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Abstract—Encapsulation is one of the basic characteristics
of object-oriented programming. However, the access modifiers
provided by common object-oriented languages do not help much
because they only encapsulate the member references rather
than the objects pointed to by them. Bad encapsulation makes
object-oriented programs difficult to understand and reason
about, thus concealing potential software vulnerabilities. We
present in this paper the encapsulation analysis technique, which
is an expression-based dataflow analysis, to statically compute
the runtime memory layouts of object-oriented programs. The
analysis results can help developers to master an intuitive
comprehension on the code quality regarding encapsulation of
classes. The results of experiments on various open-source Java
projects and libraries show that our approach is both effective
(25.76% of the classes are reported as not fully encapsulated) and
efficient (2.15 KLOC/s and 27.35 classes/s) in finding potential
encapsulation problems. We also give common guidance on how
to achieve better encapsulation for object-oriented programs.

I. INTRODUCTION

Encapsulation is one of the basic characteristics of object-

oriented programming (OOP). It is a language facility designed

to hide information, reduce system complexity and increase

robustness. Basically, it controls the access to an object’s

members and enables the bundling of data with methods

operating on it. Mainstream OOP languages like C++ and Java

provide several access modifiers (e.g. private, protected
and public) to limit the way in which the outside can

access a class’s members. However, access modifiers cannot

indeed protect inner members because they only encapsulate

the references (or pointers) rather than the objects they point

to. Consequently, class members are often exposed by either

capturing or leaking. Capturing means the inside of a class

depends on the outside. For example, setter methods and

constructor methods that assign their arguments to private

members, generate aliases from inside to outside. Leaking

means the inside of a class is exposed to the outside. For

instance, naive getter methods which directly return a member

of a class easily open the accessibility of non-public fields to

the outside.

In fact, the real encapsulation problem depends on the

topology of objects and object references in the memory. It

is an alias problem, which usually results in unintentional

security holes, mistaken assumptions or side effects. A class

is fully encapsulated if all its members and the objects they

point to cannot be modified by the outside without calling

its methods. Hence, the state of an object can be changed

only by the methods provided by the class. In this sense, the

correctness of OO programs often relies on good designs and

implementations of encapsulation. For example, some class

methods are supposed to return copies of their inner data rather

than just copies of references. Therefore any modification

on the returned objects will not affect the internal states of

the objects. Determining how well-encapsulated the classes

are is critical in both understanding and reasoning about OO

programs.
To help developers to master a clear and intuitive under-

standing of their programs, we introduce in this paper an

encapsulation analysis technique to discover encapsulation

properties. It is an expression-based dataflow analysis that

computes the runtime memory layout abstractions for OO

programs. Its analysis results identify the classes that have

potential encapsulation problem, the class members that are

shared and the methods that expose the members. Besides,

our approach indicates how the shared memory is accessed by

the outside.
Our approach is designed and implemented for Java, which

is a relatively pure OO style language and there is only

reference semantics for objects. It can be ported to other

object-oriented languages by considering their own semantics

w.r.t. encapsulation.
Our main contributions are as follows.

• We propose a static analysis technique that generates

results which help developers find classes with potential

poor encapsulation. It is based on expressions and is

therefore more flexible and precise than those based

on statements. It is also more intuitive for developers

to locate problems than those based on static single

assignments (SSAs) or other intermediate representations.

• We implement a prototype which finds real encapsula-

tion problems for various open-source Java projects and

libraries. We find that about 25.76% of the total 5963

classes potentially share memory with the outside. The

average throughput our prototype is 2.15 KLOC/s and

27.35 classes/s.

• We give guidance on how to review and refactor code

to increase encapsulation based on the results of encap-

sulation analysis, with less human efforts while ensuring

functional equality.
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II. MOTIVATION

The motivation of our work is to use static analysis to

discover potential encapsulation problems.
1) Basic idea: Poor encapsulation brings in potential bugs.

The rationale contains two parts: first, the target class is poorly

encapsulated and shares its inner memory with the outside

through its methods; second, the outside modifies the shared

memory, resulting in unintentional behaviors that are unknown

and invisible to the class. Our approach deals with this problem

from two perspectives:

• From the viewpoint of the classes, we identify the classes

that potentially share memory with the outside, the mem-

bers that are shared, and the methods are responsible.

• From the viewpoint of the clients, we discover how the

shared memory is accessed by the outside.

