

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2019-IC-003

2019-IC-003

Extracting Mapping Relations for Mobile User Interface

Transformation
Ruihua Ji, Junyu Pei, Wenhua Yang, Juan Zhai, Minxue Pan, Tian Zhang

Internetware 2019

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

Extracting Mapping Relations for Mobile User
Interface Transformation

Ruihua Ji†, Junyu Pei†, Wenhua Yang‡, Juan Zhai†, Minxue Pan†*, and Tian Zhang†*

†

State Key Laboratory for Novel Software Technology, Nanjing University, China

‡

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
 yiting.ji@gmail.com, imbarpjy@163.com, ywh@nuaa.edu.cn, {zhaijuan, mxp, ztluck}@nju.edu.cn

	
ABSTRACT
The development of mobile apps has become the current mantra
for any business' success. The rise of many types of mobile de-
vices and mobile OS has instantly created the need to develop
multiple versions for the same app. In order to grasp as much
market share as possible, it is desirable to have all the versions of
an app demonstrate similar user interface (UI) appearances, to
make users feel comfortable when switching from one platform
to another and more likely to stick to the app. However, to en-
sure consistent UIs among cross-platform versions can be a chal-
lenging and costly endeavor, since different platforms have their
own UI controls and programming languages. In this paper, we
propose an automatic approach to transforming mobile app UIs
across platforms, and illustrate our approach by transforming
the UIs of iOS apps to Android ones. We leverage the enormous
existing apps carefully designed by developers to achieve similar
UI effects between iOS and Android versions, since these apps
contain valuable knowledge of mapping relations between the
iOS and Android UI controls. Starting from the reverse engineer-
ing of these apps, our approach separates each user interface in-
to modules of adequate sizes. Then it maps the modules from
both versions that contribute to the same visual and functional
effect, and automatically mines the mapping relations. By apply-
ing the mined relations, our approach has successfully trans-
formed the iOS app UIs into Android app UIs, as confirmed by a
series of experiments.

CCS CONCEPTS
• Software and its engineering

KEYWORDS
Mobile applications, Cross-platform development, Graphical user
interface, Code transformation

 * Corresponding author

ACM Reference format:

Ruihua Ji, Junyu Pei, Wenhua Yang, Juan Zhai, Minxue Pan, and Tian
Zhang. 2019. Extracting Mapping Relations for Mobile User Interface
Transformation. In Internetware ’19: Proceedings of 11th Asia-Pacific Sym-
posium on Internetware (Internetware ’19), October 28-29, 2019, FuKuoka,
Japan. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3361242.3361250

1 Introduction
The smartphone market has grown rapidly in recent years. This
growth has fueled the demand for a wide range of new mobile
apps by both consumers and businesses. Mobile apps have be-
come a vital part of our lives, and contributed a large portion of
profit to IT industry. Currently, there are several mobile plat-
forms in the market, such as iOS, Android and BlackBerry OS.
To attract more subscribers, companies are obliged to develop
multiple versions for one app. The cross-platform development,
particularly between Android and iOS, receives the most atten-
tion, since these two are currently the dominant platforms. De-
velopers have to invest considerable effort in cross-platform de-
velopment: different mobile platforms come with their own
software development kits, use different programming languages,
and provide custom APIs.
To address this challenge, developers and researchers have been
working hard for effective cross-platform developing methods.
For example, Xamarin [1] can compile simple C# programs to
codes that can be executed on iOS or Android. J2objc [2] pro-
vides interfaces that can execute some Java codes in iOS system.
Unfortunately, they are still preliminary and cannot handle app
graphic user interfaces (GUIs) well. For mobile apps, GUIs are
extremely important, since they directly interact with users. In
order to attract more users, mobile apps must be GUI-friendly, or
even artistic. In cross-platform development, it is desirable to
have all the versions of an app demonstrate similar GUI appear-
ances, so users will feel comfortable when switching from one
platform to another and be more likely to stick to the same app.
However, to ensure consistent UIs among cross-platform ver-
sions can be a challenging and costly endeavor, since different
mobile platforms have their GUI controls. Only experienced de-
velopers who have good knowledge about different platforms
can write cross-platform apps that have consistent GUIs.
One particular method is proposed to bypass this problem. Since
all mobile platforms support Web pages, it is possible to rely on
the system's Web browser to provide the GUIs. With this method,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
Internetware '19, October 28–29, 2019, Fukuoka, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7701-0/19/10 $15.00
https://doi.org/10.1145/3361242.3361250

For Research Only

Internetware ’19, October 28-29, 2019, FuKuoka, Japan Ji and Pei, et al.

the app embeds a Web view that renders HTML codes, which
then can display browser elements such as HTML buttons and
input fields. In this way, developers can achieve a uniform look
and feel across platforms. Representatives of this approach in-
clude Adobe PhoneGap [3], Cordova [4] and Sencha [5], etc.
However, the display of Web elements cannot be loaded as fast
as native GUI controls, not to mention that the Web-based
method suffers more security issues since malicious scripts are
more likely to be injected.
Another method employs the technique of GUI transformation.
For example, the commercial tool Myappconverter [6] can con-
vert each GUI control from iOS to Android, using fixed mapping
relations between controls. Its official document [7] shows some
of these mapping relations, e.g. UILabel in iOS is mapped to
TextView in Android (UILabel and TextView mentioned here are
GUI controls). This method can work for some apps. However,
controls can be composed in flexible ways, and those fixed rela-
tions may not be able to handle complex GUIs. Here is an exam-
ple. Fig. 2 shows the real code snippets of a page in WhoCall
from iOS and Android versions. Fig. 2(a) contains one imageView,
one label and one switch, as shown in Fig. 1(a). Besides, there is
one text line in the bottom, which is the result of the attribute
footerTitle of tableViewSection in line 1 that shows explanation
text for the view section. Using the control-corresponding table
given by Myappconverter, the code in Fig. 2(a) is transformed in-
to its Android version in Fig. 2(b) (convert tableViewSection,
tableViewCell and tableViewCellContentView to FrameLayout, im-
ageView to ImageView, label to TextView, and switch to Im-
ageView). Unfortunately, the generated Android code loses the
bottom text, as shown in Fig. 1(b), since there is no rule to con-
vert the footerTitle attribute. A new rule, which requires an extra
GUI control TextView, is needed to make the transformed An-
droid code have the similar appearance to the original iOS one. It
is impractical to write all the rules manually, and an automatic

