

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2018-IC-001

2018-IC-001

Uncovering Unknown System Behaviors in Uncertain Networks

with Model and Search-Based Testing
Ruihua Ji , Zhong Li , Shouyu Chen , Minxue Pan , Tian Zhang , Shaukat Ali , Tao Yue , Xuandong Li

International Conference on Software Testing, Verification and Validation 2018

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

Uncovering Unknown System Behaviors in Uncertain
Networks with Model and Search-based Testing

Ruihua Ji�, Zhong Li�, Shouyu Chen�, Minxue Pan�†, Tian Zhang�†, Shaukat Ali‡†, Tao Yue‡†, Xuandong Li�
�State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210093, China

‡Simula Research Laboratory, Oslo, Norway
†Corresponding author

{yiting.ji, remainxy}@gmail.com, lz_seg@163.com, {mxp, ztluck, lxd}@nju.edu.cn, {tao, shaukat}@simula.no‡

Abstract—Modern software systems rely on information
networks for communication. Such information networks are
inherently unpredictable and unreliable. Consequently, software
systems behave in an unstipulated manner in uncertain network
conditions. Discovering unknown behaviors of these software
systems in uncertain network conditions is essential to ensure their
correct behaviors. Such discovery requires the development of
systematic and automated methods. We propose an online and
iterative model-based testing approach to evolve test models with
search algorithms. Our ultimate aim is to discover unknown
expected behaviors that can only be observed in uncertain
network conditions. Also, we have implemented an adaptive
search-based test case generation strategy to generate test cases
that are executed on the system under test. We evaluated our
approach with an open source video conference application—Jitsi
with three search algorithms in comparison with random search.
Results show that our approach is efficient in discovering
unknown system behaviors. In particular, (1+1) Evolutionary
Algorithm outperformed the other algorithms.

Keywords— Uncertainty, Model-based Testing, Search-based
Testing, Uncertain Networks

I.� INTRODUCTION
Software systems are increasingly relying on information

networks for communication. Such networks are inherently
prone to uncertain conditions (e.g., packet loss). These
conditions often lead software systems to exhibit behaviors that
are unknown during their design. Such behaviors might not be
necessarily safe and result in software system failure. Thus, it is
important to discover these behaviors before their deployment
with systematic and automated methods. In current literature,
software systems are often tested with assumptions on
information networks. These assumptions do not necessarily
hold in the real operation. Thus, it is imperative to discover such
unknown behaviors before deployment and improve software
systems’ implementation to avoid potential failures.

Our approach relies on Model-based Testing (MBT) [1-3]
that relies on models for executable test case generation. These
models (i.e., test models) represent abstract representation of the
expected behavior of a System under Test (SUT). In our context,
test models also include expected behaviors of a SUT in the
presence of known uncertain network conditions. These test
models are at the core of our approach to discover unknown

expected test behaviors that are unknown at the design time. Our
approach is an online testing approach, i.e., it combines test case
generation and test case execution in an iterative process [4].
Test case execution results are used as feedback in the
subsequent test generation cycles. Such information is also used
to incrementally evolve test models to discover expected system
behaviors that are previously unknown in the presence of
uncertain network conditions.

We also propose an adaptive search-based test case
generation strategy that is applied to generate test cases from a
test model capturing the expected behavior of a SUT in the
presence of uncertain network conditions. We proposed an
adaptive fitness function, which is integrated with commonly
used search algorithms. This fitness function guides the search
algorithms to generate possible system behaviors relying on
historical test execution information and known system
behaviors. Our adaptive fitness function is developed to find
possible system behaviors by maximizing their similarity with
the known system behaviors. Also, our fitness function
maximizes the diversity of all the possible system behaviors.
Finally, our approach generates test cases from the generated
possible system behaviors.

We evaluated three search algorithms to select which
algorithm can help us to cost-effectively discover unknown
behaviors in the presence of uncertain network conditions.
These algorithms are (1+1) Evolutionary Algorithm (EA),
Alternating Variable Method, Genetic Algorithm. Random
Search (RS) is the baseline for comparison. We applied our
approach to an open source video conference application—Jitsi
[30]. The results of our evaluation show that our approach was
effective to discover unknown system behaviors under uncertain
network conditions. (1+1) EA turned out to be the best algorithm,
which performed better than the other algorithms.

The rest of this paper is organized as follows. Section II
introduces a running example. Section III introduces test models
and related definitions of concepts. We present our approach in
Section IV. The evaluation is given in Section V, followed by
the related work in Section VI and conclusion in Section VII.

II.� RUNNING EXAMPLE

204

2018 IEEE 11th International Conference on Software Testing, Verification and Validation

0-7695-6388-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICST.2018.00029

For Research Only

We will use a
running example of a
videoconference system
to illustrate our
approach. The
simplified state machine
and class diagram of the
running example are
shown in Fig 1 and Fig
2. We use two key
operations, i.e., dial and
disconnect. The dial
operation initiates a
videoconference or adds
a participant into an
existing videoconference. The disconnect operation ends a
videoconference or removes a participant from a
videoconference. We use two system variables to define states
of the videoconference software, i.e., activecall and videoquality.
Activecall is used to count all the active calls in the current
videoconference. The value of activecall is obtained from
method getActiveCall in class Jitsi. Videoquality indicates the
video quality of the current videoconference. The value of
videoquality is obtained with method getVideoQuality in class
Jitsi. The value of videoquality includes four types, good,
acceptable, bad, and nopics.

In total, the test model, i.e., a state machine of the running
example (Fig 1) has four states and six transitions. When a
transition is fired, the input includes an operation (the trigger of
the transition) and the network condition which is recorded
separately in a list. There are no guards in our running example.
We consider the state machine in Fig 1 as the initial test model
and network conditions do not have any packet delay, loss,
corruption, or duplication. Each transition has associated
network conditions captured as values of packet delay, loss,
corruption, and duplication.

III.� FORMALIZATION AND DEFINITIONS
In this section, we first introduce the modeling of SUT and

the network conditions in Section III-A. We provide necessary
definitions related to test model in Section III-B. Finally, in
Section III-C, we provide definitions of test paths and test cases.

A.� Test Modeling
Our test model is a simplified standard UML state machine,

i.e., all the states are simple states, i.e., no hierarchy. Also, all
transitions are without effects. Each transition has a trigger and
an optional guard to fire the trigger.

We define inputs to the system in the test model consisting
of two parts: user operations and network conditions. A user
operation is the trigger of a transition in the test model. A
network condition associated with a transition is in the list L
which is maintained with the test model. User operations in the
running example corresponding to dial and disconnect are
represented as UO = {uo1, uo2}. All the network conditions
maintained in the list L are represented as NC = {nc1, nc2, ···,
ncn}, i.e., the NC for the running example in Fig 1 has only one
member nc1 = (packet delay = 0ms, packet loss = 0%, packet
corruption = 0%, packet duplication = 0%). Inputs to the system

can be represented as inputj = (uok, nci). If uok is the trigger of
one transition, the evaluation of the guard is true, and network
conditions are held in the real network, the transition is fired.

Formally, let Σ be the set of all the inputs to the system
modeled as the test model, the simplified state machine is a 4-
tuple M = (Q, T, {q0}, Σ), where, Q is the set of all the states in
M; T is the set of all the transitions in M; q0 � Q is the initial
state. Σ is the set of all the inputs, and inputj = (uok, nci) � Σ.

