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Abstract—Mobile apps often need to collect and/or access
sensitive user information to fulfill their purposes, but they may
also leak such information either intentionally or accidentally,
causing financial and/or emotional damages to users. In the
past few years, researchers have developed various techniques to
detect privacy leakage in mobile apps, however, such detection
remains a challenging task when privacy leakage is implemented
via dynamic class loading (DCL).

In this work, we propose the DL2 technique that enhances
static analysis with dynamic app execution to effectively detect
privacy leakage implemented via DCL in Android apps. To
evaluate DL2, we construct a benchmark of 88 subject apps
with 2578 injected privacy leaks and apply DL2 to the apps.
DL2 was able to detect 1073, or 42%, of the leaks, significantly
outperforming existing state-of-the-art privacy leakage detection
tools.

Keywords-Privacy Leakage Detection, Dynamic Class Loading,
Taint Analysis, Constraint Solving

I. INTRODUCTION

In the past few years, Android has become the most popular

mobile operating system, taking over 80% of the market

share [1], and the number of mobile apps targeting the Android

platform has grown rapidly. Meanwhile, according to a recent

study [2], more and more Android apps need to collect

and/or access information like device id, location information,

SMS messages, and contacts, to fulfill their purposes. While

such apps greatly facilitate our work and daily life, serious

concerns have been raised about the risks of them leaking that

information.

As one of the security mechanisms, the permission-based

framework employed on the Android platform can be used to

ensure that the apps’ access to certain resource/information

is subject to the user’s approval. The framework, however, is

too coarse-grained in that it is only concerned with whether,
but not how, an app uses the information. To complement
the protection provided by such coarse-grained mechanism,

various approaches to privacy leakage detection have been

proposed and many of them [3]–[14] are based on taint

analysis [15].

Certain features of the development language and the exe-

cution environment of mobile apps, however, have added to

the difficulties in detecting privacy leakage. One important

example of such features is dynamic class loading (DCL).

*Corresponding author.

DCL is a feature supported by the Android platform, which

enables apps to extend their behaviors at runtime by using

a class loader to load classes in an explicit fashion—in this

paper, we refer to classes that are implicitly loaded during app

execution as internal and those explicitly loaded through DCL
as external. While DCL brings great flexibility to Android

app development and has been used widely in developing

frameworks and plug-ins, Google recommended to use it with

caution [16], since classes from sources that are not verified

“might be modified to include malicious behavior”. In fact, a

recent study [17] showed that DCL had been used by malwares

to evade the security checks in vetting systems like Google

Bouncer.

Based on whether the source or the sink of sensitive

information is located in external classes, privacy leakage can

be implemented via DCL in one of the following four schemes:

(i) sensitive information is retrieved in internal code but leaked
in external code; (ii) sensitive information is retrieved in exter-
nal code but leaked in internal code; (iii) sensitive information
is both retrieved and leaked in external code; (iv) sensitive
information is both retrieved and leaked in internal code.

Existing techniques based on taint analysis do not perform

well in discovering leaks implementing schemes (i)–(iii): Since
external classes are statically not part of the app under analysis,

tools based on static analysis only have limited power in

detecting those leaks [3]–[8], [18], [19]; Since most external

classes are only loaded and executed along certain program

paths, the chance is often low for those paths to be exercised

during dynamic analysis [9]–[14], [20]–[24]; The DyDroid

technique [25] conducts a privacy tracking analysis by com-

bining static and dynamic analyses. It, however, handles only

privacy leaks with both the source and the sink of sensitive

information within external classes and cannot detect leaks

implementing schemes (i) and (ii) listed above. In this work,
we refer to privacy leaks implementing schemes (i)–(iii) as
being hidden by DCL. Leaks implementing scheme (iv) are
not hidden by DCL, since a conservative static taint analyzer
always assuming the external code to propagate taint data can

still detect the leaks.

To effectively detect privacy leakage hidden by DCL in

Android apps, we propose the DL2 technique that enhances

static analysis with dynamic app execution. Given an Android

app, DL2 first applies static analysis to find paths in the app

that lead to invocations to methods from external classes and
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gather the corresponding path conditions on program variables.

Next, the path conditions are solved by a constraint solver and

the solutions are used to drive the dynamic execution of the

app, during which DL2 retrieves the external classes loaded

and records information about the methods from those classes

that are invoked. Finally, DL2 applies static analysis to both the

internal and external code and combines the results to detect

privacy leaks hidden by DCL.

To evaluate the effectiveness and efficiency of DL2, we

constructed a benchmark of 88 subject apps based on 25

Android apps collected from the Google Play store and the

F-droid repository1. In total, 2578 privacy leaks were injected

into the subject apps under the guidance of a privacy leak

model for auditing anti-malware tools [26]. DL2 was able

to detect 1073, or 42%, of the injected privacy leaks in the

benchmark, which is 163%, and 200%, more than the state-

of-the-art privacy leak detection tool TaintDroid and DyDroid,

respectively. On average, it took DL2 18.8 seconds to detect

one privacy leak.

We make the following contributions in this work:

• We develop the DL2 technique that enhances static anal-
ysis with dynamic app execution to effectively detect

privacy leakage hidden by DCL, and implement the

technique into an automated tool also named DL2;

• We construct a benchmark of 88 subject apps with 2578
injected privacy leaks implemented via DCL;

• We experimentally evaluate DL2 on the subject apps

from the benchmark, and compare the performance of

DL2 with that of TaintDroid and DyDroid on the same

subjects.

