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Abstract—Modern software systems rely on information 
networks for communication. Such information networks are 
inherently unpredictable and unreliable. Consequently, software 
systems behave in an unstipulated manner in uncertain network 
conditions. Discovering unknown behaviors of these software 
systems in uncertain network conditions is essential to ensure their 
correct behaviors. Such discovery requires the development of 
systematic and automated methods. We propose an online and 
iterative model-based testing approach to evolve test models with 
search algorithms. Our ultimate aim is to discover unknown 
expected behaviors that can only be observed in uncertain 
network conditions. Also, we have implemented an adaptive 
search-based test case generation strategy to generate test cases 
that are executed on the system under test. We evaluated our 
approach with an open source video conference application—Jitsi 
with three search algorithms in comparison with random search. 
Results show that our approach is efficient in discovering 
unknown system behaviors. In particular, (1+1) Evolutionary 
Algorithm outperformed the other algorithms.  

Keywords— Uncertainty, Model-based Testing, Search-based 
Testing, Uncertain Networks 

I.� INTRODUCTION 
Software systems are increasingly relying on information 

networks for communication. Such networks are inherently 
prone to uncertain conditions (e.g., packet loss). These 
conditions often lead software systems to exhibit behaviors that 
are unknown during their design. Such behaviors might not be 
necessarily safe and result in software system failure. Thus, it is 
important to discover these behaviors before their deployment 
with systematic and automated methods. In current literature, 
software systems are often tested with assumptions on 
information networks. These assumptions do not necessarily 
hold in the real operation. Thus, it is imperative to discover such 
unknown behaviors before deployment and improve software 
systems’ implementation to avoid potential failures.  

Our approach relies on Model-based Testing (MBT) [1-3] 
that relies on models for executable test case generation. These 
models (i.e., test models) represent abstract representation of the 
expected behavior of a System under Test (SUT). In our context, 
test models also include expected behaviors of a SUT in the 
presence of known uncertain network conditions. These test 
models are at the core of our approach to discover unknown 

expected test behaviors that are unknown at the design time. Our 
approach is an online testing approach, i.e., it combines test case 
generation and test case execution in an iterative process [4]. 
Test case execution results are used as feedback in the 
subsequent test generation cycles. Such information is also used 
to incrementally evolve test models to discover expected system 
behaviors that are previously unknown in the presence of 
uncertain network conditions. 

We also propose an adaptive search-based test case 
generation strategy that is applied to generate test cases from a 
test model capturing the expected behavior of a SUT in the 
presence of uncertain network conditions. We proposed an 
adaptive fitness function, which is integrated with commonly 
used search algorithms. This fitness function guides the search 
algorithms to generate possible system behaviors relying on 
historical test execution information and known system 
behaviors. Our adaptive fitness function is developed to find 
possible system behaviors by maximizing their similarity with 
the known system behaviors. Also, our fitness function 
maximizes the diversity of all the possible system behaviors. 
Finally, our approach generates test cases from the generated 
possible system behaviors.  

We evaluated three search algorithms to select which 
algorithm can help us to cost-effectively discover unknown 
behaviors in the presence of uncertain network conditions. 
These algorithms are (1+1) Evolutionary Algorithm (EA), 
Alternating Variable Method, Genetic Algorithm. Random 
Search (RS) is the baseline for comparison. We applied our 
approach to an open source video conference application—Jitsi 
[30]. The results of our evaluation show that our approach was 
effective to discover unknown system behaviors under uncertain 
network conditions. (1+1) EA turned out to be the best algorithm, 
which performed better than the other algorithms. 

The rest of this paper is organized as follows. Section II 
introduces a running example. Section III introduces test models 
and related definitions of concepts. We present our approach in 
Section IV. The evaluation is given in Section V, followed by 
the related work in Section VI and conclusion in Section VII. 

II.� RUNNING EXAMPLE 
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We will use a 
running example of a 
videoconference system 
to illustrate our 
approach. The 
simplified state machine 
and class diagram of the 
running example are 
shown in Fig 1 and Fig 
2. We use two key 
operations, i.e., dial and 
disconnect. The dial 
operation initiates a 
videoconference or adds 
a participant into an 
existing videoconference. The disconnect operation ends a 
videoconference or removes a participant from a 
videoconference. We use two system variables to define states 
of the videoconference software, i.e., activecall and videoquality. 
Activecall is used to count all the active calls in the current 
videoconference. The value of activecall is obtained from 
method getActiveCall in class Jitsi. Videoquality indicates the 
video quality of the current videoconference. The value of 
videoquality is obtained with method getVideoQuality in class 
Jitsi. The value of videoquality includes four types, good, 
acceptable, bad, and nopics. 

In total, the test model, i.e., a state machine of the running 
example (Fig 1) has four states and six transitions. When a  
transition is fired, the input includes an operation (the trigger of 
the transition) and the network condition which is recorded 
separately in a list. There are no guards in our running example. 
We consider the state machine in Fig 1 as the initial test model 
and network conditions do not have any packet delay, loss, 
corruption, or duplication. Each transition has associated 
network conditions captured as values of packet delay, loss, 
corruption, and duplication. 

III.� FORMALIZATION AND DEFINITIONS 
In this section, we first introduce the modeling of SUT and 

the network conditions in Section III-A. We provide necessary 
definitions related to test model in Section III-B. Finally, in 
Section III-C, we provide definitions of test paths and test cases. 

A.� Test Modeling 
Our test model is a simplified standard UML state machine, 

i.e., all the states are simple states, i.e., no hierarchy. Also, all 
transitions are without effects. Each transition has a trigger and 
an optional guard to fire the trigger. 

We define inputs to the system in the test model consisting 
of two parts: user operations and network conditions. A user 
operation is the trigger of a transition in the test model. A 
network condition associated with a transition is in the list L 
which is maintained with the test model. User operations in the 
running example corresponding to dial and disconnect are 
represented as UO = {uo1, uo2}. All the network conditions 
maintained in the list L are represented as NC = {nc1, nc2, ···, 
ncn}, i.e., the NC for the running example in Fig 1 has only one 
member nc1 = (packet delay = 0ms, packet loss = 0%, packet 
corruption = 0%, packet duplication = 0%). Inputs to the system 

can be represented as inputj = (uok, nci). If uok is the trigger of 
one transition, the evaluation of the guard is true, and network 
conditions are held in the real network, the transition is fired. 