We maintain a network condition list L. Each node in the list
represents a transition with a network condition nodek =
(transitionm, nci). For each transition, there can be more than one
node in the L list. This means that each transition can be
triggered in these network conditions.

Note that packet delay, loss, corruption, and duplication
represent common problems in networks [18-22]. Packet delay
means packets take longer to get to their destination. Packet loss
is a failure of one or more transmitted packets to arrive at their
destination. Packet corruption is defined as the portion of data
packets transmitted at the MAC layer which are interrupted at
the receiver due to interference. Packet duplication is defined as
part of the packets transmitted that are identical to others. Packet
delay is measured as time in millisecond (ms) ranging from 0ms
to 1000ms. Packet loss, packet corruption, and packet
duplication are all measured in percentage, whose ranges are
between 0% and 100 %. A possible network condition at any

Fig. 2. Class Diagram of the Running Example

Fig. 1. A Running Example

205

For Research Only

particular time can be represented as a 4-tuple, nei = (packet
delay, packet loss, packet corruption, packet duplication). For
example, nei = (10ms, 1%, 2%, 2.5%) shows that the current
network conditions are 10ms packet delay, 1% packet loss, 2%
packet corruption, and 2.5% packet duplication.

B.� System Behaviors, Possible System Behaviors and
(previously) Unknown System Behaviors
We define a System Behavior as b = (q1, guard, trigger,

network condition, q2). The source state is q1 and target state is
q2. The guard is optional, the trigger is a user operation, and the
network condition is defined by the four variables.

Suppose, we have a system behavior b = (q1, guard, trigger,
network condition, q2) and a test model M = (Q, T, {q0}, Σ). If
there is a ti � T whose source state equals to q1, target state
equals to q2, trigger equals to b’s trigger, guard equals to b’s
guard, network conditions equal to b’s network conditions, then
b is a Known System Behavior. Otherwise, b is an Unknown
System Behavior. Recall that the T set is all the existing
transitions in the test model, whereas q1 belongs to Q of the test
model and q2 may belong to Q. If q2 does not belong to Q, then
q2 is a previously unknown state, and as part of b, it is a newly
discovered state. For example, in the M test model of the running
example in Fig 1, a behavior beh = (Connnected_1, null, dial,
(52ms, 20%, 35%, 27%), New6) is an unknown system behavior
for M because New6 is a state not belonging to M, whose
activecall is 2 and videoquality is nopics.

Notice that, associated with its source, its target state, and
one related network condition in L, one transition represents one
system behavior. Since a transition, at least, has one related
network condition in the L list, there is at least one system
behavior that is represented. For example, given a transition t =
(Connected_1, null, dial, NotFull) associated with (t, nei) =(t,
(0ms, 0%, 0%, 0%)) and (t, nej) =(t, (20ms, 1%, 2%, 2.5%)) in
the running example, the transition represents two related
system behaviors, b1 = (Connected_1, null, dial, (0ms, 0%, 0%,
0%), NotFull) and b2 = (Connected_1, null, dial, (20ms, 1%,
2%, 2.5%), NotFull). Therefore, every transition from T
combining its source state, target state, and related network
conditions represent, at least, one known system behaviors.

A Possible System Behavior is an unknown behavior having
an associated probability of happening in the real world. We

represent it as pb = (q1, guard, trigger, network condition, q2).
q1 belongs to Q of the test model; q2 may belong to Q. However,
it is unknown, during the discovery process, if pb exists in reality.
A possible system behavior is different from a normal system
behavior since it has an attribute called probability indicating the
likelihood of the existence of a system behavior. When the
probability is 100%, the possible system behavior is an unknown
system behavior. Therefore, a previously unknown possible
system behavior with a high probability implies that there is a
high probability of discovering a previously unknown system
behavior. Taking the example of the M test model of the running
example in Fig 1, and given an unknown system behavior beh =
(Connnected_1, null, dial, (52ms, 20%, 35%, 27%), New6), if
beh has not been executed on SUT to check whether it exists,
then beh is a possible unknown system behavior.

Testing a possible system behavior pb means that setting up
an input to the system when it is in state q1 and checking whether
the system will end up in q2. After testing, pb is revised
according to execution results. If the revised pb is not covered
by any ti � T of the test model as mentioned above, pb is then
an unknown system behavior.

C.� Test Paths and Test Cases
Our objective is to discover unknown system behaviors by

testing the SUT with generated possible system behaviors. To
reach the source state of the possible system behavior, test cases
used to discover unknown system behaviors should include the
following two steps: 1) leading the SUT going from the initial
state of the test model to the state where the source state of the
possible system behavior will be reached, and 2) setting the
input (i.e., user operation and network condition). Necessarily, a
Test Path in the test model is a path starting from the initial state
of the state machine with a possible system behavior starting
from the last state of the path. It is an Abstract Test Case if the
path of a Test Path has no concrete data; otherwise, it is
Executable Test Case.

We apply the Shortest Simple Path strategy [38] to generate
an abstract test case based on the given possible system behavior
and test model. We take the test model as a map consisting of
edges (transitions) and vertexes (states), and the strategy first
uses the Dijkstra algorithm [5] to find the shortest path between
the initial state and the source state of the possible system
behavior. This path is part of a Test Path, which starts from the

Fig. 3. The overall approach of ASUBE

206

For Research Only

initial state and ends at the source state of the possible system
behavior. Tailing the possible system behavior to the path, a Test
Path is constructed which is named as an Abstract Test Case.
For example, in Fig 1, given a possible unknown system
behavior beh = (NotFull, null, dial, (52ms, 20%, 35%, 27%),
New6), we first generate the path <Idle> → <Connected_1> →
<NotFull>, and then the generated abstract test case is atc =
(<Idle> → <Connected_1> → <NotFull>, (<NotFull>, (null,
dial, (52ms, 20%, 35%, 27%)), < New6 >)).

We use a random strategy to generate the executable test
cases. The process constructs a sequence of inputs, each of
which is composed of a user operation specified by the trigger
of the transition, a guard, and a network condition. The inputs
before the last one are generated based on the transitions in the
test path, and the last input is generated based on the possible
unknown system behavior. To construct an input generated from
a transition, we randomly construct the guard and randomly
choose a network condition which is related to the transition. To
construct an input generated from a possible unknown system
behavior, we construct a guard as null, but use the network
condition directly. Given the abstract test case used above, the
executable test case etc = (null, dial, (0ms, 0%, 0%, 0%)) →
(null, dial, (0ms, 0%, 0%, 0%)) →(null, dial, (52ms, 20%, 35%,
27%)).

IV.�OUR APPROACH
Our proposed approach, named as Adaptive Search Based

Unknown Behavior Explorer (ASUBE), uses an incremental
online testing process. It contains a sequence of test cycles to
discover unknown system behaviors in uncertain network
conditions. A test cycle consists of three activities: adaptive
search-based test case generation, test case execution, and
historical information update. In the first test cycle, we provide
an initial test model associated with its network conditions list,
an empty repository for collecting all the possible unknown
system behaviors, and an empty repository for collecting all the
generated executable test cases. In a test cycle, the test case
generation step takes the current test model and current possible
system behaviors repository updated in the last test cycle as
inputs. It then uses a search algorithm (along with a fitness
function) to generate a new set of test cases that are expected to
have a high chance of observing unknown behaviors. The
executable test case repository is used to store all the generated
executable test cases as part of the outputs of our approach.