rule inference method can be useful.
In this paper, we propose an automatic data-driven approach to
transforming mobile app GUIs, and illustrate our approach by
transforming the GUIs from iOS to Android. We observed that
enormous existing apps having both versions on iOS and An-
droid platforms are carefully designed by developers to achieve
similar UI effects. We collected 125 apps from Apple Store, con-
sisted of the top 5 apps from 25 different categories, and down-
loaded these apps' Android versions from Google Play Store, to
evaluate the GUI similarities between the two versions of an app.
Among the 125 apps, 97 were coded with native GUI controls
and thus could be served as experiment subjects, and the others
were written in non-native GUI codes. Within the 97 apps, 71
apps (93.8%) have similar GUI pages, i.e., the same texts and im-
ages are placed in the same positions of the screens on both ver-
sions. To obtain the mapping relations of GUI controls, our ap-
proach reverse-engineers the apps, and get their GUI related
codes. Then it separates the GUI controls in each screen into ad-
equately sized modules. With a mapping strategy, it maps the
modules from different versions that contribute to the same vis-
ual and functional effect, and automatically records the mapping
relations of modules. To transform a given iOS app GUI, the ap-
proach divides its GUI into modules, and then for each module it
leverages the mapping relations to generate the corresponding
Android app GUI module. By composing the generated modules,
our approach can transform the iOS app GUI to Android app
GUI effectively, as confirmed by the case studies.
The contributions of this paper are summarized as follows:
1) We propose a novel approach to obtaining the mapping re-

lations between native GUI controls on iOS and Android
platforms from existing apps;

2) We propose an automatic approach which can transform
the GUIs of iOS apps to Android apps while assure GUI
consistency;

3) We implemented our approach as a prototype tool and gen-
erated over 1426 mapping rules. The case studies show that
our approach can successfully transform iOS app GUI to
Android ones.

The remainder of this paper is organized as follows: Section 2
presents the overview of our approach. In Section 3, we show
how to map the GUI controls across platforms, and in Section 4,
we give the details about how to transform GUIs of iOS apps to
Android apps. Section 5 evaluates our work with real-world cas-
es. Section 6 reviews related work and Section 7 concludes the
paper and discusses future work.

2 Approach Overview
Our approach aims to discover the mapping relation between
iOS and Android GUI controls, and use the knowledge of the
mapping relations to convert the GUI of an iOS app (specifically,
the Storyboard files and xib files created by Xcode producing the
GUI of one iOS app [10]) into layout code of an Android app.
The reason choosing iOS as the source platform and Storyboard
or xib files as the source code is that: (1) these files are in XML
format, where controls and attributes all are arrayed in forms

Fig. 1: (a) Whocall iOS GUI (b) Android GUI with con-
trols converted from iOS one by one

Fig. 2: (a) iOS code snippet in Whocall
(b) Android code snippet in Whocall

For Research Only

Extracting Mapping Relations for Mobile User Interface Transformation Internetware ’19, October 28-29, 2019, FuKuoka, Japan

and are easy to be analyzed; and (2) we find that most iOS attrib-
utes affiliated to GUI controls have counterparts in Android, and
thus iOS pages are more likely to be fully transformed.
The overview of our approach is illustrated in Fig. 3. The ap-
proach consists of two parts: one is for mining mapping modules
(MMM), and the other is to transform iOS StoryBoard files to
Android GUI code (SFT). The top half of the Fig. 3 shows the
MMM process, which is to extract mapping relations between
iOS and Android apps, in terms of modules that contain a set of
GUI controls. As discussed earlier, there are abundant apps shar-
ing similar GUI appearance on iOS and Android platforms. Gen-
erally, different controls need to be combined together to make
these cross-platform apps look similar. The types of controls to
use and the way to compose them are the key knowledge for de-
velopers in cross-platform development. To extract the
knowledge and organize them into mapping relations, we need
to analyze the usage of controls for apps in iOS and Android. We
first use Appium [8] to decompile the Android and iOS versions
of the apps and then encode the generated GUI controls and
their relations into the form of trees. A tree represents a GUI
page consisting of a set of controls. The relations between con-
trols and the essential displaying attributes (e.g., attribute footer-
Title showing a line of texts as a footer note) are also included in
the tree. Then we divide iOS trees into modules of adequate size,
with which we look for an Android module that contains the
counterpart controls, i.e., controls in the same position showing
similar visual contents. As the two versions of apps have similar
appearance, it is safe to assume that the modules containing sim-
ilar visual elements of the two versions are likely to be found.
The mapping relations between the modules in apps from differ-
ent platforms are recorded as rules, which are stored in a data-
base, prepared for GUI transformation.
The bottom half of Fig. 3 shows the SPT part, which is responsi-
ble for the transformation of the Storyboard and xib files in an
iOS app to Android code, using the module mapping database.
First, the source storyboard and xib files are analyzed and encod-
ed into a set of trees, which are divided into modules in the same
way in the MMM process. Then, we search the database for each
module and use the mapped Android module in the mapping re-
lation as the template, from which we create the native code of
the Android GUI. Finally, for the generated Android module, the
necessary control attributes, such as the positions and colors, are
generated using the information obtained from analyzing Story-
board and xib files.
To make our approach effective, we need to carefully weigh the
impacts of two key points. One is the number of controls one

module should contain when dividing pages. Having too few
controls in one module may lead to the loss of information. For
example, in Fig. 2(a), dividing the tableViewSection (line 1) and
the Label (line 5) into different modules lose the relationships be-
tween the two controls and make the generation of the footnote
text impossible. Meanwhile, if one module contains too many
controls, it can be difficult to use the mapping relations, since
different apps have a smaller chance of having larger similar
modules. The other is the ways to exploit the extracted mapping
relations, and the ways to deal with different attributes affiliated
to the controls. The iOS and Android platforms are different in
managing controls' attributes, which could lead to different lay-
out forms. For example, for control positioning, iOS employs a
unified positioning approach using a tuple (x, y, height, width) to
specify the left-corner position and size of a control, while An-
droid controls' positioning can be represented by attribute left
(absolute position) or attribute layout_marginLeft (relative posi-
tion). The former works with FrameLayout, and the latter works
with RelatedLayout.

