (if any) of location ν(t) in H . �

Note for consistency, we assume that if an event
(v, l, φ, ψ, v′) happens at t, then at t the state of H resides
at v′. That is, execution traces are right continuous.

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Definition 5: (Path of PHA) Given a PHA H = (X , P , L,
V , V 0, E, α, β, γ), a path ρ for H is a finite sequence of the
form

〈
v0
δ0

〉
(φ0,ψ0)
−−−−−−→

l0

〈
v1
δ1

〉
(φ1,ψ1)
−−−−−−→

l1
. . .

(φn−1,ψn−1)
−−−−−−−−−−→

ln−1

〈
vn
δn

〉
,

where location v0 ∈ V 0, vj ∈ V and duration δj ∈ R>0 (j =
0, . . ., n), and (vj , lj , φj , ψj , vj+1) ∈ E (j = 0, . . ., n− 1).
We call

〈
vj
δj

〉
(j = 0, . . ., n) the jth stage of ρ, where vj and

δj are respectively the location and duration of the stage. We
call (vj , lj , φj , ψj , vj+1) (j = 0, . . ., n−1) the jth event of ρ,
a.k.a. the event for the jth stage of ρ. We call ∆j

def
=
∑j
k=0 δk

(j = 0, . . ., n− 1) the happening time of the jth event of ρ,
and Tfin

def
=
∑n
j=0 δj the finish time of ρ. Define ∆−1

def
= 0,

we say ρ resides in location vj during [∆j−1,∆j) (j = 0, . . .,
n − 1); and ρ resides in location vn during [∆n−1, Tfin]. We
say an execution trace {(ν(t), χ(t))}t∈[0,Tfin] of H matches ρ

iff

 ν(t) = vj (when ∃j ∈ {0, . . . , n− 1} s.t.
∆j−1 6 t < ∆j)

ν(t) = vn (when ∆n−1 6 t 6 Tfin)
. �

As PHAs can be composed, we also extend the above
concepts to composed PHAs.

Definition 6: (Projection of Execution Trace) Given com-
posed PHA H = H1|| . . . ||Hm, where H = (X , P , L, V ,
V 0, E, α, β, γ) and PHAs Hi = (Xi, Pi, Li, Vi, V 0

i ,
Ei, αi, βi, γi) (i = 1, . . . ,m), given an execution trace
θ = {(ν(t), χ(t))}t∈[0,Tfin] of H , as per Def. 2, there must be
ν(t) = (ν1(t), . . . , νm(t)) (where νi(t) ∈ Vi for i = 1, . . .m)
for each t ∈ [0, Tfin]. Meanwhile, as per Def. 2, Xi ⊆ X (for
i = 1, . . .m). Thus we can use evaluation χ(t) to evaluate
every element of Xi. Suppose the resulted evaluation is χi(t).
We call the set {(νi(t), χi(t))}t∈[0,Tfin] the projection of θ on

Hi, denoted as θ ↓ Hi. We also denote νi(t)
def
= ν(t) ↓ Hi

and χi(t)
def
= χ(t) ↓ Hi. �

Clearly, θ ↓ Hi in Def. 6 is an execution trace in Hi.

Definition 7: (Composable Path Set) Let H = (X , P ,
L, V , V 0, E, α, β, γ) = H1|| . . . ||Hm be a composed
PHA of PHAs Hi = (Xi, Pi, Li, Vi, V 0

i , Ei, αi, βi, γi)
(i = 1, . . . ,m). A set {ρi} (i = 1, . . . ,m) is a composable
path set for (H1, . . . ,Hm) iff each ρi (i = 1, . . . ,m) is a path
for Hi of the form

〈
vi,0
δi,0

〉
(φi,0,ψi,0)
−−−−−−−−→

li,0

〈
vi,1
δi,1

〉
(φi,1,ψi,1)
−−−−−−−−→

li,1

. . .
(φi,ni−1,ψi,ni−1)

−−−−−−−−−−−−−−→
li,ni−1

〈
vi,ni
δi,ni

〉
, and ρis are synchronized to

each other by shared events, i.e. ∀j ∈ {1, . . . ,m}, we have:
C1 ∀l ∈ Lj , we have S(l) ⊆ X ∪ P and ∀k ∈ {1, . . ., m},

(S(l) ∩ (Xk ∪ Pk) 6= ∅)⇒ (l ∈ Lk).
C2 ∀k ∈ {1, . . . , m}\{j}, ∀l ∈ Lj∩Lk, for any occurrence

in ρj of l, without loss of generality, suppose it is the
dth occurrence, and the occurring element is lj,` (` ∈
{0, . . . , nj −1}), then the dth occurrence of l in ρk must
also exist, suppose the occurring element is lk,h (h ∈
{0, . . . , nk − 1}), we have

∑`
ı=0 δj,ı =

∑h
ı=0 δk,ı.

C3
∑nj
`=0 δj,` =

∑nk
`=0 δk,` (i.e. all finish times are the same).

�

Let H = H1|| . . . ||Hm be a composed PHA of PHAs Hi =
(Xi, Pi, Li, Vi, V 0

i , Ei, αi, βi, γi) (i = 1, . . . ,m). Given a
composable path set {ρi}mi=1 for (H1, . . . ,Hm), where path ρi

for Hi is of the form
〈

vi,0
δi,0

〉
(φi,0,ψi,0)
−−−−−−−−→

li,0

〈
vi,1
δi,1

〉
(φi,1,ψi,1)
−−−−−−−−→

li,1

. . .
(φi,ni−1,ψi,ni−1)

−−−−−−−−−−−−−−→
li,ni−1

〈
vi,ni
δi,ni

〉
, denote Tfin

def
=

∑n1

j=0 δ1,j ,

then due to C3, ∀i ∈ {1, . . . ,m},
∑ni
j=0 δi,j ≡ Tfin. Mean-

while, we create an empty list E := (), and then for each〈
vi,j
δi,j

〉
(φi,j ,ψi,j)−−−−−−→

li,j
in ρi (i = 1, . . . ,m; j = 0, . . . , ni−1),

let ∆i,j
def
=
∑j
k=0 δi,k and insert tuple (∆i,j , li,j) into E as

per ascending order of ∆i,j value, breaking ties by
1) replacing the existing tuple with the new tuple (if the

event labels are the same, i.e. shared event).
2) ascending order of i value (if the event labels are differ-

ent) 3

With the above Tfin and sorted list E , we can compose ρis
according to the algorithm of Fig. 4.

1. PathComposition({ρi}mi=1, E , Tfin) begin
2. % := (); // () means empty list
3. v := (v1,0, . . . , vm,0), v′ := ();
4. φ := ∅, ψ := ∅, t := 0;
5. foreach i in {1, . . . ,m}, let ji := 0 and j′i := 1;
6. while (E is not empty) begin
7. deque the head element (∆, l) of E ;
8. foreach i in {1, . . . ,m}
9. if (li,ji = l) then begin
10. v′ := (v′, vi,j′i); //list concatenation
11. φ := φ ∪ φi,ji , ψ := ψ ∪ ψi,ji ;
12. ji := j′i, j

′
i := j′i + 1;

13. end else
14. v′ := (v′, vi,ji);

15. % := (%,
〈

v
∆− t

〉
(φ,ψ)
−−−−→
l

); //list concatenation

16. v := v′, v′ := (), φ := ∅, ψ := ∅, t := ∆;
17. end;

18. % := (%,
〈

v
Tfin − t

〉
); //list concatenation

19. return %;
20. end;

Fig. 4. Pseudo code of PHA path composition. {ρi}mi=1 is the composable
path set, E is the sorted linked list of all (event happening time, event label)
tuples of {ρi}mi=1, Tfin is the finish time of all paths in {ρi}mi=1.