Formally, let Σ be the set of all the inputs to the system 
modeled as the test model, the simplified state machine is a 4-
tuple M = (Q, T, {q0}, Σ), where, Q is the set of all the states in 
M; T is the set of all the transitions in M; q0 � Q is the initial 
state. Σ is the set of all the inputs, and inputj = (uok, nci) � Σ. 

We maintain a network condition list L. Each node in the list 
represents a transition with a network condition nodek = 
(transitionm, nci). For each transition, there can be more than one 
node in the L list. This means that each transition can be 
triggered in these network conditions. 

Note that packet delay, loss, corruption, and duplication 
represent common problems in networks [18-22]. Packet delay 
means packets take longer to get to their destination. Packet loss 
is a failure of one or more transmitted packets to arrive at their 
destination. Packet corruption is defined as the portion of data 
packets transmitted at the MAC layer which are interrupted at 
the receiver due to interference. Packet duplication is defined as 
part of the packets transmitted that are identical to others. Packet 
delay is measured as time in millisecond (ms) ranging from 0ms 
to 1000ms. Packet loss, packet corruption, and packet 
duplication are all measured in percentage, whose ranges are 
between 0% and 100 %. A possible network condition at any 

 
Fig. 2. Class Diagram of the Running Example 

 
Fig. 1. A Running Example 
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particular time can be represented as a 4-tuple, nei = (packet 
delay, packet loss, packet corruption, packet duplication). For 
example, nei = (10ms, 1%, 2%, 2.5%) shows that the current 
network conditions are 10ms packet delay, 1% packet loss, 2% 
packet corruption, and 2.5% packet duplication.  

B.� System Behaviors, Possible System Behaviors and 
(previously) Unknown System Behaviors 
We define a System Behavior as b = (q1, guard, trigger, 

network condition, q2). The source state is q1 and target state is 
q2. The guard is optional, the trigger is a user operation, and the 
network condition is defined by the four variables. 

Suppose, we have a system behavior b = (q1, guard, trigger, 
network condition, q2) and a test model M = (Q, T, {q0}, Σ). If 
there is a ti � T whose source state equals to q1, target state 
equals to q2, trigger equals to b’s trigger, guard equals to b’s 
guard, network conditions equal to b’s network conditions, then 
b is a Known System Behavior. Otherwise, b is an Unknown 
System Behavior. Recall that the T set is all the existing 
transitions in the test model, whereas q1 belongs to Q of the test 
model and q2 may belong to Q. If q2 does not belong to Q, then 
q2 is a previously unknown state, and as part of b, it is a newly 
discovered state. For example, in the M test model of the running 
example in Fig 1, a behavior beh = (Connnected_1, null, dial, 
(52ms, 20%, 35%, 27%), New6) is an unknown system behavior 
for M because New6 is a state not belonging to M, whose 
activecall is 2 and videoquality is nopics. 

Notice that, associated with its source, its target state, and 
one related network condition in L, one transition represents one 
system behavior. Since a transition, at least, has one related 
network condition in the L list, there is at least one system 
behavior that is represented. For example, given a transition t = 
(Connected_1, null, dial, NotFull) associated with (t, nei) =(t, 
(0ms, 0%, 0%, 0%)) and (t, nej) =(t, (20ms, 1%, 2%, 2.5%)) in 
the running example, the transition represents two related 
system behaviors, b1 = ( Connected_1, null, dial, (0ms, 0%, 0%, 
0%), NotFull) and b2 = ( Connected_1, null, dial, (20ms, 1%, 
2%, 2.5%), NotFull). Therefore, every transition from T 
combining its source state, target state, and related network 
conditions represent, at least, one known system behaviors. 

A Possible System Behavior is an unknown behavior having 
an associated probability of happening in the real world. We 

represent it as pb = (q1, guard, trigger, network condition, q2). 
q1 belongs to Q of the test model; q2 may belong to Q. However, 
it is unknown, during the discovery process, if pb exists in reality. 
A possible system behavior is different from a normal system 
behavior since it has an attribute called probability indicating the 
likelihood of the existence of a system behavior. When the 
probability is 100%, the possible system behavior is an unknown 
system behavior. Therefore, a previously unknown possible 
system behavior with a high probability implies that there is a 
high probability of discovering a previously unknown system 
behavior. Taking the example of the M test model of the running 
example in Fig 1, and given an unknown system behavior beh = 
(Connnected_1, null, dial, (52ms, 20%, 35%, 27%), New6), if 
beh has not been executed on SUT to check whether it exists, 
then beh is a possible unknown system behavior. 

Testing a possible system behavior pb means that setting up 
an input to the system when it is in state q1 and checking whether 
the system will end up in q2. After testing, pb is revised 
according to execution results. If the revised pb is not covered 
by any ti � T of the test model as mentioned above, pb is then 
an unknown system behavior.  

C.� Test Paths and Test Cases 
Our objective is to discover unknown system behaviors by 

testing the SUT with generated possible system behaviors. To 
reach the source state of the possible system behavior, test cases 
used to discover unknown system behaviors should include the 
following two steps: 1) leading the SUT going from the initial 
state of the test model to the state where the source state of the 
possible system behavior will be reached, and 2) setting the 
input (i.e., user operation and network condition). Necessarily, a 
Test Path in the test model is a path starting from the initial state 
of the state machine with a possible system behavior starting 
from the last state of the path. It is an Abstract Test Case if the 
path of a Test Path has no concrete data; otherwise, it is 
Executable Test Case. 

We apply the Shortest Simple Path strategy [38] to generate 
an abstract test case based on the given possible system behavior 
and test model. We take the test model as a map consisting of 
edges (transitions) and vertexes (states), and the strategy first 
uses the Dijkstra algorithm [5] to find the shortest path between 
the initial state and the source state of the possible system 
behavior. This path is part of a Test Path, which starts from the 

 
Fig. 3. The overall approach of ASUBE 
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initial state and ends at the source state of the possible system 
behavior. Tailing the possible system behavior to the path, a Test 
Path is constructed which is named as an Abstract Test Case. 
For example, in Fig 1, given a possible unknown system 
behavior beh = (NotFull, null, dial, (52ms, 20%, 35%, 27%), 
New6), we first generate the path <Idle> → <Connected_1> → 
<NotFull>, and then the generated abstract test case is atc = 
( <Idle> → <Connected_1> → <NotFull>, (<NotFull>, (null, 
dial, (52ms, 20%, 35%, 27%)), < New6 >)). 