3 Mapping Module Mining

In this section, we will define the concept of module in our ap-
proach and introduce how to mine the GUI module mappings be-
tween iOS and Android. Briefly, a module is in the form of a tree
consisting of several controls, attributes, and their relationships.
Our module mapping process takes apps of both iOS and An-
droid versions as input. For each app, we construct layout trees
for each screen of both versions. Then we separate the layout
trees into several modules. As the two versions of one app have
similar GUI appearances, we can identify module mappings be-
tween iOS and Android, which can be used as relations to trans-
form an iOS screen into an Android one.
In our approach, we divide all the controls listed in the developer
webs [9, 10] into two categories: function control and container
control. A function control is a control that cannot have any
child node in the layout, and is visible on screen. It is used to in-
teract with users, give messages about words/pictures, and/or
trigger events. Common function controls include label, textView
and imageView, etc. The controls not belonging to function con-
trols are in the container control category, which are used to
place function controls or other container controls. They must
have child nodes, and are usually invisible by default. However,
we also notice that sometimes iOS container controls can also
have some visible functions, such as the tableView-Section in Fig.
2(a) that provides the functionality of showing footnotes. These
kinds of features further show that mapping controls one to one
from the two platform is infeasible, and a more complex map-
ping is needed.
Since the apps in different platforms are expected to work in
similar appearance, our intuition is that the layout trees of the
same screens should be mappable. To have an accurate mapping,
each layout tree is divided into several subtrees that do not share
any controls. These subtrees are defined as modules in our ap-
proach and are used as basic units for the mapping.

Fig. 3: The overall architecture of our approach For Research Only

Internetware ’19, October 28-29, 2019, FuKuoka, Japan Ji and Pei, et al.

Definition 3.1. Module A module is a tree-form structure made
up of nodes and edges. A module consists of a root node and po-
tentially many levels of additional nodes that form a hierarchy.
A module is donated by a 4-tuple <R, N, E, D> where,
1) R is the root node of this module which is the control con-

taining all the other nodes in the module. At the same time,
R can be a child of another node outside the module.

2) N is the set of all the nodes in this module. Each n ∈ N rep-
resents a control or a module in the tree. If one node is a
control, it is donated by a 5-tuple: node id, control name,
type, attributes, children pointers.

3) E is the set of directed edges. Each edge connects one node
n_1 to another node n_2, if n_2 is directly contained in n_1.

4) D is the depth of the module tree, the maximum distance
from the root node to the leaf nodes.

Considering the left tree shown in Fig. 4, it is the layout tree of
one screen of an app named KuGou in its iOS version. The left
subtree of node 2 can be seen as a 2-depth module. The nodes 2,
4, 5, 7, 8 consist set N, and node 2 is R. Among them, nodes 2, 4,
5 are container controls, while nodes 7, 8 are function controls
(marked by underlines). The following four subsections will de-
scribe the mapping process using this tree as an example.

3.1 Page Layout Tree Generation
The first step of the mapping process is to generate the layout
trees for each screen of the apps. These layout trees are the basis
for the module mapping, which are extracted from the installa-
tion package of an app. Installation packages of the iOS version
are downloaded from Apple App store and those of the Android
version are downloaded from GooglePlay Store. Each package is
composed of compiled binary codes and resources, e.g., pictures.
Note that there exist some apps whose iOS versions and Android
versions do not look the same, so they are filtered out since the
generated modules cannot be mapped in the subsequent steps.
For each app, we leverage Appium [8] to analyze the GUI layouts
of pages in the iOS and the Android version apps. Appium is an
open source automated test tool for apps. Appium can run the
app under test in a device based on a given script. It also pro-
vides APIs for saving GUI layouts of pages of the app under test
as XML format files. Each line in these XML files contains the
complete information of a control, including the control's name,
the package's name and the control's attributes. To obtain similar
pages on the iOS and Android version app, the prepared scripts
for the two versions of an app are designed to execute functions
in the same order.
Then we encode these GUI layouts into tree structures named as

Page Layout Trees (PLTs). Each node in a PLT is a 5-tuple (id,
name, type, attributes, children pointers), in which id is used to
uniquely identify a control, name is specified what the control is
(e.g., a label or a imageView), type specifies whether the control
is a container or a function one, attributes stores the values of
necessary attributes of the control (such as positions and label
texts), and children pointers point to the direct child nodes if it is
a container node. Every page is encoded into one tree, as shown
in Fig. 4.

3.2 Module Construction
In this step, we divide the Android and iOS layout trees into
modules. We notice that if we divide the two trees of both ver-
sions at the same time, they might be divided into different
structures and be difficult to execute the following mapping pro-
cess. Since the goal of our approach is to transform iOS pages in-
to Android ones, we only need to make sure that all iOS controls
can be mapped to Android controls in all the modules, but not
vice versa. Dividing iOS layouts first and then matching them to
the Android controls is a reasonable approach to maintain this
unidirectional mapping relationship.
Definition 3.1 shows that the modules we intend to map should
be the subtrees from the PLTs, and Section 2 has illustrated that
too many or too few controls in the subtrees may not benefit the
matching process. Thus, we need to choose subtrees with an ap-
propriate size. To divide the trees, we have defined different
segmentation strategies based on the depth of the subtree, which
is the distance between the root node and the farthest leaf node.
The evaluation of the experiment in Section 5 demonstrates that
different depths can lead to different transformations, and we
found that the best depth is 2, based on trial and error experi-
ments. Algorithm 1 shows the procedure of dividing the PLT in-
to a set of modules. In line 1, we get all the nodes with procedure
LRD, which performs a post-order traversal on the PLT. For each

Fig. 4: Page layout trees of the app KuGou in iOS and Android platforms

Algorithm 1: iOS Modules Generation

Input: iOS layout tree (T), depth
Output: a set of iOS modules (S)
1 NodeSet ← LRD(T);
2 foreach node in NodeSet do
3 if depth == Get_Tree_Depth(Root(node)) then
4 module ← Mark_as_Module(node);
5 Add_Into_Set(module, S);
6 Mark_Node_As_Leaf(node);
7 Remove_Node_In_Tree_From_Set(Sub_Tree(node), NodeSet);
8 end
9 end
10 return S; For Research Only

Extracting Mapping Relations for Mobile User Interface Transformation Internetware ’19, October 28-29, 2019, FuKuoka, Japan

node in the set (line 2 to 3), we calculate the depth of the subtree
by considering this node as the root of the subtree. If the depth
equals to the given depth, we perform the following four steps
(line 4 to 7): (1) make this subtree a module; (2) add the module
into Set S; (3) mark the root of the subtree as a leaf node, instead
of an intermediate node; and (4) remove all the nodes in the sub-
tree, except for the root of the subtree, from the NodeSet to
avoid redundant traversal. In the iOS tree of Fig. 4, we mark
node 1 and 2 as modules: {{1, 2-“module”, 3, 6}, {2, 4, 5, 7, 8}}, and
they are added into the module mapping database.