We call the above % a composed path for H from {ρi}mi=1,
and denote it as % = ρ1|| . . . ||ρm. Furthermore, we call ρi
(i ∈ {1, . . . ,m}) the projection of % on Hi, denoted as ρi =
% ↓ Hi. We have the following.

Lemma 1: (Path Matching between Execution Trace and
Its Projections) Let H = (X , P , L, V , V 0, E, α, β, γ) =
H1|| . . . ||Hm be a composed PHA of PHAs Hi = (Xi, Pi,
Li, Vi, V 0, Ei, αi, βi γi) (i = 1, . . ., m). Set {ρi}mi=1 is a
composable path set for (H1, . . ., Hm), and % = ρ1|| . . . ||ρm.
Suppose θ = {(ν(t), χ(t))}t∈[0,Tfin] is an execution trace of H
matching %, then θ ↓ Hi is an execution trace of Hi matching
ρi (∀i ∈ {1, . . ., m}). �

3This means we are ignoring the different interleaving orders of the events
of different PHAs that happened simultaneously.

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Proof: If θ matches %, then θ changes and only changes
location at %’s event happening times. Suppose at any event
happening time ∆ of %, the happening event is e = (v,
l, φ, ψ, v′), then we have ν(∆−) = v and ν(∆) = v′.
Meanwhile, we have Case 1) an event labeled l also happens
in ρi, which changes ρi’s residing location from vi to v′i; or
Case 2) no event labeled l is happening in ρi, which changes
ρi’s residing location from vi to v′i = vi. Either way, vi and
v′i are respectively the ith element of vector v and v′. This
means ν(∆−) ↓ Hi = vi and ν(∆) ↓ Hi = v′i.

Also, between any two consecutive event happening time
of %, ν(t) does not change; and as no event happens in ρi, ρi
does not change residing location,

Above all means θ ↓ Hi matches ρi. �

With the above notions, we can define scenario reachability
related concepts.

Definition 8: (Reachability Specification) Given a PHA
H = (X , P , L, V , V 0, E, α, β, γ), suppose each x ∈ X
is given a unique index label k ∈ {1, . . ., |X|} and denoted
as xk. A reachability specification, denoted as R(v, ϕ), is a
tuple consisting of a location v ∈ V and a set ϕ of parameter
constraints of the form a 6

∑|X|
k=1 ckxk 6 b, where a, b, and

ck (k = 1, . . ., |X|) are real constants.
Furthermore, given a path ρ of H , we say H reaches R

along ρ, denoted as H
ρ
 R, iff there exists an execution

trace θ = {(ν(t), χ(t))}t∈[0,Tfin] of H matching ρ, such that
ν(Tfin) = v and χ(Tfin) satisfies all constraints in ϕ. �

With the above concepts, we can formally define scenario
reachability validation.

Definition 9: (Scenario Reachability Validation) Given a
PHA H = (X , P , L, V , V 0, E, α, β, γ), a path ρ of H of the
form

〈
v0
δ0

〉
(φ0,ψ0)
−−−−−−→

l0

〈
v1
δ1

〉
(φ1,ψ1)
−−−−−−→

l1
. . .

(φn−1,ψn−1)
−−−−−−−−−−→

ln−1

〈
vn
δn

〉
is called a scenario of H iff all δjs (j = 0, . . ., n; δj ∈ R>0)
are configurable variables. Given a reachability specification
R(v, ϕ) of H , a scenario reachability validation on (H , ρ, R)

checks if there is an evaluation of all the δjs s.t. H
ρ
 R. If

the answer is yes, we denote (H , ρ, R) |= H
ρ
 R; otherwise,

we denote (H , ρ, R) 6|= H
ρ
 R. �

Definition 10: (Composed Scenario Reachability Validation)
Let PHA H = (X , P , L, V , V 0, E, α, β, γ) = H1|| . . . ||Hm

be a composed PHA of PHAs Hi = (Xi, Pi, Li, Vi, V 0
i , Ei,

αi, βi, γi) (i = 1, . . ., m). Let ρi (i = 1, . . . ,m) of the form〈
vi,0
δi,0

〉
(φi,0,ψi,0)
−−−−−−−−→

li,0

〈
vi,1
δi,1

〉
(φi,1,ψi,1)
−−−−−−−−→

li,1
. . .

(φi,ni−1,ψi,ni−1)
−−−−−−−−−−−−−−→

li,ni−1〈
vi,ni
δi,ni

〉
be a path for Hi, where all δi,js (i = 1, . . ., m;

j = 0, . . ., ni; δi,j ∈ R>0) are configurable variables (i.e.
ρi is a scenario of Hi). Furthermore, given a reachability
specification R(v, ϕ) of H , a composed scenario reachability
validation on (H , {ρi}mi=1, R) checks if there is an evaluation
of all the above δi,js, s.t. {ρi}mi=1 is a composable path set and
H

%
 R (where % def

= ρ1|| . . . ||ρm, we call ρis the “component
scenarios of H” and % the “composed scenario of H”). If
the answer is yes, we denote (H , {ρi}mi=1, R) |= H

%
 R;

otherwise we denote (H , {ρi}mi=1, R) 6|= H
%
 R. �

B. Composed Scenario Reachability Validation as a Linear
Programming (LP) Problem

Composed scenario reachability validation time cost can
still go exponential. For example, when the m component
paths (i.e. ρis) of Def. 10 do not have shared events, the
total possibilities of %’s topology alone is already Ω(Πm

i=1ni),
depending on the configurations of δi,js.

To apply our proposed validation for online usage, we
must reduce the time cost. We find that in case PHAs can
be concretized to LHAs (see Def. 3), we can decompose
the composed scenario reachability validation to component
scenario reachability validation, and use LP to solve the
problem by the “shallow synchronization” encoding proposed
in [17], reducing time cost to polynomial.

Now, let us reformulate the “shallow synchronization” en-
coding in the formalism system of this paper as follows:

Theorem 1: (LHA Composed Scenario Reachability
Validation) Let LHA H = (X , L, V , V 0, E, α, β,
γ) = H1|| . . . ||Hm be a composed LHA of LHAs
Hi = (Xi, Li, Vi, V 0

i , Ei, αi, βi, γi) (i = 1, . . . ,m).
Suppose each x ∈ Xi (i ∈ {1, . . ., m}) is given a
unique index label (i, k) (k ∈ {1, . . ., |Xi|}), hence is
denoted as xi,k. Note according to Formula (1)(2) and
Def. 2, the (i, k) index label therefore also uniquely
identifies each x ∈ X . Let ρi (i = 1, . . . ,m) of the form〈

vi,0
δi,0

〉
(φi,0,ψi,0)
−−−−−−−−→

li,0

〈
vi,1
δi,1

〉
(φi,1,ψi,1)
−−−−−−−−→

li,1
. . .

