

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2020-TR-003

2020-TR-003

Chianina: An Evolving Graph System for Flow- and

Context-Sensitive Analyses of Million Lines of C Code
Zhiqiang Zuo, Yiyu Zhang, Qiuhong Pan, Shenming Lu, Linzhang Wang, Xuandong Li, Guoqing Harry Xu

Technical Report 2020-TR-003

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

Chianina: An Evolving Graph System for Flow- and Context-Sensitive
Analyses of Million Lines of C Code

Abstract—Sophisticated static analysis techniques often have
complicated implementations, much of which provides logic for
tuning and scaling rather than basic analysis functionalities. This
tight coupling of basic algorithms with special treatments for
scalability makes an analysis implementation hard to (1) make
correct, (2) understand/work with, and (3) reuse for other clients.
This paper presents Chianina, a graph system we developed for
fully context- and flow-sensitive analysis of large C programs.
Chianina overcomes these challenges by allowing the developer
to provide only the basic algorithm of an analysis and pushing
the tuning/scaling work to the underlying system. Key to the
success of Chianina is (1) an evolving graph formulation of flow
sensitivity and (2) the leverage of out of core, disk support to
deal with memory blowup resulting from context sensitivity. We
implemented two context- and flow-sensitive analyses (including
a pointer analysis) on top of Chianina and scaled them to five
programs including Linux (17M LoC) on a single commodity PC.

I. INTRODUCTION

Static analysis plays important roles in a wide spectrum
of applications, including automated bug discovery, compiler
optimization, etc.. Static analysis algorithms that distinguish
results based on various program properties (such as calling
contexts and control flow) are more useful than those that do
not. For example, these precise algorithms can uncover more
true bugs and report less false warnings. As a result, there is
an everlasting interest in the program analysis community to
develop techniques that are context-sensitive [1]–[12], field-
sensitive [1], [4], [7], [13], [14], flow-sensitive [1], [11], [15]–
[18], or path-sensitive [19]–[22].

Although these techniques are superior to their (context,
field, flow, or path-) insensitive counterparts, their computation
is much more expensive, requiring CPU and memory resources
that a single machine may not be able to offer. Given the
limited resources available to them, it is hard for them to scale
to programs with large codebases such as the Linux kernel. Prior
work employs sophisticated treatments that tune the level of
sensitivity [23]–[31], explore different forms of sensitivity [32],
[33], or pre-process programs with inexpensive techniques [22],
[34], in order to find sweatspots between scalability, generality,
and usefulness. Despite their commendable efforts, these
treatments are specific to the applications they are developed
for and very complicated to implement.

This paper is a quest driven by the following question:
given an analysis algorithm — in its simplest form — can
we run it efficiently over large programs without requiring
any sophistication from the developer? Achieving this goal
possesses a number of advantages: (1) analysis development
is significantly simplified — because a developer only writes
the basic algorithm without worrying about performance, this
enables developers without much training in PL to easily
develop and experiment with analyses that used to be accessible
only to experienced experts; and (2) porting an existing analysis
for different clients is significantly simplified because the

analysis implementation contains only the logic necessary to
realize the basic functionality, not any complex tuning tasks.
Insight and Problem. This paper is inspired by a line of prior
work [5], [21], [35], [36] that piggybacks static analysis on
large-scale systems — an analysis is implemented by following
only a few high-level interfaces while scaling is delegated to the
underlying system, which makes it possible for the analysis to
run on large programs by enlisting the humongous computing
power provided by modern hardware. BDDBDDB [5] and
Doop [35] are early examples where an analysis is expressed
as a Datalog program, which is executed by a low-level BDD-
based Datalog engine for scalability. Graspan [36] is a graph
processing system that leverages disk support to scale CFL-
reachability computation to large programs that cannot fit into
the main memory. This line of work shifts the burden of tuning
from developers’ shoulders to underlying systems, enabling
developers to enjoy both the implementation simplicity and
the scalability provided by the underlying system.