3.3 Mapping Controls of iOS to Android
Given the iOS modules acquired in the last step and the layout
tree of the Android version, it is still hard to divide the Android
modules and map the controls because of the huge mapping
space and possibility. We propose to map the function controls
before container controls, for the following reasons: (1) as men-
tioned above, functional controls are usually visible and have
more influences on the pages' appearance; (2) mapping relations
of container controls are hard to confirm, since location infor-
mation becomes useless. For example, one Framelayout is de-
signed to contain a TextView, but its size does not necessarily
represent anything, since it can be much larger than the
TextView by containing some blank space; and (3) finally, the
mapping of container controls has lots of alternatives since dif-
ferent combinations of container controls can achieve the same
effect, and thus the choice of different container controls de-
pends on the habit of developers.
If two versions of one page look the same, the most intuitive
identification for mapping one iOS function control to one An-
droid function control is that they are displayed in the same po-
sition. For example, two buttons from iOS and Android pages
look similar, but may be implemented entirely different in cod-

ing ways. The Android button may be one CheckBox plus one
TextView, while the iOS button may be one clickable imageView.
These two GUI elements have no other common features but po-
sitions on screen. A control's position is a two-tuple key-values
(x, y), in which x represents the value of the distance away from
the screen's left border (x is a relative value compared to the
screen width, whose value is 1), and y represents the value of the
distance away from the screen's top border (y is a relative value
compared to the screen height, whose value is 1).For example, a
control’s position could be represented as (0.2, 0.3), which means
the control is 0.2 away from left border and 0.3 away from top
border when the screen width is 1 and the screen height is 1.
We cannot treat these key-value tuples as the location directly,
because all the pages have been re-sized in various kinds of de-
vices. Fortunately, we can still acquire the locations by making
the two pages into the same coordinate system with the page
size. Our approach considers the two GUI elements, which have
the same words and are the closest to the bottom right of the
screen, as reference object, and records their key-values as
W_iOS, H_iOS and W_And, H_And. If no elements have the
same words, we record the screen sizes directly. In this coordi-
nate system, the positions of controls are represented by the dis-
tances to the reference object, and we use Euclidean metric to
represent the distance between two objects (Formula (1)). For
each iOS function control, we rank all the distances with An-
droid function controls and take the one with the minimum dis-
tance mapped. Our approach takes more into consideration since
not all the apps are consistently designed in both two platforms.
If the minimum distance is larger than one threshold, this con-
trol and the module it belongs to are abandoned and the map-
ping is aborted. By trial and error, we find out that the suitable
threshold should be 60/(H_iOS + H_And).
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑋 = 𝑋_𝑖𝑂𝑆 − 𝑋_𝐴𝑛𝑑×𝑊_𝑖𝑂𝑆/𝑊_𝐴𝑛𝑑
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑌 = 𝑌_𝑖𝑂𝑆 − 𝑌_𝐴𝑛𝑑×𝐻_𝑖𝑂𝑆/𝐻_𝐴𝑛𝑑
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑋7 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑌7

	 (1)

3.4 Mapping iOS and Android Modules
In this step, we will take a different strategy to map the contain-
er controls, where no positions, sizes or other attributes but only
the parent-children relations are exploited. The parent nodes are
container controls and the children nodes can be container con-
trols, function controls or modules. We require that container
controls to be mapped between Android and iOS platforms
should have one-to-one mapped children nodes.
Algorithm 2 shows the process of mapping container controls. It
takes the iOS modules and an Android PLT which has been pro-
cessed in Section 3.3 as inputs and stores the module mapping
relations in the database. First, we collect all the function con-
trols F in the iOS module in line 1. From the leaf nodes, we tra-
versal to the root, and mark the ones that can be mapped to An-
droid controls (line 2 to 19). One iOS container control can be
mapped with one Android container control, only when all its
children belong to the subtree are mapped to Android controls
(line 9 to 16). In line 20 to 22, if we map controls for the whole

Algorithm 2: Module Pairs Generation

Input: iOS module (M), Android layout tree (T)
Output: Module map (Map)
1 F ← Get_All_Function_Controls(M);
2 foreach element in F as N_iOS do
3 do
4 N_And ← Get_Mapped_Android(N_iOS);
5 N_iOS ← Get_Parent_Node(N_iOS);
6 do
7 N_And ← Get_Parent_Node(N_And);
8 COUNT ← 0;
9 foreach child in Get_Child_Node(N_iOS) do
10 if Belong_To(child, Sub-tree(N_And)) then
11 COUNT ++;
12 end
13 end
14 if IsEqual(COUNT, Get_Child_Size(N_iOS)) then
15 Set_Mapped_Android(N_iOS, N_And);
16 end
17 while Be_Root(N_And, T);
18 while Be_Root(N_iOS, M);
19 end
20 if Get_Mapped_Android(Get_Root(M)) != null then
21 module←Mark_As_Module(Get_Mapped_Android(Get_Root(M)));
22 return Map(M, module);
23 end

For Research Only

Internetware ’19, October 28-29, 2019, FuKuoka, Japan Ji and Pei, et al.

iOS subtree, we mark such a subtree as a module and store it in
the database.
For example (in Fig. 4), the iOS module in the circle has function
controls Node 7 and 8. Following Algorithm 2, we first take out
Node 7 UILabel and its parent Node 4 UITableViewCell. We have
known from Section 3.3 that the mapped Android node for Node
7 is the TextView and its parent node is RelativeLayout. Obvious-
ly, all the children belonging to the two container controls are
completely mapped (UILabel-TextView and UIImage-ImageView).
Node 4 and its parent Node 2 UITableViewSection are then
mapped. In the same way, we can get the target Android node
LinearLayout. Note that there is an unmapped node, Node 2
TextView. We map this node to UITableViewSection, since the
generated map relations can tolerant such difference between
the two version modules we think. Thus, we mark Android sub-
tree rooted with Node 2 LinearLayout as a module. Node 1
UIView and FrameLayout can also be mapped similarly.
When module mapping database have thousands of modules,
one iOS module could be mapped to multiple different Android
modules. We create a flag field for each pair of modules to record
its occurrence times. This flag records how often the pair is
adopted by developers in their projects. The most frequently
used modules are considered in the transformation process and
the rest of the possible module pairs will only be used if the
transformation cannot meet the requirement.