2) Example: The program shown in Fig. 1 is a sim-

ple implementation of the structure sharing iterator de-

sign presented by Noble et al. [20]. From the viewpoint

of the class LinkedList, its member first is ex-

posed to the class SharingIterator through the method

sharingIterator(), in which the new expression in line

44 calls the constructor of SharingIterator. Hence, the

object pointed to by an instance of LinkedList is captured

by an instance of SharingIterator. As a result, the class

LinkedList has an ecapsulation problem which makes its

member first leak. Any modification that happens to the

leaked object potentially makes the states of its instances

invalid. But the class LinkedList has no idea what will

happen outside.
On the other hand, from the viewpoint of the class

SharingIterator, it captures a member of LinkedList
through its constructor. Then current points to the same

object as first in LinkedList does. The real problem

occurs in line 21, where null is assigned to the field next of

current, which breaks the inner structure of LinkedList
.Then an instance of LinkedList becomes invalid and

further operations on it will result in unpredictable behaviors.

Note that the method bad is an error that is deliberately

inserted and the original methods in SharingIterator is

fine because they neither modify the data structure nor further

leak current to other classes. This example illustrates that a

less strict encapsulation discipline in design or implementation

can bring in potential vulnerabilities and real bugs can happen.

III. ENCAPSULATION ANALYSIS

In this section, we introduce encapsulation analysis, which

computes statically the runtime memory layouts representing

encapsulation and ownership topology. Encapsulation analysis

is an expression-based dataflow analysis. It consists of both

intra- and inter-procedural parts. It uses some concepts of

escape analysis, for example, escapement. But the concept is

extended to a broader meaning. Escape analysis only cares

whether an object escapes from the method or thread in which

it is created. Encapsulation analysis works on a higher level:

classes and objects. It concerns whether class members escape

from the classes where they belong.

1 public class SharingIterator implements Iterator {
2 private Node current;
3 SharingIterator(Node head) {
4 current = head; // capturing
5 }
6 @Override
7 public boolean hasNext() {
8 return current != null;
9 }

10 @Override
11 public Object next() {
12 if (hasNext()) {
13 Object ret = current.value;
14 current = current.next;
15 return ret;
16 }
17 return null;
18 }
19 public void bad() {
20 current.next = null; // Oops!
21 }
22 }
23

24 public class LinkedList implements List {
25 private Node first = null;
26 private Node last = null;
27 private int size = 0;
28 @Override
29 public boolean add(Object o) { /* ... */ }
30 @Override
31 public void clear() { /* ... */ }
32 @Override
33 public Object get(int index) { /* ... */ }
34 @Override
35 public Object set(int index, Object element) {
36 /* ... */
37 }
38 @Override
39 public int size() { /* ... */ }
40 public Iterator sharingIterator() {
41 return new SharingIterator(first); // leaking
42 }
43 }

Fig. 1: An implementation of the structure sharing iterator

A. Memory Graph Abstraction

We first introduce a static abstraction that simulate the

runtime memory topology. We call it memory graph, which

is designed to represent typical OOP features. Primitive types

(e.g. int, boolean etc.) are ignored in our abstraction,

because they have only value semantics in Java and they don’t

has aliases.

Definition 1. A memory graph is a directed graph MG =
(Nc ∪ Nt ∪ Np ∪ Nr ∪ Nf ∪ Nl ,Ef ∪ Es ∪ Eo ∪ Ep ∪ Er ),
where

• Nc represents the set of objects created by class instance

creation expressions. We call them created objects.

• Nt represents the set containing the current class instance,

outer class instances, and super class instances. We call

them this objects.

• Np represents the set of objects that are peers (objects of

the same type) of the current instance. We call them peer
objects for simplicity.

• Nr represents the set containing the references this,

outer and super, pointing to the current class instance,

outer class instances and super class instances respec-

tively.
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• Nf represents the set of field references.

• Nl represents the set of local references.

• Ef represents the set of field edges. If x
f−→ y ∈ Ef , then

x ∈ Nc ∪ Nt ∪ Np and y ∈ Nf .

• Es represents the set of super class field edges. If

x
s−→ y ∈ Ef , then x ∈ Nc ∪ Nt ∪ Np and y = super.

• Eo represents the set of outer class field edges. If

x
o−→ y ∈ Ef , then x ∈ Nc ∪ Nt ∪ Np and y = outer.