Inspired by these techniques, this paper revisits the problem
of scaling context- and flow-sensitive analyses from a system
perspective — that is, we aim to develop system support for
scaling the simplest versions of context- and flow-sensitive
algorithms that developers can quickly implement by following
interfaces. On the one hand, a context- and flow-sensitive
analysis is arguably one of the most expensive analysis
techniques because it needs to compute and maintain an
analysis solution for each distinct program point under each
distinct calling context. On the other hand, it enables strong
update and produces ultra precise information at each statement.
Problem Formulation. This paper presents a graph system
called Chianina, that supports easy development of any context-
and flow-sensitive analysis (with a monotone transfer function)
for C and that is powerful enough to scale the analysis to
many millions of lines of code. Chianina makes analysis
implementation simple and general — a variety of flow-
sensitive analysis (e.g., analyses of IDE, IFDS, pointer, alias,
type, value, etc.) can be easily developed with hundreds lines of
code. The developer only specifies dataflow facts and transfer
functions, in their basic form without any special treatment.
The work of tuning and scaling (e.g., merging, exploiting
similarities, reduction, etc.), which used to be tightly coupled
with the analysis, now happens under the hood in the system.

To deal with context sensitivity, Chianina uses aggressive
cloning — a callee is cloned into each of its callers and
cloning is done in a bottom-up fashion from each leaf node
on the call graph to the main function (if it exists). To
handle recursions, functions involved in a strongly connected
component are collapsed and treated context insensitively. This
appears similar to the approach taken by BDDBDDB [5],
[10]. However, Chianina clones both variables (pointers) and
objects (pointees) whereas BDDBDDB clones only variables
— significant precision loss can result due to lack of object

For Research Only

cloning [3]. Of course, aggressively cloning function bodies can
blow up the memory usage and Chianina solves the problem
by leveraging out-of-core disk support. To perform cloning,
Chianina uses a pre-computed call graph. For the C language,
in particular, we use an inclusion-based context-insensitive flow-
insensitive pointer analysis with support for function pointers
(available in LLVM). Once cloning is done, we have a complete
program representation for graph computation.

To deal with flow sensitivity, Chianina formulates a flow-
sensitive analysis as a problem of evolving graph process-
ing [37]–[42]. An evolving graph contains a set of temporally-
related graph snapshots, each capturing the set of vertices and
edges of the graph at a certain point of time. For example,
a social network graph such as Twitter constantly evolves.
Analytics tasks such as finding popular users (i.e., PageRank)
are often performed on snapshots of the graph periodically
and results from these tasks are analyzed to understand the
evolution of the graph. Two consecutive snapshots often have
large overlap on vertices and edges (i.e., spatial and temporal
locality), which can be exploited for efficiency.

This nature of evolving graph processing matches exactly the
nature of a flow-sensitive analysis — at each program point,
(the most general form of) dataflow facts for variables in the
program constitute a graph snapshot; consecutive snapshots,
which are captured at consecutive program points, differ only
in a small number of vertices and edges due to application
of transfer function. Our formulation makes an analysis
immediately amenable to many optimization techniques (e.g.,
auto-parallelization, work-balancing, locality, etc.) available in
the graph system community, tuning and scaling the analysis
at a low level without needing any special treatment from the
developer. In fact, many of the prior analysis-level treatments
(e.g., BDD-based merging) perform essentially the same work
as certain system-level optimizations (e.g., locality-aware
compression). By pushing the tuning effort down into the
system, every analysis running atop can enjoy these low-level
optimizations, while in the past each analysis only receives a
small handful of special treatments tailored for itself.
Summary of Results. To demonstrate scalability and general-
ity, we implemented, on top of Chianina, (1) a fully context-
and flow-sensitive pointer/alias analysis and (2) a null-pointer
value flow analysis that supports precise context-sensitive heap
tracking of null values. We analyzed five large-scale software
systems: Linux, Firefox, PostgreSQL, OpenSSL and Httpd.
Our results are promising: our analyses completed on the five
systems (4 minutes – 20 hours) whereas their conventional
counterparts (even without context sensitivity) quickly ran out
of memory for large programs. To the best of our knowledge,
this is the first time that a fully context- and flow-sensitive
pointer/alias analysis has been shown to scale to a recent
version of Linux with 17 million lines of code.

