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Abstract—This paper proposes a way of using abstract
interpretation for discovering properties about array con-
tents in programs which manipulate arrays by sequential
traversal. The method summarizes an array property as a
universally quantified property. It directly treats invariant
properties (including universally quantified formulas and
atomic formulas) as abstract domains. Our method is sound
and converges in finite time, and it is flexible. The method
has been used to automatically discover nontrivial invariants
for several examples. In particular, the method can represent
and process multidimensional array properties.

I. Introduction
An array is a simple and efficient data structure that

is heavily used. In many cases, to verify the correctness
of programs that use arrays an analysis needs to be able
to discover properties of array elements.

Static reasoning about the behaviors of such pro-
grams is a challenging problem. Firstly, array indexing
induces complex semantics, in particular the possibility
of aliasing. Moreover, an array may represent a large or
unbounded number of variables, since the size of the
array can be large or unknown. Reasoning about the
behaviors of array programs always requires the use of
universal quantifiers.

Invariant synthesis for programs manipulating arrays
with unbounded data has drawn wide attention in the
academic field. Predicate abstraction [10], [21] uses some
easy syntactic heuristics to derive the predicates used
for the abstraction. Moreover, counter-example guided
refinement [5] and Craig interpolants [17] propose a
significant improvement. Array smashing approach [7]
means all the cells of an array are subsumed by one
variable, of the same type as the cells. Array Partitioning
[11], [13], [15] proposes a significant improvement by
partitioning the index domain (say, [1...n]) into several
symbolic intervals and associating with each subarray
a summary auxiliary variable. Under-approximations
and Templates method [14] is extremely powerful yet
expensive. It requires: (i) the user to provide templates
for the array invariants; and (ii) the abstract domain to
perform under-approximations for the index variable.
Theorem prover-based method [19] uses a saturation
theorem prover to generate loop invariants.

In this paper, we propose a way of discovering univer-
sally quantified properties about array contents in some

restricted cases by using abstract interpretation frame-
work [18]. We restrict analysis to “simple programs”,
which manipulate arrays only by sequential traversal:
typically, increasing (or decreasing) their index by a fixed
constant in loop body, and accessing arrays by simple
expressions (constant translations) of the loop index. A
lot of programs or code snippets fall into this category.
We focus on <, ≤, =, �, > and ≥ relationships between
traversed array cells and scalars, or relationships be-
tween traversed array cells. The followings are some
examples of properties. The formal exposition shall be
given in the subsequent sections.

∀k.k ∈ [0, 2, i),A[k] > x
∀k.k ∈ [n − 1,−1, i),A[k] = B[k]
∀k1.k1 ∈ [0, 1, i),∀k2.k2 ∈ [0, 2, j),A[k1][k2] = B[k1][k2]
∀k.k ∈ [0, 1, i),A[k][k] = B[k]

In the above, [Init,c,final) denotes a set,

{Init + n ∗ c|n >= 0 ∧ Init + n ∗ c < f inal} i f c is positive,
{Init + n ∗ c|n >= 0 ∧ Init + n ∗ c > f inal} i f c is negative.

The contributions of our work include:
• Our main contribution is to propose a fully auto-

matic method to discover properties about array
contents. In particular, our method can represent
and process multidimensional array properties. We
provide soundness proofs and convergence proofs
for the method.

• We describe a framework of invariant properties (in-
cluding universally quantified formulas and atomic
formulas) abstract domain. The invariant properties
abstract domains are highly expressive and flexible.

II. Language and preliminaries
We first define the “simple programs” in which we

formalize our technique.

A. Simple Programs
The “simple programs” means manipulating arrays

only by sequential traversal: typically, for loops in-
crementing (or decrementing) their index by a fixed
constant, and accessing arrays by simple expressions
(constant translations) of the loop index. Different from
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the similar definition in [15], we allow programs to
increase (or decrease) their index by a fixed constant
(instead of just 1), and allow multidimensional arrays in
programs. We show several examples of such “simple
programs”, which will be used throughout the paper.
Note that, the loop index can be increased (or decreased)
multiple times at each iteration, see Program 4.

Program 1. arrayPartCopy
1 unsigned size;
2 int A[size],B[size ];
3 i=0;
4 while (i<size) {
5 A[i]=B[i ];
6 i=i+2;
7 }

Program 2. twoDimArrayCheck
1 unsigned col,row;
2 int A[row][col];
3 for (int i=0;i<row;i++)
4 for (int j=0;j<col; j++)
5 if (A[i][ j ]==0)
6 return true;
7 return false ;

Program 3. another twoDimArrayCheck
1 unsigned col,row;
2 int A[row][col];
3 bool flag=false;
4 for (int i=0;i<row;i++) {
5 for (int j=0;j<col; j++) {
6 if (A[i][ j ]==0) {
7 flag=true;
8 break;
9 }

10 }
11 if ( flag==true) {
12 break;
13 }
14 }
15 return flag ;

Program 4. Find: segmentation phase of the QuickSort
1 unsigned size;
2 int A[size];
3 int x = A[0] ;
4 int i = 1;
5 int j =size−1;
6 while (i<=j) {
7 if (A[i] < x) {
8 A[i−1] = A[i];
9 i = i + 1;

10 }
11 else{
12 while (j>=i&&A[j]>=x) {
13 j = j−1;
14 }
15 if ( j > i) {
16 A[i−1] = A[j];
17 A[j] = A[i];
18 i = i + 1 ;
19 j = j−1;
20 }
21 }
22 }
23 A[i−1] = x ;

The following gives syntax of statements:

statement ::= lhs = expr
| index = init
| index = index(‘ +′ |‘−′)constant
| while(cond) statement
| if(cond) statement else statement

lhs ::= Cvars | Array;
index ::= Indices;
init ::= expr;
constant ::= INT;
Cvars ::= ‘x′ | ‘y′ · · · ;
Array ::= (‘A′ | ‘B′ · · · )([Iexp])+;
Iexp ::= constant| Indices | Indices (‘ +′ |‘−′) INT;
Indices ::= ‘i′ | ‘ j′ · · · ; (Indices ∩ Cvars = ∅)
cond ::= expr (‖ expr)∗;

Assignments can assign values to scalars, array elements
or indexes. Moreover, assignments to index are divided
into two kinds: index initialization statement “index =
init” and index update statement “index = index (+|-) con-
stant”. The index does not occur in the expression init. In
index update statement “index = index (+|-) constant”, the
first index is same as the second index. Index expressions
Iexp are restricted to constants, indexes or sums of an
index and a constant. Conditions are conjunctions and/or
disjunctions of atomic conditions.

B. Properties

The Properties used in the analysis are defined as:

prop ::= andprop(∨ andprop)∗;
andprop ::= atomprop(∧ atomprop)∗;
atomprop ::= simpleProp | f orAllProp | ‘(′prop‘)′;
simpleProp ::= expr op expr;
f orAllProp ::= ∀ID ‘.′ ID ∈ interval ‘,′ (atomprop | φ);
op ::= > | ≥ | < | ≤ | = | �;
interval ::= (‘(′ | ‘[′) expr1 ‘,′ constant ‘,′ expr2 (‘)′ | ‘]′);

Properties can be conjunction properties or disjunction
properties. Atomic properties can be simple properties,
universally quantified properties. The simple properties are
<, ≤, =, �, > and ≥ relationships between expressions.
We use φ to denote a special property, which is used in
the analytic process. The detailed descriptions of φ shall
be given in the subsequent sections.