• Ep represents the set of points-to edges. If x
p−→ y ∈ Ep ,

then x ∈ Nr ∪ Nf ∪ Nl and y ∈ Nc ∪ Nt ∪ Np .

• Er represents the set of refers-to edges. If x
r−→ y ∈ Er ,

then x ∈ Nr ∪ Nf ∪ Nl and y ∈ Nr ∪ Nf ∪ Nl .

In our memory graph abstraction, a node in usually corre-

sponds to one or more AST nodes. A node in Nc corresponds

to a class instance creation expressions (new expressions), a

node in Nt corresponds to a type (class) declaration and a

node in Np corresponds to a parameter definition of the same

type as the current instance. A node in Nl corresponds to

one or more expressions that resolve to references. A node

in Nf corresponds to a name that is resolved to be a field.

The only exceptions are the references in Nr . In Java, the

use of keyword this is not necessary in many cases when

members of the current instance are accessed when there is

no ambiguity. Similarly, the keyword super can be omitted

when members in super class instances are accessed without

ambiguity. In Java, there is no such keyword as outer. So

nodes in Nr do not necessarily correspond to AST nodes. All

these kinds of references are implicitly used according to the

context.

Note that Nc , Nt and Np are sets of objects. In later graphic

illustration, objects are indicated by boxes in which node types

are labeled as created, this and peer respectively. Nr ,

Nf and Nl are sets of references which are represented by

circles. References in Nr are indicated by dash circles and

references in Nf and Nl are indicated by solid circles. Refers-

to edges are shown in dashed line while other edges are shown

in solid lines.

Also note that, there is only one current instance and one

this reference in a memory graph. This is straightforward

based on the concept of OOP. But there can be multiple outer

class instances, super class instances and references pointing

to them, because of the hierarchical structures of inner-outer

classes and inheritance. For example, B is the outer class of

A and C is the outer class of B. From the perspective of A, in

order to access a member of class C, we need two outer class

instances (B and C respectively) and two outer references

(one from A to B and another from B to C).

Every non-static method of a class has an extra implicit

parameter representing the actual instance bound to it. This

method can access any member of the object. To model this

feature, we build a memory graph for each class declaration.

Then, upon entry to a method, we add the memory graph of

the belonging class to its initial memory graph.

Example 1. Fig. 2(a) shows a Java program containing

declarations of five classes: Bat, Baz, Bar, Foo and Dom.

Bar is the base class of Foo and Dom is the inner class

of Foo. Dom has two members of the type Bat and Baz
respectively. Fig. 2(b) and 2(c) show the memory graphs of the

method Dom(Dom) (the copy constructor of the class Dom)

before and after the code block executes, respectively.

Because Dom(Dom) is a non-static method of class Dom,

it contains the memory graph of the class Dom, which is the

lower connected graph in Fig. 2(b). The memory graph of

Dom has an implicit outer field which points to the memory

graph of Foo, because it is an inner class of Foo. Similarly,

the memory graph of Foo contains an implicit field super
pointing to the memory graph of Bar. At the top of Fig. 2(b)

is a connected graph built once the analysis enters the method

Dom(Dom). There is a peer object of Dom pointed to by the

reference other representing the parameters of the method.

The detailed process of building a memory graph for a class

is shown in III-C3.

We can see that there are two more refers-to edges in the

upper connected graph of Fig. 2(c) then that of Fig. 2(b).

This is due to the effect of the method body {this.bat =
other.bat; this.baz = other.baz;}. The detailed

process of building a memory graph for a method is described

in III-C4.

B. Escapement

We define four kinds of escapement for nodes (includ-

ing objects and references): ArgEscape, RetEscape,

GloEscape, and NoEscape. Note that we do not strictly

distinguish between objects and references w.r.t. escapement

for simplicity. The definitions of escapement are as follows.

Definition 2. Let O be an object or a reference, M be a

method and C be a class. O is said to escape M by arguments,

denoted as ArgEscape(O ,M ), if O can be reached from

any argument in M . O is said to escape C by arguments,

denoted as ArgEscape(O ,C ), if O escapes any method of C
by arguments.

Definition 3. Let O be an object or a reference, M be a

method and C be a class. O is said to escape M by return,

denoted as RetEscape(O ,M ), if O can be reached from any

return value of M . O is said to escape C by return, denoted as

RetEscape(O ,C ), if O escapes any method of C by return.

Definition 4. Let O be an object or a reference and C be a

class. O is said to escape C globally, denoted as

GloEscape(O ,C ), if O can be reached by static or public

fields of any class.