(φi,ni−1,ψi,ni−1)
−−−−−−−−−−−−−−→

li,ni−1〈
vi,ni
δi,ni

〉
be a path for Hi, where all δi,js (i = 1, . . .,

m; j = 0, . . ., ni; δi,j ∈ R>0) are configurable variables
(i.e. ρi is a scenario of Hi). Given reachability specification
R(v, ϕ) of H , where v = (v1,n1

, . . ., vm,nm). Then (H ,
{ρi}mi=1, R) |= H

%
 R iff the following set of constraints

on δi,j ∈ R>0, λi,j,k ∈ R, and ζi,j,k ∈ R (i = 1, . . ., m;
j = 0, . . ., ni; k = 1, . . ., |Xi|) is feasible.
C1, C2, C3 are respectively the same as C1, C2, C3 of Def. 7.

C4 For each xi,k ∈ Xi (i = 1, . . ., m; k = 1, . . ., |Xi|),
xi,k := λi,0,k is a valid initial condition in vi,0, i.e.
xi,k := λi,0,k ∈ γ(vi,0).

C5 For each flow condition ẋi,k = [ui,j,k, u
′
i,j,k] ∈ βi(vi,j)

(i = 1, . . ., m; j = 0, . . ., ni; k = 1, . . ., |Xi|), there
is ui,j,kδi,j 6 ζi,j,k − λi,j,k 6 u′i,j,kδi,j , where ζi,j,k and
λi,j,k represents the valuation of xi,k leaves and enters
location vi,j respectively.

C6 For each location invariant constraint a 6∑|Xi|
k=1 ci,kxi,k 6 b in αi(vi,j) (i = 1, . . ., m;

j = 0, . . . , ni), there is

{
a 6

∑|Xi|
k=1 ci,kλi,j,k 6 b

a 6
∑|Xi|
k=1 ci,kζi,j,k 6 b

.

C7 For each guard a 6
∑|Xi|
k=1 ci,kxi,k 6 b in φi,j (i = 1, . . .,

m; j = 0, . . ., ni − 1), there is a 6
∑|Xi|
k=1 ci,kζi,j,k 6 b.

C8 ∀i ∈ {1, . . ., m}, ∀j ∈ {0, . . ., ni − 1}, we have

C8.1 if the event of li,j is not a received event, then
according to Def. 1.3e and Def. 3, resets in ψi,j
on xi,k (k = 1, . . ., |Xi|) must have the form
xi,k :=

∑|Xi|
`=1 ci,j,`xi,`. Correspondingly, we have

the constraint λi,j+1,k =
∑|Xi|
`=1 ci,`ζi,j,`.

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Fig. 5. Scenario for R1

C8.2 if the event of li,j is a received event, denote
l

def
= li,j , and suppose li,j is the dth occurrence

of label l in ρi. Denote K
def
= {κ|κ ∈ {1, . . .,

m} \ {i}, l ∈ Lκ, and S(l) ∩ Xκ 6= ∅}. Then
for each ρκ (where κ ∈ K), according to C2,
the dth occurrence of l exists. Suppose that is
lκ,hκ (hκ ∈ {0, . . ., nκ − 1}). Also, according to
Def. 1.3e, Def. 3, C1, and C2, resets in ψi,j on
xi,k (k = 1, . . ., |Xi|) must have the form xi,k :=

(
∑|Xi|
`=1 ci,j,`xi,`) +

∑
κ∈K

∑
`∈Iκ cκ,hκ,`xκ,` (where

Iκ
def
= {`|` ∈ {1, . . . , |Xκ|} and xκ,` ∈ S(l)}).

Correspondingly, we have the constraint λi,j+1,k =

(
∑|Xi|
`=1 ci,j,`ζi,j,`) +

∑
κ∈K

∑
`∈Iκ cκ,hκ,`ζκ,hκ,`.

C9 For each constraint a 6
∑m
i=1

∑|Xi|
k=1 ci,kxi,k 6 b in ϕ,

we have a 6
∑m
i=1

∑|Xi|
k=1 ci,kζi,ni,k 6 b. �

The proof of the above theorem is referred to the appendix
of [17]. Here, we use the CBTC motivating example to show
a real-case scenario reachability validation problem and how
can it be solved by the related method.

Recall safety rule R1 (see Section II-A), the state reachabil-
ity verification specification of R1 is whether the position of
Traini (i = 1, . . ., m−1) on track can reach that of Traini+1

during the EBraking (see Fig. 2(A)) work mode within time
horizon length F = 25 seconds.

Our CBTC CPS industry collaborators are only concerned
with some special scenario reachabilities for R1 actually. The
concerned scenario is: after sync with RBC, all the trains will
receive the “UpdateMA” event, and start to run under the new
control parameters, whether Traini (i = 1, . . ., m−1) will hit
the train ahead of it (i.e. Traini+1) during their “EBraking”
work modes within the online model checking time horizon
(see Fig. 2(A)).

This is formalized as (m − 1) composed scenario reacha-
bility problems. The concretized LHA Hi of Traini (i = 1,
. . ., m) is shown in Fig. 5, which can be derived from
Fig. 2(A). The component scenario ρi from Hi (i = 1,
. . ., m) is

〈
WaitingMA
δi,0

〉
UpdateMA
−−−−−−−→

〈
Computing
δi,1

〉
UpdateSBPi−−−−−−−−→〈

Adjusting
δi,2

〉
Adjustedi−−−−−−→

〈
Cruising
δi,3

〉
EBrakei−−−−−→

〈
EBraking
δi,4

〉
.

Note the event guards and resets are omitted due to space
limit. Interested readers can refer to the corresponding edges
in Fig. 2(A).

In the ith (i = 1, . . ., m−1) composed scenario reachability
problem, scenario ρi is composed with scenario ρi+1; and the
reachability constraint ϕi is 0 6 xi − xi+1 6 0 and t 6 25,
where xi and xi+1 are respectively Traini and Traini+1’s

position on track, t is the time, and 25 is the concerned online
model checking time horizon length F .

Now, take a scenario of only 2 trains for example, the
scenario we have is:
• ρ1 :

〈
WaitingMA
δ1,0

〉
UpdateMA
−−−−−−−→

〈
Computing
δ1,1

〉
UpdateSBP1−−−−−−−−→〈

Adjusting
δ1,2

〉
Adjusted1−−−−−−−→

〈
Cruising
δ1,3

〉
EBrake1−−−−−−→

〈
EBraking
δ1,4

〉
.

• ρ2 :

〈
WaitingMA
δ2,0

〉
UpdateMA
−−−−−−−→

〈
Computing
δ2,1

〉
UpdateSBP2−−−−−−−−→〈

Adjusting
δ2,2

〉
Adjusted2−−−−−−−→

〈
Cruising
δ2,3

〉
EBrake2−−−−−−→

〈
EBraking
δ2,4

〉
.

Now, let us show how to encode the scenario reachability
problem
• C1-C3 are about Synchronization Encoding:

– According to C1, the shared label between these two
components is UpdateMA only.

– C2 says the related component should fire the shared
label at the same time, so we have δ1,0 = δ2,0.