4 Storyboard File Transformation

Storyboard Files Transformation aims to leverage the mapping
relations of modules in the database and transform iOS page
codes (in the form of Storyboard or xib files) to Android GUI
codes. Controls and attributes are the key points during trans-
formation. In our context, we classify the attributes into the stat-
ic and dynamic ones. The dynamic attributes in iOS are hard to
find mapped objects in Android, and we ignored them here. The
important static attributes we have found are listed in Table 1, as
well as the mapping relations between iOS and Android. Based
on whether it affects the positions of controls, we classify the
static attributes into layout-dependent and layout-independent
ones. The layout-dependent attributes which have been marked
in the third column of Table 1 should be considered during
transformation. This transformation process consists of the fol-
lowing three steps.
First, we collect all the Storyboard/xib files from the source pro-
gram and encode them into PLTs (Section 3.1). Then we divide
these PLTs following Algorithm 1 (Section 3.2) into modules
with the depth used by the module mapping database, so that
these derived modules could be used to match the mapping rela-
tions in the module mapping database in the next step.
 Second, we search the database for the iOS module of the stored
mapping relations which are similar to the newly derived mod-
ules in the first step. The two modules are similar when the fol-
lowing two conditions meet: (1) the two modules should have
the same structure, and the controls contained by the nodes in
the same position of the two modules should be the same; (2) the
same controls contained by the nodes in the same position of the

two modules should have the same layout-dependent attributes.
To each derived module from the first step, we check stored
mapping relations containing any of the found similar iOS mod-
ules, and get the Android modules mapped to. If there is no
matched mapping relation found for one newly derived module,
it indicates that the PLTs containing such module could not be
converted to Android code using our approach. To get a com-
plete Android layout, the derived Android modules will be com-
bined. Starting from the Android module which is mapped by
the iOS module containing the root of the input PLT, we recur-
sively replace the “module” marks (Section 3.2) with the other
Android modules. Only if no “module” marks are left, the com-
plete Android layout will be finished. Specifically, we choose the
Android module to replace one “module” mark (MM0) following
these steps: (1) find the iOS module (M1) mapped to the Android
module (M0) containing MM0, (2) find the “module” mark (MM1)
with the same place of MM0 in M1, (3) find the iOS module (M2)
representing the subtree whose root is the leaf node with MM1
in M1, and (4) output the Android module mapped by M2 to re-
place MM0.
Finally, we construct the Android layout codes by combining the
generated Android modules from the second step with the in-
formation obtained from analyzing Storyboard and xib files. The

Table 1. Collected iOS attributes from developer site and
the corresponding Android attributes

Common
layout_marginTop Rect.y
layout_marginLeft Rect.x + ∑PreControl.Rect.width

layout_width Rect.width
layout_height Rect.height

gravity contentMode √
background Color IF Key == backgroundColor

visibility hidden
onClick userInteractionEnabled,multipleTouchEnabled √

scrollbars scrollEnabled √
state_selected,Color selectionStyle √

-- flexibleMaxX
-- flexibleMaxY
-- horizontalHuggingPriority
-- verticalHuggingPriority

Text
textColor Color IF Key == textColor
textSize FontDescription.pointSize
textStyle type
hintText placeholder

layout_gravity baselineAdjustment
centerHrizontal contentHorizontalAlignment √
centerVertical contentVerticalAlignment √

textColorHighlight Color IF Key == highlightedColor
singleLine lineBreakMode √

-- adjustsFontSizeToFit
-- translatesAutoresizingMaskIntoConstraints

Image
src State.image

scaleType contentMode √
Bottom
radius buttonType

singleLine lineBreakMode √

For Research Only

Extracting Mapping Relations for Mobile User Interface Transformation Internetware ’19, October 28-29, 2019, FuKuoka, Japan

layout-independent attributes can be used to construct Android
layout codes directly by following the simple mapping rules in
Table 1, except two groups. One group marked by "--" in Table 1,
such as “flexibleMaxX”, cannot be replaced with any Android at-
tributes. However, these attributes make few differences on the
appearance and can be ignored. The other group has different
applying modes on the two platforms and thus need further dis-
cussion. such as Color and Position, which are the most im-
portant and tough ones. Color: iOS develop site suggests two
kinds of color expression systems. One is calibratedWhite (<white,
alpha>). The white is the grayscale value and the alpha is the
opacity value. This kind cannot display color, and always be
used in black-white background. The other is calibratedRGB
(<red, green, blue, alpha>), and the alpha is also the opacity value.
The values of all six attributes are between 0 to 1. The Android
color system uses four hexadecimal values for the three primary
colors and opacity, and each value is between 00 and ff. When
transformation, we can get Android color by multiplying 255 and
every attributes’ values in calibratedRGB tuples, or multiply 255
and the two attributes’ values in calibratedWhite tuples and re-
peating the white value the three-primary colors. Position: Con-
trols in Storyboard/Xib must take Rect shown as a 4-tuple <x, y,
width, height>, where <x, y> is relative positions in the father
control. Oppositely, Android pages have three kinds of layout
ways called FrameLayout, LineLayout and RelativeLayout. Frame-
Layout uses absolute positions, LineLayout uses relative positions
to the prior element in the same container, and RelativeLayout
uses relative positions to father container element. Thus, we
have to turn them into one special tuple <layout_marginTop, lay-
out_marginLeft> differently, which is suitable in iOS.
Fig. 5 shows a transformation example from an iOS control UI-
Label to an Android control TextView. The pointSize in line 3 is
turned into textSize in line 8, while other attributes are trans-
formed as follows.

5 Evaluation

To evaluate our approach, we have implemented the mapping
and transformation approach in a tool called UITrainDroid. We
used UITrainDroid transformed source projects in iOS 10 into
target Android 7.0 (API level 24) projects and used Android Stu-
dio (AS) to help us evaluate the similarity between the pairs of
projects. Notice that the evaluation of the UI appearance is quite
subjective, and we conducted a questionnaire survey to evaluate
the transformation results. Besides, the modules obtained in our

work has dominant impacts on the effectiveness of code trans-
formation between different platforms, while the depth of one
module is important in our context, and we have attempted to
discuss the depth of a module in Section 3. So, we focused on the
following three research questions in this paper.
RQ1. Is our approach able to generate correct Android GUI code
which produces Android pages having similar appearances with
the iOS pages?
RQ2. How well is the generated Android GUI code used to de-
velop the Android applications in the Android developers’ eyes?
RQ3. What is the suitable depth in module generation that can
have the best effect on the overall approach?