II. RELATED WORK

Graspan. The work closely related to Chianina is Gras-
pan [36], a disk-based system for scalable dynamic transitive

computation. Although Chianina is inspired by the same high-
level observation as Graspan, it is impossible to extend Graspan
to support arbitrary flow-sensitive analyses without redesigning
and re-implementing the system from scratch. The computation
model is fundamentally different. Graspan is designed for
dynamic transitive closure computation which serves the basis
for CFL-reachability based analyses. The simple computation
logic for graph reachability does not work for Chianina’s
complex dataflow semantics.
Evolving Graph Systems. Although we formulate flow-
sensitive analysis as an evolving graph processing problem,
the nature of the problem differs significantly from that dealt
with in the graph system community. None of the existing
systems [38], [39], [43], [44] can solve it. System design is
heavily dependent on (1) data and (2) computation. On the data
side, our program graph differs significantly from the typical
data graphs that existing systems target as data graphs do not
have any semantics. Our computation model also differs from
the computation in existing systems, which is driven solely by
the graph algorithm (e.g., pagerank, etc.) that is fundamentally
different from program analysis workloads. In summary, it is
the semantics of the program analysis that makes Chianina
unique; none of existing systems are able to perform this type
of computation as Chianina does over program graphs.
Flow-Sensitive Analyses. A common optimization of scaling
flow-sensitive analysis is to perform a sparse analysis preventing
redundant values from being propagated [45], [46]. Hind and
Pioli [47] adopted the sparse evaluation graph [48] which elim-
inates pointer-free statements from the CFG. Hardekopf and
Lin [15], [16] proposed to utilize a semi-sparse representation
by connecting variable definitions with their uses, allowing
dataflow facts to be propagated only to the locations needing
the variable. Sui and Xue implemented SVF [49], [50] , which
constructs the sparse value-flow graph and performs the pointer
analysis in an iterative manner. Other techniques such as [51]–
[53] use similar ideas to scale flow-sensitive analysis. Note that
all of these techniques are orthogonal to Chianina, which can
take any sparse representation as the input graph and perform
scalable computation via system support.

In order to accelerate an interprocedural dataflow analysis, a
few techniques attempt to parallelize its computation. Rodriguez
et al. [54] proposed an actor-model-based parallel algorithm for
IFDS problems. Garbervetsky et al. [55] developed a distributed
worklist algorithm using the actor model to implement a call-
graph analysis. Albarghouthi et al. [56] parallelize a top-down
interprocedural analysis using a MapReduce-like computation
model. Several studies [57], [58] attempt to parallelize flow-
sensitive pointer analysis. Since they all require large amounts
of memory, there is no evidence that these parallel approaches
can scale to programs such as the Linux kernel.
Context-Sensitive Analyses. Generally, there are two domi-
nant approaches to context-sensitive interprocedural analysis:
the summary-based approach and the cloning-based approach
[59]. The summary-based approach [12], [17], [60], [61]
constructs a summary (transfer) function for each procedure,
and directly applies the summary to the specific inputs at

2

For Research Only

the call site invoking the function. Although the summary-
based approach is scalable, it does not provide complete
alias information for each particular context due to lack of
explicit representation of calling contexts. Furthermore, it is
difficult to precisely model heap effects. The cloning-based
approach [2], [5], [8], [62] provides complete information.
However, it requires each procedure to be re-analyzed under
each calling context and hence is hard to scale. Demand-driven
techniques [7], [9], [63] match call/return edges on the fly
for context sensitivity. A body of techniques have also been
proposed to perform selective context sensitivity [22]–[34], [64],
so as to find sweatspots between scalability and precision.