The interval starts from expr1 (included or excluded)
to the expr2 (included or excluded), and the difference
between the consecutive terms is constant constant. If
constant is a positive number, and expr2 is less than expr1,
the interval is empty and vice versa.
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Table I
The memory scope for basic forms of terms

terms memory scope
a constant c ∅
a variable v {&v}
e1[e2] {&e1[e2]} ∪M(e1) ∪M(e2)

Table II
The memory scope for properties

properties memory scope
e1 bop e2 M(e1) ∪M(e2)
∀x.x ∈ [e1, c, e2), φ M(e1) ∪M(e2)
∀x.x ∈ [e1, c, e2), p M(e1) ∪M(e2) ∪ {M(p) | x ∈ [e1, c, e2)}

C. Memory Scopes of Properties

The concept of memory scopes comes from [25].
For a property P, the value of P depends only on the

contents stored in a finite set of memory units. We use
M(P) to denote the memory scope of P. M(P) can be
constructed syntactically.

For an expression e, if e is of the form f (e1, · · · , en),
where f is an algebraic operator (e.g. +,−, ...) or a boolean
operator, the memory scope M(e) is M(e1) ∪ M(e2) · · · ∪
M(en). Table I shows the memory scopes for basic forms
of expressions.

Now we can define the memory scopes of properties.
Table II shows it.

The followings depict axioms of the addressing oper-
ator &.

&v1 � &v2 (1)
0 ≤ e2 < c ⇒ &v � &e1[e2] (2)
&e1[e2] = &e3[e4] ⇔ (&e1 = &e3 ∧ e2 = e4 ∧ 0 ≤ e2, e4 < c)

(3)

where c is length of the arrays e1 and e3.
Axiom (1) states that different variables v1 and v2 have

different addresses. Axiom (2) states that, if an array
subscript is valid, the addresses of a variable v and an
array expression e1[e2] are different. Axiom (3) states that
different components of an array has different addresses.
If we are not concerned with array bound checking, we
can relax restrictions of array subscripts in Axiom (2)
and (3).

For an assignment e1 := e2, let i, j respectively be the
program points before/after this statement. If a property
holds at the point i, and &e1 is not in the memory scope
of this property, the property still holds at the point j.

D. Iterative Data-Flow Analysis Framework

Iterative data-flow analysis framework [18] can be
used to solve data-flow problems. An iterative data-flow
analysis framework can be characterized as a four-tuple
(D, LG,�G, FG), where G represents a control flow graph
(CFG), and:

• D is the direction of analysis, which is forward or
backward.

• LG is a description of a meet semi-lattice that repre-
sents the data flow values relevant to the problem.
The height of LG must be finite.

• �G is a description of the meet operator of the semi-
lattice. �G is derivable from LG.

• FG is a description of the set of admissible flow
functions from LG to LG. FG must be monotonic.

For a data-flow analysis, as long as the four elements
are given, the analysis can be performed by an iterative
algorithm. If the flow function of a dataflow analysis is
monotone, and the height of the lattice is finite, then the
analysis will terminate [18].

Our method uses three forward data-flow analyses. The
forward data flow equations are the following forms.

Inn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
BI n is Start statement�

p∈pred(n)

Fp(Inp) otherwise

where n and p are statements, Inn are data flow values
before the node n. For a statement n, let Fn : LG → LG
denote the flow function that applies the statement. BI
is the data flow values before the Start statement. FG
consists of flow functions Fp. � is the meet operator.

III. indexes Analysis

Our method is built on “simple programs”. For a
program or a code snippet, we need to determine which
variable is the index, what is initial value of the index,
what is step of the index. If there are several indexes in a
simple program, we need to get the relations of indexes.
Therefore, before array properties analysis, we design
two auxiliary indexes analyses to get indexes properties
as described above.

A. Determine Indexes

Definition III.1. A scalar variable x is an atomic scalar at
a program point u if for every sequence S of assignment of x
for every execution path reaching u, the first assignment of S
is to assign a constant to x, the residual assignments of S are
to increase (or decrease) x by a fixed constant.

If a variable is an atomic scalar and it occurs in an ar-
ray subscript, it is the index. We design an iterative data-
flow analysis to discover scalar variables. An atomic
scalar is a triple, denoted by (variable, initial value, fixed
constant step). In this analysis, LG is 2(Svar,Expr,Con), Svar is
the set of all scalar variables occurring in G, Expr is the
set of all expressions occurring in G, Con is the set of all
integer constants occurring in G. BI is ∅ (Let’s recall that
BI is the data flow values before the Start statement).
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FG consists of flow functions {Fn | n is a statement}, The
definition of Fn is:

Fn(Inn) = (Inn − Killn(Inn)) ∪ Genn(Inn)

Genn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(x, init,�)} n is x = init
{(x, init, c)} n is x = x + c, and (x, init,� or c) ∈ x
∅ otherwise

Killn(x) =
{ {(x, init, ∗)} n is v = e, and v ∈ {x} +Opd(init)
∅ otherwise

where Opd(init) is the operands set of init. * denotes any
scalar variables.

For any L1, L2 ∈ LG, L1 �G L2 is the set of applying �
on every pair of elements respectively from L1 and L2.
For any atomic scalars a1 ∈ L1, a2 ∈ L2, if a1�a2 is not ⊥,
a1�a2 ∈ L1 �G L2.

For any atomic scalar (x1, init1, c1),(x2, init2, c2),

(x1, init1, c1)�(x2, init2, c2) = (x1�̃x2, init1�̃init2, c1�̃c2)

For any variables or expressions x and y,

x�̃y =
{

x x = y
⊥ x � y

x�̃� = x x�̃⊥ = ⊥
If there exists any ⊥ in a triple, the triple is ⊥.

The analysis is simple, the convergence and soundness
are easy to see.

B. Relation of Indexes
There may be several indexes (or atomic scalars) in a

simple program. If two indexes occur in a same loop,
there may be an equation about them.

For atomic scalars x1 and x2, if for every execution path
reaching u, the difference of occurring times between
statement x1 = x1 + c1 and statement x2 = x2 + c2 is a
constant d. At u, we have:

(x1 − initx1 )/c1 − (x2 − initx2 )/c2 = d

We design an iterative data-flow analysis to get the
difference. We use a triple (atomic scalar1, atomic scalar2,
difference) to denote the information. In this analysis, LG
is 2(Avar,Avar,Z), Avar is the set of all atomic scalar variables
occurring in G. Before the Start statement, all differences
are 0. BI is {(x1, x2, 0) | x1, x2 ∈ Avar ∧ x1 � x2}. �G is ∩.

FG consists of flow functions Fn, which are:

Fn(Inn) = (Inn − Killn(Inn)) ∪ Genn(Inn)

Genn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(∗, x, d − 1)} n is x = x + c, and (∗, x, d) ∈ x
{(x, ∗, d + 1)} n is x = x + c, and (x, ∗, d) ∈ x
∅ otherwise

Killn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(∗, x, d)} n is x = x + c, and (∗, x, d) ∈ x
{(x, ∗, d)} n is x = x + c, and (x, ∗, d) ∈ x
∅ otherwise

where * denotes any scalar variables.
The analysis is simple, the convergence and soundness

are easy to see.

IV. Array Properties Analysis

In this section, we design an iterative data-flow anal-
ysis to get properties.

A. Data Flow Values

In the sequel, we assume all expressions are free of
side-effects. Expressions with side-effects (e.g. “i++”)
converted into equivalent expressions without side-
effects. Let Expr be the set of all expressions (all variables
are also viewed as expressions) occurring in a CFG G .

Before we give data flow values LG, we need to give
two auxiliary definitions: ProperP and �.
ProperP is a set of all properties such that for any

p ∈ ProperP, p satisfies the following conditions:
• if e1 ∈ Expr and e2 ∈ Expr, (e1 op e2) ∈ ProperP.
• if e1 ∈ Expr and e2 ∈ Expr, c is a constant in G, p1

is in ProperP and different from Φ, p1[e2/x] is also
in ProperP, and the depth of nesting of quantifiers
inside p1 is less than the number of indexes in G,
then ∀x.x ∈ [e1, c, e2), p1 ∈ ProperP.