In the rest of the section, we provide an overview of ASUBE
(Section IV-A), formal definitions of the key concepts (Section
IV-B), the adaptive search-based test case generation steps
(Section IV-C), and the other steps of ASUBE (Section IV-D).

A.� Overview
Our overall approach is shown in Fig 3. The approach uses

an incremental online testing process containing a sequence of
test cycles to discover unknown system behaviors under
uncertain network conditions. The process terminates (i.e., the
number of test cycles) when any of the two conditions meet: 1)
no new unknown system behaviors are observed; 2) having
reached the ceiling of the budget and resources allocated.

The first test cycle is started with initialization, which has
the following steps: 1) ASUBE loads the test model capturing

known expected behaviors of SUT in known network conditions.
Note that this model is constructed manually by test engineers.
2) ASUBE initializes a repository to collect all the possible
system behaviors used to generate test cases that will be
executed during each test cycle. Also, 3) ASUBE maintains an
empty repository to collect all the generated executable test
cases which are part of the output of ASUBE. As the test process
goes on, the test model is updated with observed and previously-
unknown system behaviors at the last phase of each test cycle.
In each test cycle, the possible system behaviors repository is
appended with newly generated possible system behaviors.

The key component of ASUBE is the Adaptive Search-
Based Test Case Generation (ASTCG). ASTCG is executed
until a predefined number of test cases in a test cycle (e.g., 5) are
generated. When generating each test case, ASTCG first
generates a possible system behavior by applying search
algorithms, which is not validated but estimated to have a high
probability of being a valid behavior, according to the heuristics
we defined and implemented as the fitness function of the search
algorithms. Then, ASTCG generates a test case based on the
possible system behavior and the current test model, using the
Shortest Simple Path strategy as described in Section III-C. At
last, ASTCG transforms the generated abstract test case into an
executable test case using a random test data generation strategy
discussed in Section III-C.

We encode the test case generation problem (actually a
possible system behavior generation problem) as a search
problem and define an adaptive fitness function, together with
the selected search algorithms, to generate test cases (possible
system behaviors). The fitness function is adaptive in the sense
that at each test cycle it adapts to the current test model
associated with the network condition list and the set of all the
generated possible system behaviors, which are updated at each
test cycle. The overall aim is to generate possible system
behaviors containing specific network conditions with a high
probability of being valid, then use them to generate test cases
to find the unknown behaviors caused by some network
condition. Consequently, executing them leads to a high chance
of discovering unknown system behaviors caused by the
network environment. An applied search algorithm hence aims
to maximize the probability of a possible system behavior being
valid. More details about ASTCG are provided in Section IV-C.

Abstract test cases newly generated by ASTCG are then
transformed to executable test cases executed together with the
SUT. Section III-C presents further details. Test case execution
results, i.e., whether we find unknown system behaviors or

TABLE I. DEFINITIONS

Symbol Explanation
Ti The set of test cases generated in cyclei
Bi The set of possible system behaviors generated by a

search algorithm and used to generate Ti in cyclei
Mi-1 The input test model in cyclei
Mi The updated test model in cyclei
ETi-1 The set of all the generated test cases before cyclei�

ETi The set of all the generated test cases after cyclei
EBi-1 The repository of all the generated possible system

behaviors in the previous test cycles of cyclei
EBi The repository of all the generated possible system

behaviors after cyclei

207

For Research Only

known system behaviors, are obtained automatically. Observed
system behaviors might be existing (therefore known) or
(previously) unknown. Previously-unknown system behaviors
are therefore added to the test model.

B.� Formal Definitions
Given a test case generation process pASTCG, pASTCG has n

sequential test cycles and the ith cycle of pASTCG can be
represented as cyclei. Table I provides a set of definitions to
describe the test case generation process.

To start a process pASTCG, two inputs are given as mentioned
in Section III-A, i.e., the initial test model represented as M0 =
(Q0, T0, {q0}, Σ), an empty possible system behavior repository
represented as ��� � � , and an empty test case repository
represented as ��� � � . We use FTCG to represent the
functionality of every test cycle. Since the inputs include the
test model Mi-1, and the possible system behavior repository
EBi-1, the ith test cycle, cyclei, could be represented as (Mi, EBi)
= FTCG(Mi-1, EBi-1). In cyclei, a set of possible system behaviors,
Bi, is generated. Using Bi and EBi-1, we could get EBi = Bi �
EBi-1. At the same time, the set of test cases executed in this test
cycle, Ti, will be generated from Bi, and all the generated test
cases will be collected by ETi through ETi = Ti � ETi-1.

In general, the test process is dynamic and receives feedback
(via test case execution and model update) and works as the
following sequence:

	
� ��
 � �
�� 	�� ���
	�� ��� � �
�� 	
� ��

……
	�� ��� � �
�� 	��
� ����
 .

C.� Adaptive Search-Based Test Case Generation (ASTCG)
As discussed in Section IV-A, when using ASTCG to

generate test cases, we first generate the specified number of
possible system behaviors by repeatedly applying search
algorithms. Running search algorithm once at most generates
one possible system behavior. Afterwards, we use the Shortest
Simple Path Strategy (Section III-C) and the random test data
generation strategy (Section III-C) to generate executable test
cases based on the possible system behavior. Therefore,
generating possible system behaviors becomes the key step of
ensuring the effectiveness of exploring unknown behaviors of
the system in diverse network conditions.

1)�Overview of ASTCG
Suppose that the process is in the ith test cycle (cyclei) of a

process pASTCG, the current test model Mi-1 and all the generated
possible system behaviors BTi-1 are the inputs to this test cycle.
ASTCG follows the following three steps. Note that the
following three steps will be repeated sometimes in ASTCG so
that enough test cases are obtained in every test cycle. It is due
to the following reasons: 1) going through the three steps one
time produces one possible system behavior (representing one
test case) and a predefined number of test cases are needed in
one test cycle; 2) a possible system behavior generated is either
a possible known system behavior or a possible unknown one.
We use the possible unknown since we want to find the
unknown system behaviors; and 3) repeating the three steps
could produce the same possible system behaviors (i.e., the same

test cases will be produced from these behaviors). In this case,
only one of the possible behaviors is kept and others are
discarded.

Step1: Obtain Ti-1 (i.e., all the transitions of Mi-1 in Table I)
and BTi-1 (i.e., the possible system behaviors in BTi-1 are
generated in the past cycles, and have been transformed into test
cases in ETi-1 to be executed) as inputs to the selected search
algorithm to generate new possible system behaviors. Step2:
Apply the adaptive fitness function together with the selected
search algorithm, i.e., GA, (1+1) EA to generate new possible
system behaviors. More details are provided in Section IV-C-
2)c). Step3: Repeat Step2 until a required number of possible
system behaviors is generated. Executing Step2 can generate
one possible system behavior every time. If it is a known system
behavior according to Mi-1 or a same one as the previous, it is
discarded, and we repeat the step.