We use a random strategy to generate the executable test 
cases. The process constructs a sequence of inputs, each of 
which is composed of a user operation specified by the trigger 
of the transition, a guard, and a network condition. The inputs 
before the last one are generated based on the transitions in the 
test path, and the last input is generated based on the possible 
unknown system behavior. To construct an input generated from 
a transition, we randomly construct the guard and randomly 
choose a network condition which is related to the transition. To 
construct an input generated from a possible unknown system 
behavior, we construct a guard as null, but use the network 
condition directly. Given the abstract test case used above, the 
executable test case etc = (null, dial, (0ms, 0%, 0%, 0%)) → 
(null, dial, (0ms, 0%, 0%, 0%) ) →( null, dial, (52ms, 20%, 35%, 
27%)). 

IV.�OUR APPROACH 
Our proposed approach, named as Adaptive Search Based 

Unknown Behavior Explorer (ASUBE), uses an incremental 
online testing process. It contains a sequence of test cycles to 
discover unknown system behaviors in uncertain network 
conditions. A test cycle consists of three activities: adaptive 
search-based test case generation, test case execution, and 
historical information update. In the first test cycle, we provide 
an initial test model associated with its network conditions list, 
an empty repository for collecting all the possible unknown 
system behaviors, and an empty repository for collecting all the 
generated executable test cases. In a test cycle, the test case 
generation step takes the current test model and current possible 
system behaviors repository updated in the last test cycle as 
inputs. It then uses a search algorithm (along with a fitness 
function) to generate a new set of test cases that are expected to 
have a high chance of observing unknown behaviors. The 
executable test case repository is used to store all the generated 
executable test cases as part of the outputs of our approach. 

In the rest of the section, we provide an overview of ASUBE 
(Section IV-A), formal definitions of the key concepts (Section 
IV-B), the adaptive search-based test case generation steps 
(Section IV-C), and the other steps of ASUBE (Section IV-D). 

A.� Overview 
Our overall approach is shown in Fig 3. The approach uses 

an incremental online testing process containing a sequence of 
test cycles to discover unknown system behaviors under 
uncertain network conditions. The process terminates (i.e., the 
number of test cycles) when any of the two conditions meet: 1) 
no new unknown system behaviors are observed; 2) having 
reached the ceiling of the budget and resources allocated.  

The first test cycle is started with initialization, which has 
the following steps: 1) ASUBE loads the test model capturing 

known expected behaviors of SUT in known network conditions. 
Note that this model is constructed manually by test engineers. 
2) ASUBE initializes a repository to collect all the possible 
system behaviors used to generate test cases that will be 
executed during each test cycle. Also, 3) ASUBE maintains an 
empty repository to collect all the generated executable test 
cases which are part of the output of ASUBE. As the test process 
goes on, the test model is updated with observed and previously-
unknown system behaviors at the last phase of each test cycle. 
In each test cycle, the possible system behaviors repository is 
appended with newly generated possible system behaviors. 

The key component of ASUBE is the Adaptive Search-
Based Test Case Generation (ASTCG). ASTCG is executed 
until a predefined number of test cases in a test cycle (e.g., 5) are 
generated. When generating each test case, ASTCG first 
generates a possible system behavior by applying search 
algorithms, which is not validated but estimated to have a high 
probability of being a valid behavior, according to the heuristics 
we defined and implemented as the fitness function of the search 
algorithms. Then, ASTCG generates a test case based on the 
possible system behavior and the current test model, using the 
Shortest Simple Path strategy as described in Section III-C. At 
last, ASTCG transforms the generated abstract test case into an 
executable test case using a random test data generation strategy 
discussed in Section III-C. 

We encode the test case generation problem (actually a 
possible system behavior generation problem) as a search 
problem and define an adaptive fitness function, together with 
the selected search algorithms, to generate test cases (possible 
system behaviors). The fitness function is adaptive in the sense 
that at each test cycle it adapts to the current test model 
associated with the network condition list and the set of all the 
generated possible system behaviors, which are updated at each 
test cycle. The overall aim is to generate possible system 
behaviors containing specific network conditions with a high 
probability of being valid, then use them to generate test cases 
to find the unknown behaviors caused by some network 
condition. Consequently, executing them leads to a high chance 
of discovering unknown system behaviors caused by the 
network environment. An applied search algorithm hence aims 
to maximize the probability of a possible system behavior being 
valid. More details about ASTCG are provided in Section IV-C.  

Abstract test cases newly generated by ASTCG are then 
transformed to executable test cases executed together with the 
SUT. Section III-C presents further details. Test case execution 
results, i.e., whether we find unknown system behaviors or 

TABLE I. DEFINITIONS 

Symbol Explanation 
Ti The set of test cases generated in cyclei 
Bi The set of possible system behaviors generated by a 

search algorithm and used to generate Ti in cyclei 
Mi-1 The input test model in cyclei 
Mi The updated test model in cyclei 
ETi-1 The set of all the generated test cases before cyclei�

ETi The set of all the generated test cases after cyclei 
EBi-1 The repository of all the generated possible system 

behaviors in the previous test cycles of cyclei 
EBi The repository of all the generated possible system 

behaviors after cyclei 
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known system behaviors, are obtained automatically. Observed 
system behaviors might be existing (therefore known) or 
(previously) unknown. Previously-unknown system behaviors 
are therefore added to the test model. 

B.� Formal Definitions 
Given a test case generation process pASTCG, pASTCG has n 

sequential test cycles and the ith cycle of pASTCG can be 
represented as cyclei. Table I provides a set of definitions to 
describe the test case generation process.  

To start a process pASTCG, two inputs are given as mentioned 
in Section III-A, i.e., the initial test model represented as M0 = 
(Q0, T0, {q0}, Σ), an empty possible system behavior repository 
represented as ��� � � , and an empty test case repository 
represented as ��� � � . We use FTCG to represent the 
functionality of every test cycle. Since the inputs include the 
test model Mi-1, and the possible system behavior repository 
EBi-1, the ith test cycle, cyclei, could be represented as (Mi, EBi) 
= FTCG(Mi-1, EBi-1). In cyclei, a set of possible system behaviors, 
Bi, is generated. Using Bi and EBi-1, we could get EBi = Bi � 
EBi-1. At the same time, the set of test cases executed in this test 
cycle, Ti, will be generated from Bi, and all the generated test 
cases will be collected by ETi through ETi = Ti � ETi-1. 

In general, the test process is dynamic and receives feedback 
(via test case execution and model update) and works as the 
following sequence: 

	
� ��
 � �
�� 	�� ���  
	�� ��� � �
�� 	
� ��
  

…… 
	�� ��� � �
�� 	��
� ����
 . 