The remainder of this paper is organized as follows: Section

II presents a simple example demonstrating how dynamic

class loading can be used to hide privacy leakage; Section III

explains in detail how DL2 works step by step; Section IV

describes the experiments we conducted to evaluate the per-

formance of DL2 and reports on the experimental results;

Section V reviews recent work related to privacy leak detection

for Android apps; Section VI concludes the paper.

II. DCL AND PRIVACY LEAKAGE

In this section, we use a small example from the VirusShare2

repository to introduce dynamic class loading on the Android

platform and to demonstrate how DCL can be used to leak

sensitive user information.

Dynamic class loading (DCL) is a mechanism that allows

software systems to decide which classes to load during

runtime, and it enables applications to be compiled sepa-

rately from their dependencies and extended dynamically on-

demand. DCL is supported on the Android platform, and

Android apps can dynamically load classes from files of

different formats.

The example shown in Listing 1 illustrates how DCL can

be used to load and execute a class under certain conditions

1https://f-droid.org/en/
2https://virusshare.com/, MD5: 4217d6663656239a53d70e5e7e174adb.

1 public class SmsReceiver extends BroadcastReceiver{
2 ...
3 public void onReceive(...){
4 ...
5 String clsName = ..., methodName = ...;
6 SmsMessage msg = SmsMessage.createFromPdu(pdus[x]);
7 String phoneNbr = msg.getOriginatingAddress();
8 if(msg.getMessageBody().contains(KEYWORD)){
9 DexClassLoader loader=new DexClassLoader(...);
10 try {
11 Class cls = (Class)loader.loadClass(clsName);
12 Object instance = cls.newInstance();
13 cls.getMethod(methodName, Object.class)
14 .invoke(instance, phoneNbr);
15 } catch (Exception e) { ... }
16 }
17 }
18 ...
19 }

Listing 1: The code example of DCL

23 public class Sender{
24 void sendMessage(String phoneNbr){
25 SmsManager smsManager = SmsManager.getDefault();
26 smsManager.sendMultipartTextMessage(phoneNbr, ...);
27 ...
28 }
29 ...
30 }

Listing 2: The method invoked by DCL

during program execution. Class SmsReceiver is registered as a

BroadcastReceiver for incoming text messages and its method

onReceive is invoked upon receiving any message. In case

the body of a message contains KEYWORD (Line 8), the method

constructs a class loader (Line 9), loads a class named clsName

(Line 11), creates an instance of the class (Line 12), and then

calls a method with the name methodName on the new instance

using the message sender’s phone number as the argument

(Lines 13 and 14).

Ultimately, whether such behavior causes privacy leakage

depends on if the sender’s phone number is considered sen-

sitive, which class with the name clsName gets loaded, and

how the phone number is utilized in clsName.methodName.

In this work, we adopt a flexible design and allow users

to decide which behaviors are considered causing privacy

leakage. Particularly, a user may specify a list of source APIs
and a list of sink APIs: All information derived (directly or
indirectly) from a source API is considered sensitive, and a
piece of sensitive information is said to be leaked if it is used
by any sink API.
Continue with the above example. If method SmsMessage.

getOriginatingAddress() is a source API, the method actually

invoked on Line 14 is Sender.sendMessage shown in Listing 2,

and method SmsManager.sendMultipartTextMessage() is a sink

API, we have a privacy leak implemented via DCL. Existing

techniques will have a hard time detecting the leak: Static
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Fig. 1: An overview of DL2.

analysis of the code in Listing 1 can label variable phoneNbr

as sensitive, but would not find any suspicious sink for

it; The chance for dynamic analysis to detect the leak is

also slim, since the sensitive information is only used by

a sink API when the condition on Line 8 is satisfied. The

privacy leak in the example, therefore, can evade detectors

like TaintDroid and DyDroid. In comparison, DL2 uses several

steps to detect privacy leaks in DCL effectively: static analysis

aims to enhance dynamic execution of triggering DCL and

DL2 also combines the analysis results on both the internal

classes and the external classes, so that it is able to successfully

detect the leak. Section III elaborates on how DL2 achieves

that step by step.

III. THE DL2 TECHNIQUE

An overview of DL2 is depicted in Figure 1. Given an

Android app in the form of an .apk file as well as a list of

target source and sink APIs as the input, DL2 first reverse-

engineers the app to Java bytecode, then goes through the

following steps to discover privacy leaks hidden by DCL:

1) DL2 analyzes the bytecode of the app and collects exe-

cution paths that lead to reflective invocations to methods

from the external code (Section III-A).

2) DL2 drives the app to execute along the collected paths

and records the external classes loaded and methods

invoked from those classes (Section III-B).

3) DL2 applies static taint analysis on both the internal and

the external code of the app and combines the analysis

results to find privacy leaks (Section III-C).

The following subsections explain the steps in detail.

A. Path Construction

Given an input app P , DL2 first collects a set of execution
paths from P , each from an entry point to an intersection point.
The beginning of a life-cycle method or an event handler of a

component3 within P defines an entry point—the component
is called the enclosing component of the entry point; a location
where a reflective method call is made on an instance of a

dynamically loaded class is referred to as an intersection point.
All the following analyses of DL2 are applied exclusively

to these paths. Such design is reasonable, since, given the

component-based and event-driven nature of Android apps,

3A component of an Android app is either an activity, a service, a
broadcast receiver, or a content provider.

most behaviors of P , malicious or not, are triggered by state
changes in, or events on, those components. Focusing on

execution paths starting from entry points, rather than the

beginning of the application entry method, also significantly

shortens the paths that DL2 needs to analyze.

