
 
 
 

Software Engineering Group 
Department of Computer Science 
Nanjing University 
http://seg.nju.edu.cn 

 
 
 
 

Technical Report No. NJU-SEG-2019-IC-004 

2019-IC-004 

 
 

Incremental Online Verification of Dynamic Cyber-Physical 

Systems 

Lei Bu, Shaopeng Xing, Xinyue Ren, Yang Yang, Qixin Wang, Xuandong Li 

 
 
 
 
 

Design, Automation & Test in Europe 2019 
 
 
 
 
 
 
 
 
 

Most of the papers available from this document appear in print, and the corresponding copyright is held by the 

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is 

prohibited. 



Incremental Online Verification of Dynamic
Cyber-Physical Systems

Lei Bu∗, Shaopeng Xing∗, Xinyue Ren∗, Yang Yang∗, Qixin Wang†, and Xuandong Li∗
∗State Key Laboratory of Novel Software Technology,

Department of Computer Science and Technology, Nanjing University, Nanjing, Jiangsu, P.R.China
†Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Abstract—Periodically online verification has been widely rec-
ognized as a practical and promising method to handle the
non-deterministic and unpredictable behavior of dynamic CPS
systems. However, it is a challenge to keep the online verification
of CPS systems finishing quickly in time to give enough time
for the running system to respond, if any error is detected.
Nevertheless, the problems under verification for each cycle
are highly similar to each other. Most of the differences are
caused by run-time factors like changing of parameters’ values
or the reorganization of active components in the system. Under
this investigation, this paper presents an incremental verification
technique for online verification of CPS systems. A method is
given to distinguish the differences between the problem under
verification and the previous verified problem. Then, by reusing
the problem space of the previous verified problem as a warm-
start base, the modified part can be introduced into the base,
which can be solved incrementally and efficiently. A set of case
studies on a real-case train control system is presented in this
paper to demonstrate the performance of the incremental online
verification technique.

I. INTRODUCTION

By combining communication, computation, and control

(3C), Cyber-Physical Systems (CPS) [1] have comprehensive

knowledge of their working environment and the other compo-

nents of the system. Thus, CPS systems can generate accurate

instructions, achieve complex targets and gain advantages like

reliability and efficiency. However, it is a challenge to keep

such kind of complex and dynamic systems working safely.

To assure the safety of the system, modeling and verification

of the system’s behavior before it is deployed online is a

widely used technique. If the formal model is built accurately

and passes the verification, then the safety of the system is

guaranteed. Formal verification techniques like model check-

ing [2] have been proven successful for many categories of

applications, e.g., hardware design. Therefore, it also attracts

lots of interest to apply model checking on CPS systems.

Different from other stand-alone devices, the behavior of

CPS systems is highly dynamic. Considering a complex sys-

tem, the structure of the components in the system can be reor-

ganized freely. Considering one component, the values of var-

ious control parameters in the system are generated/collected

online and updated quickly with high non-determinism. Recall

that the basic idea of model checking is to traverse the state

space of the behavior model automatically and efficiently to

reveal any potential bug. If the complete state space of CPS

is not predictable in advance, the system is not verifiable in

the design phase in advance.
Online modeling and verification [10], [11], [12], [13], [14]

is a promising approach to handle such problems. The basic

idea is to take snapshots of the system periodically and fre-

quently. The structure of the current system and the numerical

values of all the running parameters will be concretized and

kept still in the short-run future. Then, the system behavior

in the current cycle is predictable and describable according

to the set of the fixed configurations. Therefore, we can get

a concrete model according to the current configuration and

check the bounded state space of this model as the model

only describes the behavior of the system in the given time-

bounded short-run future. If any unsafe state is reachable

in the bounded state space, the online CPS system will be

stopped and switched to an application-dependent fall-back

plan immediately to guarantee the safety of the system.
Clearly, the online verification procedure must be as fast as

possible to discover bugs before they happen, and to provide

enough time for the online systems to react. Due to the exis-

tence of both discrete control modes transitions and continuous

real-time behavior in CPS systems, hybrid automata [3] is

the natural modeling language for CPS systems. As CPS

systems have many components involved, the complete model

is a network of hybrid automata. Nevertheless, verification of

composed hybrid automata is extremely complex. The size of

the problem that can be verified offline is rather limited.
To scale the size of the system that the online verification

procedure can handle, and to enhance the performance of the

verification, we take a re-investigation into the problem under

verification. We find the differences between the problems for

each cycle mainly come from the following two aspects:

• Most of the non-determinism in the behavior space of

CPS systems are caused by the changing of the parame-

ters’ values in each cycle. For example, for a train running

on a track, the control model for a certain train does not

change. The reason we need to verify it again in the next

cycle is that many parameters’ values are changed, thus

the state space is changed accordingly.

• Another aspect which differs the problem space of the

system in two consecutive cycles is the continuous re-

organization of active components in the system. Still,

take a train control system for example, the number of

trains running on the track keeps changing. Certain trains

782978-3-9819263-2-3/DATE19/ c©2019 EDAA

For Research Only



can arrive at their destination and leave the track, while

several new trains may just depart. When the organization

of the active components is changed, clearly the problem

space is changed.

Nevertheless, in both of the cases, the major part of the

problem space of the two consecutive cycles is the same.

For the first case, the model structures are the same for

each component. For the second case, the models for the

components which are still under operation are the same.

In another word, the problems under verification for two

adjacent cycles share a large common ground with each other.

Therefore, it’ll be very useful if we can verify the new problem

by reusing the results of the previous verified one as the two

problems are similar to each other.
The online verification of each cycle is a typical bounded

reachability verification problem [10], [12], [14]. In linear

systems, such problems are translated to feasibility problems

of a set of linear constraints with respect to the state space

of the certain cycle respectively. Then, the feasibility problem

can be answered by constraint solving tools like SMT solvers

or Linear Programming (LP) solvers. To take advantage of the

powerful constraint solving techniques, this paper proposes a

method to summarize the differences between the constraint

sets with respect to the current cycle and the previous cycle

automatically. Then, the corresponding modified linear con-

straints can be updated on the previous problem space and “in-

cremental linear programming” technique [5] can be deployed

to reuse the problem space of the previous solved problem.

As a result, the latest problem can be solved efficiently.
To demonstrate the scalability and processing ability of such

an incremental verification approach, we conduct a set of

case studies on a complex real-case train control CPS system.

The experiments show that the performance is optimized

substantially. As a result, we can give the running system much

more time to conduct the fall-back plan when it is necessary.

II. BACKGROUND

A. Parametric Hybrid Automata
For a CPS system, the dynamic behavior of the system along

with time is a combination of both discrete control modes

transitions and continuous real time behavior. Furthermore, the

CPS system has intensive interactions with other collaborators

in the system and the environment. Many parameters’ values

in the system are collected online. Thus, parametric hybrid

automata [9] is a natural modeling language for CPS.
Definition 1: A parametric hybrid automaton (PHA) is a

tuple H = (X,Xp,Σ, V, V 0, E, α, β, γ), where

- X is a finite set of real-valued variables; Xp is a finite

set of free parameters; X ∩Xp = ∅;

- Σ is a finite set of event labels; V is a finite set of

locations; V 0 ⊆ V is a set of initial locations;

- E is a transition relation whose elements are of the form

(v, σ, φ, ψ, v′), where v, v′ are in V , σ ∈ Σ is a label, φ
is a set of transition guards of the form f(�y) ≤ a, and

ψ is a set of reset actions of the form x := f(�y), where

x ∈ X , a ∈ R, and y ∈ X ∪Xp

- α is a labeling function which maps each location in V to

a location invariant which is a set of variable constraints
of the form f(�y) ≤ a where y ∈ X ∪Xp, a ∈ R.

- β is a labeling function which maps each location in V to

a set of flow conditions which are of the form ẋ = g(�y)
where x ∈ X . For any v ∈ V , for any x ∈ X , there is

one and only one flow condition ẋ = g(�y) ∈ β(v), where

x ∈ X , y ∈ X ∪Xp.