C.� Adaptive Search-Based Test Case Generation (ASTCG) 
As discussed in Section IV-A, when using ASTCG to 

generate test cases, we first generate the specified number of 
possible system behaviors by repeatedly applying search 
algorithms. Running search algorithm once at most generates 
one possible system behavior. Afterwards, we use the Shortest 
Simple Path Strategy (Section III-C) and the random test data 
generation strategy (Section III-C) to generate executable test 
cases based on the possible system behavior. Therefore, 
generating possible system behaviors becomes the key step of 
ensuring the effectiveness of exploring unknown behaviors of 
the system in diverse network conditions.  

1)�Overview of ASTCG 
Suppose that the process is in the ith test cycle (cyclei) of a 

process pASTCG, the current test model Mi-1 and all the generated 
possible system behaviors BTi-1 are the inputs to this test cycle. 
ASTCG follows the following three steps. Note that the 
following three steps will be repeated sometimes in ASTCG so 
that enough test cases are obtained in every test cycle. It is due 
to the following reasons: 1) going through the three steps one 
time produces one possible system behavior (representing one 
test case) and a predefined number of test cases are needed in 
one test cycle; 2) a possible system behavior generated is either 
a possible known system behavior or a possible unknown one. 
We use the possible unknown since we want to find the 
unknown system behaviors; and 3) repeating the three steps 
could produce the same possible system behaviors (i.e., the same 

test cases will be produced from these behaviors). In this case, 
only one of the possible behaviors is kept and others are 
discarded. 

Step1: Obtain Ti-1 (i.e., all the transitions of Mi-1 in Table I) 
and BTi-1 (i.e., the possible system behaviors in BTi-1 are 
generated in the past cycles, and have been transformed into test 
cases in ETi-1 to be executed) as inputs to the selected search 
algorithm to generate new possible system behaviors. Step2: 
Apply the adaptive fitness function together with the selected 
search algorithm, i.e., GA, (1+1) EA to generate new possible 
system behaviors. More details are provided in Section IV-C-
2)c). Step3: Repeat Step2 until a required number of possible 
system behaviors is generated. Executing Step2 can generate 
one possible system behavior every time. If it is a known system 
behavior according to Mi-1 or a same one as the previous, it is 
discarded, and we repeat the step. 

2)�Adaptive Search-based possible behavior generation 
a)�Problem Representation 

ASUBE constructs possible system behaviors which are 
previously unknown but estimated to have a high probability of 
being a valid behavior in every test cycle. These behaviors are 
then used to generate test cases.  

A possible system behavior consists of a source state, a target 
state, a trigger, a guard, and a network condition. The source 
state could be any known state in the current test cycle. The 
target state could be any known or unknown state. When 
constructing a target state, we directly give random values to the 
state variables, so the constructed target state could be a known 
state or an unknown state. The trigger is the user operation, the 
guard is null, and the network condition is the tuple used to 
describe the network environment (Section II-A). In the context 
of Jitsi, operations include “dial()”, “disconnect()” and “keep()”. 
The “keep()” operation means that user does not do anything, 
and we try to observe the system behavior when the inputs only 
contain network conditions. The trigger could be any one of the 
operations. The network condition contains four variables, 
“Packet Delay” (1~100ms), “Packet Loss” (1~100%), “Packet 
Corruption” (1~100%) and “Packet Duplication” (1~100%). 
When constructing a network condition, we assign a value 
randomly to each variable.  

Combining all the parts, we can get a complete possible 
system behavior. So, a possible system behavior is represented 
as a vector pbv = (e1, e2, …, e9). In pbv, e1 and e2 represent the 
two variables of source state, e3 represents the user operation, 
(e4, e5, e6, e7) represents the network conditions (PacketDelay, 
PacketLoss, PacketCorruption, PacketDuplication), and, e8 and 
e9 represent the two variables of the target state. All the possible 
pbvs construct the possible system behavior space, BSpace. 

We defined and implemented heuristics “Obj()” (contains 
Similarity and Diversity, details in Section IV-C-2)b)) as the 
fitness function to find possible system behaviors. In the ith test 
cycle, we need to find a system behavior Bk from the possible 
behavior space, BSpace, such that for: 

������ � ������� �� � ��� � ! �� " � ! �� . 
b)�Definition of Adaptive Fitness Function 

ASUBE aims to discover unknown system behaviors in 
uncertain network conditions. ASUBE uses test case execution 
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information from previous cycles, i.e., the test model and the 
generated possible system behaviors, to generate new possible 
system behaviors, from which new test cases will be generated 
and executed. Search has two objectives in our case.  

First, as discussed in Section III-B, a transition from T of the 
test model represents more than one known behavior. Therefore, 
all the transitions of the test model combining their source state, 
target state, and network conditions represent all known system 
behaviors. If a possible system behavior generated by search is 
similar to known system behaviors (Ti-1 extracted from Mi-1, in 
cyclei), it is considered that there is a high similarity between the 
newly generated possible behavior and all the known behaviors, 
implying that there is a high chance that the newly generated 
possible system behavior is valid. Second, newly generated 
possible behaviors should be different from each other such that 
there would be a higher chance for the generated possible 
behaviors to cover (via a new set of to-be-generated test cases 
from them) diverse situations. In general, we represent the two 
objectives as O1: maximizing the similarity between possible 
system behaviors and known system behaviors, and O2: 
maximizing the diversity among all the possible system 
behaviors.  

O1: Maximizing the Similarity between Possible System 
Behaviors with Known System Behaviors.  

We measure the objective as a Similarity Measure. To 
calculate the Similarity Measure, we calculate the similarity 
between a newly generated possible behavior and a set of known 
behaviors, which are represented as the transitions (combining 
its source state, target state, and network conditions) in the test 
model. To implement the Similarity Measure, we first need to 
encode the possible system behaviors and the transitions with 
network conditions to vectors, and then calculate similarity 
values according to a similarity metric. Encode: If a possible 
behavior is pb = (q1, guard, user operation, network condition, 
q2), states q1 and q2 consist of two variables. In the running 
example, these are “number of active calls” and “video quality”, 
and the input consists of a nej and a uok. Here, we use packet 
delay (delay), packet loss (loss), packet corruption (corruption) 
and packet duplication (duplication) to describe the network 
conditions. pb is represented as a vector pbv = (e1, e2, …, e9), in 
which we have q1 = (e1, e2), q2 = (e8, e9), and guard = null. In 
the running example, there is no guard. uok = e5, and nei = (e6, 
e7, e8, e9). Therefore, one transition could generate some vectors, 
which represent some behaviors. Metric: We apply Euclidean 
Distance [6] to calculate the similarity value between a Possible 
Behavior and the behaviors derived from transitions. Given two 
vectors pbv = (e1, e2, …, en) and pbv = (e’1, e’2, …, e’n), we get 
the distance between them with the formula below:  
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The similarity is then the reverse of the distance. After 
normalization (with the normalization function nor() [24][25]), 
the range of similarity values is 0 to 1: nor(Similarity) = 1- 
nor(Diversity). We use the average of the all the Similarity 
values as the final output. 