2)�Adaptive Search-based possible behavior generation
a)�Problem Representation

ASUBE constructs possible system behaviors which are
previously unknown but estimated to have a high probability of
being a valid behavior in every test cycle. These behaviors are
then used to generate test cases.

A possible system behavior consists of a source state, a target
state, a trigger, a guard, and a network condition. The source
state could be any known state in the current test cycle. The
target state could be any known or unknown state. When
constructing a target state, we directly give random values to the
state variables, so the constructed target state could be a known
state or an unknown state. The trigger is the user operation, the
guard is null, and the network condition is the tuple used to
describe the network environment (Section II-A). In the context
of Jitsi, operations include “dial()”, “disconnect()” and “keep()”.
The “keep()” operation means that user does not do anything,
and we try to observe the system behavior when the inputs only
contain network conditions. The trigger could be any one of the
operations. The network condition contains four variables,
“Packet Delay” (1~100ms), “Packet Loss” (1~100%), “Packet
Corruption” (1~100%) and “Packet Duplication” (1~100%).
When constructing a network condition, we assign a value
randomly to each variable.

Combining all the parts, we can get a complete possible
system behavior. So, a possible system behavior is represented
as a vector pbv = (e1, e2, …, e9). In pbv, e1 and e2 represent the
two variables of source state, e3 represents the user operation,
(e4, e5, e6, e7) represents the network conditions (PacketDelay,
PacketLoss, PacketCorruption, PacketDuplication), and, e8 and
e9 represent the two variables of the target state. All the possible
pbvs construct the possible system behavior space, BSpace.

We defined and implemented heuristics “Obj()” (contains
Similarity and Diversity, details in Section IV-C-2)b)) as the
fitness function to find possible system behaviors. In the ith test
cycle, we need to find a system behavior Bk from the possible
behavior space, BSpace, such that for:

������ � ������� �� � ��� � ! �� " � ! �� .
b)�Definition of Adaptive Fitness Function

ASUBE aims to discover unknown system behaviors in
uncertain network conditions. ASUBE uses test case execution

208

For Research Only

information from previous cycles, i.e., the test model and the
generated possible system behaviors, to generate new possible
system behaviors, from which new test cases will be generated
and executed. Search has two objectives in our case.

First, as discussed in Section III-B, a transition from T of the
test model represents more than one known behavior. Therefore,
all the transitions of the test model combining their source state,
target state, and network conditions represent all known system
behaviors. If a possible system behavior generated by search is
similar to known system behaviors (Ti-1 extracted from Mi-1, in
cyclei), it is considered that there is a high similarity between the
newly generated possible behavior and all the known behaviors,
implying that there is a high chance that the newly generated
possible system behavior is valid. Second, newly generated
possible behaviors should be different from each other such that
there would be a higher chance for the generated possible
behaviors to cover (via a new set of to-be-generated test cases
from them) diverse situations. In general, we represent the two
objectives as O1: maximizing the similarity between possible
system behaviors and known system behaviors, and O2:
maximizing the diversity among all the possible system
behaviors.

O1: Maximizing the Similarity between Possible System
Behaviors with Known System Behaviors.

We measure the objective as a Similarity Measure. To
calculate the Similarity Measure, we calculate the similarity
between a newly generated possible behavior and a set of known
behaviors, which are represented as the transitions (combining
its source state, target state, and network conditions) in the test
model. To implement the Similarity Measure, we first need to
encode the possible system behaviors and the transitions with
network conditions to vectors, and then calculate similarity
values according to a similarity metric. Encode: If a possible
behavior is pb = (q1, guard, user operation, network condition,
q2), states q1 and q2 consist of two variables. In the running
example, these are “number of active calls” and “video quality”,
and the input consists of a nej and a uok. Here, we use packet
delay (delay), packet loss (loss), packet corruption (corruption)
and packet duplication (duplication) to describe the network
conditions. pb is represented as a vector pbv = (e1, e2, …, e9), in
which we have q1 = (e1, e2), q2 = (e8, e9), and guard = null. In
the running example, there is no guard. uok = e5, and nei = (e6,
e7, e8, e9). Therefore, one transition could generate some vectors,
which represent some behaviors. Metric: We apply Euclidean
Distance [6] to calculate the similarity value between a Possible
Behavior and the behaviors derived from transitions. Given two
vectors pbv = (e1, e2, …, en) and pbv = (e’1, e’2, …, e’n), we get
the distance between them with the formula below:

� $� � $� � �
 % ��
�

�

&'

The similarity is then the reverse of the distance. After
normalization (with the normalization function nor() [24][25]),
the range of similarity values is 0 to 1: nor(Similarity) = 1-
nor(Diversity). We use the average of the all the Similarity
values as the final output.

O2: Maximizing the Diversity among all Possible System

Behaviors.

This objective is measured by a Diversity Measure. If a
newly generated possible system behavior has a high Diversity
value, it contributes to cover more space in the possible system
behavior space, along with the other possible system behaviors.
The implementation of the Diversity Measure is similar to the
Similarity Measure. Encode: Objects used to calculate Diversity
are possible system behaviors, and we use the method
mentioned in Similarity Measure to transform all the possible
system behaviors into vectors. Metric: Euclidean distance is
directly the Diversity value. After calculating the Diversity
value of a new possible system behavior and other generated
possible system behaviors, we use the average of the all the
Diversity values as the final output.

Based on the two objectives, we define our fitness function.
A lower value of the fitness function represents better fitness. In
the ith test cycle, the fitness function is:

()*+,--./01, � 2 % 3�45 �6768�569� ��	&�

: �453;6$�5<69�3=� ��&�
>>>
Since similarity and diversity values are not within the same

range, comparing them without normalization is inappropriate.
Therefore, we use the following normalization function [24][25]:

?@A3B> � �
B

B : C

c)�The Selected Search Algorithms
We choose (1+1) Evolutionary Algorithm ((1+1) EA),

Genetic Algorithm (GA), and Alternating Variable Method
(AVM). AVM is chosen as the representative of local search
algorithms. GA is the most commonly used global search
algorithm. (1+1) EA is simpler than GA. However, it has shown
better performance than GA in many works [10][23]. Random
Search (RS) is used as the baseline for comparison.

D.�Other Activities
Besides ASTCG, every test cycle also includes test case

execution and historical information update activities (Fig 3).

1)�Test Case Execution
Test case execution activity executes test cases generated by

the test case generation activity of ASUBE. To support the
execution together with its result reporting, we need test setup,
test data generation, and test verdicts.

Test case execution involves providing inputs to trigger the
behaviors of the SUT. Test setup includes developing APIs to
control network environment and control specific actions of
SUT. APIs to control network environment are provided by a
tool named NetEM [29]—a network emulator. By sending string
commands (i.e., <Terminal1 dial Terminal2>) to NetEM,
NetEM could set the packet delay, packet loss, packet corruption
and duplication of specified network equipment, such that
specific network conditions can be enforced. The APIs used to
control specific actions of the SUT are designed by the tester,
and these APIs work by sending specific string commands to the
remote clients and requiring the remote clients act according to
the string commands. In the context of a videoconference system,
the actions include <Terminal1 dial Terminal2>, <Terminal1
addConfmember Terminal3>, <removeConfmember
Terminal3>, <Terminal1 disconnectConf>, and so on. When
we have more than two participates of a video call, the video call
becomes a conference, and the “dial” operation becomes

209

For Research Only

“addConfmember” operation to add one member to a conference.