- γ is a labeling function which maps each location in V 0

to a set of initial conditions which are of the form x = a
where x ∈ X and a ∈ R or a ∈ Xp. For any v ∈ V 0,

for any x ∈ X , there is at most one initial condition

definition x = a ∈ γ(v).

Given a PHA H = (X,Xp,Σ, V, V 0, E, α, β, γ), For all

the location invariants, flow conditions, transition guards and

initial conditions in H , if each f(�y) is a linear expression

in the form of
∑l

i=0 cixi and g(�y) is in the form of [a, b],
where xi ∈ X , ci, a, b ∈ R or Xp, we say this PHA is a

PLHA (parametric linear hybrid automaton). Furthermore,

given a PLHA H , if Xp is an empty set, we say this

parametric hybrid automaton is a classical concrete linear

hybrid automaton (LHA) as defined in [3].

B. Scenario-based Online Modeling and Verification

As the main idea of model checking is traversing the com-

plete state space of the system to find the bug, offline model

checking of dynamic CPS is infeasible due to the unpredictable

configurations. To address this problem, a natural strategy is

to carry out online model checking instead. The basic idea

is to periodically sense/collect the related CPS configurations

during run-time, and concretize the PHAs into conventional

hybrid automata. We then carry out bounded model checking

of the updated model to predict if the CPS system can reach

any unsafe states in the short-run future. If so, an alarm is

raised to trigger an application-dependent fall-back plan.

One problem that the designers are very interested in is

the safety-critical scenario validation problem, which asks

whether the system can reach certain unsafe states via a

certain sequence of actions. That is, if certain “scenario” can

happen [9], [15]. Typically, a scenario can be projected to each

component as a sequence of control modes/locations in the

structure of the model. Thus, the verification of the existence

of a certain scenario can be transformed to the reachability

problem of a path set which is composed of one path from

each automaton [9].

Such composed-path reachability verification of LHA has

been studied intensively. Study [4] presented a typical ap-

proach for such problems. It checks a group of paths at a

time, one path for each LHA. The reachability problem along

those specific paths can be reduced to a linear program and

be solved by LP easily. First, all of the paths are transformed

into a group of linear constraints automatically. Then, a few

constraints about the system integration according to the

synchronization events in each path will be added to ensure

that the components cooperate correctly.

Design, Automation And Test in Europe (DATE 2019) 783

For Research Only



Fig. 1. Sample Scenario And The Scenario-based Reachability Encoding

For example, Fig.1.A gives a simple scenario consisting of

three paths from different components: S, T , and K which

synchronize with each other by shared labels b, e, and f . Each

system has one variable, s for S, t for T , k for K. The flow

conditions for all the variable are unified as �̇x ∈ [0.9, 1.1] in

all the locations. The specification is whether the property s+
2t− 3k = 0 can be satisfied at the global location (s5, t5, k5).

In [4], a group of linear constraints is generated for these

three paths. The constraints encode the potential timed be-

havior corresponding to the paths. Take the path 〈t1〉 →
〈t2〉 → 〈t3〉 → 〈t4〉 → 〈t5〉 in T for example, we can use〈

ti
δti

〉
to indicate that the system has stayed in location ti

for time delay δi. The behavior of the system is represented

by

〈
t1
δt1

〉
→

〈
t2
δt2

〉
→

〈
t3
δt3

〉
→

〈
t4
δt4

〉
→

〈
t5
δt5

〉
.

For each location ti, two variables λi(t) and ζi(t) are

generated to represent the valuation of t when entering ti and

leaving ti after staying there by δi time units.
First, the time constraints enforced by the local system T

must be satisfied, which forms a group of linear constraints

about λi(t), ζi(t) and δti . Take the location t3 for example:

1.1: According to the flow condition, 1.1δt3+λ3(t) ≥ ζ3(t) ≥
0.9δt3 + λ3(t).