O2: Maximizing the Diversity among all Possible System 

Behaviors. 

This objective is measured by a Diversity Measure. If a 
newly generated possible system behavior has a high Diversity 
value, it contributes to cover more space in the possible system 
behavior space, along with the other possible system behaviors. 
The implementation of the Diversity Measure is similar to the 
Similarity Measure. Encode: Objects used to calculate Diversity 
are possible system behaviors, and we use the method 
mentioned in Similarity Measure to transform all the possible 
system behaviors into vectors. Metric: Euclidean distance is 
directly the Diversity value. After calculating the Diversity 
value of a new possible system behavior and other generated 
possible system behaviors, we use the average of the all the 
Diversity values as the final output.  

Based on the two objectives, we define our fitness function. 
A lower value of the fitness function represents better fitness. In 
the ith test cycle, the fitness function is:  

()*+,--./01, � 2 % 3�45 �6768�569� ��	&�


: �453;6$�5<69�3=� ��&�
>>> 
Since similarity and diversity values are not within the same 

range, comparing them without normalization is inappropriate. 
Therefore, we use the following normalization function [24][25]: 

?@A3B> � �
B
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c)�The Selected Search Algorithms 
We choose (1+1) Evolutionary Algorithm ((1+1) EA), 

Genetic Algorithm (GA), and Alternating Variable Method 
(AVM). AVM is chosen as the representative of local search 
algorithms. GA is the most commonly used global search 
algorithm. (1+1) EA is simpler than GA. However, it has shown 
better performance than GA in many works [10][23]. Random 
Search (RS) is used as the baseline for comparison. 

D.�Other Activities 
Besides ASTCG, every test cycle also includes test case 

execution and historical information update activities (Fig 3). 

1)�Test Case Execution 
Test case execution activity executes test cases generated by 

the test case generation activity of ASUBE. To support the 
execution together with its result reporting, we need test setup, 
test data generation, and test verdicts. 

Test case execution involves providing inputs to trigger the 
behaviors of the SUT. Test setup includes developing APIs to 
control network environment and control specific actions of 
SUT. APIs to control network environment are provided by a 
tool named NetEM [29]—a network emulator. By sending string 
commands (i.e., <Terminal1 dial Terminal2>) to NetEM, 
NetEM could set the packet delay, packet loss, packet corruption 
and duplication of specified network equipment, such that 
specific network conditions can be enforced. The APIs used to 
control specific actions of the SUT are designed by the tester, 
and these APIs work by sending specific string commands to the 
remote clients and requiring the remote clients act according to 
the string commands. In the context of a videoconference system, 
the actions include <Terminal1 dial Terminal2>, <Terminal1 
addConfmember Terminal3>, <removeConfmember 
Terminal3>, <Terminal1 disconnectConf>, and so on. When 
we have more than two participates of a video call, the video call 
becomes a conference, and the “dial” operation becomes 
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“addConfmember” operation to add one member to a conference.  

Based on the above explanation, the test data generated from 
a test case actually is a sequence of string commands. For 
example, in the context of a videoconference system, given an 
example of an executable test case  is: etc = (dial, (0%, 0ms, 0%, 
0%))�(dial, (0%, 100ms, 2%, 5%)). The sequence of string 
commands could be represented as:  

DEAFG?HIC�JGHI�DEAFG?HI2 �� KELMELN@AOP?QAG@?FE?L RS� RFT� RS� RS �

U VHGLD@=EKLHWIE 2XT �

U 3 DEAFG?HIC�HJJY@?ZFEFWEA�DEAFG?HI[ ��

KELMELN@AOP?QGA@?FE?L3RS�CRRFT� 2S�XS>>�

U 3VHGLD@=EKLHWIE32XT>>. 

The “dial” and “addConfmember” commands are sent to 
videoconference system clients, and the “networkenvironment” 
commands are sent to NetEM. The “WaitToBeStable” 
commands are used locally, to allow the latter command to be 
sent after the previous command finished, i.e., before terminal1 
adds terminal3 to the current conference, terminal1 needs to 
construct the conference with terminal2, which takes some time. 

The behaviors of the SUT after acting as the input test data 
are recorded automatically. It relies on sending system 
information after actions by the clients to the control unit. The 
information constructs the system behaviors on the control unit. 
We define two test verdicts to evaluate the unknown system 
behaviors. We compare the system behaviors constructed by the 
information from clients with the current test model. If the test 
model does not cover the behavior, it is an unknown system 
behavior. In this case, it needs to be delivered to the model 
update activity automatically. 

2)�Historical Information Update 
We maintain a repository of possible system behaviors when 

starting the ASUBE exploration process which is empty at that 
time, as well as a repository of executable test cases. The 
repository of possible system behaviors is used as historical 
information to the next test cycle, while the repository of 
executable test cases is only used to record and output the 
executable test cases as part of the final output. In test cycle 
cyclei, the set of newly generated possible system behaviors 
PBSi are combined with the repository of possible system 
behaviors EBi-1. Moreover, test model Mi-1 is used to store the 
discovered previously-unknown behaviors. To achieve this, 
ASUBE implements the following two steps: 

First, ASUBE transforms the newly-discovered previously-
unknown behaviors to transitions. More specifically, ASUBE 
takes the source state and target state of the behavior as a 
transition’s source state and target state; takes the user operation 
input of the behavior as the transition’s trigger, and put the 
network conditions to the network condition list L. Second, if 
the source and target states of the new transition transformed 
from the behavior exist in the test model, ASUBE adds the new 
transition between the two states to the test model. If the source 
state of the new transition belongs to the test model and the 
target state of the new transition is a new state, ASUBE 
constructs the new state and add it to the test model, and then 
adds the new transition. Since we start from a known state as the  
source state when validating a new possible behavior by testing, 
we only consider the above two situations about updating the 

test model using new transitions. Finally, when the above steps 
are finished, we output the updated test model. 

V.� EVALUATION 
In this section, we introduce the case study, experiment 

environment (Section V-A), research questions (Section V-B), 
experiment design (Section V-C), experiment execution 
(Section V-D), results and analysis (Section V-E), discussion 
(Section V-F), and threats to validity (Section V-G). 