• if e1 ∈ Expr, e2 ∈ Expr, and c is a constant in G,
(∀x.x ∈ [e1, c, e2), φ) ∈ ProperP.

• if p1‖p2 is a condition expression occurring in G, p1∨
p2 ∈ ProperP.

Corollary IV.1. Let G be a CFG. The size of ProperP is finite.

Corollary IV.1 follows directly from the definition of
ProperP and Expr.

���

� � �

���

�

Figure 1. Lattice on Op, (Op,�op,�op, top, bot)

Now, we define � relations. For any properties p1, p2,
we say

p2 � p1

when the following criteria are satisfied:
• if p2 is a simple property (e3 op2 e4), p1 is a simple

property (e1 op1 e2) such that:
– e1 = e3 ∧ e2 = e4 ∧ op2 �op op1, or
– e1 = e4 ∧ e2 = e3∧ � op2 �op op1

where �op is defined in Fig. 1. � op is defined as:{ �< = >,�≤ = ≥,�> = <,�≥ = ≤
� op = op otherwise

• if p2 is ∀k.k ∈ [e3, c2, e4), φ , p1 = p2.
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• if p2 is ∀k.k ∈ [e3, c2, e4), p4 such that p4 � φ, p1 is
– ∀k.k ∈ [e1, c1, e2), p3 such that (a) p3 � φ, (b)

[e1, c1, e2)=[e3, c2, e4), and (c) p4 � p3, or
– ∀k.k ∈ [e1, c1, e2), φ such that [e1, c1, e2)=[e3, c2, e4).

• if p2 is a disjunction property, p1 is a disjunction
property such that p1 = p2.

Intuitively, if p2 is not ∀k.k ∈ [e1, c1, e2), φ, p1 � p2 means
p2 ⇒ p1.

Corollary IV.2. For any properties p1, p2 and p3,
1) p1 � p2 ∧ p2 � p1 ⇒ p1 = p2
2) p1 � p2 ∧ p2 � p3 ⇒ p1 � p3
3) p1 � p2 ⇒M(p1) ⊆M(p2).(Note that, M(φ) is ∅.)

Now, we can give the LG. In this analysis, LG is

{S | S ⊆ ProperP ∧ ∀p1, p2 ∈ S, p1 � p2 ⇒ p1 = p2}
For any L1 ∈ LG, for any properties p1, p2 ∈ L1 such

that p1 � p2, there is not the � relation between p1 and
p2.

The partial order � is defined as follows. For any
L1, L2 ∈ LG, we say

L1 � L2

if for each property p1 ∈ L1, there is a property p2 ∈ L2
such that p1 � p2.

For any L ∈ LG, ∅ � L. BI is ∅. (Let’s recall that BI the
data flow values before the Start statement).

B. Meet Operations

Before giving meet operations �G, we first define the
� operations over the properties in ProperP. � is defined
as follows:

• (e1 op1 e2) � (e3 op2 e4).
– if e1 = e3 ∧ e2 = e4, and op1 �op op2 is not bot, the

meet result is (e1 opr e2), where opr = op1 �op op2.
– if e1 = e4∧e2 = e3, and op1�op � op2 is not bot, the

meet result is (e1 opr e2), where opr = op1�op �
op2.

– otherwise, the meet result is ⊥.
where �op is defined in Fig. 1. � op is defined in
IV-A.

• ∀x.x ∈ [e1, c1, e2), p1�∀x.x ∈ [e3, c2, e4), p2.

∀x.x ∈ [e1, c1, e2), p1�∀x.x ∈ [e3, c2, e4), p2 ={∀x.x ∈ [e1, c1, e2), p1�p2 [e1, c1, e2) = [e3, c2, e4)
⊥ otherwise

Note that, if p1�p2 = ⊥, the meet result is ⊥.
• otherwise, if p1 � p2, p1�p2 is p1; if p2 � p1, p1�p2 is

p2; otherwise, p1�p2 is ⊥.
Intuitively, if p1 and p2 are not ∀k.k ∈ [e1, c1, e2), φ, and
p1�p2 is not ⊥, p1�p2 is equivalent to p2 ∨ p1.

Corollary IV.3. For any properties p1, p2 and p3,

1) if p1�p2 is not ⊥,

p1�p2 � p1 ∧ p1�p2 � p2

p1 ∨ p2 ⇒ p1�p2

2) p1 � p2 ⇔ p1 = p1�p2
3) p1 � p2 ∧ p1 � p3 ⇒ p1 � p2�p3

Corollary IV.4. For any properties p1, p2, p3, � holds the
following property:

1) p1�p1 = p1
2) p1�p2 = p2�p1
3) (p1�p2)�p3 = p1�(p2�p3)

Now, we define �G.

L1 �G L2
def
= Reduce({p1�p2 | p1 ∈ L1 ∧ p2 ∈ L2 ∧ p1�p2 � ⊥})

For any S ∈ 2ProperP, the Reduce(S) function is defined
as:

Reduce(S) = S\{p | p ∈ S ∧ ∃p1 ∈ S, p1 � p ⇒ p � p1}
Intuitively, for any S ∈ 2ProperP, the Reduce function makes
Reduce(S) ∈ LG hold.

Corollary IV.5. For any S1, S2 ∈ 2ProperP,
1) Reduce(S1) ∈ LG
2) S1 � Reduce(S1) ∧ Reduce(S1) � S1
3) S1 � S2 ⇒ Reduce(S1) � Reduce(S2)

Lemma IV.1. For any L1, L2 ∈ LG, L1 �G L2 ∈ LG.

Proof. The conclusions follow directly from the definition
of �G. �

Lemma IV.2. For any S1, S2, S3 ∈ 2ProperP,
1) S1 �G S2 � S1 ∧ S1 �G S2 � S2
2) S1 � S2 ∧ S1 � S3 ⇒ S1 � S2 �G S3

Proof. According to Corollary IV.3, for any p1 ∈ S1, p2 ∈
S2, if p1�p2 ∈ S1 �G S2, then p1�p2 � p1 ∧ p1�p2 � p2. We
have: S1 �G S2 � S1 ∧ S1 �G S2 � S2. Thus, the conclusion
(1) holds.

S1 � S2 ∧ S1 � S3 implies ∀p1 ∈ S1,∃p2 ∈ S2,∃p3 ∈
S3 ⇒ p1 � p2 ∧ p1 � p3. According to Corollary IV.3,
p1 � p2�p3. We have: S1 � S2 �G S3. Thus, the conclusion
(2) holds. �

Lemma IV.3. For any L1, L2 ∈ LG, L1 � L2 ∧ L2 � L1 ⇔
L1 = L2.

Proof. L1 � L2 ∧ L2 � L1 implies ∀p1 ∈ L1,∃p2 ∈ L2,∃p3 ∈
L1 ⇒ p1 � p2 ∧ p2 � p3. p1 � p2 ∧ p2 � p3 ∧ L1 ∈ LG
⇒ p1 = p3 ⇒ p1 � p2 ∧ p2 � p1 ⇒ p1 = p2. Therefore,
∀p1 ∈ L1,∃p2 ∈ L2 ⇒ p1 = p2 ⇒ p1 ∈ L2.