1.2: For the invariant 1 < t < 2, we have 1 < ζ3(t) < 2 and

1 < λ3(t) < 2.

1.3: For the transition guard t < 5 on the local transition g,

we have ζ4(t) < 5.

1.4: For the reset action t = 2 on the local transition d, we

have λ3(t) = 2.

Besides the local constraints for each component, synchro-

nization constraints will be added to ensure these components

cooperate accurately w.r.t. the synchronization events, which

are illustrated by SY N(event) in Fig.1.B.

2.1: For the event b shared by S and T , δt1 = δs1 + δs2.

2.2: For the variable communication in transition, e.g., s+t >
k in e, we have ζ3(s) + ζ3(t) > ζ2(k).

2.3: All the components have spent exactly the same time,

e.g., for S and T , we have δs1 + δs2 + δs3 + δs4 + δs5 =
δt1 + δt2 + δt3 + δt4 + δt5.

2.4: For reachability specification s + 2t − 3k = 0, we get

ζ5(s) + 2ζ5(t)− 3ζ5(k) = 0.

Above all, the scenario-based reachability analysis problem

is transformed into a feasibility problem of a set of linear

constraints. It is well-known that the feasibility problem of

linear constraints can be solved by LP technique efficiently.

III. INCREMENTAL VERIFICATION

In the last section, we give a quick review of the online mod-

eling and verification framework presented for CPS systems.

By taking the snapshot and freezing the dynamic run-time

aspects, a concrete static model of the system’s time-bounded

behavior in the short-run future is describable and verifiable.

Then scenario-based reachability verification is deployed to

check whether the certain dangerous scenario will happen

under the current configuration.

As the verification is conducted online, we have to finish

the verification as quickly as possible. If we cannot answer

the verification questions before the system configuration is

updated or the error happens, the result will be useless.

Furthermore, if a risk is reported by the verification, we need

to give the system enough time to respond. Otherwise, the

system can not avoid the dangerous error.

Basically, the online verification is checking the same prob-

lem on “different” systems periodically. The “same problem”

under verification here is the existence of certain bad scenarios,

which do not change, while the “differences” between the

system models in different snapshots are lightweight.

Recall that, the motivation of CPS has to be verified

online is that the running configuration of the system like

parameters’ values, organizations of active components and

etc., are changing frequently, which will cause the state space

of the system behavior to be changed correspondingly.

Despite whether the values of the parameters and/or the

organization of active components are changed, the major part

of the problem space under verification for two nearby cycles

are the same. For parameters update, the model structure keeps

the same for each component. For the reorganization of active

components, the parametric models for the components which

are still active are not changed. In another word, the problems

under verification share a large portion of common ground

with each other. Therefore, it’ll be very useful if we can verify

the new problem by reusing the result of the previous verified

one instead of starting from scratch.

Formally speaking, we build the static time-bounded model

M1 for cycle 1, verify M1 with respect to property p, and get

M1 � p. In cycle 2, either parameters and/or the organization

of active components in the system are updated. The corre-

sponding model for cycle 2 is M2. Now, we need to verify

whether M2 � p holds. Clearly, we can check this property as

an independent task. However, M1 and M2 are similar with

each other. We mark the differences between M2 and M1 is

M2
M1 = Δm. Can we reuse the verification effort devoted

in checking M1 � p to accelerate the checking of whether

M1 ⊕Δm � p?

As reviewed in Sect.II.B, the scenario-based reachability

problem is encoded into the feasibility problem of a set

of linear constraints, which can be solved by LP technique

efficiently. We mark the linear constraint set corresponding to

whether M1 � p as ρ1, and the constraint set for M2 � p as

ρ2. What we want is to accelerate the solving of ρ2 by taking

advantage of solving ρ1.

784 Design, Automation And Test in Europe (DATE 2019)

For Research Only



Fig. 2. Sample Parametric HA T

Luckily, incremental solving is a powerful mechanism sup-

ported in LP. When solving an LP problem, the structure like

“basis” is built for the problem space. This “basis” constitutes

a starting point for the solution of a nearby optimization

problem to save computational effort. Many techniques are

available in this context, like advanced basis [6], [7], warm-

start strategies [5] and etc, which are named as “Incremental

Linear Programming” in general. This method can signifi-

cantly reduce the number of iterations and the computation

time. Most of the optimization tools have the ability to reuse

the basis of the original problem.