A.� Case Study 
We selected an open source videoconferencing and instant 

messaging application, Jitsi [30]. Its implementation is available 
on multiple platforms including Windows, Linux, Mac OS X, 
and Android. Users implement clients on their platforms to 
obtain audio/video conference services. More information about 
Jitsi can be found at [30], including released versions and source 
code. We use Jisti as the case study to test its videoconference 
related functionalities such as making a call, with the ultimate 
goal of discovering unknown system behaviors when Jisti is 
operating under uncertain network environment.  

For the experiment, we set up Jitsi on an internal network, 
whose topology is shown in Fig 4. Five PCs were deployed in 
the internal network: four of them (PC0, PC1, PC2, and PC3) 
have Jitsi deployed on each of them and Jitsi deployed on PC0 
is the SUT. The test program is deployed on the Controller. PC0 
communicates with PC1, PC2, and PC3 through the Controller 
and the Router, and the network device eth0 of the Controller 

 
Fig. 4. The Network Topology 

TABLE II. DEFINITIONS OF EVALUATION METRICS 

Metric Definitions 
Effective-
ness 

NUB Total number of behaviors discovered that are 
previously unknown. 

NUS Total number of states discovered that are 
previously unknown. 

Cost SR Running time of a search algorithm to generate 
test cases in a test process (Section IV). 

ST The total time (in minutes) used to search for test 
cases (Section IV). 

ET The total test case execution time of a test process 
(Section IV). 

AT The total time cost of a test process (Section IV), 
AT = ET + ST. 

Efficiency BOSR NUB/SR 
BOST NUB/ST 
BOET NUB/ET 
BOAT NUB/AT 
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connects directly to PC0. PC0, PC1, PC2, and PC3 have 
Windows 7 operating system installed and have Intel Core i5-
4210M 2.6G Hz with 8G RAM. The Controller is installed with 
the Ubuntu 12.10 operating system with Intel Core L9400 1.86G 
Hz with 3.8G RAM.  

The test program deployed on Controller automatically 
generates test cases (Section III-C), executes test cases (Section 
IV-D), conducts online testing of the Jitsi application deployed 
on PC0, and processed testing results (Section IV-D). To 
support the automatic process of ASUBE, we developed 
required testing APIs based on the source code of Jitsi.  

The state machine of the initial test model of the case study 
is shown in Fig 1, which consists of four states and six 
transitions. The two key system variables used to define system 
states are “number of active calls” and “video quality of calls”. 
For example, the Connected_1 state is represented as: activecall 
= 1, videoquality = good. The activecall variable stores the 
number of active calls at a given time and the videoquality stores 
video quality of the current active call(s) measured with the Peak 
Signal to Noise Ratio (PSNR) metric [28]. Simply speaking, 
PSNR compares a transmitted figure with the original figure and 
give the quality value of the transmitted one. To assess the video 
quality, we take 10 screenshots of both the videoconference in 
an uncertain network condition and the one in a normal network 
condition, get 10 PSNR values by calculating corresponding to 
the 10 couples of screenshots, and finally use the average of the 
10 PSNR values as the output videoquality value. We 
implemented such videoconference video quality assessment. 

Let’s take an example of behavior b = (Idle, null, dial, 
network condition, Connected_1). The observed behavior is that 
the client deployed on PC0 dials the client on PC1 in the 
network condition specified by network condition of b, and a call 
of high video quality (measured by PSNR to get a high value, 
such as 3 in Fig 2, of the average quality of the pictures from the 
video) between the two clients is created. The original test model 

describes that a video call made by Jitsi should be in high video 
quality when the network environment is normal. Otherwise, 
Jitsi makes calls in low video quality or even fails to make video 
calls, which are uncertain (and previously-unknown) behaviors 
that need to be automatically discovered with ASUBE.  

B.� Research Questions 
Our overall objective is to assess the cost-effectiveness of 

ASUBE to discover unknown system behaviors. However, 
combining ASUBE with different search algorithms leads to 
various degrees of cost-effectiveness. We selected three search 
algorithms to be integrated with ASUBE: (1+1) Evolutionary 
Algorithm ((1+1) EA), Genetic Algorithm (GA), and 
Alternating Variable Method (AVM). Random Search (RS) was 
used as the comparative baseline. We will answer the following 
two research questions: RQ1: Are AVM, (1+1) EA and GA 
effective regarding discovering unknown behaviors comparing 
with RS? RQ2: Which of the three selected search algorithms 
fits the best regarding discovering unknown behaviors?  

C.� Experiment Design 
To address RQ1 and RQ2, we integrated the selected search 

algorithms ((1+1) EA, GA, and AVM) with ASUBE and 
compared results with the ones obtained when combining 
ASUBE with RS. To answer RQ1 and RQ2, the results were 
evaluated based on the cost, effectiveness, and efficiency 
metrics defined in Table II.  

D.� Experiment Execution 
In our experiments, all the algorithms were run up to 2000 

generations each time. We collected all observed system 
behaviors from test case execution, test cases generated by 
ASTCG (Section IV-C), and time taken by each test process. We 
configured GA with a population size of 100, a crossover rate of 
0.75, and a 1.5 bias for rank selection, as recommended by [10]. 
A standard one-point crossover was used, and mutation of a 
variable was set according to the standard probability 1/n, where 
n is the number of variables. Such mutation strategy was also 
used in (1+1) EA. We generated 5 and 10 test cases in every test 
cycle to apply the four search algorithms. We ran every test 
process (in total 8, i.e., four algorithms and two choices of the 
number of test cases to generate in one test cycle) 10 times to 
reduce the effect of the randomness of the algorithms on the 
results. 