5.1 Metrics for Evaluation
We use “Element Displayed Correctly” and “Page Displayed Cor-
rectly” to measure the similarity of the appearances of the An-
droid and iOS pages. One GUI element is transformed and dis-
played correctly when meeting all the three conditions: (1) every
control of the iOS element is transformed to a control in the An-
droid code, (2) the controls of two visible elements in the two
version pages have the same color, position and content, and (3)
if one of the two visible elements can be clicked, the other
should be clickable, and they have the same click events. Note
that the elements here should be visible. One transforms a page
correctly, when the following two conditions meet: (1) each iOS
module can map to an Android one based on the mapping rela-
tions in the prepared Module Mapping Database, and (2) each
iOS control can be map to one or more Android controls, but
does not require strict consistency of content and click events.
We conducted a questionnaire survey to evaluate the UI appear-
ance produced by the transformation results. The questionnaire
focused on two aspects: appearance and function. Appearance
refers to the intuitive feeling when viewing the page information.
Function refers to the intuitive feeling when using the applica-
tion. And the two evaluation indicators were divided into five
levels: terrible, bad, normal, good, perfect. The participants could
choose “perfect” if there is no difference between the two ver-
sion apps, “good” if some slight differences, “normal” if some ob-
vious but acceptable differences, and “terrible” or “bad” if serious
differences in their feelings.

5.2 Benchmark Applications and Module Map-
ping Database

Our evaluation has been conducted on 8 iOS applications select-
ed based on the following criteria: (1) the source code of the iOS
applications must be available, so that we can analyze the GUI
pages with Xcode; (2) we only consider applications whose GUI
codes are made up of Storyboard or xib files; (3) the applications
not use native controls are excluded, including games and web
applications; (4) the applications should represent different ap-
plication categories, such as productivity, entertainment, and
tools, and from different repositories. Table 2 presents the eight
projects. Coding [11] provides a developer-oriented cloud devel-
opment platform with all kinds of functional pages like sign up,
setting, alarms, and work description. Whocall [12] is a call re-

Fig. 5: (a) Code of iOS Control - Label
(b) Code of Android Control - Textview

For Research Only

Internetware ’19, October 28-29, 2019, FuKuoka, Japan Ji and Pei, et al.

minder app, PlainReader [13] is used to read electronic docu-
ments and DouBan [14] shows the picture region of DouBan
platform. These four apps' pages are formed with Storyboard
files, and the rest is in the form of xib files. Zulip [15] is an office
chat software with fast and powerful search experience. Doppio
[16] works for Starbucks and News-YC [17] works for Hacker
News. WNXHuntForCity [18] imitates ChengMi guiding for city
food. These projects have been well developed and maintained
for a long time. Among them, Coding has more than 10 thousand
lines of GUI codes and totally 79 pages, with 597 function con-
trols and 680 container controls.
We also prepared a large module mapping database to offer the
module-to-module relations from iOS to Android. So far, all ap-
plications were collected manually, about 18 eligible apps follow
the recommendation list of Google Play. We prepared both ver-
sions from Google Play and Apple Store. After MMM process,
8703 valid mapped modules are generated. Among them, 1426
different modules were added into the database. Some control
constructs are frequently used, and the most frequently used one
module appears up to 244 times. This indicates that most appli-
cations in the real world have similar GUI design styles, which
strengthens the applicability of our tools. The tree depth in
Mapping Modules Mining was set to 2, and we will discuss the
effect of different depths in evaluation RQ3.

5.3 Results
To answer RQ1, we applied SFT (Section 4) with the prepared
Module Mapping Database (Section 5.2) on the eight benchmark
applications (Section 5.2). The Android GUI codes output by SFT
consists of xml layout files, java code files, and other resources.
To compare the Android pages produced by the generated An-
droid GUI codes with the iOS pages, we put the SFT outputs of

each benchmark application in a separate Android project in
Android Studio (AS), using which one can preview the generated
Android pages. The comparison results are collected in Table 2.
Note that the module depth used here is 2, and the threshold is
60/(H_iOS + H_And).
 The columns “Element Displayed Correctly” and “Page Dis-
played Correctly” in Table 2 show that UITrainDroid performs
well on these cases. Especially for Coding, only 3 in 79 pages
cannot be transformed and more than 85% (171 in 201) elements
are transformed correctly. We can observe that Coding, Wocall,
PlainReader, and DouBan are transformed better than others. The
reason may be that one page of Xib is always cut into multiple
pieces and placed in different files by the developers, which will
bring a lot of difficulties to Appium to deal with the Xib file. In
general, our tool can successfully transform most of iOS page
code correctly.
Fig. 6 shows the two pages selected in the experiment cases,
which contain as many layouts and elements as possible, such as
images and progress bars. We can see that the pages before and
after the transformation are almost identical. However, some in-
correct details still can be found. For example, “Send Message”
will be automatically converted to uppercase. Most of these
problems are caused by different design patterns between the
two platforms. So, if one attribute cannot be mapped to some
combinations with similar functionality, it will be ignored, dur-
ing control-to-control transformation. So, we designed the met-
rics in Section 5.1 based on this consideration, and that is the
reason why we have some “100%” in Table 2.
To answer RQ2, we generated the Android-version applications
of the eight benchmark applications (Section 5.2) using the gen-
erated Android GUI codes from the previous experiments. Then,
we conducted a questionnaire survey among 60 participants

Fig. 6: Two examples of transformed experiment subjects with iOS in the left and Android in the right

Table 2: Examples of iOS projects transformed into Android

App Name Page Line Function Control Container Control Element Displayed
Correctly

Page Displayed
Correctly iOS Android iOS Android

Coding 79 12184 597 615 680 513 171(85.1%) 76(96.2%)
Wocall 4 386 17 20 23 23 12(100%) 4(100%)

PlainReader 2 325 18 18 23 22 17(94.4%) 2(100%)
DouBan 10 1200 54 54 34 32 18(94.7%) 10(100%)

Zulip 14 1402 34 34 37 34 20(81.7%) 13(92.9%)
Doppio 4 293 19 19 10 7 10(100%) 4(100%)

News-YC 10 1044 42 42 27 23 14(64.8%) 7(70%)
WNXHuntForCity 18 1440 75 75 31 30 75(79.5%) 15(83.3%)