At the implementation level, DL2 first detects all compo-

nents of the app by parsing the app’s manifest file. Life-cycle

methods of those components can then be easily identified

by looking for methods with specific signatures in their

corresponding classes, and event handlers by analyzing the

parameters of calls to APIs that register handlers to event

sources. Let EP be the set of entry points defined by these

life-cycle methods and event handlers in P .
DL2 then constructs a set of finite execution paths, with

each path starting from an entry point e ∈ EP and covering

one execution of e’s enclosing method me. That is, each path

starts from e, or the beginning ofme, and ends with an explicit

or implicit return from me. During path construction, DL
2

inlines every method directly or indirectly invoked by me up

to a certain level NI , constructs a control flow graph (CFG)

for the resultant method m′
e, and then enumerates all finite

execution paths of m′
e based on its CFG by unrolling each

loop for at most NR times.

Next, DL2 applies a lightweight static analysis to identify all

intersection points covered by the collected paths. The analysis

considers a reflective method invocation on path p as defining
an intersection point if the target object used in the invocation

is instantiated from a class dynamically loaded during the

execution along p. By removing segments after intersection
points, DL2 gathers, for each entry point e ∈ EP , a set Pe

of paths that start from e and end at an intersection point. Let
P = ∪e∈EP

Pe.

B. External Code Capturing

In this step, DL2 employs dynamic analysis to capture the

external code executed along each path from P . For that
purpose, DL2 first instruments P . Particularly, it inserts code
right before each explicit loading of class so that all the

external classes used during an execution are downloaded and

stored for the following analysis. It also inserts code to record

the dynamic type of the receiver object as well as the signature

of each method that is reflectively called.

To actually drive P to execute along a path p ∈ Pe, DL
2

needs to not only trigger the execution of method me, but also

do that when P is in a properly prepared state. To find out

the variable values required by that specific state, DL2 utilizes

the IntelliDroid [27] static analysis tool to gather the path

condition cp of p, encodes cp into a constraint, and employs
the Z3 solver to generate solutions to the constraint.

Next, DL2 instantiates an instance of e’s enclosing com-
ponent directly from the instrumented app, sets the state

of the component, prepares an event object based on the

solution to cp, and then executes method me by firing the

corresponding event on the component. In this step, both com-

ponent instantiation and event triggering are easily achieved

via Android Debug Bridge (ADB), but in general, we cannot
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modify the state of a component or an event object by directly

assigning to their fields. To prepare the component and the

event object as required, DL2 first employs IntelliDroid to

collect public methods from their classes that manipulate the

fields, and then explicitly invokes those methods with the

desired values as arguments. Since there is no guarantee such

method invocations can achieve the intended modifications

without causing undesirable side-effects, DL2 also records the

trace of the actual execution of me: If the trace matches with

p, we confirm p represents a feasible execution path and the
external classes downloaded during p’s execution will be used
together with the internal code of P for privacy leak detection

in the next step. Otherwise, DL2 discards both the trace and

p.

At the end of this step, DL2 has collected a set P (P ⊆ P )
of paths. Each path p ∈ P starts from an entry point ep and
ends at an intersection point ip, where method Mp from the

external class Cp is invoked through reflection.

C. Path-Oriented Taint Analysis

In this step, DL2 applies a three-phase analysis to each path

p ∈ P to determine if an execution along p may cause privacy
leakage implemented in schemes (i), (ii), or (iii) described in
Section I.

In phase one, the analysis aims to find out if any sensitive

information is propagated via p to the intersection point ip
and used to call Mp. It first marks all values directly returned

by source APIs along p as tainted, then iterates through every
statement on p to propagate the taint, as done in common static
taint analysis [15]. The analysis in phase two mainly focuses

on Mp. It checks 1) whether Mp implements any instance of

privacy leak by itself, 2) whether the taint in Mp’s formal

arguments will propagate to the invocation to any sink APIs,

and, when applicable, 3) whether the return value of Mp is

tainted. If condition 1) is true, DL2 has detected a privacy

leak implemented in scheme (iii); If condition 2) holds and the
values used in callingMp are tainted at ip according to phase-
one analysis, we have a privacy leak implementing scheme (i);
If condition 3) is satisfied, a phase three analysis is applied to

find out if the propagation of the taint in Mp’s return value to

an invocation of sink API is feasible in the internal code of

the app. An instance of privacy leak implementing scheme (ii)
is detected, if a path realizing such propagation is found.

DL2 employs the FlowDroid tool [4] to carry out all the

taint analysis in this step. FlowDroid is a state-of-the-art taint

analysis tool and it has been successfully used for data leak

detection. The original implementation of FlowDroid analyzes

paths starting from the launch-point of an app, i.e., the

onCreate method of the app’s launcher activity. We modified

FlowDroid so that it analyzes paths starting from any location

of the app and accepts as the input a list of target source

APIs—all information returned by the APIs is tainted by

definition.

D. Other Implemention Details

We have implemented the DL2 technique into a tool, also

named DL2. DL2 runs on apps packaged in APK files. Since

no source code of the app is needed, the technique can be

applied to a wide range of apps and benefit users in different

scenarios. To unpack bytecode files, manifest file, and layout

files from APK files, DL2 leverages the open source ApkTool4.

During path construction (Section III-A), DL2 flattens the

enclosing method of every entry point by inlining methods

directly or indirectly invoked within NI = 3 levels, and

unrolling loops for at most NR = 5 times. Such design is
motivated by the “small-scope hypothesis” [28], which states

that many defects can be triggered using short executions.

As explained in Section III-B, DL2 also utilizes IntelliDroid

to construct path conditions and the Z3 constraint solver

[29] to find solutions to the path conditions. The Soot [30]

bytecode manipulation and optimization framework is used to

instrument the apps.