L1 � L2 ∧ L2 � L1 also implies ∀p2 ∈ L2,∃p1 ∈ L1,∃p3 ∈
L2 ⇒ p2 � p1 ∧ p1 � p3. p2 � p1 ∧ p1 � p3 ∧ L2 ∈ LG
⇒ p2 = p3 ⇒ p2 � p1 ∧ p1 � p2 ⇒ p1 = p2. Therefore,
∀p2 ∈ L2,∃p1 ∈ L1 ⇒ p1 = p2 ⇒ p2 ∈ L1. Thus, L1 = L2. �

Lemma IV.4. For any L1, L2 ∈ LG, L1 � L2 ⇔ L1 = L1�GL2.
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Proof. L1 � L2 ⇔ L1 = L1 �G L2 iff
1) L1 = L1 �G L2 ⇒ L1 � L2
2) L1 � L2 ⇒ L1 = L1 �G L2

The conclusion (1) follows directly from Lemma IV.2.
Let S(L1, L2) be {p1�p2 | p1 ∈ L1 ∧ p2 ∈ L2 ∧ p1�p2 � ⊥}.
According to Corollary IV.5 and the definition of

S(L1, L2), L1 � L2 ⇒ L1 � S(L1, L2) ⇒ L1 �
Reduce(S(L1, L2)) ⇒ L1 � L1 �G L2.

According to Lemma IV.2, L1 �G L2 � L1.
According to Lemma IV.3, L1 � L1 �G L2 ∧ L1 �G L2 �

L1 ∧ L1 ∈ LG ∧ L1 �G L2 ∈ LG implies L1 = L1 �G L2. The
conclusion (2) holds. �

Theorem IV.1. (LG,�G) is a meet semi-lattice on a CFG G.

Proof. (LG,�G) is a meet semi-lattice iff, for all L1, L2, L3 ∈
LG,

1) L1 �G L1 = L1
2) L1 �G L2 = L2 �G L1
3) (L1 �G L2) �G L3 = L1 �G (L2 �G L3)
4) L1 � L2 ⇔ L1 = L1 �G L2

The conclusions (1) and (2) follow directly from Lemma
IV.4 and the definition of �G. The conclusion (4) has been
proved in Lemma IV.4.

Let S(L1, L2) be {p1�p2 | p1 ∈ L1 ∧ p2 ∈ L2 ∧ p1�p2 � ⊥}.
To prove conclusion (3), we just need to prove that:

(L1 �G L2) �G L3 = Reduce(S(S(L1, L2), L3))
Reduce(S(S(L1, L2), L3)) = Reduce(S(L1, S(L2, L3)))
Reduce(S(L1, S(L2, L3))) = L1 �G (L2 �G L3)

(L1 �G L2) �G L3 � L1 �G L2 � S(L1, L2).
(L1 �G L2) �G L3 � L3.
According to Lemma IV.2, (L1�GL2)�GL3 � S(L1, L2)�G

L3.
S(L1, L2) �G L3 � S(L1, L2) � L1 �G L2.
S(L1, L2) �G L3 � L3.
According to Lemma IV.2, S(L1, L2)�GL3 � (L1�GL2)�G

L3.
Thus, (L1 �G L2) �G L3 = S(L1, L2) �G L3 = Reduce (S(S

(L1, L2), L3)).
For Reduce(S(L1, S(L2, L3))) = L1 �G (L2 �G L3), the proof

is similar to (L1 �G L2) �G L3 = Reduce(S(S(L1, L2), L3)).
According to the definition of S, S(S(L1, L2), L3) =

S(L1, S(L2, L3)) holds.
Thus, the conclusion (3) holds.

�

Theorem IV.2. Let G be a CFG. The height of meet semi-
lattice (LG,�G) is finite.

Proof. LG is

{S | S ⊆ ProperP ∧ ∀p1, p2 ∈ S, p1 � p2 ⇒ p1 = p2}
We have: LG ⊆ 2ProperP. The size of ProperP is finite

according to Corollary IV.1, thus the height of meet semi-
lattice (LG,�G) is finite. �

C. Flow Function
Let a be data flow values before a statement n. The

flow function Fn(a) is defined as:

Fn(a) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Reduce(Trans f er(n, a,Produce(n, a))) i f n is e1[e2] := e3

Reduce(GenPhi(n,Produce(n, a))) i f n is index initialization
Reduce(HandlePhi(n, a,Produce(n, a))) i f n is index update stmt
Reduce(Produce(n, a)) otherwise

Produce(n, a) = Propagated(a ∪ Semantics(n, a))

For any statement n, Fn first computes the semantics of
n and produces as many as possible properties according
to propagated rules (Produce function). If n is e1[e2] := e3,
Produce(n,a) may lose universally quantified properties,
thus we need to transfer them to Fn(a) (Transfer function).
If n is an index initialization statement, Fn(a) produces
φ properties (GenPhi function). If n is an index update
statement, Fn(a) produces universally quantified proper-
ties by handling φ properties (HandlePhi function). The
Reduce function is defined in section IV-B. Intuitively, for
any S ∈ 2ProperP, Reduce function makes Reduce(S) ∈ LG
hold. The detailed descriptions of these functions are
given as follows.

1) Semantics Function: Let a be data flow values be-
fore a statement n. Semantics(n,a) function computes the
relations between input and output states.

• If n def
= lh := e, Semantics(n, a) is defined as:

{lh′ = e} ∪ {lh′i = lhi | &lh � &lhi ∧ lhi ∈ LH}
where lhi represents a left-hand expression, LH is
the set of all left-hand expressions occurring in a
program.
We use unprimed variables to denote pre-state
quantities, and primed variables to denote post-state
quantities.

• Let cond be the condition expression of “while” and
“if” statements. If n is cond,

– in the true branch, Semantics(n, a) = {cond}∪{lh′i =
lhi | lhi ∈ LH}.

– in the false branch, Semantics(n, a) = {¬cond} ∪
{lh′i = lhi | lhi ∈ LH}.

Lemma IV.5. For any L1, L2 ∈ LG, if L1 � L2,
Semantics(n,L1) � Semantics(n,L2).

Proof. According to the definition of Semantics function,
• if n is cond, the conclusion follows directly from the

definition of Semantics function.
• if n is lh := e, for any lhi ∈ LH, if

∧
L1 ⇒ &lh � &lhi,

then
∧

L2 ⇒ &lh � &lhi. Thus, Semantics(n,L1) �
Semantics(n,L2).

Thus, Semantics(n,L1) � Semantics(n,L2). �

After Semantics(n,a), we transfer the result of Seman-
tics(n,a) and a to propagated function to produce as many
as possible properties.
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2) Propagated Function: Propagated function is defined
as:

Propagated(a ∪ Semantics(n, a)) =
Filter(ApplyRules(a ∪ Semantics(n, a)))

Propagated function does two things:

1) producing as many as possible properties accord-
ing to propagated rules (ApplyRules function).

2) filtering out pre-state properties. The inputs of
Propagated function are the result of Semantics(n,a)
and a. There are pre-state quantities in the result of
Semantics(n,a). Thus, after (1), we need to filter out
pre-state properties and fetch post-state properties
(Filter function).

Fig. 2 shows some of propagated rules. Note that all
rules satisfy propagated rules constraints described as
following.

Notice that, >,≥ and <,≤ are respectively dual, so we
just describe <,≤ here. Let in be the input properties set
of a rule, and out be the output properties set of the rule.
Generally, a rule can be defined as:

∧
in ⇒

∧
out

1) If in ⊆ ProperP, out ⊆ ProperP.
2) If p ∈ in such that p is e1 ≤ e2, two additional rules∧

in[e1 < e2/e1 ≤ e2] ⇒ ∧ out1 and
∧

in[e1 = e2/e1 ≤
e2] ⇒ ∧ out2 should be provided, where out � out1
and out � out2.
For example, e1 ≤ e2 is in LE-1, thus, two additional
rules LT-1 and ASSIGN-2 are provided. We refer
to LT-1 and ASSIGN-2 as the corresponding rules
of LE-1.