III. BACKGROUND AND OVERVIEW

We present Chianina in the context of pointer/alias analysis,
which is perhaps the most sophisticated and expensive one in
the context- and flow-sensitive analysis family. This section
first offers a gentle introduction to the basic algorithm for a
context- and flow-sensitive pointer/alias analysis for C. Next,
we provide an overview of Chianina, explaining how it works.

A. Background

Alias Analysis as Graph Reachability. A flow-insensitive
alias analysis can be easily formulated as a graph-reachability
problem. There are a number of existing formulations, of which
we use the program expression graph (PEG) [65] based repre-
sentation as an example to illustrate how Chianina works. Note
that this paper makes no contribution on analysis algorithms;
any other program representations can be used/implemented
on Chianina as well.

A PEG represents a program as a graph where each vertex
corresponds to a pointer expression (e.g., a reference variable x,
a dereference expression ∗x, or an address-of expression &x).
Edges are added based upon the following rules for statements
that involve pointer expressions.

Type Stmt Edge
assignment x = y x

a←− y (1)
store ∗x = y ∗x a←− y (2)
load x = ∗y x

a←− ∗y (3)
address-of x = &y x

a←− &y (4)

Each statement that allocates heap memory (e.g., x =
malloc()) is treated the same way as an address-of statement
— we add an edge x

a←− &O where O represents the abstract
memory location (i.e., allocation site). Moreover, dereference
edges (d) are added (1) from each pointer variable x to ∗x and
(2) from &x to x.

Based on this graph representation, the alias analysis is
formulated as a reachability problem guided by a context-free
language L over an alphabet Σ (i.e., the set of {a, d} in the
context of PEG). Given a PEG whose edges are labelled with
elements of Σ, we say a vertex v is L-reachable from another
vertex w if there exists a path from v to w on the graph such
that the string formed by concatenating edge labels on the path
is a member of language L (i.e., complying with L’s grammar).
A whole-program alias analysis determines all pairs of such

vertices v and w such that w is L-reachable from v, based on
the following context-free grammar:

V alue alias V ::= (M? a)∗ M? (a M?)∗ (5)
Memory alias M ::= d V d (6)

The non-terminals V and M represent the value-alias and
memory-alias relations, respectively. Each PEG is a bidirec-
tional graph — for each edge x

a−→ y with label x, there exists
an inverse edge y

a−→ x automatically. Two pointer expressions
are aliases if they are V- or M-reachable. At the heart of
this formulation is finding paths whose edge labels exhibit
“balanced-parenthesis” properties (e.g., a and a): if a pointer
value goes from a variable x into a heap location h and later
flows to another variable y from a heap location i, the two
variables x and y are (pointer) aliases if the two heap locations
h and i are (memory) aliases. Given that this formulation
is well-known to the SE/PL community, we omit a concrete
example here to save space.
Flow-Sensitivity. Flow sensitivity is often achieved using the
traditional monotone dataflow analysis framework [66], [67],
which consists of the analysis domain, including operations
to copy and combine domain elements, and the transfer
functions over domain elements with respect to different types
of statement in the control flow graph. In the context of a
PEG-based alias analysis, the most straightforward way to add
flow sensitivity is to model each domain element as a separate
PEG and the combination operator as the union of edge sets.
Each transfer function with respect to a program statement
takes an input PEG that captures the state of the program
before the statement, and computes an output PEG by adding
and deleting edges according to the semantics of the statement.