Therefore, as a user of LP technique, the problem we need

to concern here is how to locate the Δρ = ρ2 
 ρ1, which is

the set of modified linear constraints, including the set of con-

straints added, deleted and changed on ρ1, caused by system

dynamics like parameter update and system reorganization.

Then, incremental LP techniques can be applied to deploy Δρ
to the problem basis constructed when solving ρ1, and reuse

the basis to accelerate the solving of the feasibility problem

of ρ2 which is corresponding to whether M2 � p.

In the following, we describe how to generate the differen-

tial constraint set Δρ from the two main directions: Parameter

Update and System Reorganization:

Parameter Update: During a system is in operation, the

values of the control parameters used in the system are updated

frequently, which will affect the system behavior accordingly.

Recall the LP encoding mechanism described in Sect.II.B, the

updating of the parameters’ values will only affect the related

constraints in the local linear constraint set of the component.

For example, Fig.2 is a parametric version of model T in

Fig.1.A, that the reset action on transition d is modified to

t := m from t := 2, where m is a free parameter. Furthermore,

the flow condition on location t3 is modified to ṫ ∈ [p, q],
where p and q are free parameters.

The corresponding constraints in items 1.1 and 1.4 from

Sect.II.B are translated to qδt3 + λ3(t) ≥ ζ3(t) ≥ pδt3 + λ3(t),
and λ3(t) = m respectively, where p, q,m are free parameters,

and their values can be updated in each cycle according to the

run-time numeric values.

System Reorganization: Except for parameter update, the

dynamic behavior of the CPS system also comes from the

reorganization of active components in the system. For exam-

ple, for a railway track, the number of trains running on the

track is changing all the time. Another example is industrial

IoT, machines can reorganize with respect to different tasks

on demand. For systems like these dynamic CPS systems,

the organization of the active components in each cycle keeps

changing. Therefore, the problem model under verification will

be changed accordingly.

The generation of differential constraint set Δρ for system

reorganization is more difficult than parameter update which

only needs to update the coefficients’ values in the constraint

set. For system reorganization, clearly, the constraints of the

components left the system have to be deleted from the

constraint set and the constraints of the components which just

join the system will be added. Besides, we have to deal with

the constraints about the synchronization among components.

Now, we still use the scenario given in Fig.1 for example to

illustrate the generation of the Δρ.
The system given in Fig.1 has three components S,T and

K included. Suppose in the next cycle, T lefts the system,

while a new system L joins the system. To show this in

Fig.3.A graphically, T is covered by a grey ellipse with shadow

and L is surrounded by a red rectangle. The corresponding

modification of the synchronization-related linear constraints

are shown in Fig.3.B as follows:

Fig. 3. System Reorganization Related Encoding Modification Demonstration

• Shared labels will be reanalyzed.

– Shared label b between S and T is a local event

now, as T is removed. As a result, the corresponding

synchronization constraint Synb, equation 2.1 in

Sect.II.B, is deleted.

– Local label h in K becomes a shared label in the

new system, as it is shared by K and L. Therefore,

the corresponding constraint Synh will be added.

– Shared label e of S, T , and K are now shared by S,

K, and L. Therefore Syne will be updated.

• Final synchronization constraint will be updated.

– As components in the system are changed, the final

synchronization constraint will be updated as we

have to make sure the total time spent by L must

equal with other components.

– The encoding of the reachability property will be

updated too, if the new property is related to any

changed component.

Above all, by combing the constraints modified in the stage

of both aspects, we can generate the differential constraint

set Δρ = ρ2 
 ρ1 between the models of the system in two

adjacent cycles. By introducing Δρ into the “advanced basis”

of the LP procedure for solving ρ1, the same LP procedure can

be “warm-started” quickly and solve ρ2 much more efficiently.