3) If p ∈ in such that p is e1 � e2, another rule
∧

in[e1 <
e2/e1 � e2] ⇒ ∧

out1 should be provided, where
out � out1.

4) If p ∈ in such that p is ∀x.x ∈ [e1, c, e2), p1, another
rule

∧
in[∀x.x ∈ [e1, c, e2), φ/∀x.x ∈ [e1, c, e2), p1] ⇒∧

out1 should be provided, where out � out1.
For example, LT-4 and LT-5 are respectively the
corresponding rules of LT-2 and LT-3.

Lemma IV.6. For any properties sets S1 and S2, if S1 � S2,
Propagated(S1) � Propagated(S2).

Proof. For any in1 ⊆ S1 if a rule r is applied to in1, and
the application produces an output properties set out1,
according to the definition of � and propagated rules
constraints (2), (3) and (4), there is a set in2 ⊆ S2 and a
corresponding rule r’ such that (a) in1 � in2, and (b) r’
can be applied to in2, and (c) the application produces
an output properties set out2 and out1 � out2. Thus, for
any properties set S1 and S2, if S1 � S2, Propagated(S1) �
Propagated(S2). �
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Figure 2. Propagated Rules

3) Transfer Function: If n is e1[e2] := e3, Produce function
can lose any universally quantified property p which
contains e1, even if &e1[e2] � M(p). Thus, we must
transfer p to Fn(a) if &e1[e2] � M(p). For any S ∈ 2ProperP,
Trans f er(e1[e2] := e3, a,S) is defined as:

Trans f er(e1[e2] := e3, a,S) =
S ∪ {p | p ∈ a ∧ p is a UQProp ∧&e1[e2] �M(p)}

where UQProp is the abbreviation of “universally quan-
tified property”.

Lemma IV.7. For any x, y ∈ LG, S1, S2 ∈ 2ProperP, if x � y and
S1 � S2, Trans f er(e1[e2] := e3, x, S1) � Trans f er(e1[e2] :=
e3, y,S2).

Proof. Let TS(x) be {p | p ∈ x ∧ p is a UQProp ∧ &e1[e2] �
M(p)}. According to definition of Transfer, we just need to
prove TS(x) � TS(y). For any property p1 ∈ TS(x), there
is a universally quantified property p2 ∈ y such that p1 �
p2. According to Corollary IV.2, we have: M(p1) ⊆M(p2).∧

x ⇒ &e1[e2] � M(p1) implies
∧

y ⇒ &e1[e2] � M(p2),
which implies p2 ∈ TS(y). Therefore, TS(x) � TS(y). �

Example IV.1. Consider a statement n
def
= A[i] := x, we would

like to compute Fn(a), where a = {∀k.k ∈ [0, 1, j),A[k] = x∧i ≥
j}.
ApplyRules(a ∪ Semantics(n, a)) = {(A[i])′ = x′, (∀k.k ∈
[0, 1, j′),A[k] = x′), i′ ≥ j′} ∪ Semantics(n, a).
Produce(n, a) = {A[i] = x, i ≥ j}.

The Produce(n, a) loses the universally quantified property
since (∀k.k ∈ [0, 1, j′),A[k] = x′) is not the post-state
(the array A is not post-state quantity). However, &A[i] �
M(∀k.k ∈ [0, 1, j),A[k] = x). So we transfer it to Fn(a).
Fn(a) = {A[i] = x, i ≥ j, (∀k.k ∈ [0, 1, j),A[k] = x)}.

4) GenPhi Function: For index initialization n def
= i :=

init, S ∈ 2ProperP, GenPhi is defined as:

GenPhi(n, S) = {∀k.k ∈ [init, c, i), φ} ∪ S

We use φ to denote a special property. c is the step of the
index i (we obtain it by the auxiliary indexes analyses
described in Section III). ∀k.k ∈ [init, step, i), φ holds since
[init, step, i) is ∅.
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Corollary IV.6. For any S1, S2 ∈ 2ProperP, if n is an in-
dex initialization statement and S1 � S2, GenPhi(n,S1) �
GenPhi(n, S2).

5) HandlePhi function: For index update statement n def
=

i := i + c, S ∈ 2ProperP, HandlePhi defined as:

HandlePhi(n, a, S) ={
S ∪ {∀x.x ∈ [initi, c, i), ψ(· · · , e1[ f1(x)], · · · )}i f (4) or (5) holds
S otherwise

where ψ is a property about array elements. f1 is a
general index function. Notice that ψ(· · · , e1[ f1(x)], · · · )
does not contain i.

i = initi ∈ a ∧ ∀x.x ∈ [initi, c, i), φ ∈ a
∧ ψ(· · · , e1[ f1(i)], · · · ) ∈ a (4)

∀x.x ∈ [initi, c, i), ψ1(· · · , e1[ f1(x)], · · · ) ∈ a
∧ ψ2(· · · , e1[ f1(i)], · · · ) ∈ a
∧ ψ(· · · , e1[ f1(x)], · · · ) =

ψ1(· · · , e1[ f1(x)], · · · )�ψ2(· · · , e1[ f1(x)], · · · ) (5)

If condition (4) holds, [initi, c, i) is ∅ since i = initi holds.
Thus after n, ∀x.x ∈ [initi, c, i), ψ(· · · , e1[ f1(x)], · · · ) holds.
If condition (5) holds,

ψ(· · · , e1[ f1(x)], · · · ) = ψ1(· · · , e1[ f1(x)], · · · )�ψ2(· · · , e1[ f1(x)], · · · )

implies ∀x.x ∈ [initi, c, i), ψ1(· · · , e1[ f1(x)], · · · ) ⇒ ∀x.x ∈
[initi, c, i), ψ(· · · , e1[ f1(x)], · · · ) and ψ2(· · · , e1[ f1(i)], · · · ) ⇒
ψ(· · · , e1[ f1(i)],· · · ). After n, [initi, c, i′) = [initi, c, i + c),
which means i (pre-state quantity) is added to [initi, c, i).
Thus after n, ∀x.x ∈ [initi, c, i), ψ(· · · , e1[ f1(x)], · · · ) holds.

Lemma IV.8. For any x, y ∈ LG, S1, S2 ∈ 2ProperP, if n is
i := i + c and x � y and S1 � S2, HandlePhi(n, x, S1) �
HandlePhi(n, y, S2).

Proof. Let ψ(k) be abbreviation of ψ(· · · , e1[ f1(k)], · · · ).
• if condition (4) holds in x, HandlePhi(n, x, S1) =

S1 ∪ {∀k.k ∈ [initi, c, i), ψ(k)}. Condition (4) implies
i = initi ∈ y ∧ ∀k.k ∈ [initi, c, i), φ ∈ y ∧ ψ′(i) ∈ y such
that ψ(i) � ψ′(i). We have: HandlePhi(n, y, S2) = L2 ∪
{∀k.k ∈ [initi, c, i), ψ′(k)}. Thus, HandlePhi(n, x, S1) �
HandlePhi(n, y, S2)

• if condition (5) holds in x, HandlePhi(n, x, S1) =
S1 ∪ {∀k.k ∈ [initi, c, i), ψ(k)}. Condition (5) implies
∀k.k ∈ [initi, c, i), ψ′1(k) ∈ a ∧ ψ′2(i) ∈ a such that
ψ1(k) � ψ′1(k) ∧ ψ2(i) � ψ′2(i). ψ(k) = ψ1(k)�ψ2(k)
⇒ ψ(k) � ψ1(k) ∧ ψ(k) � ψ2(k) ⇒ ψ(k) � ψ′1(k) ∧
ψ(k) � ψ′2(k) ⇒ ψ(k) � ψ′1(k)�ψ′2(k). Let ψ′(k) be
ψ′1(k)�ψ′2(k). We have: HandlePhi(n, y,L2) = S2 ∪
{∀k.k ∈ [initi, c, i), ψ′(k)}. Thus, HandlePhi(n, x, S1) �
HandlePhi(n, y, S2)

�

Lemma IV.9. Let a be data flow values before a statement n
in a CFG G. If a ∈ LG, Fn(a) ∈ LG.