Based on the above explanation, the test data generated from
a test case actually is a sequence of string commands. For
example, in the context of a videoconference system, given an
example of an executable test case is: etc = (dial, (0%, 0ms, 0%,
0%))�(dial, (0%, 100ms, 2%, 5%)). The sequence of string
commands could be represented as:

DEAFG?HIC�JGHI�DEAFG?HI2 �� KELMELN@AOP?QAG@?FE?L RS� RFT� RS� RS �

U VHGLD@=EKLHWIE 2XT �

U 3 DEAFG?HIC�HJJY@?ZFEFWEA�DEAFG?HI[��

KELMELN@AOP?QGA@?FE?L3RS�CRRFT� 2S�XS>>�

U 3VHGLD@=EKLHWIE32XT>>.

The “dial” and “addConfmember” commands are sent to
videoconference system clients, and the “networkenvironment”
commands are sent to NetEM. The “WaitToBeStable”
commands are used locally, to allow the latter command to be
sent after the previous command finished, i.e., before terminal1
adds terminal3 to the current conference, terminal1 needs to
construct the conference with terminal2, which takes some time.

The behaviors of the SUT after acting as the input test data
are recorded automatically. It relies on sending system
information after actions by the clients to the control unit. The
information constructs the system behaviors on the control unit.
We define two test verdicts to evaluate the unknown system
behaviors. We compare the system behaviors constructed by the
information from clients with the current test model. If the test
model does not cover the behavior, it is an unknown system
behavior. In this case, it needs to be delivered to the model
update activity automatically.

2)�Historical Information Update
We maintain a repository of possible system behaviors when

starting the ASUBE exploration process which is empty at that
time, as well as a repository of executable test cases. The
repository of possible system behaviors is used as historical
information to the next test cycle, while the repository of
executable test cases is only used to record and output the
executable test cases as part of the final output. In test cycle
cyclei, the set of newly generated possible system behaviors
PBSi are combined with the repository of possible system
behaviors EBi-1. Moreover, test model Mi-1 is used to store the
discovered previously-unknown behaviors. To achieve this,
ASUBE implements the following two steps:

First, ASUBE transforms the newly-discovered previously-
unknown behaviors to transitions. More specifically, ASUBE
takes the source state and target state of the behavior as a
transition’s source state and target state; takes the user operation
input of the behavior as the transition’s trigger, and put the
network conditions to the network condition list L. Second, if
the source and target states of the new transition transformed
from the behavior exist in the test model, ASUBE adds the new
transition between the two states to the test model. If the source
state of the new transition belongs to the test model and the
target state of the new transition is a new state, ASUBE
constructs the new state and add it to the test model, and then
adds the new transition. Since we start from a known state as the
source state when validating a new possible behavior by testing,
we only consider the above two situations about updating the

test model using new transitions. Finally, when the above steps
are finished, we output the updated test model.

V.� EVALUATION
In this section, we introduce the case study, experiment

environment (Section V-A), research questions (Section V-B),
experiment design (Section V-C), experiment execution
(Section V-D), results and analysis (Section V-E), discussion
(Section V-F), and threats to validity (Section V-G).

A.� Case Study
We selected an open source videoconferencing and instant

messaging application, Jitsi [30]. Its implementation is available
on multiple platforms including Windows, Linux, Mac OS X,
and Android. Users implement clients on their platforms to
obtain audio/video conference services. More information about
Jitsi can be found at [30], including released versions and source
code. We use Jisti as the case study to test its videoconference
related functionalities such as making a call, with the ultimate
goal of discovering unknown system behaviors when Jisti is
operating under uncertain network environment.

For the experiment, we set up Jitsi on an internal network,
whose topology is shown in Fig 4. Five PCs were deployed in
the internal network: four of them (PC0, PC1, PC2, and PC3)
have Jitsi deployed on each of them and Jitsi deployed on PC0
is the SUT. The test program is deployed on the Controller. PC0
communicates with PC1, PC2, and PC3 through the Controller
and the Router, and the network device eth0 of the Controller

Fig. 4. The Network Topology

TABLE II. DEFINITIONS OF EVALUATION METRICS

Metric Definitions
Effective-
ness

NUB Total number of behaviors discovered that are
previously unknown.

NUS Total number of states discovered that are
previously unknown.

Cost SR Running time of a search algorithm to generate
test cases in a test process (Section IV).

ST The total time (in minutes) used to search for test
cases (Section IV).

ET The total test case execution time of a test process
(Section IV).

AT The total time cost of a test process (Section IV),
AT = ET + ST.

Efficiency BOSR NUB/SR
BOST NUB/ST
BOET NUB/ET
BOAT NUB/AT

210

For Research Only

connects directly to PC0. PC0, PC1, PC2, and PC3 have
Windows 7 operating system installed and have Intel Core i5-
4210M 2.6G Hz with 8G RAM. The Controller is installed with
the Ubuntu 12.10 operating system with Intel Core L9400 1.86G
Hz with 3.8G RAM.

The test program deployed on Controller automatically
generates test cases (Section III-C), executes test cases (Section
IV-D), conducts online testing of the Jitsi application deployed
on PC0, and processed testing results (Section IV-D). To
support the automatic process of ASUBE, we developed
required testing APIs based on the source code of Jitsi.

The state machine of the initial test model of the case study
is shown in Fig 1, which consists of four states and six
transitions. The two key system variables used to define system
states are “number of active calls” and “video quality of calls”.
For example, the Connected_1 state is represented as: activecall
= 1, videoquality = good. The activecall variable stores the
number of active calls at a given time and the videoquality stores
video quality of the current active call(s) measured with the Peak
Signal to Noise Ratio (PSNR) metric [28]. Simply speaking,
PSNR compares a transmitted figure with the original figure and
give the quality value of the transmitted one. To assess the video
quality, we take 10 screenshots of both the videoconference in
an uncertain network condition and the one in a normal network
condition, get 10 PSNR values by calculating corresponding to
the 10 couples of screenshots, and finally use the average of the
10 PSNR values as the output videoquality value. We
implemented such videoconference video quality assessment.

Let’s take an example of behavior b = (Idle, null, dial,
network condition, Connected_1). The observed behavior is that
the client deployed on PC0 dials the client on PC1 in the
network condition specified by network condition of b, and a call
of high video quality (measured by PSNR to get a high value,
such as 3 in Fig 2, of the average quality of the pictures from the
video) between the two clients is created. The original test model

describes that a video call made by Jitsi should be in high video
quality when the network environment is normal. Otherwise,
Jitsi makes calls in low video quality or even fails to make video
calls, which are uncertain (and previously-unknown) behaviors
that need to be automatically discovered with ASUBE.

B.� Research Questions
Our overall objective is to assess the cost-effectiveness of

ASUBE to discover unknown system behaviors. However,
combining ASUBE with different search algorithms leads to
various degrees of cost-effectiveness. We selected three search
algorithms to be integrated with ASUBE: (1+1) Evolutionary
Algorithm ((1+1) EA), Genetic Algorithm (GA), and
Alternating Variable Method (AVM). Random Search (RS) was
used as the comparative baseline. We will answer the following
two research questions: RQ1: Are AVM, (1+1) EA and GA
effective regarding discovering unknown behaviors comparing
with RS? RQ2: Which of the three selected search algorithms
fits the best regarding discovering unknown behaviors?