IV. EVALUATION

We conducted experiments on DL2 to evaluate its effective-

ness and efficiency. This section reports on the experiments

and findings.

Our evaluation aims to address the following research

questions:

• RQ1: How effective is DL2 in detecting privacy leaks

hidden by DCL?

• RQ2: How efficient is DL2?
• RQ3: How effective is DL2 in triggerring DCL?
In the experiments, Android apps were executed on a

Google Nexus emulator running Android 4.3. Both DL2 and

the emulator ran on a desktop PC running Windows 10

Professional on a 2.30GHz Intel Core i5-7360U processor and

8GB DDR3 memory.

A. Data Set

A dataset often used to evaluate malware detection tools

is Drebin [31]. We, however, concluded that Drebin is not

suitable to be used to evaluate DL2 after examining 50 apps

randomly selected from the dataset: 23 apps out of the 50

failed to launch successfully; Although 24 others use DCL in

their implementations, manual inspection of the code reveals

that the mechanism is mainly used to load advertisements and

no privacy leak is involved. We, therefore, constructed our own

benchmark by injecting privacy leaks into existing apps.

The construction of privacy leaks was guided by the

malware meta-model summarized in the work of Mystique-

S [26]—the meta-model was used by Mystique-S to modular-

ize common attack behaviors. Based on the model, Mystique-

S first selects attacks according to the user scenario, then

the selected attacks will be used to guide the model-driven

generation of malicious code for the server side, and in the end,

the malicious code is delivered to the user device and loaded

4http://ibotpeaches.github.io/Apktool/
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TABLE I: Potential source and sink API categories.

CATEGORY ID EXAMPLE

S
o
u
rc
e

location loc LocationManager.getLastKnownLocation()
account acc AccountManager.getAccounts()
contact con ContentResolver.query(...)∗
phone state phn TelephonyManager.getDeviceId()
browser brw ContentResolver.query(...)∗
audio aud ContentResolver.query(...)∗
sms sms SmsMessage.getMessageBody()

S
in
k internet net HttpClient.execute()

file fil OutputStream.write(...)

∗ Different information is accessed depending on the actual arguments
used to call the method.

dynamically by the application. Through DCL, Mystique-

S was able to modify apps at runtime to execute different

malicious behaviors. Since Mystique-S is not available for

download, we followed its idea and applied Soot [30] to inject

privacy leaks into real-world apps based on the same malware

model automatically, as described below.

We first download the top 50 most popular apps from the

Google Play store and 40 apps from the F-Droid repository

that have more than 500 stars each. From these apps, we prune

out the ones that 1) cannot run on our experiment emulator

successfully after instrument because of signature protection,

2) do not have the required permissions to access any sensitive

information, according to their manifest files, or 3) are games5.

In the end, we are left with 25 Android apps. Table II lists

for each original app the name (APP), the ID (ID), the top-

level package (PACKAGE), the version (VER), and the size in

numbers of classes (#C), methods (#M), entry points (#EP),

and line of code (LOC).

Next, we analyze the permissions granted to each selected

app and identify categories of source and sink APIs as the

following: source APIs are those that access various types

of sensitive information, while sink APIs are those that send

information via internet or store information to external stor-

age. Table I lists the relevant API categories gathered from

the original apps (CATEGORY), their IDs (ID), and examples

(EXAMPLE).

We then inject privacy leaks into the apps based on the

permissions they receive. Given an app P , withX and Y being

the set of source and sink API categories that P is permitted to

use, respectively, we produce a set SP = {s〈x,y〉P |x ∈ X ∧ y ∈
Y } of subject apps with injected leaks, where each element
corresponds to one feasible source-sink pattern 〈x, y〉 for P .
Table II also lists for each original app the categories of source

(SRC) and sink (SINK) APIs and the number of source-sink

patterns (#P). Based on the 25 apps, we produce in total 88

subjects injected with leaks.

To construct each subject s
〈x,y〉
P , we first randomly select

(with probability 0.8) a subset of the entry points in P , then
for each selected entry point e, we 1) randomly decide which

5Gaming apps are often built on top of frameworks or engines, and
specific techniques are required to effectively analyze them.

of the three schemes given in Section I the injected leak

should implement (the probability of scheme (i), (ii), and
(iii) being chosen is 0.125, 0.125, and 0.75, respectively),
and 2) randomly select a valid location l covered by a

path from Pe for the injection. Note that each subject app

constructed in this way contains multiple leaks. We conjecture

the probabilities used in subject app construction would not

affect the experimental results significantly, partly because the

effectiveness of DL2 depends mostly on its capability to steer

a subject app to exercise the DCL involved in privacy leakage,

as shown by the results presented in Section IV-D. We leave

a proper investigation into the impact of such choices via

systematic experiments for future work.

The actual injection of a privacy leak into P involves two

more tasks: 1) injecting a snippet at location l to load an
external class and invoke a method of the class at runtime;

2) placing the properly constructed external class file at the

right location so that it can be successfully loaded by the code

injected in task 1). Figure 2 shows the templates that DL2

uses to generate the code implementing privacy leaks. The

snippet to be injected is instantiated from the template shown

in Figure 2.a, while the external classes are instantiated from

the template shown in Figure 2.b. Among the placeholders

used in the templates (i.e., strings surrounded by a pair of ‘$

’s), one of the two source action placeholders is to be replaced

with code retrieving sensitive information (in the form shown

in Figure 2.c) and the other with an empty string. Similarly,

one of the sink action placeholders is to be replaced with

code leaking the sensitive information (in the form shown in

Figure 2.d) and the other with an empty string. Placeholders

used in templates from Figures 2.c and 2.d are to be replaced

with actual calls to APIs from categories x and y, respectively.
Column #LEAK\INJ of Table II gives the number of privacy
leaks injected into each app.