Proof. The conclusion follows directly from the definition
of Fn(a). �

Theorem IV.3. Let n be a statement in a CFG G. Fn is
monotonic.

Proof. Fn is monotonic iff ∀x, y ∈ LG : x � y ⇒
Fn(x) � Fn(y). According to the definition of Fn, we
just need to prove that all functions occurring in Fn are
monotonic. We have proved that all functions occurring
in Fn are monotonic ( Lemma IV.5, Lemma IV.6,Lemma
IV.7, Corollary IV.6 , Lemma IV.8, Corollary IV.5). �

D. A Whole Example

Example IV.2. We give now a whole analysis on “arrayPart-
Copy” program (depicted in section II). The analysis provides:

• At the first iteration:
– after line 2: statement i := 0 is an index initializa-

tion, so i = 0, (∀k.k ∈ [0, 2, i), φ).
– after line 4: i = 0, (∀k.k ∈ [0, 2, i), φ), i < size,

A[i] = B[i].
– after line 5: statement i := i + 2 is an index update

statement, i = 0 ∧ ∀k.k ∈ [0, 2, i), φ ∧ A[i] = B[i]
implies ∀k.k ∈ [0, 2, i),A[k] = B[k].

– after line 6: (∀k.k ∈ [0, 2, i),A[k] = B[k]), i ≥ size,
which implies (∀k.k ∈ [0, 2, size),A[k] = B[k]).

• At the second iteration:
– at line 3: ∀k.k ∈ [0, 2, i),A[k] = B[k], since result

of ∀k.k ∈ [0, 2, i), φ�∀k.k ∈ [0, 2, i),A[k] = B[k] is
∀k.k ∈ [0, 2, i),A[k] = B[k].

– after line 5: ∀k.k ∈ [0, 2, i),A[k] = B[k] still holds.
– after line 6: (∀k.k ∈ [0, 2, i),A[k] = B[k]), i ≥ size,

(∀k.k ∈ [0, 2, size),A[k] = B[k]), and the iteration
converges.

• So, the final result at the end of the program is
– (∀k.k ∈ [0, 2, i),A[k] = B[k]) ∧ i ≥ size ∧ (∀k.k ∈

[0, 2, size),A[k] = B[k])

E. Termination

In this section, we shall prove that array properties
analysis will terminate. According to iterative data-flow
analysis framework [15], we need to prove that the flow
function Fn is monotonic (Theorem IV.3), and the height
of meet semi-lattice is finite (Theorem IV.2). Thus, array
properties analysis will terminate.

F. Soundness

Some notes: let States denote the set of states of a
program. A state is a tuple (ρv, ρa), where ρv maps scalar
variables names to their values, ρa maps array names
to their values. The semantics of statements of “simple
programs” are described in Fig. 3 as functions from States
to States. We use “i := e” to denote an assignment to
a scalar variable, and use “A[e1] := e2” to denote an
assignment to an array element. Here, we simplify arrays
for one dimension arrays.
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�i := e�(ρv, ρa) = (ρv[�e�(ρv, ρa)/i], ρa)
�A[e1] := e2�(ρv, ρa) = (ρv, ρa[F/A])

where F = λz.
{
ρa(A)(z) i f z � �e1�(ρv, ρa)
�e2�(ρv, ρa) otherwise

�while(cond) stmt�(ρv, ρa) ={
(ρv, ρa) i f �cond�(ρv, ρa) = f alse
�stmt; while(cond) stmt�(ρv, ρa) otherwise

�if(cond) stmt1 else stmt2�(ρv, ρa) ={
�stmt1�(ρv, ρa) i f �cond�(ρv, ρa) = f alse
�stmt2�(ρv, ρa) otherwise

Figure 3. Semantics of Simple Programs

We use c denote a concrete program state (ρv, ρa)
in subsequent paragraphs. A trace T of a CFG G is
a potentially infinite sequence (c0, c1, . . . ) of program
states. c0 is the initial state, and for every i ≥ 0, we have
G � ci � ci+1.

Lemma IV.10. Let ci denote the concrete program states
immediately before executing statement n, and ai denote the
dataflow analysis information immediately before statement n.
If G � ci � ci+1 and �ai�(ci) holds, the following conditions
are satisfied:

1) �Semantics(n, ai)�(ci+1) holds.
2) For any S ∈ 2ProperP, if n is e1[e2] := e3 and �S�(ci+1)

holds, then �Trans f er(n, ai, S)�(ci+1) holds.
3) For any S ∈ 2ProperP, if n is an index initializa-

tion statement i := init and �S�(ci+1) holds, then
�GenPhi(n,S)�(ci+1) holds.

4) For any S ∈ 2ProperP, if n is an index update
statement i := i + c and �S�(ci+1) holds, then
�HandlePhi(n, ai, S)�(ci+1) holds.

5) For any S ∈ 2ProperP, if �S�(ci+1) holds, then
�Reduce(S)�(ci+1) holds.

Proof. 1) To prove conclusion (1), we need to prove :
• if n is lh := e, �lh�(ci+1) = �e�(ci) ∧∧

�&lh�&lhi�(ci)∧lhi∈LH�lhi�(ci+1) = �lhi�(ci)
• if n is cond, and

– ci+1 are concrete program states immedi-
ately before the true branch, �cond�(ci+1) ∧∧

lhi∈LH�lhi�(ci+1) = �lhi�(ci)
– ci+1 are concrete program states immedi-

ately before the false branch, �¬cond�(ci+1) ∧∧
lhi∈LH�lhi�(ci+1) = �lhi�(ci)

These conclusions follow directly from the seman-
tics of statement (described in Fig. 3).

2) To prove conclusion (2), we need to prove :

�S∪{p | p ∈ ai∧p is a UQProp∧&e1[e2] �M(p)}�(ci+1)

Since �S�(ci+1) holds, we just need to prove: �{p | p ∈
ai∧p is a UQProp∧&e1[e2] �M(p)}�(ci+1). �ai�(ci)∧p ∈

ai ⇒ �p�(ci). (
∧

ai ⇒ &e1[e2] � M(p)) ∧ �ai�(ci)
implies �&e1[e2] � M(p)�(ci). �&e1[e2] � M(p)�(ci)
implies that all values of memory units in M(p)
remain unchanged. Thus, �p�(ci+1) holds.

3) To prove conclusion (3), we need to prove �{∀k.k ∈
[init, c, i), φ} ∪ S�(ci+1). Since �S�(ci+1) holds, we just
need to prove �∀k.k ∈ [init, c, i), φ�(ci+1). Since n is
i := init and i does not occur in init, �i = init�(ci+1)
holds. �i = init�(ci+1) ⇒ �[init, step, i) = ∅�(ci+1) ⇒
�∀k.k ∈ [init, step, i), φ�(ci+1).