Definition 5. Let O be an object or a reference, M be

a method and C be a class. O is said to not escape

M , denoted as NoEscape(O ,M ), if ¬ArgEscape(O ,M )
and also ¬RetEscape(O ,M ). O is said to not escape

C, denoted as NoEscape(O ,C ), if ¬ArgEscape(O ,C ),
¬RetEscape(O ,C ) and ¬GloEscape(O ,C ).

210210

Authorized licensed use limited to: Nanjing University. Downloaded on June 10,2020 at 04:42:15 UTC from IEEE Xplore.  Restrictions apply. 

For Research Only



1 class Bat { /* ... */ }
2 class Baz { /* ... */ }
3 class Bar {
4 String str = null;
5 public Bar(String str) {
6 this.str = str;
7 }
8 }
9 class Foo extends Bar {

10 static Foo def = new Foo("");
11 public Foo(String str) {
12 super(str);
13 }
14 class Dom {
15 Bat bat = new Bat();
16 Baz baz = new Baz();
17 Dom() {}
18 Dom(Dom other) {
19 this.bat = other.bat;
20 this.baz = other.baz;
21 }
22 }
23 }

(a) A Java program (b) Memory graph at line 18 of Dom(Dom) (c) Memory graph at line 21 of Dom(Dom)

Fig. 2: An example of the memory graph abstraction

C. Intraprocedural Analysis

Our dataflow analysis is flow-insensitive and forward di-

rected, based on a standard iterative scheme. An notable

characteristic of our analysis is that it is based on expressions

rather statements. To be precise, our flow functions deal with

each expression in the abstract syntax trees (ASTs). This is

more fine-grained that those based on statements because it

is flexible enough to deal with various kinds of combinations

of expressions while statement-based approaches need to enu-

merate all kinds of possible statements, which is tedious and

imprecise. This also means we use expression-based control

flow graphs (CFGs) to conduct our dataflow analysis.

1) Dataflow Equations: Given a node n in the expression-

based CFG of a method, a memory graph at the entry to n
(denoted as Gn

i ) and the memory graph at the exit from n
(denoted as Gn

o ) are related by the standard dataflow equations:

Gn
o = f(Gn

i )
Gn

i = ∧m∈pred(n)G
m
o ,

where f is the flow function. Note again that m is a predeces-

sor of n, and they are connected through expressions rather

than statements.

The meet (or merge) operation between two memory graphs

G1 = (N1, E1) and G2 = (N2, E2) is defined as the union of

the two graphs: G1 ∧G2 = (N1 ∪N2, E1 ∪ E2).

The merge of two memory graphs consists of two parts.

First, we need to merge the nodes. This is a set union

operation on the sets of nodes. If two nodes represent the

same AST nodes in two graphs, we need to compute the new

escapement values of the merged nodes according to the lattice

of escapement described before. Second, we need to merge the

edges. This is a standard set union operation on the sets of

edges.

2) Correlations between Nodes and Expressions: The cor-

respondance between graph nodes and expressions (AST

nodes) is necessay in updating the memory graphs according

to program expressions. That is, we need to find the graph

nodes that correspond to target expressions.

The way to find the associated reference node of an expres-

sion exp is as follows:

• If exp is a class instance creation expression of the form

new T(exp1), we search the memory graph for the

node that corresponds to this expression. The correlated

object node will be created if it does not exist in the

graph.

• If exp is a simple name, we search the memory graph

by matching this name. The correlated reference node

will be created if it does not exist. A static or public

field reference is marked as GloEscape. A parameter

reference is marked as ArgEscape. Other references are

marked as NoEscape by default.

• If exp is a qualified name or a field access like p.f. If p
is a simple name, we first find the reference node r that

corresponds to p. Then we get the field node named f of

r and put it in the set F . Then F is the set of reference

nodes that correspond to p.f. If p is a qualified name,

we first find the set O of nodes that correspond to p.

Then for each node o in O, we get the field node of o,

and put it in F . Then F is the set of reference nodes that

correspond to p.f.

• If exp is an assignment of the form exp1=exp2. The

set of reference nodes that correspond to the assignment

is actually the one of exp1. In this case, exp1 must be

an lvalue and exp2 must be an rvalue.