– C3 asks all the component should reach the tar-
get state by the same time, therefore we have∑4
`=0 δ1,` =

∑4
`=0 δ2,`

• C4-C9 are about Local Encoding:
– Take location Cruising of ρ1 for example, we mark
Cruising as location v1,4, we mark variable x1 as
x1,1, t1 as x1,2. According to C5 , for variable x1, we
have variables ζ1,4,1 and λ1,4,1 encode the valuation
of x1 leaves and enters Cruising (v1,4) respectively.
We also get constraint niδ1,4 ≤ ζ1,4,1 − λ1,4,1 ≤
n′iδ1,4

– For invariant x1 ≤ SBP ′1 in Cruising , we have
ζ1,4,1 ≤ SBP ′1 and λ1,4,1 ≤ SBP ′1 according to
C6.

– For guard t1 > 5 on transition Ebrakei , we have
ζ1,4,2 > 5, according to C7.

– For reset t1 := 0 on transition Ebrakei, we have
ζ1,5,2 := 0, according to C8.1.

– For the specification 0 6 x1− x2 6 0 and t 6 25 in
ϕ, we have 0 6 ζ1,5,1 − ζ2,5,1 6 0 and ζ1,5,2 6 25,
according to C9.

C. Online Fault Prediction with Online Composed Scenario
Reachability Validation Model Checking

Now, we show how our online scenario reachability verifica-
tion is integrated into the classical control loop. The general
idea of classical control loop for complex CPS systems is
shown in the left part of Fig.6. Whenever a running system
gets a new instruction/command or receives stimuli from the
environment, it will compute/collect the numeric values of the
control parameters, then the parameters will be deployed by
the running system immediately. If we call the left part of Fig.6
as “classical control system”, our online verification module,
the right part of Fig.6, can be used as a “runtime monitor” [44]
which works as a guardian of the “classical control system”
and guarantee the safety of system operation.

1) After the control functions are called by the running
system and a new set of parameter values are generated,
these values will be deployed on the running system
immediately as in the classical control loop. In other

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Fig. 6. Online Modeling and Verification Framework

words, the running system will not wait for the pass of
the verification to deploy the control parameters. Because
in such manner, during the verification period the system
have to work under the old set of parameter values, which
is out-of-date and could be dangerous.

2) Meanwhile, once the new set of parameter values is
generated, the online modeling module will be called
to build the online model for the time-bounded behavior
of the system by concretizing the free parameters in the
model according to their numeric values.

3) Then, the online verification module will verify the
predefined scenario verification tasks on the concretized
models. If the verification is rejected, or the verification
module fails to get a result before the deadline, the online
verification module will ask the system to stop the current
parameters immediately and start a fall-back plan which
is predefined by designers to guarantee the safety of
system operation.

In such manner, the offline unverifiable parametric model
can be verified online. The online modeling and verification
module can be introduced as a runtime monitor into the
classical control loop. Our monitor will not interrupt the
behavior of the system unless the verification is rejected.

More specifcally, we modify the online state reachability
verification model checking algorithm of Fig. 3 to the online
composed scenario reachability validation model checking
algorithm of Fig. 7.

//online model checking called every T seconds.
//online validation deadline is D.

1. OnlineFaultPrediction(D, {ρi}mi=1, R(v, ϕ)) begin
2. set t0 to the current time; set Tfin to t0 + F ;
3. concretize each component PHA to an HA {Hi}mi=1;

//Denote H = H1|| . . . ||Hm

4. if (((H , {ρi}mi=1, R) |= H
%
 R)

5. or (current time t > t0 +D)) then
6. trigger the fall-back plan; //non-blocking call.
7. end;

Fig. 7. Pseudo code of online composed scenario reachability validation
model checking. Note, unlike ρis, His are always composable due to Def. 2:
no composability conditions are needed.

D. Complexity, Soundness, and Completeness

We have the following results on the time cost, soundness
(i.e. no false alarm is triggerred; formally, if line 6 of Fig. 7
is executed, then there must be (H , {ρi}mi=1, R) |= H

%

R), and completeness (i.e. no alarm is missed; formally, if
(H , {ρi}mi=1, R) |= H

%
 R, then line 6 of Fig. 7 must be

executed) of the algorithm of Fig. 7.

Theorem 2: (LHA Composed Scenario Reachability Val-
idation Time Cost, Soundness, and Completeness) For the
given H , {ρi}mi=1, and R in Theorem 1, the validation of (H ,
{ρi}mi=1, R) |= H

%
 R can be done via linear programming

(LP), hence takes polynomial time. Further more, given suffi-
cient time (i.e. big enough D), the online validation algorithm
of Fig. 7 is sound and complete. In case D is not big enough
(but D > 0), the algorithm of Fig. 7 is complete. �

Proof: Due to Theorem 1, checking (H , {ρi}mi=1, R) |=
H

%
 R is equivalent to checking the feasibility of constraints

C1 ∼ C9. Checking C1 takes polynomial time. Constructing
all linear constraints in C2 ∼ C9 takes polynomial time.
Finding a feasible solution to the constraints in C2 ∼ C9 is
an LP problem, which also takes polynomial time. (*)

(*) implies line 4 of Fig. 7 costs polynomial time. Denote
the exact time cost as Tcost. If D > Tcost, then the only reason
that triggers the execution of line 6 of Fig. 7 is (H , {ρi}mi=1,
R) |= H

%
 R. Meanwhile, when D > Tcost and (H , {ρi}mi=1,

R) |= H
%
 R, line 4 of Fig. 7 will return true to trigger the

execution of line 6. (**)
When 0 6 D < Tcost and (H , {ρi}mi=1, R) |= H

%
 R,

line 5 of Fig. 7 will trigger the execution of line 6. (***)
Beause of (*), (**), and (***), we proved the theorem. �

Now, the only missing case is the soundness of algorithm
in Fig. 7 when D is not big enough (0 6 D < Tcost). In this
case, false positive alarms may be triggered. Fortunately, as
LP is well studied, mature high performance LP solvers are
widely available. Hence, most of the time Tcost is very small,
making D < Tcost cases empirically rare. This is corroborated
by our evaluation in Section IV. As shown by Table II and III,
the time costs of model checking (H , {ρi}mi=1, R) |= H

%
 R

(i.e. Tcost) are all below 200ms, which is way smaller than the
usual configurations of D at the granularity of seconds.

IV. IMPLEMENTATION AND EVALUATION

A. Tool Implementation & Setting

Tool Implementation. In order to support the online modeling
and verification procedure, we implemented our proposed
PHA scenario reachability validation mechanisms (see Sec-
tion III) in BACH [18] model checker, and extended BACH
[18] into a special version BACHOL which can support the
online linear hybrid automata modeling and verification.

Inheriting all the functionalities of BACH, BACHOL is
extended with the following new capabilities:

1) A graphical editor for modeling parametric LHA with
free symbolic parameters.

2) A module which can generate concrete LHA model
automatically by replacing the free parameters in the PHA

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

to the numeric values and performing the mathematical
computation whenever needed.

Online Setting. In the experiments, BACHOL communicates
with the onboard train control system by UDP. At the begin-
ning of each cycle, the values of all the free parameters will
be concretized. Then, the onboard system will pack up all the
runtime values, including the current speed of the train, new
MA value, new SBP value, new velocity ranges and so on.
Besides these data, for the sake of security, the id of the sender
(train), receiver (checker), the serial number and the size of the
message package will be sent as well, and result in a package
of 28 bytes in total. Then, the train control system sends this
data package to the checker through the UDP socket.