Next, a worklist-based algorithm iteratively applies the
transfer function for each statement along the control-flow
graph (CFG). In our setting, two elements IN s and OUT s

are maintained for each statement s of the CFG, representing
the incoming and outgoing PEGs, respectively. Each transfer
function s computes a new PEG OUT s by adding/deleting
edges on IN s. At each control flow join point where a node s
has multiple predecessors p ∈ predecessors(s), the incoming
graph IN s of node s is the union of all graphs OUT p of its
predecessors. The algorithm keeps updating these graphs until
seeing the global fixed point [68]. Each transfer function is
characterized as addition (i.e., GEN) or deletion (i.e., KILL)
of a set of edges based on the aforementioned formulation. The
GEN set usually denotes the new assignment edge (labeled
with a) added due to a statement. The KILL set contains
edges that must be deleted due to updated assignments. These
deletions enable strong update.

Note that the PEG representation discussed above describes
the basic analysis algorithm without any scalability treatments.
Naı̈vely running this algorithm will be unscalable. Chianina
provides scalability with graph optimizations and disk support.

B. Chianina Overview

Chianina contains a C-based frontend and a language-
independent backend (which can be readily used to analyze

3

For Research Only

int c, e, *b;

int** y = &b;
int* z = &c;
int** x = y;

*x = z;
int* v = &e;

*y = v;

1
2
3
4
5
6

OUT11

FactsStmts

P0
2 OUT2

OUT33

4’

OUT33’

4 OUT4

OUT55

6 OUT6

P1

s1

s2

s3

s4

s5

s6

(a) Program

int c, e, *b;

int** y = &b;
int* z = &c;
int** x = y;

*x = z;
int* v = &e;

*y = v;

1
2
3
4
5
6

OUT11

FactsStmts

P0
2 OUT2

OUT33

4’

OUT33’

4 OUT4

OUT55

6 OUT6

P1

s1

s2

s3

s4

s5

s6

(b) Partitions

&by a
V

(c) OUT 1

&by a

&cz a

V

V

(d) OUT 2

&bx ya a

&c

z

a

VV
V

V

(e) OUT 3

&bx ya

*x

d
a

&c

z

a

VV
V

V
V

V

a

(f) OUT 4

&bx ya

*x

d
a

&c

z

a

&e va

VV
V

V

V

V

V

a

(g) OUT 5

&b

*y

x ya
d

*x

d
a

&c

z

a

&e va

a

VV
V

V

V

M

V

V

V
V

V

(h) OUT 6

Fig. 1: (a) The example program under analysis. (b) The two partitions: each CFG vertex links to a PEG; CFG edges are stored
with their source vertices but not shown in the figure. (c)-(h) PEGs at each program point as iterative computation is performed
by the backend graph engine; inverse edges are omitted for simplicity; The “V” and “M” edges represent transitive value-alias
and memory-alias relationships shown earlier in Equations (5) and (6).

programs in other languages although this paper focuses on
the C language). The frontend is a Clang-based intraprocedural
compiler pass that analyzes each C function to produce a control
flow graph (CFG) of the function where each vertex of the CFG
(i.e., a statement) contains an PEG representing the dataflow
fact at the statement. The initial PEG for each statement just
contains edges induced by the statement itself. The backend
is a graph engine that performs iterative computation over the
CFG to update PEGs associated with each statement. The CFG
generation is generic and independent of client analysis, but
the graph representing each dataflow fact (contained in each
CFG vertex) is client-specific and needs to be provided by the
developer. For our pointer/alias analysis, each dataflow fact is
a PEG, which will grow/shrink as computation is performed
by the backend. Note that the developer can also customize
the CFG structure generated for each function. For example,
our analysis implementation actually generates a sparse def-
use graph proposed in [16], which is more efficient than the
general CFG. For generality, we will still use term CFG in the
rest of the paper to refer to the graph representation.
Cloning for Context Sensitivity. Once the CFG for each
function is generated, Chianina relies on a pre-computed
call graph (i.e., constructed by LLVM) to perform cloning
for context sensitivity. The CFG for each function is cloned
and incorporated into that of each of its callers by creating
assignment edges to connect vertices representing formal and
actual parameters. Cloning of a CFG includes cloning of each
PEG contained in each of its vertices. To handle recursion,
we first identify the strongly connected components (SCCs)
over the pre-computed call graph. Functions in each SCC are
collapsed and their CFGs are connected in trivial ways without
cloning. Note that although this handling may potentially reduce
analysis precision, we find C programs often have very small
SCCs (e.g., most SCCs have less than 3 functions) and hence
its impact on precision is small.