• If exp is a method invocation expression of the form

exp1.foo(exp2). When the return type of method
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foo is void, the expression does not have a correlated

node in the memory graph. If the return type is not void,

the corresponding set of reference nodes is the one that

corresponds to the expression obtained by instantiating

the returned expression of the callee by replacing param-

eters with arguments. The details of instantiation will be

introduced in III-D2.

• If exp is a cast expression (like (Foo)exp1) or a

parenthesized expression (like (exp2)), the sets of cor-

responding nodes are the sets of nodes that correspond

to exp1 and exp2 respectively.

• If exp is a simple this expression of the form this,

it corresponds to the unique reference node this in

the memory graph. If the expression is of the form

Foo.this, it corresponds to an outer reference or a

super reference in the memory graph, depending on

whether Foo is the outer class or the super class of

the current class. It can also be a nested expression like

Foo.Bar.this where Bar is a outer class and Foo
is a outer class of Bar. The accurate corresponding set

of nodes is determined by class relationship diagrams

including inner-outer relationship and inheritance rela-

tionship.

3) Building Memory Graphs for Classes: The intial mem-

ory graph MG = (∅, ∅). We first add a reference called this
and an object labeled C(this) (where C is the class name) to

the node set. Then a points-to edge from this to C(this)
is added to the edge set.

If the class has an outer class, we then create an outer
reference and an object called O(this) (where O is the class

name of the outer class). Also, an outer class field edge is

added from C(this) to outer, and a points-to edge is

added from outer to O(this). The process of creating

super class references, super class objects and super class

field edges is similar to that for outer classes, except that

the reference node is called super instead of outer. This

process can repeat several times if the outer class has its own

outer class or the super class has its own super class.

Two more program constructs are dealt with here: initializ-

ers that come with field declaration (e.g. T f = new T();)

and instance initialization blocks (e.g. {g = new S();}).
Both these two cases are deal with in the same way as we

deal with method bodies, which will be introduced later in

III-C4.

4) Building Memory Graphs for Methods: Upon entry to

a method, our analysis first copies the memory graph of its

belonging class as the initial memory graph of the method.

Then, this memory graph is updated by two kinds of program

artifacts: 1) parameter definitions and 2) method bodies.

For each parameter definition, if the parameter type is non-

primitive, we add to the memory graph a reference node r,

an object node o, and a points-to edge from r to o.

For method bodies, we identify the following basic ex-

pressions in the bodies that could affect our analysis results,

together with their flow functions. Note that the effects of

sophisticated combination of expressions are computed recur-

sively.

• exp1 = exp2: We first search the current memory

graph for the set R1 of corresponding reference nodes

of the lvalue exp1 and the set R2 of corresponding

reference nodes of the rvalue exp2. Then, for each

reference node r1 ∈ R1 and r2 ∈ R2 , we add a refers-to

edge from r1 to r2 .

• T exp1 = exp2: The effect of a declaration with an

initializer is just like the effect of the assignment exp1
= exp2.

• new T(exp): We first create a created object node (in

Nc) corresponding to new T(exp) if it does not exist

in the current graph.

• exp1.foo(exp2): We instantiate the summary graph

(which will be explained in III-D1) of the method

foo and attach it to the current graph. The escape

states of the nodes correponding to exp2 are updated

to ArgEscape. The algorithm of instantiation will be

introduced later in III-D2.

• return exp: We find the set of reference nodes corre-

sponding to exp and update the escape state of each node

in it with RetEscape (according to the escapement

lattice).

D. Interprocedural Analysis

We now introduce the interprocedural part of our analysis.

Our analysis is summary-based and modular. Method are an-

alyzed and the analysis results are saved. When encountering

a method invocation, we instantiate the summary information

at the call site to obtain the effects of the invocations, without

going into the body of the invoked methods.

1) Summary Graphs: At the core of our interprocedural

analysis are summary graphs, which represent the summary

information of analyzed methods. The summary graph of a

method is a subgraph of its memory graph. The computation

of the summary graph of a method consists of two steps: 1)

update the escape states of all nodes in the memory graph

using Algorithm 1; 2) find all the nodes whose escape states

are either ArgEscape or NoEscape, or the nodes that are

reachable from this node which is part of the memory graph

of its belonging class. All these nodes together with the related

edges compose the summary graph.