B. Comparative Techniques

To put the performance of DL2 in perspective, we also

apply two state-of-the-art privacy leakage detection tools to

the same set of subject apps: TaintDroid [9] is a sophisticated

dynamic taint-tracking and analysis system which can detect

privacy leaks hidden by DCL; DyDroid [25] is a tool to

detect malicious behaviors in dynamically loaded classes.

Stadyna [32] is yet another tool for privacy leak detection, but

it uses a manual approach to trigger DCL events. To avoid the

bias introduced by manual inputs, we exclude Stadyna from

the comparison.

C. Experimental Protocol

In the experiments, we apply each privacy leak detection

technique to the 88 subject apps and record the numbers of

leaks each technique detects. We also record the time DL2

spends on each of the three steps described in Section III.

To answer RQ3, we also keep track of the number of classes

downloaded during external class capturing.

Both TaintDroid and DyDroid are driven by user events
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randomly generated by the Monkey6 Android app exerciser.

We configure Monkey to generate Ne random events for

each tool and empirically set Ne to be 6000 to strike a

good balance between effectiveness and efficiency. To properly

account for the randomness intrinsic to these techniques, we

run TaintDroid and DyDroid for 20 times [33] on each subject

app and use their best performance in comparisons with DL2.

D. Experimental Results

Table II also reports on the results of the experiments. In

particular, the table lists for each original app the numbers of

leaks detected (#LEAK) by DL2 (DL2), TaintDroid (TD), and

DyDroid (DD), and the average (mean) time DL2 spent on path

construction (PC), external code capturing (ECC), path-oriented

taint analysis (PTA), and the whole privacy leak detection

(TOT). Table III reports for each source-sink pattern the total

number of hidden leaks injected (#LEAKINJ) and the number

of leaks detected by each tool (#LEAKDL2, #LEAKTD, and

#LEAKDD).

1) RQ1: Privacy Leak Detection: DL2 detected in total

1073, or 42%, of the 2578 injected leaks, with the mean

and median detection rates across subject apps being 50%

and 52%, respectively, which suggests that DL2 is overall

effective in detecting privacy leaks hidden by DCL. There

are two extreme cases among the apps. The detection rate

of DL2 was 100% on app A7, a barcode scanner application.

A closer look at the app revealed that the app has a relatively

simple GUI compared with other apps, and the injected DCLs

were also easy to trigger. DL2, however, failed to detect any

leak injected in app A9, an open street map application. Since

IntelliDroid failed to find any path leading to an intersection

point, DL2 terminated prematurely after path construction.

Compared with DL2, TaintDroid and DyDroid detected

only 408 and 349, or 16% and 14%, of the injected leaks,

respectively. A main reason for the relatively low detection

rate of TaintDroid is that it detects only leaks that are triggered

on the paths it exercises. The most important reason for

DyDroid’s relatively low effectiveness is that it detects just

6http://developer.android.com/guide/developing/tools/monkey.html

privacy leaks completely implemented in external classes, but

not cases where only the source or the sink of a leak is within

the external code. In particular, DyDroid cannot detect the

example leak shown in Section II.

Figure 3 plots the distribution of privacy leak detection rate

on the subject apps by each of the three tools. It is clear from

the figure that DL2 detects more leaks than the other two. A

two-tailed pair-wise Mann-Whitney U test [34] confirms the

difference between DL2 and TaintDroid is significant (p =
0.002, effect size = 0.89) and so is that between DL2 and
DyDroid (p = 0.003, effect size = 0.87)7.
To better understand the limitations of the technique, we

manually examined the privacy leaks that DL2 failed to detect

and found out that the main reason for such ineffectiveness

is in our limited capability in steering the apps to load and

execute the external classes. First, although IntelliDroid can

often find a path from a given entry point to an intersection

point and construct the constraint corresponding to the path,

the Z3 solver may not be able to solve the constraint. Second,

even when the path constraint can be solved successfully, DL2

may not be able to realize an execution using the generated

values. For instance, when calls to Android platform APIs are

involved along a path, specific mechanisms like mocking need

to be installed to make sure the calls return the expected values

at runtime, but DL2 does not support such mechanisms yet.

In our experiments, these two reasons caused 776 and 726

injected privacy leaks to be missed by DL2, respectively.

DL2 is able to detect 42% of the injected privacy leaks in
the benchmark, which is 163% and 200% more than the

state-of-the-art privacy leak detection tools TaintDroid and
DyDroid, respectively.

2) RQ2: Efficiency: Overall, DL2 takes an average of

581.5 seconds to process one subject app, including 243.6

seconds for path construction, 107.6 seconds for external code

capturing, and 230.3 seconds for path-oriented taint analysis.

Each subject app used in the experiments is injected with

7In this work, the effect size is calculated as the Vargha and Delaney’s
Â12 statistic [33].

try{
Object info = null;
$source-action1$
Class cls = loadClass("tool.dl2.ExternalClass");
Object instance = cls.newInstance();
cls.getMethod("externalMethod", cls)

.invoke(instance, info);
$sink-action1$

}catch(Exception e){ ... }

a) Template for the snippet to be injected.

package tool.dl2;
class ExternalClass{
public void externalMethod(Object info){
$source-action2$
$sink-action2$

}
}

b) Template for the external class.