Clearly, aggressive inlining is extremely space-expensive
as the space requirement grows exponentially. For example,
for the Linux kernel, there are totally 48.2 million function
inlines, generating a total number of 661.6 million edges in
the final CFG produced. Naı̈vely running this process would
quickly hit the memory wall and crash. We developed an out-
of-core cloner that does efficient swapping by partitioning the
call graph into a set of subgraphs. Cloning is done on each

subgraph simultaneously if they do not have dependencies. As
cloning is moving up on the call graph, it consumes more
memory and we work on fewer subgraphs at the same time.
Those finished subgraphs that do not have dependencies with
the working subgraphs are swapped out onto disk. Once the
cloning is done, the generated global CFG (GCFG), which
is stored as a large disk file in the adjacency list format, is
already a fully context-sensitive representation of the program
(except for functions in SCCs).
Evolving Graph Computation. Figure 1a shows an example
C program. The dataflow fact associated with each statement,
represented as a PEG, is initialized by the frontend compiler
pass as a small PEG containing only edges induced by that
statement. For space efficiency, only OUT is maintained
explicitly since IN for a statement can be easily derived
by taking a union of OUT of its predecessors.

As the first step, Chianina divides the GCFG into multiple
partitions. Figure 1b shows such an example with two disjoint
partitions, containing vertices of the logical ranges [1-3] and
[4-6], respectively. For edges that cross partitions, such as
the one between statement 3 and 4 in Figure 1a, we create
two mirror vertices 3′ and 4′ and place them respectively into
the two partitions. Such edges induce dependencies between
partitions. With multiple partitions available on disk, the
Chianina scheduler picks a number of partitions at a time
and loads them into memory for parallel computation. The
number of partitions to load at each time is determined by
(1) memory availability and (2) the number of CPU cores.
Partitioning and scheduling is detailed in §IV-C.

Assuming that both partitions are selected for computation
in our example, Chianina loads into memory all CFG edges
that belong to P0 and P1 and dataflow facts (PEGs) associated
with each vertex. The computation engine runs the iterative
algorithm over the subgraph represented by the partition in a
Bulk Synchronous Parallel (BSP) style [69]. For our example,
Chianina uses two threads to run the iterative computation over
the two partitions. The iterative algorithm, which is the same as
the traditional dataflow algorithm, keeps updating PEGs until
a fixed point is reached. For example, when the computation
reaches the mirror vertex 4 in P0, it stops because vertex 4
is not present in the partition and there is no other path to
continue the algorithm.

Before Chianina writes all updated PEGs back to disk for

4

For Research Only

P0, it adds statement 4 into the active list of P1 via a message,
together with the new PEG for this statement computed in P0.
When the current computation for P1 finishes, the scheduler
identifies that P1 has an active vertex (meaning an updated
PEG for the vertex has been computed from another partition).
As a result, it selects P1 for computation again in the next
round. This next round of computation for P1 is incremental
— it starts at statement 4 (known as frontier in the terminology
of graph processing) and only updates subsequent PEGs that
are affected by the change. The repetitive process stops until
a global fixed point is seen — no partition has any active
vertices to process. In our example, the final OUT PEGs for
the statements 1–6 are shown in Figure 1c–1h, respectively.
Alias Computation. There are two choices as to how to
compute an alias solution (based on Equation 5 and 6) on each
PEG. The first choice is that alias computation is performed on
each PEG after the iterative algorithm finishes globally. While
the approach simplifies the dataflow transfer function (which
only needs to update direct assignment (i.e., a-) edges during
iterative computation), we are not able to perform strong update
(i.e., edge deletion) at each update because the pointer/alias
information is unknown when transfer functions are applied.
The second choice is we compute transitive edges on each PEG
on the fly as the PEG is updated. This approach enables strong
updates because the alias information is available at each update,
at a cost of complicating transfer functions — now each transfer
function has to additionally take care of addition/deletion of
transitive (i.e., V- and M-) edges besides assignment (a-) edges.
Due to the importance of strong update in a flow-sensitive
analysis, Chianina adopts the second approach, which computes
and updates transitive edges on the fly.