After receiving the package, BACHOL confirms the package
is sent to it from the correct train and confirms there is no
package loss by checking the continuity of the serial number.
Then, it retrieves the corresponding runtime data from the
package and concretizes the parametric model correspond-
ingly. Then, the predefined verification tasks will be con-
ducted. The verification results will be written into a package
with the size of 8 bytes, and send back to the corresponding
train through the UDP socket again.

B. Online State Reachability Verification Model Checking

We conduct experiments on our CBTC CPS (see Sec-
tion II-A) to compare online state reachability verification
model checking with our proposed online scenario reachability
validation model checking for online CPS fault-prediction.
The experiments are conducted on a Think Center (UBUNTU
16.04, 64 bit, Intel Core i7-6700 CPU 3.40GHz, 16GB RAM).

The CBTC CPS safety rules R1 and R2 (see Section II-A)
can be translated into the following state reachability verifica-
tion specifications.
• The state reachability verification specification of R1 is

whether the position of Traini (i = 1, . . ., m − 1) on
track can reach that of Traini+1 during the EBraking
(see Fig. 2(A)) work mode within time horizon length
F = 25 seconds, refer to Section III-B.

• The state reachability verification specification of R2 is
whether the position of Traini (i = 1, . . ., m) on track
can exceed its EOA during the SBraking (see Fig. 2(A))
work mode within time horizon length F = 50 seconds.

We conduct the online state reachability verification
model checking with the state-of-the-art LHA model checker
SpaceEx [32]. The time costs are listed in Table I. Note in
the table, the time cost for R1 refers to the time cost to
model check if one pair of neighboring trains (e.g. Train1

and Train2) will hit each other. Model checking other pairs of
trains can be conducted in parallel independently. In the table,
the time cost for R2 refers to the time cost to model check if
one train (e.g. Train1) will exceed its EOA. Model checking
of other trains can be conducted in parallel independently. The
statistics (i.e. mean, max, std) are conducted upon 100 trials
(for the cases of 2 ∼ 8 trains respectively), and upon 10 trials
(for the cases of 9 and 10 trains respectively)4.

4Note the 100 trials are executing the completely same data 100 times.

According to Table I, when total number of trains on track
is small, online state reachability verification may reach the
fixpoint of the state space quickly as the state space is over
approximated in the computation. Therefore, we can see that
when the number of trains is less than 6, the state reachabililty
can catch fault-prediction deadline of D = 250 milliseconds
(see Section II-C). However, due to the composition explosion
problem, the search space explodes quickly which makes the
verification of large system impractical. Therefore, when the
total number of trains exceeds 6, the time costs quickly soar
up. With 10 trains, even by exploiting parallel computing, the
time cost exceeds 1 hour. This makes online model checking
infeasible5. Note in reality, all trains in a railway system may
affect each other directly or indirectly. This is why even when
model checking two (or one) train(s), the total number of trains
in the system affects model checking time cost.

We do notice there is series of reachability checkers for
hybrid automata available, including SpaceEx, dReach [37],
Flow* [20], CORA [3], Hylaa [9] and so on. The reason
we use SpaceEx in the experiment is that among all these
tools, SpaceEx supports the verification of LHA naturally as
it integrates the mechanism of PHAVer. On the other hand,
dReach, Flow* and CORA are targeting on nonlinear hybrid
system, while Hylaa handles discrete time hybrid system,
which are different with the class of system studied in this
work. Meanwhile, we do not intent to compare with SpaceEx
here. We list the runtime data of SpaceEx only to illustrate how
difficult it is to conduct online state reachability verification.

C. Online Scenario Reachability Validation Model Checking

Indeed, via experience, industry knows the impracticality
of state reachability verification for long time, hence does
not insist on completeness of model checking (i.e. finding all
reachable unsafe states). Therefore, in practice, industry often
only demands to know if a CPS can reach certain unsafe states
in certain work mode via certain sequence of actions. Using
the formal terms proposed in Section III, this is a scenario
reachability validation problem. As long as the concerned
unsafe scenarios are validated to be unreachable, sufficient
confidence is built to allow the CPS to run.

Specifically, instead of pursuing complete guarantees of
safety rule R1 and R2 (see Section II-A), our CBTC CPS
industry collaborators are only concerned with some special
scenario reachabilities for R1 and R2.

1) Online Composed Scenario Reachability Validation
Model Checking for R1: The concerned scenario is: after sync
with RBC, all the trains will receive the “UpdateMA” event,
and start to run under the new control parameters, whether
Traini (i = 1, . . ., m − 1) will hit the train ahead of it
(i.e. Traini+1) during their “EBraking” work modes within
the online model checking time horizon (see Fig. 5).

The detail scenario is described in Section III-B. We use
BACHOL to check the above R1 related composed scenario
reachability validations. The time costs are summarized by
Table II. Note same as Table I, in Table II, the time cost refers

5The time costs are recorded by the Linux system command : time, with
the 1ms granularity.

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE I
ONLINE STATE REACHABILITY VERIFICATION MODEL CHECKING TIME COST (DEFAULT UNIT: MILLISECOND)

total no. of trains 2 3 4 5 6 7 8 9 10
R1.mean 11.96 15.32 22.8 38.64 103.96 621.04 7077 285768.4 > 1h
R1.max 20 20 28 44 108 680 7792 307636 > 1h
R1.std 2 1.79 2.37 2.67 3.23 12.72 127.91 22089.34 N/A

R2.mean 11.68 15.32 23 38.72 104.16 621.08 7092.88 281737.6 > 1h
R2.max 20 16 24 48 108 668 7480 313124 > 1h
R2.std 1.93 1.6 1.73 2.32 3.53 12.18 103.88 24501.6 N/A

Fig. 8. Scenario for R2

to the time cost to check if one pair of neighboring trains (e.g.
Train1 and Train2) will hit each other. Checking other pairs of
trains can be conducted in parallel independently. The statistics
(i.e. mean, max, std) are conducted upon 100 trials.

According to Table II, by exploiting parallel computing,
even when a railway track has 20 simultaneously operating
trains6, all online composed scenario reachability validation
model checking can finish within 250 milliseconds. This is far
less than the time cost for online state reachability verification
model checking (see Table I), and less than the online model
checking deadline D = 250ms (see Section II-C). We also
make an investigation to see how many checking missed the
deadline. As the longest time used is 184ms for the case of 20
trains, which is still smaller than D = 250ms, there is no miss
of deadline in the experiments. Clearly, we can further enhance
the number of trains that can be solved in the 250 ms time
limitation. The result confirms our technique can handle such
system efficiently and this also evaluates the completeness of
our approach in practice.

Note when model checking every pair of neighboring trains,
Theorem 1 still requires us to list linear constraints C1 ∼ C8,
which are related to all trains. Hence time cost still increases
as total number of trains increases. This reflects the reality
that in a railway system, all trains on the track are affecting
each other directly or indirectly.