Object info = $callSourceMethod$

c) Template for sourcing sensitive information.

$callSinkMethod(info)$;

d) Template for sinking sensitive information.

Fig. 2: Code templates used in privacy leak injection.
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TABLE II: Subject apps and experimental results.

APP ID PACKAGE VER

SIZE PATTERN #LEAK T

#C #M #EP LOC SRC SINK #P INJ DL2 TD DD PC ECC PTA TOT

Lightning A1 acr.browser.lightning 4.5.1 400 1392 6 21110 loc,brw net,fil 4 20 18 19 15 34.2 13.3 60.1 107.6
OpenKeychain A2 org.sufficientlysecure.keychain 5.1.4 1233 5569 67 85816 acc,con net,fil 4 252 111 47 40 194.1 81.7 508 783.8
AnkiDroid A3 com.ichi2.anki 2.8.4 538 3075 33 66667 aud net,fil 2 43 31 18 16 103.3 66.2 302.8 472.3
Wikipedia A4 org.wikipedia r/2.7.239 1494 6174 44 66655 loc,acc net,fil 4 111 28 17 15 137.6 18.6 61 217.2
RingDroid A5 com.ringdroid 2.7.3 74 268 3 6689 con,aud net,fil 4 12 8 6 6 28.8 21 42.6 92.4
Afreerdp A6 com.freerdp.afreerdp 2.0.0-rc1 95 696 12 11220 aud net,fil 2 19 11 6 4 37.2 33.1 85.5 155.8
Barcode Scanner A7 com.google.zxing.client.android 4.7.7 342 1789 9 40917 con,brw net,fil 4 28 28 21 17 27.6 23.2 90.4 141.2
Materialistic A8 io.github.hidroh.materialistic 3.2 475 1906 31 20871 acc net,fil 2 46 33 22 17 68.1 53.3 285.4 406.8
Osmdroid A9 org.osmdroid 6.0.1 581 3039 16 48863 loc net,fil 2 26 0 13 11 78 0 0 78
Silence A10 org.smssecure.smssecure 0.16.9 772 4034 50 53441 con,phn,sms net,fil 6 124 52 13 12 103.4 111.5 131.9 346.8
Tasks A11 org.dmfs.tasks 1.1.13 726 2960 17 43957 acc,con fil 2 25 19 15 12 48.2 43.8 199.5 291.5
MPDroid A12 com.namelessdev.mpdroid 1.07.2 198 1112 19 18691 phn net,fil 2 25 15 7 7 86.1 25.7 111 222.8
Letgo A13 com.abtnprojects.ambatana 2.1.5 3916 14021 62 159325 loc,acc net,fil 4 218 138 27 22 657.3 298.5 548 1503.8
Bitmoji A14 com.bitstrips.imoji 10.11.279 531 2154 36 24409 con,phn,aud net,fil 6 161 79 26 23 475.3 152.8 330.8 958.9
Message lite A15 com.facebook.mlite 29.0.0.6.188 2213 7509 47 148916 phn,aud,sms net,fil 6 94 13 11 9 72.3 11.1 25.7 109.1
iTranslate A16 at.nk.tools.iTranslate 4.0.3 43 217 37 4635 acc,aud net,fil 4 84 50 22 18 783.5 297.4 297.1 1378
Xender A17 cn.xender 3.9.0612 1693 9822 60 155739 phn,sms net,fil 4 88 66 25 22 106.1 117.1 226.7 449.9
Wish A18 com.contextlogic.wish 4.8.0 3637 11536 56 135163 acc,con net,fil 4 106 29 12 8 466.1 199.7 185.3 851.1
Remind A19 com.remind101 7.7.1.15565 632 4292 78 48976 con,aud net,fil 4 195 27 7 7 320.4 123.2 230.4 674
PayPal A20 com.paypal.android.p2pmobile 6.12.1 1611 7615 146 68822 loc net,fil 2 278 9 12 10 539.7 27.5 45.7 612.9
TextNow A21 com.enflick.android.TextNow 5.14.1 806 3327 80 63769 phn,sms net,fil 4 156 74 4 4 116.8 73.1 302.1 492
Lyft A22 me.lyft.android 4.37.3 371 2231 18 26360 phn net,fil 2 27 14 2 2 283.5 108.2 209.7 601.4
News Break A23 com.particlenews.newsbreak 3.1.4 13 89 72 1136 loc,acc net,fil 4 250 139 40 37 396.1 377.1 632.4 1405.6
Pinterest A24 com.pinterest 6.22.0 4497 16471 31 253252 loc,con net,fil 4 65 20 7 7 443 77.6 147.8 668.4
Venmo A25 com.venmo 7.1.0 1296 4982 75 44228 loc net,fil 2 125 61 9 8 98.5 242.4 564.3 905.2

Overall – – – 28187 116280 1105 1619627 – – 88 2578 1073 408 349 243.6 107.6 230.3 581.5

multiple privacy leaks. The time for DL2 to detect one privacy

leak averages to 18.8 seconds, suggesting the efficiency of DL2

is comparable with most existing privacy leakage detection

tools.

Figure 4 plots the distribution of detection time (in seconds)

of DL2 both across apps (4a) and across leaks (4b). According

to the figure, the detection time is less than 20 seconds for

around 75% of the leaks.

On average, it takes DL2 581.5 seconds to process one
subject app and 18.8 seconds to detect one privacy leak

hidden by DCL.

3) RQ3: DCL Triggering: To evaluate whether DL2 can

trigger DCL effectively, we measure the average number of

DCLs triggered by DL2 and the other two tools across the

TABLE III: Privacy leak detection results by source-sink pattern.