4) To prove conclusion (4), we just need to prove
that, if condition (4) or (5) holds, then �{∀x.x ∈
[initi, c, i), ψ(· · · , e1[ f1(x)], · · · )}�(ci+1) holds. Notice
that ψ(· · · , e1[ f1(x)], · · · ) does not contain i. Let ψ(k)
be abbreviation of ψ(· · · , e1[ f1(k)], · · · ).
• if condition (4) holds, (

∧
ai ⇒ (4)) ∧ �ai�(ci)

implies �(4)�(ci). �(4)�(ci) ⇒ �i = initi ∧ψ(i)�(ci).
Since n is i := i + c and ψ(x) does not contain
i and �i = initi�(ci), then �ψ(initi)�(ci+1) and
�i = initi+c�(ci+1). �ψ(initi)�(ci+1) and �i = initi+
c�(ci+1) implies �∀x.x ∈ [initi, c, i), ψ(x)�(ci+1).

• if condition (5) holds, (
∧

ai ⇒ (5)) ∧
�ai�(ci) implies �(5)�(ci). �(5)�(ci) ⇒ �(∀x.x ∈
[initi, c, i), ψ1(x)) ∧ψ2(i)�(ci).
ψ(x) = ψ1(x)�ψ2(x) implies (ψ2(x) ⇒ ψ(x) ∧
(ψ1(x) ⇒ ψ(x). Thus, ∀x.x ∈ [initi, c, i), ψ1(x) ⇒
∀x.x ∈ [initi, c, i), ψ(x).
�∀x.x ∈ [initi, c, i), ψ1(x) ∧ ψ2(i)�(ci) implies
�∀x.x ∈ [initi, c, i), ψ(x) ∧ ψ(i)�(ci).
Since �i�(ci+1) = �i�(ci) + c and ψ(x) does not
contain i, �ψ(i)�(ci) ⇒ �ψ(i − c)�(ci+1), �∀x.x ∈
[initi, c, i), ψ(x)�(ci) ⇒ �∀x.x ∈ [initi, c, i − c),
ψ(x)�(ci+1).
�∀x.x ∈ [initi, c, i − c), ψ(x)�(ci+1) and �ψ(i −
c)�(ci+1) implies �∀x.x ∈ [initi, c, i), ψ(x)�(ci+1).

5) �S�(ci+1) ⇒ �Reduce(S)�(ci+1). Thus, the conclusion
(5) holds.

�

Theorem IV.4. Let ci denote the concrete program states
immediately before executing statement n, and ai denote the
dataflow analysis information immediately before statement n.
For the flow function Fn, if all propagated rules are sound and
G � ci � ci+1 and �ai�(ci) holds, �Fn(ai)�(ci+1) holds.

Proof. Soundness of propagated rules means if
�Semantics(n, ai)�(ci ∪ ci+1) holds, �Propagated(ai ∪
Semantics(n, ai))�(ci+1) holds. Here we use (ci ∪ ci+1)
since there are pre-state quantities (unprimed variables)
and post-state quantities (unprimed variables) in
Semantics(n, ai). However, there are not pre-state
quantities in Propagated(ai ∪ Semantics(n, ai)). According
Lemma IV.10 and the soundness of propagated rules,
�Fn(ai)�(ci+1) holds. �

Theorem IV.5. For all initial states c0, �BI�(c0) holds. ( BI
is the data flow values before the Start statement)
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Proof. In array properties analysis, BI is ∅. Thus, for all
initial states c0, �BI�(c0) holds. �

Theorem IV.6. For any L1, L2 ∈ LG,
∧

L1∨∧ L2 ⇒ ∧(L1�G
L2)

Proof. According to distributivity of ∨ over ∧,
∧

L1∨∧ L2
can be converted into an equivalent formula that is in
CNF:

∧
p1∈L1∧p2∈L2

(p1 ∨ p2). If pi ∈ L1, pj ∈ L2, and pi�pj is
in L1 �G L2, according to Corollary IV.3, pi ∨ pj ⇒ pi�pj.
Thus, we have

∧
L1 ∨∧ L2 ⇒ ∧(L1 �G L2). �

Therefore, after the array properties analysis termi-
nates, the ultimate data flow values are sound.

G. Flexibility of Method
The flexibility of our method is reflected by the ab-

stract domain LG and propagated rules. Actually, for a
CFG G, if a and b occur in G, but a+ b does not occur in
G, we can not get any properties of a + b. However, we
can extend the abstract domain to get more properties.
For example, Expr’=Expr ∪{e1 + e2 | e1, e2 ∈ Expr}. We
also could cut the abstract domain to make a faster
convergence rate.

Similar to the abstract domain, we can extend propa-
gated rules or reduce them. For example, at first we pro-
cess Summation starts program (Program 5), our method
can not get any universally quantified properties.

Program 5. Summation starts
1 negative sum = 0;
2 positive sum = 0;
3 for ( i = 0; i < MAXSIZE; i++) {
4 if (array[i ] < 0) {
5 negative sum = negative sum + array[i];
6 }
7 else {
8 positive sum = positive sum + array[i];
9 }

10 }
However, if we add two additional rules (Actually, since
propagated rules constraints, we need to add more than
two rules).

e1 = e2 + e3 ∧ e2 ≥ 0 ∧ e3 ≥ 0 ⇒ e1 ≥ 0 ∧ e1 ≥ e2 ∧ e1 ≥ e3

e1 = e2 + e3 ∧ e2 < 0 ∧ e3 < 0 ⇒ e1 < 0 ∧ e1 < e2 ∧ e1 < e3

we can get the following properties at exit of the pro-
gram:

∀k.k ∈ [0, 1,MAXSIZE),A[k] ≤ positive sum
∀k.k ∈ [0, 1,MAXSIZE),A[k] ≥ negative sum

V. Implementation and Experiments
The method has been implemented using clang [1] and

Z3 [9]. In the prototype tool, Z3 is mainly used to check
whether two memory units are the same. For example
&A[i] and &A[ j], we need to check whether i is equal to
j in current state. Moreover, we use Z3 to check whether
universally quantified properties are still valid after a
statement.

A. Analysis of Some Examples

We give now the results of this analysis on some exam-
ples: a version of the famous Find program used for seg-
menting arrays in QuickSort, ”arrayPartCopy” program,
and two 2-dimensional array programs, they have same
function, but one (Program 3) is more complicated. Note
that, in our tool, we represent intervals as properties.
For example, we represent ∀k.k ∈ [0, 2, i),A[k] > x as
∀k.0 ≤ k < i ∧ i%2 = 0 ⇒ A[k] > x.
Results for “arrayPartCopy”: At the end of the program,
our tool automatically discovers the following proper-
ties:

• i ≥ size
• ∀k.0 ≤ k < i ∧ k%2 = 0 ⇒ A[k] = B[k]
• ∀k.0 ≤ k < size ∧ k%2 = 0 ⇒ A[k] = B[k]

Results for “Find”: “Find” program [16] is used for
segmenting an array according to its first element, and
used at each step of the QuickSort. At the end of the
program, our tool automatically discovers the following
properties:

• i > j ∧ A[i − 1] = x
• ∀k.1 ≤ k < i ⇒ A[k − 1] < x
• ∀k.1 ≤ k < j ⇒ A[k − 1] < x
• ∀k.i ≤ k ≤ size − 1 ⇒ A[k] >= x

Results for “twoDimArrayCheck”: “twoDimArray-
Check” program checks whether there exists a two-
dimensional array element who is equal to 0. We give
two versions of “twoDimArrayCheck” program. One
(Program 3) is more complicated. At the end of the both
programs, our tool automatically discovers the following
properties for both versions:

• ∀k1.0 ≤ k1 < i ⇒ (∀k2.0 ≤ k2 < col ⇒ A[k1][k2] � 0)
Besides the four examples, we applied our tool to

automatically generate invariants for other examples,
including: “partition” copies the less than and greater
than or equal x elements of a source array into two
different arrays; insertion sort algorithms (we were
able to discover the inductive invariant of the inner
loop); “ArrayMax” program; a version of the “first-
NotNull”; “ArrayCopy”, including 1-dimensional, 2-
dimensional and 3-dimensional array program; “Array-
Check”, including 1-dimensional, 2-dimensional and 3-
dimensional array program. For more tool details, please
visit the web page of this tool and examples: https :
//github.com/libin049/InvariantSynthesisForArray C.