IV. CASE STUDIES

In order to illustrate the feasibility of the incremental

verification technique presented in this paper, we conduct a set

of case studies on a state-of-the-art train control CPS system.

Design, Automation And Test in Europe (DATE 2019) 785

For Research Only



A. System Description

The system is a communication-based train control system

(CBTC), which is the state-of-the-art train control system and

a typical CPS system introduced in [10]. The parametric model

of this CBTC system is given in Fig.4. The CBTC system com-

municates with the control center frequently, twice per second,

to get the latest movement authority (MA) which indicates

the place that the train is permitted to go before receiving a

new command. Then the CBTC system will compute the new

velocity curve for the next operation cycle autonomously by

taking account of the MA it received and the current operation

status of the train like weather condition, track condition, train

mass and etc. Clearly, these parameters’ run-time values are

highly random and these values are difficult, even impossible,

to predict offline.

Fig. 4. PHA Model For Traini and Control Center

During a CBTC system is in operation, there are several

safety rules that the system must obey. For example, as the

CBTC system relies on communication, once the communi-

cation channel is broken and trains have not received MA

update from the control center for 5 seconds, all the trains

will brake emergently to avoid colliding with each other. The

scenario which is under verification is when the communica-

tion corrupts, whether train Traini will collide with the train

ahead Traini−1. The complete composed system to verify is

a network consists of models from Train1 to Trainn. The

reachability specification is whether the physical location of

Traini will equal with Traini−1.

B. Experimental Data

The incremental verification mechanism presented in this

paper is implemented in BACHOL [16] which supports online

model checking of PHA models. The reason we use BACHOL

is that it is a typical LP based checker designed for online

verification of CPS. The LP solver under BACHOL is IBM

CPLEX [8] which supports “Incremental LP” by “advanced

basis” technique [6], [7]. The experiments are conducted on

a Think Center (Windows 7 Professional 64 bit, Intel Core2

Quad CPU 3.1GHz, 4GB RAM).

To demonstrate the processing capacity to handle large

dynamic CPS systems by incremental verification, we deploy

the technique on a railway system which has 100 trains

running on it. We generate a script which includes the detailed

information for each cycle, e.g. the list of active trains in that

cycle and the parameters’ readings of the certain train. The

script has data of 1000 cycles included. As the communication

period of the CBTC system is 500 ms, the script describes the

system behavior in 500 seconds.

The first experiment considers parameter update. In another

word, none of the trains join or quit the track during operation.

The statistic data is shown below in Table.I. The time spent on

model building and LP problem construction for each cycle

is marked as “Build”, the time spent for the LP solving is

marked as “Solve” and the time for the complete workflow is

marked as “Total”. We report the data for the non-incremental

way which builds a new problem from scratch then solve,

marked as “Non-Incre.” and the incremental way as “Incre.”.

We also report the reduction ratio (“Speedup”) and standard

deviation (“Std.”). From these data, we can see that by

reusing the previous problem basis, and check the new model

incrementally, the time spent for each step in the cycle is

reduced significantly. For example, the mean time for problem

construction is deduced from 158.98 ms to 84.88 ms, that

46.6% of the time is saved. While for LP solving, the time is

deduced from 20.52 to 4.81, which means 85.6% of the time

was saved. In total, half of the time is saved.

TABLE I
STATISTICS DATA ON 1000 CYCLE TRACE OF PARAMETER UPDATE

Build Solve Total
Tech. Mean(ms) Std. Mean(ms) Std. Mean(ms) Std.

Non-Incre. 158.98 33.44 20.52 2.15 179.5 33.4

Incre. 84.88 3.34 4.81 1.41 89.6 4.3

Speedup 46.6% 85.6% 50.1%

In the above experiment, the structure of the system re-

mains stable. In real cases, the organization of the system

is dynamic as several trains may quit as they have reached

their destinations and some other trains will join the system

as they just depart from the station. Therefore, the second

experiment we conduct includes both parameter update and

system reorganization. First, each train may enter and leave the

system randomly. Meanwhile, if a train is onboard, the running

parameters keep changing. The new trace data also covers

1000 cycles. The number of trains for each cycle fluctuates

around 100 in the range of [90,110]. The statistical data is

shown in Table.II.