E.� Results and Analysis 
To answer RQ1 and RQ2, we applied the four algorithms 

individually with an option in either generating 5 test cases per 
cycle or generating 10 per cycle. Each test process has 10 test 
cycles. The whole experiment took about 305 hours to finish the 
total 80 test processes. The average of ten runs of the experiment 
is presented in Table III and Table IV. Based on the guidelines 
for reporting results for search-based software engineering 
problems [7], we applied Vargha and Delaney statistics (�
�) 
and Mann Whitney U Test (p-value) to compare the four 
selected search algorithms for uncovering unknown behaviors 
in uncertain networks. In our context, �
� is used to compare all 
the effectiveness and efficiency measures of a pair of search 
algorithms. If �
� is 0.5, the two algorithms are equivalent. If 
�
� is greater than 0.5, the first algorithm in the pair has higher 
chances to obtain better efficiency than B. For Mann Whitney U 

TABLE III. RESULTS FOR TEST CASES PER CYCLE (10 TEST CASES) 

Metric RS AVM (1+1) EA GA 
NUB 20.56 19.5 33.56 21.75 
NUS 7 6.5 7.44 8 
SR 627 1021.67 189.33 342.5 
ST(minutes) 11.979 11.685 2.534 4.432 
ET(minutes) 255 227 306 285 
AT(minutes) 267 239 309 289 
BOSR 0.0328 0.0191 0.1773 0.0630 
BOST 1.7163 1.6688 13.2439 4.9075 
BOET 0.0804 0.0857 0.1095 0.0762 
BOAT 0.0768 0.0815 0.1086 0.0751 

TABLE IV. RESULTS FOR TEST CASES PER CYCLE (5 TEST CASES) 

Metric RS AVM (1+1) EA GA 
NUB 19.71 14.875 20.25 18.67 
NUS 7.286 6.5 6.5 7.67 
SR 527 459.625 74.625 645 
ST(minutes) 5.66 3.919 0.7045 4.752 
ET(minutes) 173 146 162 178 
AT(minutes) 178 150 163 182 
BOSR 0.0374 0.0324 0.2714 0.0289 
BOST 3.4823 3.7956 28.7437 3.9289 
BOET 0.1138 0.1013 0.1249 0.1048 
BOAT 0.1102 0.099 0.1243 0.1021
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Test, we choose the significance level of 0.05, i.e., if p-value is 
less than 0.05, there is a significant difference. The results of the 
comparison are presented in Table V. In Table V, the number 5 
or 10 used in the first column means the number of test cases 
generated per test cycle, and the A and p in the second column 
mean �
� and p-value respectively. 

Through rows SR and ST(min) in Table III, one can see that 
ASUBE with (1+1) EA used the least time of running each 
algorithm and searching for unknown possible system behaviors. 
Also, note that, in Table III, though AVM used the most time 
among the search algorithms, RS still took more time than AVM. 
It is because the time cost of once search is increasing for the 
accumulated historical information. Similar results were 
obtained when generating 5 test cases in every test cycle (see 
rows SR and ST(min) in Table IV). 

Through rows BOST, BOSR, BOET, and BOAT in Table III 
and Table IV, it can be seen that (1+1) EA performed the best 
regarding all the efficiency measures. Through columns BOSR, 
BOST, BOET and BOAT in Table V, one could find the 
following key observations :1) (1+1) EA performs significantly 
better than RS in terms of BOST and BOSR, 2) (1+1) EA 
performs significantly better than AVM and GA in terms of all 
the efficiency measures, 3) RS, AVM, and GA do not have a 
significant difference when generating 10 test cases per test 
cycle, 4) The same results were obtained when generating 5 test 
cases per test cycle. 

Based on the results, we answer RQ1 as follows: (1+1) EA 
significantly outperforms RS, which is not the case for AVM 
and GA. For RQ2, we recommend using (1+1) EA with ASUBE 
since (1+1) EA performed significantly better than the rest of the 
algorithms regarding the efficiency measures.  

F.� Discussion and Experience 

Based on the results reported in Table III, Table IV, and 
Table V, we see that regarding the efficiency measures, (1+1) 
EA performed significantly better than all the other algorithms. 
One of the key reasons is that (1+1) EA is a global search 
algorithm that uses only mutation operator to explore the search 
space rather than looking for solutions nearby to the existing 
ones. A GA, on the other hand, uses a mutation operator to 
explore and also uses a crossover operator to exploit nearby 
solutions and hence require more time to explore the search 
space. Thus, we may conclude that in our case best solutions are 
scattered across the search space and thus (1+1) EA was 
successful in finding the best solutions quickly. Due to the same 
reason, the performance of AVM was not good since it is a local 
search algorithm and it focused on searching the best solutions 
nearby the existing ones.   

G.� Threats to Validity 
To reduce construct validity threats, we compare the four 

algorithms with the same metrics, i.e., new states and new 
transitions discovered via ASUBE. The same stop criteria, same 
mutation operator, and the same number of generations are used 
in search algorithms to avoid any bias. A possible threat to 
internal validity is that we conducted the experiments with only 
one set of settings for the search algorithms. However, these 
current settings fit with the common guidelines in the literature 
[37]. The generalization of the result is a typical external threat 
to validity. Currently, we only evaluated our approach with one 
case study. In the future, more case studies are needed to 
generalize the results.  

VI.�RELATED WORK 
In this section, we discuss techniques that are closely related 

to our work, from the aspects of online testing, model evolution, 
and uncertainty-aware testing. 

A.�Online Testing 
Larsen et al. [4][35] presented an online black-box testing 

tool, named as T-UPPAAL, for model-based testing of real-
time embedded systems. T-UPPAAL generates one test case 
from a state machine and its assumed environment specifying 
required and allowed observable behaviors of the SUT, at a 
time, and simultaneously executes it. T-UPPAAL generates 
test inputs iteratively using the implemented randomized 
testing algorithm, which randomly chooses input events of the 
SUT and randomly sets the delay used to wait for the output 
until an input event finishes the execution. Hielscher et al. [31] 
presented the PROSA framework, which aimed to enable 
proactive self-adaptation of service-based applications by 
using online testing to detect changes and deviations between 
SUT and its specifications, based on which adaptations could 
be triggered. Their online testing process includes: generating 
test cases from specifications, executing test cases, and 
adapting the application based on the test results. Similarly, 
Sammodi et al. [25][32] used online testing to provide 
enhanced proactive adaptation capabilities to service-based 
applications. The authors proposed a usage-model updating 
and adaptation mechanism based on test results. The usage 
model records if the services are used, and the test cases 
generated online are to enhance the coverage of the usage 