 For Research Only

Extracting Mapping Relations for Mobile User Interface Transformation Internetware ’19, October 28-29, 2019, FuKuoka, Japan

along with the installation packages of the generated Android-
version applications to see whether the generated Android GUI
code worked well. Half of our participants were Android devel-
opers from industry working on Android mobile application de-
velopment for many years, and the other half were undergradu-
ates.
Finally, 58 participants replied to us, and their selections are
shown in Fig. 7. Most of them (about 10% of them thought it was
perfect, about 20% thought it was good, and about 60% thought it
was normal) felt that our transformation results were enough in
appearance and function. According to the survey, the generated
Android GUI code by applying our approach proved to perform
well when cross-platform developing.
To answer RQ3, we applied STF on application Coding by chang-
ing the depth input in Algorithm 1, and collected the comparing
results, “Element Displayed Correctly” and “Page Displayed Cor-
rectly”, between the Android pages and the iOS pages.
The column “Module Number” in Table 3 shows the number of
generated mapping modules after MMM with specific depths.
The most effective mapping modules and the most correct pages
or elements can be seen when the depth is 2. Also, we found that
the results became bad when the depth exceeds 2, and only a few
empty pages or table pages can be successfully converted.

6 Related Work

Many cross-platform mobile development solutions [19, 20, 21]
have been proposed to make applications suitable for different
platforms. Two kinds of solutions are adopted mostly to create
native web apps. The web apps are usually based on web tech-
nologies such as HTML5 and JavaScript [3, 4], which can be ap-
plied to different platforms. A native app made up with native
codes only works in a certain platform and we have to translate
versions between different languages if we want to apply them
in different platforms. These apps are more efficient in loading
time and more secure than web apps, and there have been sever-
al tools [22, 23] created for translating cross-platform native
codes. Xamarin [1, 24] tries to create shareable C# code, which is
Ahead-of-Time (AOT) compiled to generate iOS project and Just-
in-Time (JIT) compiled to generate Android one, and thus these
two generated native codes can approach native efficiency, but

cannot deal with GUI transformation because GUI compilation is
more interface-based. MyAppConverter [6] using semantically
driven code transformation to create native code can only work
from Storyboard and xib projects to Android projects, and it tries
to convert controls one by one and claims a relationship stable
for each GUI element, but it always fails when transforming
complex iOS project because of controls' usage diversity on mul-
tiple platforms. RAPPT [25] uses rules to build models of native
GUI codes, and the rules are stored in the system beforehand so
the rules database is not extendable. It will fail when some mod-
els that have not been inside the system occur. Besides, its trans-
formed scenes cannot reach the actual needs at all. Our work
takes similar rules with RAPPT but the rules are not provided by
developers but mined from the same projects with both versions.
Because of the automation process of mapping, we can extend
the rules database continually.
The model-driven approach seems to be an important way in
creating, analyzing and testing apps and has been promised to be
able to increase developer productivity and reduce costs [26].
Nguyen et al. [27] develop a framework for generating the mas-
ter/detail Android design pattern. The focus of the research is on
the small patterns of projects rather than creating a full applica-
tion. Ribeiro et al. [28] use a UML based approach to describe the
multistage mobile app development containing boilerplate code
suitable for multiple platforms. Henning et al. [29] claim that
their work can consider any view and control as models and
connect models from different platforms. These works try to
convert Android applications into models, including native logi-
cal code and GUI code, but they do not focus on the usage of the
generated models. Also, Mona et al. [30] define models to detect
inconsistencies in multi-platform mobile apps, which is similar
to our work but focuses on the Android test. One new proposed
solution called ICPMD [31] focuses to produce native apps by
combining the trans-compilation approach and the model-driven
development approach, but the GUI part of the native is still cre-
ated by developers.
The mining-based approaches are becoming popular in many ar-
eas, including mobile development. Mining approaches have
been used in automatically creating cross-platform API map-
pings [32, 33, 34, 35, 36, 37] and mining for source code and code
generation [38, 39, 40, 41, 42]. These works use different learning
algorithms to find patterns with source codes, relate the API or
generate native code, but controls relations are more complex
than native codes and have never been studied.

7 Conclusion and Future Work
We have presented an approach for automated GUI transfor-
mation between different platforms, in particular from iOS into
Android. UITrainDroid is tailored to create Android projects
with Storyboard/Xib files from iOS projects. We have evaluated
the effectiveness of UITrainDroid on real-world applications, and
it has successfully produced runnable Android versions.
UITrainDroid relies on Appium, which outperforms better than
other similar reverse engineering tools. However, we cannot get
the completely precise layouts from the page currently by using

Table 3: The transformation for Coding with different depths

Depth Module Number Correct Element Correct Page
1 1147 162(80.6%) 76(90.3%)
2 1426 171(85.1%) 76(90.3%)
3 973 39(19.4%) 23(29.1%)
4 697 17(8.5%) 11(13.9%)

Fig. 7: Research about the evaluation with the trans-
formation

For Research Only

Internetware ’19, October 28-29, 2019, FuKuoka, Japan Ji and Pei, et al.

Appium. This could cause that the modules in the database be
different from the real cases in iOS and Android development
and further lead to mistakes in transformation. Nowadays, GUI
reverse engineering depends more on the screenshots but not
the device's running memory. We believe that a more effective
GUI reverse engineering method or software open source pro-
cess will improve the performance of UITrainDroid in the future.
UITrainDroid is tailored to transform Storyboard/Xib to Android
code. It does not mean that our approach cannot be applied to
other scenarios, such as transforming Swift files in iOS projects
or even Android code. The difficulty in these scenarios is that
Swift or Android GUI files are difficult to be encoded, which re-
quires the same process with what a compiler does. Therefore, a
more advanced encoding scheme can extend UITrainDroid into
other kinds of cross-platform developments in future work.

ACKNOWLEDGMENTS
This research is supported by the National Key R & D Program
(No. 2017YFB1001801), the National Natural Science Foundation
(Nos. 61972193, 61802179, 61802166), and the Jiangsu key R & D
Plan (No. BE2017004-4) of China.