Performances: Experiments were run on a 2.4 GHz
Intel processor with 4 GB of RAM. Table III shows the
performances result.

Table III shows that some small 1-dimensional array
examples take less than one second to be analyzed. But
multidimensional array examples require more time to
be analyzed. For multidimensional array examples, tool
generates a lot of universal quantifier properties. It takes
a lot of time to check whether the universally quantified
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properties are still valid after a statement, which requires
Z3.

B. Analysis of array-examples benchmark of SV-COMP

Competition on Software Verification (SV-COMP)[3]
provides an array program benchmark array-examples [2].
The benchmark has to be written in GNU C or ANSI
C. It has 88 files, 2299 line codes. Most of files only
have one function, and all of arrays are one dimension
arrays. Table IV shows the execution time, basic blocks
number, universal quantifier properties number(#U-inv)
and atomic properties number(#A-inv) on entry of all
blocks, and number of files in which our tool finds
universal quantifier properties (#file(U-inv)). We discard
the universal quantifier properties which are correct but
insignificant (e.g. (∀k.k ∈ [0, 1, ret), p) ∧ ret = 0). Table
IV shows that the average time for each of files is 10
seconds, and tool finds universal quantifier properties
in 74 files. Our tool generates more universal quantifier
properties than atomic properties since lots of universal
quantifier properties are generated by propagated rules.
For example, ∀k.k ∈ [0, 1, i), p ∧ i ≥ size ∧ x < size ∧ x >
0 ⇒ ∀k.k ∈ [0, 1, size), p ∧ ∀k.k ∈ [0, 1, x), p ∧ ∀k.k ∈
[x, 1, i), p ∧ ∀k.k ∈ [x, 1, size), p, tool finally synthesizes 5
universal quantifier properties.

The array-examples benchmark in SV-COMP is de-
signed to check (un)reachability. Thus, universal quanti-
fier properties are not clearly described in specifications.
However, some programs of the benchmark set are
provided by the projects BOOSTER [4]. In original files,
universal quantifier properties are clearly described. We
compare universal quantifier properties synthesized by
out tool and the universal quantifier properties specifi-
cations in standard benchmark [4]. BOOSTER is a soft-

Table III
Performances results.

Procedure time (s)
partition 4.27
InsertionSort(inner loop) 3.22
ArrayMax 1.19
firstNotNull 2.46
Find 9.75
arrayPartCopy 0.52
1-dim ArrayCopy 0.46
2-dim ArrayCopy 6.11
3-dim ArrayCopy 43.34
1-dim ArrayCheck 0.57
2-dim ArrayCheck 4.00
3-dim ArrayCheck 57.30

Table IV
Analysis result of array-examples

time(s) Δ(s) #block #U-inv #U-inv
/#block #A-inv #file(U-inv)

961 10.9 1681 9978 5.94 3438 74

ware model-checker devised for verifying imperative
programs with flat arrays (one-dimensional arrays).

There are 43 files in standard. However, there are only
40 universal quantifier properties specifications in files.
There are 33 target universal quantifier properties syn-
thesized by our tool. We notice that, though our tool can
not synthesize target universal quantifier properties in 7
files, it synthesizes other universal quantifier properties,
which are useful to derive target universal quantifier
properties. For example, when we process copyInitSum
program (Program 6), our tool synthesizes the following
properties before “for” statement: {(∀k.k ∈ [0, 1,N),A[k] =
B[k]), (∀k.k ∈ [0, 1,N),A[k] = 42), (∀k.k ∈ [0, 1,N),B[k] =
42)}. The properties are useful to derive target properties.
Since 42+incr � Expr, our tool can not generate the target
property. If we extend the abstract domain, for example,
Expr’=Expr ∪{e1 + e2 | e1, e2 ∈ Expr}, we think we can
synthesize the target property.

Program 6. copyInitSum
1 ...
2 for ( i = 0 ; i < N ; i++ ) {
3 b[i ] = b[i] + incr;
4 }
5 assert ( forall (int x) :: (0 <= x && x < N)

==> ( b[x] == 42 + incr ) );

VI. RelatedWork

Several researchers have previously investigated the
problem of generating array invariants.
Array expansion [6]. This method expands the cells of
the array to local variables, and fully unrolls the loops.
Array expansion is precise, but in practice can only be
used for arrays of small size, and is not able to handle
unbounded arrays.
Array smashing [7], [12]. All the cells of an array A
are subsumed by one variable a. Initially, a is given
the strongest known property satisfied by all the initial
values of the cells of A. A[i] := e is replaced by a� := e.
However, weak assignment can only lose information
tests on individual cells do not bring any information
(do not process test condition). One needs to know an
initial property satisfied by all the array cells. As a
consequence, the results are generally unprecise.
Array partitioning [8], [13], [15]. Array partitioning
method partitions the index domain (say, [1...n]) into
several symbolic intervals (e.g., I1 = [1...i − 1], I2 = [i, i],
I3 = [i + 1...n]), and associates with each subarray
A[Ik] a summary auxiliary variable ak. The partition-
ing is done either syntactically [13], [15] or by some
pre-analysis [8]. Our approach does not associate with
each subarray a summary auxiliary variable (or slice
variables) to process. We directly process universally
quantified properties, which are highly expressive. Thus,
our method is very easy to deal with multidimensional
arrays properties.
Predicate abstraction. Predicate abstraction [10], [20],
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[22] uses some easy syntactic heuristics to derive the
predicates used for the abstraction, or provided man-
ually by the user. Moreover, counter-example guided
refinement [5] and Craig interpolants [17] propose a
significant improvement. Our approach is different in
that we model the array properties directly.
Under-approximations and Templates [14], [24]. Under-
approximations and templates method is extremely
powerful yet expensive. The common idea behind these
approaches is that the user provides templates that fix
the structure of potential invariants. The analysis then
searches for an invariant that instantiates the template
parameters. Unlike our approach, the method may re-
quire the participation of users in the process.
Theorem prover-based [19], [23]. The method uses a
saturation theorem prover to generate loop invariants.
The idea in [19] is to encode the changes to an array
at the i-th iteration as a quantified fact and then to
systematically apply resolution to derive a closed form.
However, these approaches are still limited due to the
underlying theorem provers.

VII. Conclusion and FutureWork

We propose a way of using the abstract interpretation
for discovering properties about array contents. The
method summarizes an array property as a universally
quantified formula, and summarizes program states as
properties set. It directly treats invariant properties (in-
cluding universally quantified formulas and atomic for-
mulas) as the abstract domain, and synthesizes invari-
ants by ”iterating forward” analysis from the initial state.
As a consequence, our approach does not require the
participation of users and automatically discover prop-
erties (including universally quantified properties and
atomic properties) of programs. We prove the conver-
gence and soundness of approach. The method has been
implemented using clang and Z3. We use it to discover
non-trivial properties of examples from [13], [15], and
we use it to discover multidimensional array properties.
Moreover, we use our tool to discover properties on
array-examples benchmark [2] of SV-COMP [3]. The array-
examples benchmark has 88 files; our tool finds universal
quantifier properties in 74 files.

In future work, we plan to process that a universally
quantified property may be divided into several univer-
sally quantified properties, or several universally quan-
tified properties may be synthesized to a universally
quantified property. A longer term perspective would
plan to process universally quantified constraints and
existential quantified constraints of arrays and linked
lists.
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