2) Online Scenario Reachability Validation Model Check-
ing for R2: R2 asks whether a train can exceed its EOA during
SBraking. As the specification is about the position of every
single train respectively, in our scenario-oriented reachability
checking, we can simplify the problem to the verification
of one automaton, instead of compositional verification. The
concerned scenarios of R2 are illustrated by Fig. 8, which is
derived from Fig. 2(A) directly.
• Scenario 1: We are concerned that after synchroniza-

tion with RBC and receiving an “UpdateMA” event,
whether Traini (i = 1, . . ., m) can pass SBPi in
work mode “Computing” and then exceed EOA. The

6This is a normal number of running trains that can be effectively monitored
by an RBC simultaneously on a line for an urban subway system.

corresponding scenario ρ1,i is
〈

WaitingMA
δi,0

〉
UpdateMA
−−−−−−−→〈

Computing
δi,1

〉
SBrakei−−−−−→

〈
SBraking
δi,2

〉
.

• Scenario 2: We are concerned that after synchronization
with RBC and receiving an “UpdateMA” event,
whether Traini (i = 1, . . ., m) can pass
SBPi in work mode “Adjusting” and then
exceed EOA. The corresponding scenario ρ2,i is〈

WaitingMA
δi,0

〉
UpdateMA
−−−−−−−→

〈
Computing
δi,1

〉
UpdateSBPi−−−−−−−−→〈

Adjusting
δi,2

〉
SBrakei−−−−−→

〈
SBraking
δi,3

〉
.

• Scenario 3: We are concerned that after after
synchronization with RBC and receiving an
“UpdateMA” event, whether Traini (i = 1, . . .,
m) can pass SBPi in work mode “Cruising” and
then exceed EOA. The corresponding scenario ρ3,i

is
〈

WaitingMA
δi,0

〉
UpdateMA
−−−−−−−→

〈
Computing
δi,1

〉
UpdateSBPi−−−−−−−−→〈

Adjusting
δi,2

〉
Adjustedi−−−−−−→

〈
Cruising
δi,3

〉
SBrakei−−−−−→

〈
SBraking
δi,4

〉
.

Note the event guards and resets are omitted due to space
limit. Interested readers can refer to the corresponding edges
in Fig. 2(A).

There are no composed scenarios of interest of R2. There-
fore the 3×m scenarios ρ1,i, ρ2,i, ρ3,i (i = 1, . . ., m) respec-
tively corresponds to 3×m independent scenario reachability
validation problems that can be computed in parallel. For a
scenario reachability validation problem related to ρ1,i, ρ2,i,
or ρ3,i (i = 1, . . ., m), the reachability specification constraint
ϕi is xi > EOAi and t 6 50, where xi is Traini’s position
on track, t is the time, and 50 is the concerned online model
checking time horizon length F .

Again we use our BACHOL model checker implementation
to check the above R2 related scenario reachability validations.
The time costs are summarized by Table III. Note in the table,
the time cost refers to the time cost to model check if one
train (e.g. Train1) will exceed its EOA in the corresponding
scenario. Model checking of other scenarios, and of other
trains can be conducted in parallel independently. The statistics
(i.e. mean, max, std) are conducted upon 100 trials.

According to Table III, by exploiting parallel computing, all
scenario reachability validations can be model checked with 40
milliseconds, which is way less than the online model checking
deadline D = 250 milliseconds (see Section II-C), and of
course there is no miss of deadline in the experiments.

V. RELATED WORK

Online Monitor and Verification. Similar to online model
checking, “runtime verification” [29] is also performed while
the system is running. However, the purpose of runtime

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE II
ONLINE COMPOSED SCENARIO REACHABILITY VALIDATION MODEL CHECKING TIME COST FOR R1 (DEFAULT UNIT: MILLISECOND)

total no. of
trains

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

mean 34.84 41.12 48.24 55.68 63.36 71 75.72 83.44 90.4 98.4 104.44 118.12 125.68 133.2 141.48 150.04 156.76 163.84 172.92
max 40 48 52 60 72 76 84 88 96 112 112 124 132 144 152 160 168 172 184
std 3.41 3.63 3.74 4.26 4.82 4.05 4.6 4.42 4.93 5.22 4.52 4.51 5.13 5.67 5.76 5.32 5.68 5.85 5.45
miss deadline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE III
ONLINE SCENARIO REACHABILITY VALIDATION MODEL CHECKING

TIME COST FOR R2 (DEFAULT UNIT: MILLISECOND)

Scenario ρ1,i ρ2,i ρ3,i
mean 26.04 25.68 31.54
max 32 36 40
std 2.68 3.84 4.48

miss deadline 0 0 0

verification is to retrieve program execution traces for offline
debugging/analysis, rather than online fault prediction.

Easwaran et al. [28] propose an online steering architecture
for discrete systems. The architecture monitors the runtime
behavior of the system and checks whether the event generated
by the system will violate certain user-defined properties
in bounded steps. However, this architecture is for discrete
systems instead of CPS.

As a special subclass of the parametric hybrid automata,
which is discussed in this paper, the scheduling analysis
of parametric timed automata is studied in [23] and [39]
to evaluate the parameters space that guarantees a feasible
schedule. These works perform the analysis by concretizing
every combination of parameter values repeatedly to obtain
the scheduability region.

Several works [10], [19], [21], [42], [46] propose to use on-
line state reachability model checking as a CPS fault prediction
tool. However, how to deal with value-unknown parameters,
online data exchange, and computational time cost scalability
are problems yet to be explored. This paper makes an initial
attempt to address these problems holistically. It generalizes
the solution of [17] [18] [43] by adding support for modeling
offline value-unknown parameters and online data exchange,
and by proposing a more rigorous theoretical framework based
on the PHA execution trace concept.

Verification of Hybrid System. The verification for hybrid
systems is very difficult. Even for a relatively simple class
of hybrid systems – linear hybrid automata – the reachability
analysis problem is also undecidable [4], [34], [36]. The main
technique under the classical reachability problem is trying to
abstract the state space by certain mathematic methods like
polyhedral [7], ellipsoidal [38], support functions [40], and
then compute the transitive closure of the state space of the
system behavior by techniques like polyhedral computation,
which is very expensive and not guaranteed to terminate. Sev-
eral model checking tools have been developed, for example
PHAVer [31] and its improvement SpaceEx [32]. But they do
not scale well to the size of practical problems.

In recent years, Bounded Model Checking [12] has been
presented as a technique alternative to BDD-based symbolic
model checking. There are several related works [8], [30]

to check linear hybrid systems by BMC. Several tools were
developed, such as MathSAT [8] and HySAT [30]. These tools
are based on a SAT-solver that calls the solver on demand for
conjunctions of the domain-specific constraints. Nevertheless,
the experiment results show that it is difficult to apply those
tools to analyze problems of practical size. The performance
is even worse for reachability analysis of a composition of
several linear hybrid automata.

Study [17] presented a path-oriented method for composed
verification of LHA which is similar to this work. However,
this work provides a more rigorous and generic theoretical
framework, exploiting the PHA execution trace concept. This
work is also more generic than [17] in the sense that our
framework supports modeling offline value-unknown parame-
ters and online data exchange. On the other hand, dReach [37]
is a hybrid automata model checker which also conduct path-
oriented reachability verification. The main decision procedure
under dReach is interval analysis which supports nonlinear
constraint solving quite well. However, dReach only supports
scenario reachability of a single automaton. It will be an
interesting topic to see how to integrate the composed scenario
encoding method proposed in this work with dReach to handle
the verification of composed nonlinear hybrid systems.