TABLE II
STATISTICS DATA ON 1000 CYCLE TRACE OF PARAMETER UPDATE AND

SYSTEM REORGANIZATION

Build Solve Total
Tech. Mean(ms) Std. Mean(ms) Std. Mean(ms) Std.

Non-Incre. 160.95 36.73 19.58 2.15 180.5 17.3

Incre. 112.71 18.19 9.12 2.75 121.8 19.5

Speedup 30% 53.4% 32.5%

In the data, we can see by introducing both parameter update

and system reorganization into the system, the modification of

the model is more complicated than just updating parameters’

values. BACHOL needs to spend more time distinguishing

the differences between the new model and the previous one

786 Design, Automation And Test in Europe (DATE 2019)

For Research Only



to generate the differential constraint set. Therefore, the time

spent on modeling and LP construction in “Incre.” is raised

from 84.88 ms to 112.71 ms. Nevertheless, still 30% smaller

than the “Non-Incre.” value 160.95 ms. Consequently, the

mean time that the incremental checking technique costs is

9.12 ms which is larger than 4.81 ms in the case with only

parameter update, but the reduction ratio is still more than

50%, which is remarkable. In general, the mean total time for

the checking of the system in each cycle is 121.8 ms, which

is 32.8% smaller than the non-incremental solving.

V. RELATED WORK

Verification of Parametric Real-time System. The PHA

studied in this paper is an extension of parametric timed

automata (PTA) [20] and slope parametric linear hybrid au-

tomata (SPLHA) [19]. Existing verification studies of PTA,

SPLHA, and related variants mainly focused on the parameter

synthesis to make the system satisfy the desired property.

Meanwhile, there are also other properties of PTA studied,

including reachability, unavoidability and so on. However,

most of the non-trivial problems on PTA are proven to be

undecidable [21]. Differently, our work does not focus on

parameter synthesis, we conduct online verification to see

whether the run-time control parameters are safe or not in

the short-run future.

Incremental Verification of Parametric System. In the era

of CPS, it is common to see systems working in dynamic en-

vironments. Therefore, the verification of parametric system is

an emerging topic recently [22]. Similar to the idea presented

in this work, studies [18], [23] explore the similarity between

instances of parameterized systems to re-use computations

for different instantiations and perform state-elimination for

verification of parametric Markov chains.

In this paper, the incremental online verification of safety-

critical scenario is achieved by taking advantage of incremen-

tal LP solving. Study [17] shares a similar motivation and

proposes an incremental mechanism for QBF solving. They

applied this method in the incremental verification of partial

designs [24]. This technique can be applied directly into the

BMC-based online verification using the methodology given

in this paper in the future.

VI. CONCLUSION

Online verification of dynamic CPS system is a well-

recognized method which has attracted a lot of attention

recently. However, in order to handle real-case CPS systems,

we need to raise the efficiency of the online verification

framework.In this paper, we present an incremental verification

method to distinguish the differences between the system

models in two adjacent cycles, and generate the differential

constraint set automatically. By taking advantage of incremen-

tal linear programming technique, the verification of the new

model can start from the “shoulder” of the previous cycle to

save time and raise the efficiency. We conduct a set of case

studies on a train control system which has around 100 trains

online. The experiment data shows by using our incremental

verification method, the efficiency is optimized significantly.

ACKNOWLEDGMENT

The authors in Nanjing University are supported by

the National Key Research and Development Plan (No.

2017YFA0700604), and the National Natural Science Foun-

dation of China (No.61632015, 61561146394, No.61572249).

The author in Hong Kong Polytechnic University (HK PolyU)

is supported by Hong Kong RGC GRF PolyU152164/14E,

RGC ECS PolyU5328/12E, RGC Germany/HK Joint Research

Scheme G-PolyU503/16, and The Hong Kong Polytechnic

University fund G-YN37, G-UA7L, G-YBMW, G-YBXW, 1-

BBWC, and 4-ZZHD.