C.� Experiment Design
To address RQ1 and RQ2, we integrated the selected search

algorithms ((1+1) EA, GA, and AVM) with ASUBE and
compared results with the ones obtained when combining
ASUBE with RS. To answer RQ1 and RQ2, the results were
evaluated based on the cost, effectiveness, and efficiency
metrics defined in Table II.

D.� Experiment Execution
In our experiments, all the algorithms were run up to 2000

generations each time. We collected all observed system
behaviors from test case execution, test cases generated by
ASTCG (Section IV-C), and time taken by each test process. We
configured GA with a population size of 100, a crossover rate of
0.75, and a 1.5 bias for rank selection, as recommended by [10].
A standard one-point crossover was used, and mutation of a
variable was set according to the standard probability 1/n, where
n is the number of variables. Such mutation strategy was also
used in (1+1) EA. We generated 5 and 10 test cases in every test
cycle to apply the four search algorithms. We ran every test
process (in total 8, i.e., four algorithms and two choices of the
number of test cases to generate in one test cycle) 10 times to
reduce the effect of the randomness of the algorithms on the
results.

E.� Results and Analysis
To answer RQ1 and RQ2, we applied the four algorithms

individually with an option in either generating 5 test cases per
cycle or generating 10 per cycle. Each test process has 10 test
cycles. The whole experiment took about 305 hours to finish the
total 80 test processes. The average of ten runs of the experiment
is presented in Table III and Table IV. Based on the guidelines
for reporting results for search-based software engineering
problems [7], we applied Vargha and Delaney statistics (�
�)
and Mann Whitney U Test (p-value) to compare the four
selected search algorithms for uncovering unknown behaviors
in uncertain networks. In our context, �
� is used to compare all
the effectiveness and efficiency measures of a pair of search
algorithms. If �
� is 0.5, the two algorithms are equivalent. If
�
� is greater than 0.5, the first algorithm in the pair has higher
chances to obtain better efficiency than B. For Mann Whitney U

TABLE III. RESULTS FOR TEST CASES PER CYCLE (10 TEST CASES)

Metric RS AVM (1+1) EA GA
NUB 20.56 19.5 33.56 21.75
NUS 7 6.5 7.44 8
SR 627 1021.67 189.33 342.5
ST(minutes) 11.979 11.685 2.534 4.432
ET(minutes) 255 227 306 285
AT(minutes) 267 239 309 289
BOSR 0.0328 0.0191 0.1773 0.0630
BOST 1.7163 1.6688 13.2439 4.9075
BOET 0.0804 0.0857 0.1095 0.0762
BOAT 0.0768 0.0815 0.1086 0.0751

TABLE IV. RESULTS FOR TEST CASES PER CYCLE (5 TEST CASES)

Metric RS AVM (1+1) EA GA
NUB 19.71 14.875 20.25 18.67
NUS 7.286 6.5 6.5 7.67
SR 527 459.625 74.625 645
ST(minutes) 5.66 3.919 0.7045 4.752
ET(minutes) 173 146 162 178
AT(minutes) 178 150 163 182
BOSR 0.0374 0.0324 0.2714 0.0289
BOST 3.4823 3.7956 28.7437 3.9289
BOET 0.1138 0.1013 0.1249 0.1048
BOAT 0.1102 0.099 0.1243 0.1021

211

For Research Only

Test, we choose the significance level of 0.05, i.e., if p-value is
less than 0.05, there is a significant difference. The results of the
comparison are presented in Table V. In Table V, the number 5
or 10 used in the first column means the number of test cases
generated per test cycle, and the A and p in the second column
mean �
� and p-value respectively.

Through rows SR and ST(min) in Table III, one can see that
ASUBE with (1+1) EA used the least time of running each
algorithm and searching for unknown possible system behaviors.
Also, note that, in Table III, though AVM used the most time
among the search algorithms, RS still took more time than AVM.
It is because the time cost of once search is increasing for the
accumulated historical information. Similar results were
obtained when generating 5 test cases in every test cycle (see
rows SR and ST(min) in Table IV).

Through rows BOST, BOSR, BOET, and BOAT in Table III
and Table IV, it can be seen that (1+1) EA performed the best
regarding all the efficiency measures. Through columns BOSR,
BOST, BOET and BOAT in Table V, one could find the
following key observations :1) (1+1) EA performs significantly
better than RS in terms of BOST and BOSR, 2) (1+1) EA
performs significantly better than AVM and GA in terms of all
the efficiency measures, 3) RS, AVM, and GA do not have a
significant difference when generating 10 test cases per test
cycle, 4) The same results were obtained when generating 5 test
cases per test cycle.

Based on the results, we answer RQ1 as follows: (1+1) EA
significantly outperforms RS, which is not the case for AVM
and GA. For RQ2, we recommend using (1+1) EA with ASUBE
since (1+1) EA performed significantly better than the rest of the
algorithms regarding the efficiency measures.

F.� Discussion and Experience

Based on the results reported in Table III, Table IV, and
Table V, we see that regarding the efficiency measures, (1+1)
EA performed significantly better than all the other algorithms.
One of the key reasons is that (1+1) EA is a global search
algorithm that uses only mutation operator to explore the search
space rather than looking for solutions nearby to the existing
ones. A GA, on the other hand, uses a mutation operator to
explore and also uses a crossover operator to exploit nearby
solutions and hence require more time to explore the search
space. Thus, we may conclude that in our case best solutions are
scattered across the search space and thus (1+1) EA was
successful in finding the best solutions quickly. Due to the same
reason, the performance of AVM was not good since it is a local
search algorithm and it focused on searching the best solutions
nearby the existing ones.

G.� Threats to Validity
To reduce construct validity threats, we compare the four

algorithms with the same metrics, i.e., new states and new
transitions discovered via ASUBE. The same stop criteria, same
mutation operator, and the same number of generations are used
in search algorithms to avoid any bias. A possible threat to
internal validity is that we conducted the experiments with only
one set of settings for the search algorithms. However, these
current settings fit with the common guidelines in the literature
[37]. The generalization of the result is a typical external threat
to validity. Currently, we only evaluated our approach with one
case study. In the future, more case studies are needed to
generalize the results.

VI.�RELATED WORK
In this section, we discuss techniques that are closely related

to our work, from the aspects of online testing, model evolution,
and uncertainty-aware testing.