Verification of Parametric Hybrid System. The lan-
guage of parametric hybrid automata introduced in this paper
is inspired by the slope parametric linear hybrid automata
(SPLHA) proposed and analyzed in studies including [1], [2],
[15]. In these works, the flow conditions, a.k.a. slope, of a
continuous variable could be free parameters. However, in real
case systems, all the control variables could be parametric,
not necessarily only the slope variable. Meanwhile, composed
systems may exchange data along with synchronization events,
therefore, we support the compositional modeling and value
exchanging. On the other hand, existing verification studies
of SPLHA mainly focused on the synthesis of the slope
variables to make the system satisfy the desired property.
Differently, our work does not focus on parameter synthesis,
we conduct online verification to see whether the runtime
control parameters are safe or not in the short-run future.

Similar with our work, parametric timed automata (PTA) [5]
and its variants [11], [16] were proposed to model the real time
system working in open environment by introducing param-
eters in guards and invariants. Timed automata is a special
class of linear hybrid automata. Therefore, the express ability
of the PHA presented in this paper is more powerful than PTA.
Most of the verification studies of PTA are also focusing on
parameter synthesis. Meanwhile, there are also other properties
of PTA studied, including reachability, unavoidability and so
on. However, most of the non-trivial problems on PTA are

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

proven to be undecidable [6].
Besides of these works about verification of parameterized

hybrid system, there are many works conducted on the ver-
ification of parametrized system, especially in the area of
distributed or concurrent systems. Study [13] gives a survey
of literatures on this topic. The system considered in [13]
assumes the model for each component is concrete with a finite
state space, while the parameterized aspect mostly come from
the number of active components of the system. Differently,
the PHA considered in this paper is more complicate than
the class of system surveyed in [13] . First of all, the state
space of hybrid automata is not finite. Then, the model of
each component has also free parameters included.

Verification of Train Control System. The verification of
train control system has been intensively studied. Chiappini et
al. [22] propose a method to generate high level requirements
from a subset of specifications in an ETCS system, and
use the method of [24] to verify the consistency between
requirements. These two works belong to the category of
requirement engineering, which do not touch real-time.

Bohn et al. [14] model the communication in train control
systems with Live Sequence Chart (LSC), then validate the
LSC by model checking and testing. Peleska et al. [48]
model the behavior of train control systems by timed state
transition systems, then verify given properties by BMC and
compositional reasoning. These works focus on the high level
discrete models instead of hybrid models.

Platzer et al. [49] model an ETCS system with differential
dynamic logic and verify the system by logical deductive
verification. Damm et al. [27] build different models for
different layers of an ETCS system and verify these models
using layer-specific technologies. These works focus on static
instead of online models of the ETCS systems.

VI. CONCLUSION

We proposed the concept of PHA to model CPSs with
offline value-unknown parameters and online data exchanges.
Online model checking of PHAs can work as an online
fault prediction tool for CPS. The corresponding time cost
challenge is addressed by our proposed scenario reachability
validation framework, which exploits the industry demand
that incomplete model checking is acceptable. The framework
supports scenario compose/decompose and the resulted online
scenario reachability validation can be conducted by linear
programming, hence incurs polynomial time cost. Evaluation
upon a real-world train control system shows that our proposed
approach cuts fault prediction time from over 1 hour to within
200 milliseconds. This makes online operation possible.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers and
Dr. Yao Chen for their valuable comments.

REFERENCES

[1] M. Adélaı̈de and O. F. Roux. Using cylindrical algebraic decomposition
for the analysis of slope parametric hybrid automata. In Proceedings of
6th International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, FTRTFT 2000, pages 252–263, 2000.

[2] M. Adélaı̈de and O. F. Roux. A class of decidable parametric hybrid
systems. In Proceedings of AMAST 2002, pages 132–146, 2002.

[3] M. Althoff. An introduction to CORA 2015. In Proceedings of 2nd
International Workshop on Applied veRification for Continuous and
Hybrid Systems, ARCH@CPSWeek 2015., pages 120–151, 2015.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138(1):3–
34, 1995.

[5] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time
reasoning. In Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages
592–601, 1993.

[6] É. André. What’s decidable about parametric timed automata? In
Proceedings of Fourth International Workshop of Formal Techniques for
Safety-Critical Systems, FTSCS 2015. Revised Selected Papers, pages
52–68, 2015.

[7] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability
analysis of piecewise-linear dynamical systems. In Proceedings of
HSCC’00, pages 20–31. Springer, 2000.

[8] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying
industrial hybrid systems with mathsat. Electronic Notes in Theoretical
Computer Science, 119(2):17–32, 2005.

[9] S. Bak and P. S. Duggirala. Hylaa: A tool for computing simulation-
equivalent reachability for linear systems. In Proceedings of HSCC
2017, pages 173–178, 2017.

[10] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha. Real-time reachability
for verified simplex design. In Proceedings of Real-Time Systems
Symposium, RTSS’14, pages 138–148. IEEE, 2014.

[11] B. Bérard, S. Haddad, A. Jovanovic, and D. Lime. Parametric interrupt
timed automata. In Reachability Problems - 7th International Workshop,
RP 2013, Uppsala, Sweden, September 24-26, 2013 Proceedings, pages
59–69, 2013.

[12] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded
model checking. Advances in computers, 58:117–148, 2003.

[13] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and
J. Widder. Decidability in parameterized verification. SIGACT News,
47(2):53–64, 2016.

[14] J. Bohn, W. Damm, J. Klose, A. Moik, H. Wittke, H. Ehrig, B. Kramer,
and A. Ertas. Modeling and validating train system applications using
statemate and live sequence charts. In Proc. IDPT, 2002.

[15] F. Boniol, A. Burgueño, O. F. Roux, and V. Rusu. Analysis of slope-
parametric hybrid automata. In Proceedings of International Workshop
of Hybrid and Real-Time Systems. HART’97, pages 75–80, 1997.

[16] L. Bozzelli and S. La Torre. Decision problems for lower/upper
bound parametric timed automata. Formal Methods in System Design,
35(2):121–151, 2009.

[17] L. Bu and X. Li. Path-oriented bounded reachability analysis of
composed linear hybrid systems. International Journal on Software
Tools for Technology Transfer (STTT), 13(4):307–317, 2011.

[18] L. Bu, Y. Li, L. Wang, and X. Li. Bach: Bounded reachability checker
for linear hybrid automata. In Proceedings of the 2008 International
Conference on Formal Methods in Computer-Aided Design, page 9.
IEEE Press, 2008.

[19] L. Bu, Q. Wang, X. Chen, L. Wang, T. Zhang, J. Zhao, and X. Li. Toward
online hybrid systems model checking of cyber-physical systems’ time-
bounded short-run behavior. ACM SIGBED Review, 8(2):7–10, 2011.

[20] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for
non-linear hybrid systems. In Proceedings of CAV 2013, pages 258–263,
2013.

[21] X. Chen and S. Sankaranarayanan. Model predictive real-time moni-
toring of linear systems. In Proceedings of IEEE Real-Time Systems
Symposium, RTSS 2017, pages 297–306, 2017.