SOURCE-SINK
PATTERN

#LEAKINJ #LEAKDL2 #LEAKTD #LEAKDD

loc → fil 388 118 45 40
loc → net 374 119 45 39
con → fil 235 96 43 37
con → net 228 80 28 25
acc → fil 227 110 51 42
acc → net 214 106 43 33
phn → fil 285 149 41 35
phn → net 195 145 41 39
brw → fil 13 12 10 7
brw → net 12 12 10 8
aud → fil 152 58 28 23
aud → net 148 61 22 20
sms → fil 4 3 0 0
sms → net 3 3 0 0

Overall 2578 1073 408 349

Fig. 3: Numbers of privacy leaks detected.

(a) Across apps. (b) Across leaks.

Fig. 4: Distribution of privacy leak detection time.

subject apps. Since both TaintDroid and DyDroid use input

events generated by Monkey to exercise the subject apps, we

do not differentiate the two tools in answering this research

question. In Table IV, the first row of data is for DL2, and

the remaining rows are for both TaintDroid and DyDroid.

For TaintDroid and DyDroid, we report the average numbers
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TABLE IV: Average Numbers of DCL Triggered.

TOOL #EVENT #DCL T(SEC.)

DL2 34.8 12.1 351.2

TaintDroid and DyDroid
2000 3.0 11.1
4000 3.5 21.5
6000 3.9 28.9

Fig. 5: Distribution of numbers of DCLs triggered on subject apps.

of DCL triggered and the average time cost when using

2000, 4000, and 6000 input events in the dynamic analysis,

respectively. In each row, the table lists the average number of

input events generated to exercise an app (#EVENT) and the

average number of DCL triggered using the events (#DCL).

Box plots in Figure 5 shows the distribution of numbers of

DCL triggered in each subject app in this experiment.

DL2 can effectively trigger DCLs. On average, 2.87 input

events are needed for DL2 to trigger one DCL during external

code capturing. Compared with that, the average numbers of

input events needed to trigger one DCL ranges between 666

and 1538 with TaintDroid and DyDroid, which is considerably

more than what DL2 needes. Moreover, the efficiency of

TaintDroid and DyDroid decreases when more input events are

used in experiments, as suggested by Figure 5, partly because

the longer Monkey runs, the more duplicated events it tends

to generate. In the experiments, DL2 collected in total 175

unique path conditions, and it successfully solved 95 of them.

One reason for the big differences between the tools in

triggering DCL is that most component life-cycle methods

and event handlers in our subject apps are only executed after

the user has successfully logged in, which however is nearly

impossible for TaintDroid and DyDroid to achieve since all the

input events they utilize are randomly generated by Monkey.

DL2 circumvents this requirement for valid credentials by di-

rectly triggering events on the corresponding components. For

instance, to execute method SmsReceiver.onReceive as shown

in Listing 1, DL2 employs the ADB tool to directly trigger

an onReceive event on an SmsReceiver object. Such technique

has its own limitations, as discussed in Section IV-D1, but it

is effective in activating simple event handlers and helps DL2

successfully execute a significant amount of entry methods in

our experiments.

On average, 2.87 input events are needed for DL2 to
trigger one DCL. Compared with that, the average

numbers of input events needed to trigger one DCL ranges
between 666 and 1538 with TaintDroid and DyDroid.

E. Threats to Validity

In this section, we outline possible threats to the validity of

our findings.

Construct validity: Threats to construct validity are mainly
concerned with whether the measurements used in the experi-

ment reflect real-world situations. The effectiveness of privacy

leak detection is often measured in terms of the number of

leaks detected. However, since our focus is on privacy leakage

in Android apps hidden by DCL, we measure and compare

the effectiveness of privacy leakage detection techniques in

numbers of hidden leaks detected.

Internal validity: Threats to internal validity are mainly
concerned with the uncontrolled factors that may have also

contributed to the experimental results.

The main threat to internal validity is in the possible faults

in the implementation of our approach. To mitigate the threat,

we review our code and experimental scripts to ensure their

correctness before conducting the experiments.

External validity: Threats to external validity are mainly
concerned with whether the findings in our experiment are

generalizable for other situations.

Android apps and injected privacy leaks used as subjects

in the experiments may pose threats to the external validity.

First, the 25 apps selected from the Google Play store and F-

Droid app market may not be representative of other Android

apps. Second, since the focus of this work is to detect privacy

leaks hidden by DCL, all the leaks injected into the apps

implement one of schemes (i)–(iii) described in Section I,
which introduces a major threat to the external validity of our

findings in the experiments. Besides, the hidden privacy leaks

injected into the apps all have relatively short propagation

paths for tainted data. Actual privacy leaks in real-world

apps, implemented using DCL or not, however may be more

complex. To mitigate the threats, we plan to carry out more

extensive experiments to evaluate DL2 using leaks from real

world apps in the future.

V. RELATED WORK

DL2 achieves effective privacy leakage detection by com-

bining static and dynamic taint analysis, whose most important

contributions we briefly review below. Since this work aims

to address the challenges introduced by dynamic class loading

to privacy leakage detection, we also discuss works related to

dynamic class loading in software security.