2) Instantiation of Summary Graphs: We use the algorithm

presented by Choi et al. [6] to update the caller’s memory

graph according to the callee’s summary graphs. We only

introduce the basic ideas of the algorithm here. Suppose that ai
is a node in the callee’s memory graph, âi is the corresponding

node of ai in the caller’s memory graph. Then, updating the

caller’s memory graph consists of two steps: 1) updating the

node set of the caller’s memory graph using ai and âi; 2)

updating the edge set of the caller’s memory graph using ai
and âi.

To update the caller nodes with the callee nodes, we need

to find the corresponding relation in two memory graphs

recursively. As a base case, ai maps to âi. For the inductive
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Algorithm 1: UpdateEscapeStates

1 Function UpdateEscapeStates(mg,es)
Input : A memory graph mg, an escape state es
Output: mg with updated escape state es

2 begin
3 worklist ← ∅
4 nodes ← the set of nodes in mg
5 foreach n ∈ nodes do
6 if n.escape==es then
7 add n to worklist

8 while worklist �= ∅ do
9 remove a node m from worklist

10 ← outgoing nodes of m
11 foreach o ∈ do
12 if o.escape<es then
13 o.escape=es
14 add o to worklist

15 Function UpdateEscapeStates(mg)
Input : A memory graph mg
Output: mg with updated escape states

16 begin
17 UpdateEscapeStates (mg, GloEscape)

18 UpdateEscapeStates (mg, ArgEscape)

19 UpdateEscapeStates (mg, RetEscape)

step, the nodes pointed to by ai should map to the nodes

pointed to by âi. Then, the escape state of the caller node is

updated ty the callee node. If there is no corresponding node in

the caller’s memory graph, we create on with the same escape

state of the node in the callee’s memory graph.

To update the caller edges with the callee edges, for each

edge in the callee’s memory graph, we first find its two

connected nodes. Finally, we find the two corresponding nodes

in the caller’s graph. Then we add the edge between the two

nodes if it does not exist.

IV. EVALUATION

To evaluate the usefulness of our approach, we answer the

following research questions:

• RQ1: How effective is encapsulation analysis?

• RQ2: Is encapsulation analysis efficient enough to pro-

cess real-life projects?

• RQ3: Do the analysis results help developers understand

and review code?

RQ1 cares how many real encapsulation problems can

be found by our approach. RQ2 concerns the efficiency of

analysis, especailly on large scale of code bases. RQ3 concerns

whether the analysis results and the way in which they are

presented help developers improve code quality regarding

encapsulation.

A. Setup

We implement our approach as part of a Hoare-style code

verification tool called ACCUMULATOR written in Java. The

tool and the source code of encapsulation analysis can be

found here1. It uses Eclipse Java development tools (JDT) to

generate ASTs, based on which expression-based CFGs are

built. Then our dataflow analysis is performed on these CFGs.

All the experiments were conducted on a PC with an Intel

i7-4790 (3.6 GHz) CPU and 16 GB DDR3 RAM, running

the Windows 10 operating system and Java SE Runtime

Environment 1.8.0 65.

We chose various open-source projects and libraries (rang-

ing from 6.7k to 124.2k lines of code) to evaluate our

approach, shown in the first column of Table I. Project Avrora

is a set of simulation and analysis tools for programs written

for the AVR microcontroller produced by Atmel and the Mica2

sensor nodes by the UCLA Compilers Group. The Guava

project contains several of Google’s core libraries that we rely

on in our Java-based projects: collections, caching, primitives

support, concurrency libraries, common annotations, string

processing, I/O, and so forth. ICTCLAS4j is a Chinese lexical

analysis system written in Java by Institute of Computing

Technology, Chinese Academy of Sciences. We also choose

the most commonly used two packages of the Java Devel-

opment Kit (java.lang and java.util) as our experiment target.

JPaul is a Java program analysis utilities libraries based on

Ant and JUnit. MySQL Connector/J is the Java database

connectivity tool for the MySQL database. Sunflow is an open

source rendering system for photo-realistic image synthesis.

It is written in Java and built around a flexible ray tracing

core and an extensible object-oriented design. Finally, we also

choose the ownership collections (OC) [23], which contain

the original JDK 5.0 collection classes and several variants

rewritten to achieve a stronger ownership discipline.