REFERENCES
[1] Xamarin, “Xamarin,” Aug.2017. [Online].Available: https://developers.xamarin.

com/
[2] Google, “J2objc,” Aug. 2017. [Online]. Available: https://github.com/google/

j2objc
[3] Adobe, “Adobe phonegap,” Aug. 2017. [Online]. Available: https://phonegap.

com/
[4] Apache, “Apache cordova,” Aug. 2017. [Online]. Available: http://cordova.

apache.org/
[5] Sencha, “Sencha,” Aug. 2017. [Online]. Available: https://www.sencha. com/
[6] Myappconverter, “Myappconverter,” Aug. 2017. [Online]. Available: https://

apps.myappconverter.com/
[7] MyappconverterWeb, “Myappconverterdocument,” Aug.2017. [Online]. Avail-

able: https://docs.myappconverter.com/
[8] Appium, “Appium,” Aug. 2017. [Online]. Available: http://appium.io/slate/en/

master/
[9] Android, “Android developer,” Aug. 2017. [Online]. Available: https:// devel-

oper.android.com/reference/classes.html
[10] iOS, “ios developer,” Aug. 2017. [Online]. Available: https://developer.apple.

com/ios/human-interface-guidelines/ui-controls/buttons/
[11] Coding, “Coding,” Aug. 2017. [Online]. Available: https://github.com/ Cod-

ing/Coding-iOS
[12] Wocall, “Wocall,” Aug. 2017. [Online]. Available: https://gitbug.com/ Quota-

tion/Whocall
[13] PlainReader, “Plainreader,” Aug. 2017. [Online]. Available: https://github.com/

guojiubo/PlainReader
[14] DouBan, “Douban,” Aug. 2017. [Online]. Available: https://gutbuh.com/

TonnyTao/DoubanAlbum
[15] zulip, “zulip,” Aug. 2017. [Online]. Available: https://github.com/zulip/zulip-

ios-legacy
[16] Doppio, “Doppio,” Aug. 2017. [Online]. Available: https://github.com/ chro-

man/Doppio
[17] News-YC, “News-yc,” Aug. 2017. [Online]. Available: https://github.com/grp/

newsyc
[18] WNXHuntForCity, “Wnxhuntforcity,” Aug. 2017. [Online]. Available: https://

github.com/ZhongTaoTian/WNXHuntForCity
[19] M. Palmieri, I. Singh, and A. Cicchetti, “Comparison of cross-platform mobile

development tools,” 2012 16th International Conference on Intelligence in
Next Generation Networks, pp. 179–186, 2012.

[20] A. Holzinger, P. Treitler, and W. Slany, “Making apps useable on multiple dif-
ferent mobile platforms: On interoperability for business application develop-
ment on smartphones,” International Conference on Availability, Reliability,
and Security, pp. 176–189, 2012.

[21] S. Xanthopoulos and S. Xinogalos, “A comparative analysis of cross-platform
development approaches for mobile applications,” Proceedings of the 6th Bal-
kan Conference in Informatics, pp. 213–220, 2013.

[22] V. Tunali and S. Zafer, “Comparison of popular cross-platform mobile applica-
tion development tools,” Celal Bayar University: Faculty of Technology De-
partment of Software Engineering, Maltepe University: Faculty of Engineering
and Natural Sciences Department of Software Engineering, 2015.

[23] J. Friberg, “Evaluation of cross-platform development for mobile devices,” 2014.
[24] N. Boushehrinejadmoradi, V. Ganapathy, S. Nagarakatte, and L. Iftode, “Test-

ing cross-platform mobile app development frameworks (t),” 2015 30th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 441–451, 2015.

[25] S. Barnett, R. Vasa, and J. Grundy, “Bootstrapping mobile app development,”
Proceedings of the 37th International Conference on Software Engineering-
Volume 2, pp. 657–660, 2015.

[26] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software engineering
in practice,” Synthesis Lectures on Software Engineering, vol. 3, no. 1, pp. 1–
207, 2017.

[27] T.-D. Nguyen and J. Vanderdonckt, “User interface master detail pattern on
android,” Proceedings of the 4th ACM SIGCHI symposium on Engineering in-
teractive computing systems, pp. 299–304, 2012.

[28] A. Ribeiro and A. R. da Silva, “Evaluation of xis-mobile, a domain specific lan-
guage for mobile application development,” Journal of Software Engineering
and Applications, vol. 7, no. 11, p. 906, 2014.  

[29] H. Heitko ̈tter, T. A. Majchrzak, and H. Kuchen, “Cross-platform model- driv-
en development of mobile applications with md 2,” Proceedings of the 28th
Annual ACM Symposium on Applied Computing, pp. 526–533, 2013.

[30] M. E. Joorabchi, M. Ali, and A. Mesbah, “Detecting inconsistencies in multi-
platform mobile apps,” 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), pp. 450–460, 2015.

[31] W. S. El-Kassas, B. A. Abdullah, A. H. Yousef, and A. M. Wahba, “Enhanced
code conversion approach for the integrated cross-platform mobile develop-
ment (icpmd),” IEEE Transactions on Software Engineering, vol. 42, no. 11, pp.
1036–1053, 2016.

[32] A. Gokhale, V. Ganapathy, and Y. Padmanaban, “Inferring likely mappings be-
tween apis,” Proceedings of the 2013 International Conference on Software
Engineering, pp. 82–91, 2013.

[33] M.P.Robillard,E.Bodden,D.Kawrykow,M.Mezini,andT.Ratchford, “Automated
api property inference techniques,” IEEE Transactions on Software Engineer-
ing, vol. 39, no. 5, pp. 613–637, 2013.

[34] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining api
mapping for language migration,” Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering-Volume 1, pp. 195–204, 2010.

[35] R. Nix and J. Zhang, “Classification of android apps and malware using deep
neural networks,” 2017 International Joint Conference on Neural Networks
(IJCNN), pp. 1871–1878, 2017.

[36] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 631–642, 2016.

[37] V. Srivastava, M. D. Bond, K. S. McKinley, and V. Shmatikov, “A security poli-
cy oracle: Detecting security holes using multiple api implementations,” ACM
SIGPLAN Notices, vol. 46, no. 6, pp. 343–354, 2011.

[38] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for de-
fect prediction,” 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pp. 297–308, 2016.

[39] E. Wong, T. Liu, and L. Tan, “Clocom: Mining existing source code for auto-
matic comment generation,” 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), pp. 380–389, 2015.

[40] R. Holmes, R. Cottrell, R. J. Walker, and J. Denzinger, “The end-to-end use of
source code examples: An exploratory study,” 2009 IEEE International Confer-
ence on Software Maintenance, pp. 555–558, 2009.

[41] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, and J. Zhao, “Codehow: Effec-
tive code search based on api understanding and extended boolean model (e),”
2015 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 260–270, 2015.

[42] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu, “Portfolio: find-
ing relevant functions and their usage,” Proceedings of the 33rd International
Conference on Software Engineering, pp. 111– 120, 2011.

For Research Only