A. Static Taint Analysis

Static analysis has been widely used in a number of research

to detect privacy leakage in Android apps. Long et al. propose

the CHEX [7] technique to detect component hijacking vul-

nerability in Android apps. The technique transforms apps in

bytecode into a CHEX intermediate representation and applies
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the WALA framework to implement a data flow analysis that

can also be used to detect privacy leakage. However, CHEX

requires as input a complete model of the framework and is

limit to 1-object-sensitivity. The AndroidLeaks [3] technique

developed by Clint et al. is among the first few works on

privacy leakage detection for Android apps. AndroidLeaks

utilizes the WALA analysis framework to construct a context

sensitive system dependence graph (SDG) and uses the SDG

to inform a static taint analysis. Since the technique tracks

data flow at the object-level, the precision of the analysis is

limited. Yang et al. develop the LeakMiner [18] technique that

employs the Soot [30] bytecode manipulation and optimiza-

tion framework and and the points-to analysis framework to

generate call-graphs and detect privacy leaks.

Bodden et al. present FlowDroid [4], which is one of the

most sophisticated static analysis tools for Android. FlowDroid

builds a precise and complete model of Android’s lifecycle

callbacks and leverages Soot [30] to build call-graphs, similar

to LeakMiner. Then, it conducts a forward taint analysis and

an on-demand backward alias analysis using IFDS [35] on

Android apps to detect privacy leaks. The analyses are context,

flow, field and object-sensitive, but it does not consider inter-

component communication in the apps, which may also affect

the data flow. In view of that, approaches like Amandroid [8],

R-Droid [19], and IccTA [6] were proposed to detect leaks

involving inter-component communication. Cao et al. propose

EdgeMiner [5], a technique that performs backward data-flow

analysis over the Android source code to process implicit

control dependence introduced by the callback mechanism.

B. Dynamic Taint Analysis

Static analysis often reports a large number of false posi-

tives, while dynamic analysis does not suffer from the issue.

The TaintDroid tool [9], developed by Enck et al., is one of the

most widely used Android dynamic taint-tracking and analysis

system. TaintDroid is based on a modified Android system

and can be used to collect taint information of sensitive data

at runtime. The information can be analyzed later by users to

discover leakage of privacy data. Many dynamic analysis tools

for Android are built on top of TaintDroid: DroidBox [20]

uses TaintDroid to build a sandbox for analyzing apps;

AppFence [11] extends TaintDroid to not only detect privacy

leaks in apps, but also prevent sensitive data leaks by adding

a module for privacy access control to apps BayesDroid [21]

is similar to TaintDroid, but it implements a Bayesian clas-

sification to improve the accuracy of analysis results. Droid-

Scope [10] and CopperDroid [12] provide full system analysis

and collect dynamic information for reconstructing malicious

behaviors. VetDroid [22] is another dynamic taint analysis

system that vets undesirable behaviors in Android apps by

systematically analyze the usage of permissions granted to

apps. TaintART [23] implements a tracking system for the

latest Android runtime which TaintDroid does not support.

Although dynamic analysis techniques can produce more

precise detection results than static ones, they may miss leaks

that are not triggered during the analysis. Therefore, work has

been done to combine the strengths of both static and dynamic

analyses, e.g., by generating analysis results statically and

verifying them dynamically. SmartDroid [24] takes advantage

of a hybrid approach that statically generates paths leading

to suspicious actions and dynamically executes the UI events

which can flow through the paths. AppIntent [13] distinguishes

user-intended and unintended data transmission and employs

dynamic symbolic execution to determine whether a behavior

is malicious. AppAudit [14] detects vulnerabilities statically

and verifies the data leaks through dynamic analysis.

DL2 combines static and dynamic taint analysis to effec-

tively detect privacy leakage hidden by DCL. Taint analysis

implemented in DL2, however, is rather lightweight. For ex-

ample, it is not context- or field-sensitive. In consequence, the

analysis results are not precise enough in certain circumstances

and may contain false positives. Besides, implicit flows [36]

in apps are not considered in DL2’s taint analysis.

C. Dynamic Code Loading

DCL poses new challenges to various security analyses on

mobile apps. Peoplau et al. conducted a large-scale study on

the vulnerabilities in mobile apps due to DCL and summa-

rized the findings based on apps collected from the Google

Play store into a group of common patterns [17]. They also

presented static analysis techniques to detect vulnerabilities

based on the patterns, and modified the Android Dalvik virtual

machine to prevent attacks due to DCL based on whitelists.

Their techniques, however, do not analyze behaviors in the

external code and thus cannot effectively detect privacy leaks

that DL2 targets at. Stadyna [32] executes DCL dynamically

and uses static analysis to expand the method call graph

by analyzing the loaded classes. Through the expanded call

graph, it can identify suspicious behaviors more precisely

using a permission map. DyDroid [25] also leverages static

and dynamic analysis to detect DCL. It triggers DCL through

fuzzy testing and intercepts dynamically loaded classes. Then

it analyzes the loaded code to detect malicious behaviors or

privacy leakage statically. Falsina et al. propose the Grab’n

run system, which includes a code verification protocol and a

serious of supporting libraries, APIs, and components [37], to

address security issues related to the misuses of DCL. Systems

like IntelliDroid [27] can be used to construct and realize

paths between specified locations in apps. They serve more

general purposes, and can be customized and extended, e.g.,

to conduct specific analysis on app behaviors involving DCL,

as exemplified by DL2.

VI. CONCLUSIONS

Privacy leakage detection for Android apps has always been

an important task in the area of software security. In view

that existing techniques offer only limited effectiveness in

detecting leaks hidden by DCL, we propose in this paper

DL2 that enhances static analysis with dynamic app execution

to effectively detect such leaks. We have implemented the

technique into a tool with the same name. Experimental

evaluation of the tool on 88 subjects apps injected with 2578
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privacy leaks shows that DL2 is both effective and efficient in

detecting leaks implemented hidden by DCL.
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