Project
Overview

SLOC CUs Classes Methods Time (s)

Avrora 70.1K 487 1753 8941 46.7
Guava 74.8K 514 1120 10682 17.1
ICTCLAS4j 6.7K 34 34 412 2.0
JDK (lang, util) 124.2K 598 1211 13669 62.1
JPaul 41.3K 135 119 935 0.8
MySQL Connector/J 60.3K 264 269 6670 55.5
Sunflow 20.8K 169 183 1147 6.7
OC (Original) 56.7K 375 615 6558 21.2
OC (Memento) 10.4K 46 131 1600 2.0
OC (NoProxy) 10.6K 43 128 1723 1.9
OC (OasD) 10.5K 45 130 1638 2.0
Total 486.4K 2710 5963 53975 218.0

TABLE I: Projects and libraries used in our experiments

Columns 2 to 6 give the overview of these projects from

several aspects, including source lines of code (SLOC), num-

bers of compilation units (CUs), numbers of classes, numbers

of methods, and the time needed to be analyzed.

B. Results

1https://encap-analysis.github.io/encap-analysis/
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1) Effectiveness: We list the experimental results for the

projects and libraries in Table II. The results for each

project or library consist of four categories: fully encap-

sulated classes, classes with GloEscape members, classes

with ArgEscape members and classes with RetEscape
members. Each category has two groups: the first group

whose data is computed without considering the ownership

semantics, and the second group whose data is computed

with ownership semantics taken into consideration. Each group

has two columns showing the numbers (No.) of classes and

percentages (Pct.) w.r.t. the total numbers of classes in the

projects respectively.

We can see that, without taking ownership semantics into

consideration, 61.83% of the classes are regarded as en-

capsulated, which means no GloEscape, ArgEscape or

RetEscape members are detected. 7.58% of the classes have

at least one GloEscape member, 31.01% of the classes

have at least one ArgEscape member and 12.06% of the

classes have at least one RetEscape member. However, if we

consider the ownership semantics, the numbers are very dif-

ferent. The percentage of total encapsulated classes increases

to 74.24%, meaning that lots of false positives are filtered,

according to our ownership semantics. Also, the numbers and

percentages of classes with ArgEscape and RetEscape
members decrease notably to 893 (14.98%) and 594 (9.96%)

respectively. However, the numbers and percentages of classes

with GloEscape members do not change, because none of

the rules for ownership semantics has impact on public or

static members.

To evaluate the rates of false positives and false negatives,

we choose five relatively small projects to manually check the

analysis results. The numbers and rates of false positives and

false negatives are listed in Table III.

For each project, we list total numbers of classes, numbers

of reported classes (Pos.) and numbers of non-reported classes

(Neg.). We also list the manually checked numbers of false

postives (F/P) and false negatives (F/N) together their rates.

For these five projects, the average false positive rate is 14.60%

and the average false negative rate is 1.92%.

2) Efficiency: For all the open-source projects and libraries

listed, our approach processes a total number of 486.4k lines

of code and 5963 classes in 218 seconds (not including the

time for the generation of ASTs by JDT). On average, the

throughput is 2.15 KLOC/s and 27.35 classes/s. The efficiency

is achieved mainly because that our approach is modular and

scalable for bigger projects. Note that the experiments are

performed on a prototype with nearly no optimization.

V. RELATED WORK

The idea of using types systems to enforce ownership comes

from early work [2], [16]. After that, three main ownership

type systems were proposed, including the Universe Type

System [10], [11], [12], [13], [18], Ownership Types [7], [8],

[9] and Ownership Domains [1]. Besides, Nägeli et al. [19]

investigates that how three ownership type systems can be

applied to design patterns. Noble et al. [21] tries to achieve

balance between flexibility and encapsulation by allowing

objects to be aliased but mitigating the undesirable effects.

Östlund et al. [22] introduces a language that allows users

to express ownership, uniqueness and immutability in their

programs.

A typical related work is escape analysis [6], which finds

out if an object escapes the method or thread in which it

is created. Similar work includes points-to analysis [14] and

alias analysis [15]. Another interesting work [3] proposes

an approach for tracking static analysis violations over the

revision history of a program and also for attributing the

introduction and elimination of these violations to individual

developers. However, there are too many false positives and

developers usually don’t like the way in which the analysis

results are presented, just as the work by Johnson et al. [17]

finds out.

Tufano et al. [24] studied when and why bad code smells

are introduced into projects. The results show that code main-

tenance and evolution activities are probably the main reason,

just as we expected. We also think that during the maintenance

and evolution activities, the encapsulation disciplines for OO

programs also decline, resulting in potential and unintentional

memory problems. The focus of our work is to find such

problems. The work by Balachandran et al. [4] is similar to

ours in the sense that we both focus on reducing human efforts

and improving code quality by static analysis. However, they

emphasize on peer code review and how high-quality reviewer

recommendation are generated. Zhang et al. [26] presents

an interactive approach for inspecting systematic changes. It

uses templates to generate similar changes in diff patches

and detects potential mistakes. Barnett et al. [5] proposes a

similar approach to help developers understand a code review

by decomposing changesets.