A.�Online Testing
Larsen et al. [4][35] presented an online black-box testing

tool, named as T-UPPAAL, for model-based testing of real-
time embedded systems. T-UPPAAL generates one test case
from a state machine and its assumed environment specifying
required and allowed observable behaviors of the SUT, at a
time, and simultaneously executes it. T-UPPAAL generates
test inputs iteratively using the implemented randomized
testing algorithm, which randomly chooses input events of the
SUT and randomly sets the delay used to wait for the output
until an input event finishes the execution. Hielscher et al. [31]
presented the PROSA framework, which aimed to enable
proactive self-adaptation of service-based applications by
using online testing to detect changes and deviations between
SUT and its specifications, based on which adaptations could
be triggered. Their online testing process includes: generating
test cases from specifications, executing test cases, and
adapting the application based on the test results. Similarly,
Sammodi et al. [25][32] used online testing to provide
enhanced proactive adaptation capabilities to service-based
applications. The authors proposed a usage-model updating
and adaptation mechanism based on test results. The usage
model records if the services are used, and the test cases
generated online are to enhance the coverage of the usage

TABLE V. RESULTS OF COMPARISON AMONG ALGORITHMS

 NUS NUB BOST BOSR BOET BOAT
AVM-
RS-10

A 0.37 0.62 0.75 0.58 0.16 0.25
p 0.72 0.73 0.42 0.85 0.28 0.42

GA-
RS-10

A 0.55 0.65 1.00 0.90 0.40 0.70
p >0.99 >0.99 >0.99 >0.99 >0.99 >0.99

EA-
RS-10

A 0.52 1.00 1.00 1.00 0.88 0.88
p >0.99 0.04 0.03 0.03 0.14 0.14

AVM-
EA-10

A 0.31 0.01 0.00 0.00 0.01 0.00
p 0.24 <0.01 <0.01 <0.01 <0.01 <0.01

EA-
GA-10

A 0.50 1.00 0.91 0.93 0.86 0.86
p >0.99 <0.01 0.01 <0.01 0.02 0.02

AVM-
GA-10

A 0.31 0.35 0.13 0.16 0.26 0.23
p 0.33 0.46 0.05 0.08 0.24 0.17

AVM-
RS-5

A 0.28 0.18 0.51 0.37 0.35 0.33
p 0.15 0.04 0.95 0.46 0.39 0.33

GA-
RS-5

A 0.61 0.35 0.52 0.38 0.33 0.42
p 0.62 0.56 >0.99 0.66 0.51 0.83

EA-
RS-5

A 0.34 0.57 0.98 0.83 0.60 0.64
p 0.33 0.68 <0.01 0.02 0.53 0.39

AVM-
EA-5

A 0.46 0.14 0.00 0.00 0.21 0.20
p 0.81 0.01 <0.01 <0.01 0.06 0.04

EA-
GA-5

A 0.25 0.62 1.00 1.00 0.75 0.75
p 0.24 0.60 0.01 0.01 0.27 0.27

AVM-
GA-5

A 0.18 0.22 0.50 0.58 0.37 0.41
p 0.13 0.21 >0.99 0.77 0.63 0.77

212

For Research Only

model. To compare with these works, ASUBE aims a different
objective, i.e., dynamically discovering unknown system
behaviors under uncertain networks, addressed by
implementing an adaptive search-based approach during the
online testing process.

Walkinshaw et al. [34] applied online testing to reverse
engineer behavior models of software systems. In every cycle,
their approach generated a specified number of test cases from
a Partial LTS model (PLTS), ran the generated test cases, and
inferred the PLTS from test execution traces. Meinke and
Sindhu [33] applied learning-based testing (LBT) techniques to
test reactive systems. They modeled reactive systems as Kripke
structures [36] and introduced a learning algorithm named as
Incremental Kripke Learning (IKL) for model inference using
a model checker. To compare with these works, ASUBE
discovers unknown system behaviors under uncertain network
environments. Same test cases could repeatedly be generated
by these approaches across test cycles, which might lead to low
efficiency of the overall approaches. Our approach, however,
maintains all the historical test information as ASUBE
maintains a test case repository and a system behavior
repository. The adaptive search-based testing approach of
ASUBE utilizes the information adequately.

B.� Model Evolution
There are some works related to model evolution. For

example, Ghezzi et al. [12] proposed an approach to recover the
specification of a black-box software component from its run-
time behaviors. It uses a deterministic finite state machine to
model the partial behaviors of SUT, and then a finite state
machine is generalized via graph transformation rules.
Walkinshaw et al. [14] proposed an extended finite state
machine inference technique, which was based on WEKA [26]
and Daikon. However, none of these pieces of work evolves
models with uncertainty captured.

The work that is most relevant to our approach is the
UncerTolve framework by Zhang et al. [11] for interactively
evolving Belief Test Ready Models (BMs) with uncertainty
information explicitly captured. Such uncertainty information
needs to be specified by test engineers to capture their beliefs
about model elements of a BM, associated with one or more
uncertainties due to “lack of knowledge” about a BM. Taking
initial BMs of Cyber-Physical Systems (CPSs), known
subjective uncertainty, and real data from the operation of CPSs
as inputs, UncerTolve validates the syntactic correctness and
conformance of BMs against real operational data, evolves
objective uncertainty measurements, and evolves state
invariants and guards of transitions with model execution and
Daikon [13]. To compare with UncerTolve, we, however, take
an online testing approach, which is dynamic and incremental,
and particularly focus on uncertain network environments.

C.� Uncertainty-aware Testing
Walkinshaw and Fraser [27] proposed a test generation

approach that inferred a behavioral model of SUT using Genetic
Programming (GP) from test execution. Test cases whose
predictions elicit the highest degree of uncertainty concerning
the current model are generated. Test case execution results

were collected to update the behavioral model. Qin at al. [8]
proposed sample-based interactive testing (SIT) approach for
testing self-adaptive applications, focusing on inadequate
consideration of environmental dynamics and uncertainty. Their
proposed approach makes the assumptions that the input space
of a self-adaptive application could be systematically split,
adaptively explored, and mapped to the testing of the
application’s different behaviors. Their approach relies on an
interactive application model represented by a tuple capturing
interactions between an application and its environment and
generates test cases with adaptive sampling (splitting the input
space and mapping the splitting results to the application’s
behaviors under test).

Uncertainty-wise test case generation and minimization
strategies relying on test ready models explicitly specifying
subjective uncertainty were proposed by Ali et al. [3]. Test ready
models are BMs developed with the Uncertainty Modeling
Framework (UncerTum), which defines a set of UML Profiles.
BMs are composed of two types of UML diagrams: belief class
diagrams and belief state machines (BSMs). Two test case
generation strategies were defined for the test case generation.
Because the number of generated test cases might be large and
test resource is often limited, the authors of [3] also proposed
four uncertainty-wise, multi-objective search-based test case
minimization strategies, which share the objectives of
minimizing the number of test cases, maximizing the transition
coverage, and maximizing four different uncertainty-related
objectives.

To compare with the above-mentioned related works, our
work presented in this paper focuses on uncertainty inherent in
information networks. Testing software systems (e.g., CPS) in
the presence of uncertain network conditions is not focused by
existing works.

VII.�CONCLUSION
These days, software systems commonly use information

networks for communication. Given the inherent uncertainty in
such networks, it is necessary to discover behaviors of software
systems under such uncertainty. To this end, we proposed an
online, iterative, and incremental model-based testing approach
to evolve test models with search algorithms. Our ultimate goal
was to systematically and automatically discover previously
unknown expected behaviors of a software system in uncertain
network conditions. We proposed an adaptive search-based test
case generation strategy to generate test cases dynamically. We
evaluated our approach with an open source video conferencing
case study—Jitsi. Also, we evaluated four commonly used
search algorithms. (1+1) Evolutionary Algorithm (EA) turned
out to be the best search algorithm to discover unknown
behaviors caused by uncertain network conditions. In particular,
(1+1) EA performed better than the other algorithms.