REFERENCES

[1] LEE, E. 2006. Cyber-physical systems - are computing foundations
adequate? Position paper for NSF workshop on Cyber-Physical Systems:
Research Motivation, Techniques and Roadmap.

[2] CLARKE, E., et al.. 1999. Model Checking. MIT Press.
[3] HENZINGER, T. 1996. The theory of hybrid automata. In Proc. of

LICS’96, 278-292.
[4] BU, L. AND LI, X. 2011. Path-oriented bounded reachability analysis of

composed linear hybrid systems. STTT. 13:4, 307-317.
[5] JOHN, E., et al. 2008. Implementation of warm-start strategies in interior-

point methods for linear programming in fixed dimensions. In Comput.
Optim., Appl. 41,151-183.

[6] I. MAROS, G. MITRA. 1998. Strategies for creating advanced bases
for large-scale linear programming problems. In INFORMS Journal on
Computing, 10(2), 248-260.

[7] R.E. BIXBY. 1992. Implementing the Simplex Method: The Initial Basis.
In ORSA Journal on Computing, 4:3, 267-284.

[8] CPLEX. http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/

[9] BU, L., et al. Technical Report, 2018. Scenario Reachability Validation
based Online CPS Fault Prediction.

[10] BU, L., et al. 2011. Toward online hybrid systems model checking
of cyberphysical systems time-bounded short-run behavior. In ACM
SIGBED Review, 8(2): 7-10.

[11] LI, T., et al. 2012. From Offline toward Real-Time: A Hybrid Systems
Model Checking and CPS Co-Design Approach for Medical Device Plug-
and-Play (MDPnP). In Proceedings of ICCPS2012, 13-22, IEEE.

[12] STANLEY, B., et al, 2014, Real-time reachability for verified simplex
design. In Proceedings of RTSS 2014,138–148, IEEE.

[13] NGUYEN, L., et al. 2015. Runtime Verification for Hybrid Analysis
Tools. In Proceedings of RV 2015, 281–286, IEEE.

[14] CHEN, X., et al. 2017. Model Predictive Real-Time Monitoring of
Linear Systems. In Proceedings of RTSS 2017, 297–306, IEEE.

[15] NAJM, W., et al. 2007. Pre-crash scenario typology for crash avoidance
research, In DOT HS.

[16] BU, L., et al. 2012. Demo Abstract: BACHOL - Modeling and Verifi-
cation of Cyber-Physical Systems Online. In ICCPS2012, pp.222, IEEE.

[17] MARTIN, P., et al. 2012. Verification of Partial Designs Using Incre-
mental QBF Solving, In Proceedings of DATE 2012, 623-628, IEEE.

[18] GAINER, P., et al. 2018. Incremental Verification of Parametric and
Reconfigurable Markov Chains. In QEST 2018, 140-156, Springer.

[19] ADÉLAı̈DE, M., et al. 2002. A Class of Decidable. In Proceedings of
AMAST 2002, 132–146.

[20] ALUR, R., et al. 1993. Parametric real-time reasoning. In Proceedings
of the 25th Annual ACM Symposium on Theory of Computing, 592–601.

[21] ANDRÉ, E., 2015, What’s Decidable About Parametric Timed Au-
tomata?, In Proceedings of FTSCS 2015, 52–68

[22] ISENBURG, T. 2017. Incremental Inductive Verification of Parameter-
ized Timed Systems. ACM TECS. 16(2): 47:1-47:24.

[23] KWIATKOWSKA, M., et al. 2011. Incremental quantitative verification
for markov decision processes. In Proceedings of International Confer-
ence on Dependable Systems & Networks. 359370. IEEE.

[24] MILLER, C., et al. 2015. Verification of partial designs using incremen-
tal QBF. AI Commun. 28(2): 283-307.

Design, Automation And Test in Europe (DATE 2019) 787

For Research Only