TABLE V. RESULTS OF COMPARISON AMONG ALGORITHMS 

  NUS NUB BOST BOSR BOET BOAT 
AVM-
RS-10 

A 0.37 0.62 0.75 0.58 0.16 0.25 
p 0.72 0.73 0.42 0.85 0.28 0.42 

GA-
RS-10 

A 0.55 0.65 1.00 0.90 0.40 0.70 
p >0.99 >0.99 >0.99 >0.99 >0.99 >0.99 

EA-
RS-10 

A 0.52 1.00 1.00 1.00 0.88 0.88 
p >0.99 0.04 0.03 0.03 0.14 0.14 

AVM-
EA-10 

A 0.31 0.01 0.00 0.00 0.01 0.00 
p 0.24 <0.01 <0.01 <0.01 <0.01 <0.01 

EA-
GA-10 

A 0.50 1.00 0.91 0.93 0.86 0.86 
p >0.99 <0.01 0.01 <0.01 0.02 0.02 

AVM-
GA-10 

A 0.31 0.35 0.13 0.16 0.26 0.23 
p 0.33 0.46 0.05 0.08 0.24 0.17 

AVM-
RS-5 

A 0.28 0.18 0.51 0.37 0.35 0.33 
p 0.15 0.04 0.95 0.46 0.39 0.33 

GA-
RS-5 

A 0.61 0.35 0.52 0.38 0.33 0.42 
p 0.62 0.56 >0.99 0.66 0.51 0.83 

EA-
RS-5 

A 0.34 0.57 0.98 0.83 0.60 0.64 
p 0.33 0.68 <0.01 0.02 0.53 0.39 

AVM-
EA-5 

A 0.46 0.14 0.00 0.00 0.21 0.20 
p 0.81 0.01 <0.01 <0.01 0.06 0.04 

EA-
GA-5 

A 0.25 0.62 1.00 1.00 0.75 0.75 
p 0.24 0.60 0.01 0.01 0.27 0.27 

AVM-
GA-5 

A 0.18 0.22 0.50 0.58 0.37 0.41 
p 0.13 0.21 >0.99 0.77 0.63 0.77 
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model. To compare with these works, ASUBE aims a different 
objective, i.e., dynamically discovering unknown system 
behaviors under uncertain networks, addressed by 
implementing an adaptive search-based approach during the 
online testing process. 

Walkinshaw et al. [34] applied online testing to reverse 
engineer behavior models of software systems. In every cycle, 
their approach generated a specified number of test cases from 
a Partial LTS model (PLTS), ran the generated test cases, and 
inferred the PLTS from test execution traces. Meinke and 
Sindhu [33] applied learning-based testing (LBT) techniques to 
test reactive systems. They modeled reactive systems as Kripke 
structures [36] and introduced a learning algorithm named as 
Incremental Kripke Learning (IKL) for model inference using 
a model checker. To compare with these works, ASUBE 
discovers unknown system behaviors under uncertain network 
environments. Same test cases could repeatedly be generated 
by these approaches across test cycles, which might lead to low 
efficiency of the overall approaches. Our approach, however, 
maintains all the historical test information as ASUBE 
maintains a test case repository and a system behavior 
repository. The adaptive search-based testing approach of 
ASUBE utilizes the information adequately. 

B.� Model Evolution 
There are some works related to model evolution. For 

example, Ghezzi et al. [12] proposed an approach to recover the 
specification of a black-box software component from its run-
time behaviors. It uses a deterministic finite state machine to 
model the partial behaviors of SUT, and then a finite state 
machine is generalized via graph transformation rules. 
Walkinshaw et al. [14] proposed an extended finite state 
machine inference technique, which was based on WEKA [26] 
and Daikon. However, none of these pieces of work evolves 
models with uncertainty captured.  

The work that is most relevant to our approach is the 
UncerTolve framework by Zhang et al. [11] for interactively 
evolving Belief Test Ready Models (BMs) with uncertainty 
information explicitly captured. Such uncertainty information 
needs to be specified by test engineers to capture their beliefs 
about model elements of a BM, associated with one or more 
uncertainties due to “lack of knowledge” about a BM. Taking 
initial BMs of Cyber-Physical Systems (CPSs), known 
subjective uncertainty, and real data from the operation of CPSs 
as inputs, UncerTolve validates the syntactic correctness and 
conformance of BMs against real operational data, evolves 
objective uncertainty measurements, and evolves state 
invariants and guards of transitions with model execution and 
Daikon [13]. To compare with UncerTolve, we, however, take 
an online testing approach, which is dynamic and incremental, 
and particularly focus on uncertain network environments.  

C.� Uncertainty-aware Testing 
Walkinshaw and Fraser [27] proposed a test generation 

approach that inferred a behavioral model of SUT using Genetic 
Programming (GP) from test execution. Test cases whose 
predictions elicit the highest degree of uncertainty concerning 
the current model are generated. Test case execution results 

were collected to update the behavioral model. Qin at al. [8] 
proposed sample-based interactive testing (SIT) approach for 
testing self-adaptive applications, focusing on inadequate 
consideration of environmental dynamics and uncertainty. Their 
proposed approach makes the assumptions that the input space 
of a self-adaptive application could be systematically split, 
adaptively explored, and mapped to the testing of the 
application’s different behaviors. Their approach relies on an 
interactive application model represented by a tuple capturing 
interactions between an application and its environment and 
generates test cases with adaptive sampling (splitting the input 
space and mapping the splitting results to the application’s 
behaviors under test). 

Uncertainty-wise test case generation and minimization 
strategies relying on test ready models explicitly specifying 
subjective uncertainty were proposed by Ali et al. [3]. Test ready 
models are BMs developed with the Uncertainty Modeling 
Framework (UncerTum), which defines a set of UML Profiles. 
BMs are composed of two types of UML diagrams: belief class 
diagrams and belief state machines (BSMs). Two test case 
generation strategies were defined for the test case generation. 
Because the number of generated test cases might be large and 
test resource is often limited, the authors of [3] also proposed 
four uncertainty-wise, multi-objective search-based test case 
minimization strategies, which share the objectives of 
minimizing the number of test cases, maximizing the transition 
coverage, and maximizing four different uncertainty-related 
objectives. 

To compare with the above-mentioned related works, our 
work presented in this paper focuses on uncertainty inherent in 
information networks. Testing software systems (e.g., CPS) in 
the presence of uncertain network conditions is not focused by 
existing works.  

VII.�CONCLUSION 
These days, software systems commonly use information 

networks for communication. Given the inherent uncertainty in 
such networks, it is necessary to discover behaviors of software 
systems under such uncertainty. To this end, we proposed an 
online, iterative, and incremental model-based testing approach 
to evolve test models with search algorithms. Our ultimate goal 
was to systematically and automatically discover previously 
unknown expected behaviors of a software system in uncertain 
network conditions. We proposed an adaptive search-based test 
case generation strategy to generate test cases dynamically. We 
evaluated our approach with an open source video conferencing 
case study—Jitsi. Also, we evaluated four commonly used 
search algorithms. (1+1) Evolutionary Algorithm (EA) turned 
out to be the best search algorithm to discover unknown 
behaviors caused by uncertain network conditions. In particular,  
(1+1) EA performed better than the other algorithms. 
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