ACKNOWLEDGMENT
This work is partially supported by National Natural Science

Foundation (Grant Nos. 61690204, 61472180 and 61502228) of
China and Natural Science Foundation of Jiangsu Province
under Grant No. BK20150589 of China, and partially funded by
the MBT4CPS project (Number:240013) funded by Research
Council of Norway. Tao Yue and Shaukat Ali are funded by

213

For Research Only

MBT4CPS and Zen-Configurator projects in Norway.

REFERENCES
[1]� M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based

testing approaches,” Software Testing, Verification and Reliability, vol.
22, no. 5, pp. 297–312, 2012.

[2]� A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A
survey on model-based testing approaches: a systematic review,” in
Proceedings of the 1st ACM international workshop on Empirical
assessment of software engineering languages and technologies: held in
conjunction with the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2007. ACM, 2007, pp. 31– 36.

[3]� S. Ali, H. Lu, S. Wang, T. Yue, and M. Zhang, “Uncertainty- wise testing
of cyber-physical systems,” in Advances in Computers. Elsevier, 2017,
vol. 107, pp. 23–94.

[4]� M. Mikucionis, K. G. Larsen, and B. Nielsen, “T-uppaal: Online model-
based testing of real-time systems,” in Proceedings of the 19th IEEE
international conference on Automated software engineering. IEEE
Computer Society, 2004, pp. 396–397.

[5]� M. Noto and H. Sato, “A method for the shortest path search by extended
dijkstra algorithm,” in Systems, Man, and Cybernetics, 2000 IEEE
International Conference on, vol. 3. IEEE, 2000, pp. 2316– 2320.

[6]� P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics and
image processing, vol. 14, no. 3, pp. 227–248, 1980.

[7]� A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Software
Engineering (ICSE), 2011 33rd International Conference on. IEEE, 2011,
pp. 1–10.

[8]� Y. Qin, C. Xu, P. Yu, and J. Lu, “Sit: Sampling-based interactive testing
for self-adaptive apps,” Journal of Systems and Software, vol. 120, pp.
70–88, 2016.

[9]� S. Elbaum and D. S. Rosenblum, “Known unknowns: testing in the
presence of uncertainty,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM,
2014, pp. 833–836.

[10]� S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, “Generating test data
from ocl constraints with search techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 10, pp. 1376–1402, 2013.

[11]� M. Zhang, S. Ali, T. Yue, and R. Norgre, “Uncertainty-wise evolution of
test ready models,” Information and Software Technology, vol. 87, pp.
140–159, 2017.

[12]� C. Ghezzi, A. Mocci, and M. Monga, “Synthesizing intensional behavior
models by graph transformation,” in Proceedings of the 31st International
Conference on Software Engineering. IEEE Computer Society, 2009, pp.
430–440.

[13]� M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Transactions on Software Engineering, vol. 27, no. 2, pp. 99–123,
2001.

[14]� N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite state
machine models from software executions,” Empirical Software
Engineering, vol. 21, no. 3, pp. 811–853, 2016.

[15]� R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Auto- mated
test suite generation for time-continuous simulink models,” in
Proceedings of the 38th international conference on software engineering.
ACM, 2016, pp. 595–606.

[16]� S. Ali and H. Hemmati, “Model-based testing of video conferencing
systems: challenges, lessons learnt, and results,” in Software Testing,
Verification and Validation (ICST), 2014 IEEE Seventh International
Conference on. IEEE, 2014, pp. 353–362.

[17]� Y.-M. Baek and D.-H. Bae, “Automated model-based android gui test-
ing using multi-level gui comparison criteria,” in Automated Software
Engineering (ASE), 2016 31st IEEE/ACM International Conference on.
IEEE, 2016, pp. 238–249.

[18]� K. Xu, M. Gerla, and S. Bae, “How effective is the ieee 802.11 rts/cts
handshake in ad hoc networks,” in Global Telecommunications
Conference, 2002. GLOBECOM’02. IEEE, vol. 1. IEEE, 2002, pp. 72–
76.

[19]� G. Huston, “Tcp in a wireless world,” IEEE Internet Computing, vol. 5,
no. 2, pp. 82–84, 2001.

[20]� R. Ludwig and M. Meyer, “The eifel detection algorithm for TCP,” RFC,
vol. 3522, pp. 1–14, 2003.

[21]� M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R.
Vijayakumar, “Providing quality of service over a shared wireless link,”
IEEE Communications magazine, vol. 39, no. 2, pp. 150–154, 2001.

[22]� W. Jiang and H. Schulzrinne, “Modeling of packet loss and delay and
their effect on real-time multimedia service quality,” in PROCEEDINGS
OF NOSSDAV’2000. Citeseer, 2000.

[23]� A. Arcuri, “It really does matter how you normalize the branch dis- tance
in search-based software testing,” Software Testing, Verification and
Reliability, vol. 23, no. 2, pp. 119–147, 2013.

[24]� Y. Zhang, A. Finkelstein, and M. Harman, “Search based require- ments
optimisation: Existing work and challenges,” Lecture Notes in Computer
Science, vol. 5025, pp. 88–94, 2008.

[25]� D. Greer and G. Ruhe, “Software release planning: an evolutionary and
iterative approach,” Information and software technology, vol. 46, no. 4,
pp. 243–253, 2004.

[26]� G. Holmes, A. Donkin, and I. H. Witten, “Weka: A machine learning
workbench,” in Intelligent Information Systems, 1994. Proceedings of the
1994 Second Australian and New Zealand Conference on. IEEE, 1994,
pp. 357–361.

[27]� N.WalkinshawandG.Fraser,“Uncertainty-drivenblack-boxtestdata
generation,” in Software Testing, Verification and Validation (ICST),
2017 IEEE International Conference on. IEEE, 2017, pp. 253–263.

[28]� Q. Huynh-Thu and M. Ghanbari, “Scope of validity of psnr in
image/video quality assessment,” Electronics letters, vol. 44, no. 13, pp.
800–801, 2008.

[29]� S. Hemminger et al., “Network emulation with netem,” in Linux conf au,
2005, pp. 18–23.

[30]� https://jitsi.org.
[31]� J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore, “A frame-

work for proactive self-adaptation of service-based applications based on
online testing,” Towards a Service-Based Internet, pp. 122–133, 2008.

[32]� O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl,
“Usage-based online testing for proactive adaptation of service-based
applications,” in Computer Software and Applications Conference
(COMPSAC), 2011 IEEE 35th Annual. IEEE, 2011, pp. 582–587.

[33]� K. Meinke and M. A. Sindhu, “Incremental learning-based testing for
reactive systems,” in International Conference on Tests and Proofs.
Springer, 2011, pp. 134–151.

[34]� N. Walkinshaw, J. Derrick, and Q. Guo, “Iterative refinement of reverse-
engineered models by model-based testing,” in International Symposium
on Formal Methods. Springer, 2009, pp. 305–320.

[35]� A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A.
Skou, “Testing real-time systems using uppaal,” in Formal methods and
testing. Springer, 2008, pp. 77–117.

[36]� A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without bdds,” Tools and Algorithms for the Construction and Analysis
of Systems, pp. 193–207, 1999.

[37]� A. Arcuri and G. Fraser, “On Parameter Tuning in Search Based Software
Engineering,” Proc. Int’l Symp. Search Based Software Eng., 2011.

[38]� E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec 1959.

214

For Research Only