VI. CONCLUSIONS AND FUTURE WORK

We propose in this paper a static analysis technique called

encapsulation analysis that statically computes the runtime

memory layouts of OO programs, to determine how well-

encapsulated the classes in the target programs are. The anal-

ysis results help developers to master an intuitive comprehen-

sion on the code quality of the classes regarding encapsulation.

Good encapsulation help developers build confidence on their

code, just like tests and verification, while bad encapsulation

guides them to refactor their code to increase robustness and

reduce potential vulnerabilities.

Experiment results show that our approach is effective

(25.76% of the classes are found as not fully encapsulated)

and efficient (2.15 KLOC/s and 27.35 classes/s on average)

for eleven open-source projects and libraries. The evaluation

also tells us that class members are more likely to be exposed

by arguments than by return. Besides, we know that there are

many public methods that potentially make the members

shared with the outside, which is a big threat to code quality.

Our approach does not take libraries into consideration for

now. Each time we encounter a method invocation whose

method body (source code) is not available, we ignore its
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Project
Encapsulated GloEscape ArgEscape RetEscape

W/O Ownership W/ Ownership W/O Ownership W/ Ownership W/O Ownership W/ Ownership W/O Ownership W/ Ownership
No. Pct. No. Pct. No. Pct. No. Pct. No. Pct. No. Pct. No. Pct. No. Pct.

Avrora 1248 71.20% 1338 76.33% 420 23.96% 420 23.96% 469 26.75% 281 16.03% 92 5.25% 80 4.56%
Guava 741 66.16% 873 77.95% 0 0 0 0 321 28.66% 163 14.55% 174 15.54% 152 13.57%
ICTCLAS4j 20 58.82% 22 64.71% 2 5.88% 2 5.88% 12 35.29% 9 26.47% 10 29.41% 8 23.53%
JDK (lang, util) 710 58.63% 985 81.34% 1 0.01% 1 0.01% 484 39.97% 172 14.20% 167 13.79% 145 11.97%
JPaul 60 50.42% 71 59.66% 14 11.76% 14 11.76% 50 42.02% 37 31.09% 18 15.13% 16 13.45%
MySQL C./J 173 64.31% 193 71.75% 8 2.97% 8 2.97% 81 30.11% 56 20.82% 53 19.70% 51 18.96%
Sunflow 121 66.12% 126 68.85% 6 3.28% 6 3.28% 54 29.51% 49 26.78% 24 13.11% 23 12.57%
OC (Original) 401 65.20% 498 80.98% 1 0.16% 1 0.16% 195 31.70% 80 13.01% 100 16.26% 74 12.03%
OC (Memento) 74 56.49% 107 81.68% 0 0 0 0 50 38.17% 16 12.21% 27 20.61% 15 11.45%
OC (NoProxy) 69 53.91% 106 82.81% 0 0 0 0 54 42.19% 15 11.72% 27 21.09% 15 11.72%
OC (OasD) 70 53.85% 108 83.08% 0 0 0 0 56 43.08% 15 11.54% 27 20.77% 15 11.54%
Total 3687 61.83% 4427 74.24% 452 7.58% 452 7.58% 1826 30.62% 893 14.98% 712 11.94% 594 9.96%

TABLE II: Numbers and percentages of encapsulated classes and classes with escaped members

Project
No. of Classes F/P F/N

Total Pos. Neg. No. Rate No. Rate

ICTCLAS4j 34 12 22 1 8.33% 2 9.09%
Sunflow 183 57 126 6 10.53% 4 3.17%
OC (Memento) 131 24 107 5 20.83% 1 0.93%
OC (NoProxy) 128 22 106 4 18.18% 1 0.94%
OC (OasD) 130 22 108 4 18.18% 1 0.93%
Total 606 137 469 20 14.60% 9 1.92%

TABLE III: False positives and false negatives

effects. To improve pricision, a possible solution would be

modeling the behavior of the libraries through their documen-

tation [25]. Then we can get simplified implementations of

the methods, based on which we can compute the effects on

encapsulation.
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