[22] A. Chiappini, A. Cimatti, L. Macchi, O. Rebollo, M. Roveri, A. Susi,
S. Tonetta, and B. Vittorini. Formalization and validation of a subset
of the european train control system. In Proceedings of ICSE’2010,
volume 2, pages 109–118. IEEE, 2010.

[23] A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic computation of
schedulability regions using parametric timed automata. In Real-Time
Systems Symposium, 2008, pages 80–89. IEEE, 2008.

[24] A. Cimatti, M. Roveri, and S. Tonetta. Requirements validation for
hybrid systems. In Proceedings of CAV’09, volume 5643, pages 188–
203. Springer, 2009.

[25] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press,
1999.

[26] E. M. Clarke, B. Krogh, A. Platzer, and R. Rajkumar. Analysis and
verification challenges for cyber-physical transportation systems. 2008.

For Research Only

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2935062, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

[27] W. Damm, A. Mikschl, J. Oehlerking, E.-R. Olderog, J. Pang, A. Platzer,
M. Segelken, and B. Wirtz. Automating verification of cooperation,
control, and design in traffic applications. In Formal Methods and Hybrid
Real-Time Systems, pages 115–169. Springer, 2007.

[28] A. Easwaran, S. Kannan, and O. Sokolsky. Steering of discrete event
systems: Control theory approach. Electronic Notes in Theoretical
Computer Science, 144(4):21–39, 2006.

[29] B. Finkbeiner, S. Sankaranarayanan, and H. B. Sipma. Collecting
statistics over runtime executions. Formal Methods in System Design,
27(3):253–274, 2005.

[30] M. Franzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure. Journal on Satisfiability, Boolean Modeling and
Computation, 1:209–236, 2007.

[31] G. Frehse. Phaver: Algorithmic verification of hybrid systems past
hytech. In Proceedings of HSCC’05, volume 5, pages 258–273. Springer,
2005.

[32] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable
verification of hybrid systems. In Proceeding os Computer Aided
Verification, CAV’11, pages 379–395. Springer, 2011.

[33] E. U. Group. Unisig: Ertms/etcs system requirements specification.
http://www.era.europa.eu, 2002.

[34] T. A. Henzinger. The theory of hybrid automata. In Verification of
Digital and Hybrid Systems, pages 265–292. Springer, 2000.

[35] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker
for hybrid systems. In International Conference on Computer Aided
Verification, CAV’97, pages 460–463. Springer, 1997.

[36] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? In Proceedings of the twenty-seventh annual
ACM symposium on Theory of computing, pages 373–382. ACM, 1995.

[37] S. Kong, S. Gao, W. Chen, and E. M. Clarke. dreach: δ-reachability
analysis for hybrid systems. In Proceeding of TACAS 2015, pages 200–
205, 2015.

[38] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal techniques for reacha-
bility analysis of discrete-time linear systems. IEEE Transactions on
Automatic Control, 52(1):26–38, 2007.

[39] T. T. H. Le, L. Palopoli, R. Passerone, and Y. Ramadian. Timed-automata
based schedulability analysis for distributed firm real-time systems: a
case study. International Journal on Software Tools for Technology
Transfer, pages 1–18, 2013.

[40] C. Le Guernic and A. Girard. Reachability analysis of hybrid systems
using support functions. In Proceedings of CAV’09, volume 5643, pages
540–554. Springer, 2009.

[41] E. A. Lee. Cyber-physical systems-are computing foundations adequate.
In Position Paper for NSF Workshop On Cyber-Physical Systems:
Research Motivation, Techniques and Roadmap, volume 2, 2006.

[42] T. Li, F. Tan, Q. Wang, L. Bu, J.-n. Cao, and X. Liu. From offline toward
real time: A hybrid systems model checking and cps codesign approach
for medical device plug-and-play collaborations. IEEE Transactions on
Parallel and Distributed Systems, 25(3):642–652, 2014.

[43] X. Li, S. J. Aanand, and L. Bu. Towards an efficient path-oriented
tool for bounded reachability analysis of linear hybrid systems using
linear programming. Electronic Notes in Theoretical Computer Science,
174(3):57–70, 2007.

[44] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Rosu. An overview of
the MOP runtime verification framework. STTT, 14(3):249–289, 2012.

[45] W. G. Najm, J. D. Smith, and M. Yanagisawa. Pre-crash scenario
typology for crash avoidance research. In DOT HS. Citeseer, 2007.

[46] L. V. Nguyen, C. Schilling, S. Bogomolov, and T. T. Johnson. Runtime
verification for hybrid analysis tools. In Proceedings of 6th International
Conference on Runtime Verification, RV 2015, pages 281–286, 2015.

[47] B. Ning, T. Tang, K. Qiu, C. Gao, and Q. Wang. Ctcschinese train
control system. WIT Transactions on The Built Environment, 74, 2004.

[48] J. Peleska, D. Große, A. E. Haxthausen, and R. Drechsler. Automated
verification for train control systems. Proceedings of FORMS/FORMAT,
pages 252–265, 2004.

[49] A. Platzer and J.-D. Quesel. European train control system: A case study
in formal verification. In Proceedings of ICFEM’09, volume 5885, pages
246–265. Springer, 2009.

[50] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang. Cyber-physical
systems: A new frontier. In Proceedings of SUTC’08, pages 1–9. IEEE,
2008.

[51] B. I. Silva, O. Stursberg, B. H. Krogh, and S. Engell. An assessment of
the current status of algorithmic approaches to the verification of hybrid
systems. In Proceedings of the 40th IEEE Conference on Decision and
Control, 2001, volume 3, pages 2867–2874. IEEE, 2001.

Lei Bu is an associate professor in the Department
of Computer Science and Technology and State Key
Laboratory of Novel Software Technology at Nan-
jing University. He received his B.S. and PH.D. de-
gree in Computer Science from Nanjing University
in 2004 and 2010 respectively. His main research
interests include formal method, model checking,
especially verification of hybrid system and cyber-
physical system. He has published more than 50
research papers in major peer-reviewed international
journals and conference proceedings. He is a mem-

ber of the IEEE and the ACM.

Qixin Wang received the BE and ME degrees
from the Department of Computer Science and
Technology, Tsinghua University, Beijing, China, in
1999 and 2001, respectively, and the PhD degree
from the Department of Computer Science of the
University of Illinois at Urbana-Champaign in 2008.
He joined the Department of Computing of the
Hong Kong Polytechnic University in 2009 as an
assistant professor, and is currently an associate
professor. His main research interests include cyber-
physical systems, real-time and embedded systems,

and computer networks. He is a member of the IEEE and the ACM.

Xinyue Ren received the BSc degree from Dalian
University of Technology, in 2016. She received
masters degree from Nanjing University in 2019.
Her research interest mainly focus on verification
of composed linear hybrid automata.

Shaopeng Xing received the BSc degree from
Nanjing University, in 2018. He was admitted to
study for a Msc degree in Nanjing University in
the same year. His research interests mainly include
verification and optimal control of cyber-physical
systems.

Xuandong Li received his MS and PhD degrees
from Nanjing University, China, in 1991 and 1994,
respectively. He is a full professor at the Computer
Science and Technology Department of Nanjing
University. His research interests include formal sup-
port for design and analysis of reactive, disturbed,
real-time, hybrid, and cyber-physical systems; soft-
ware testing and verification.

For Research Only