To illustrate, consider statement 6 in Figure 1a where ∗y
points to a singleton memory location. A strong update is
performed there — the effect of this is to kill, from the
PEG OUT 5, (1) all direct assignment edges going to ∗y and
expressions that must alias ∗y, as well as (2) all transitive
edges induced by these assignment edges heretofore. In our
example, there exists no direct assignment edge to ∗y, but
our must-alias analysis determines that ∗y and ∗x must alias.
As such, the direct assignment edge z

a−→ ∗x as well as the
induced edges z

V←→ ∗x and &c
V←→ ∗x are deleted. Details

about strong update and edge deletion can be found in §IV-E.

&bx ya a

&c

z

a

VV
V

V

(a) g1

x

*x

d

&c

z
V

V

a

(b) g2

P1

FactsStmts

g13’

4 g1

g15

6

g2

&e va
V

g2

g1

*y

x y
d

*x

d

&e va

a

V

M

V

V

V
V

V

(c) Partition 1 after compression

Fig. 2: Two frequent subgraphs mined over the PEGs in
Partition P1, with frequency ≥ 2 and size ≥ 3: (a) g1 whose
frequency = 4 and size = 7; (b) g2 whose frequency = 2 and
size = 4; (c) concise representation of P1 based on g1 and g2.
Exploiting Locality between Consecutive PEGs. One clear

advantage of our evolving graph formulation is that we can
exploit similarities between PEGs for increased efficiency. In
particular, Chianina extracts frequent common subgraphs (FCS)
among PEGs and composes each PEG by assembling existing
FCSes instead of duplicating these common edges and vertices
in each PEG. In our example, P1 consists of 4 PEGs. We
invoke an off-the-shelf itemset miner Eclat [70] to discover the
frequent edge-sets across these PEGs. Figure 2a and 2b depict
two frequent subgraphs (g1 and g2), mined by using 2 as the
frequency threshold and 3 as the size threshold. These two
thresholds determine, respectively, the minimum occurrences of
a subgraph and the minimum number of edges for the subgraph
to be considered as a FCS. Next, Chianina de-duplicates PEGs
by replacing each instance of g1 and/or g2 in each PEG with a
reference. As shown in Figure 2c, OUT 3 is now represented
as a reference to g1 and OUT 4 as two references to g1 and
g2. OUT 5 and OUT 6 are stored as a hybrid set of g1 and g2
references together with residue edges that do not belong to
any FCS. Details of this algorithm is discussed in §IV-D.
Dynamic Edge Pruning. Note that the pre-computed call
graph may contain spurious calls due to the imprecision of
the (inexpensive) points-to analysis used. To improve analysis
precision, Chianina enables dynamic pruning of edges if our
client is a pointer or alias analysis. Edge pruning can be easily
done by checking the validity for edges connecting actual and
formal parameters in the cloned control flow graph. The precise
points-to set of the target variable computed by our system is
used on the fly to determine whether such an edge is spurious.
A spurious edge would not be traversed and hence everything
reachable from it would not be traversed.

IV. CHIANINA DESIGN AND IMPLEMENTATION

We architect Chianina as an disk-based, out-of-core graph
system running on a single machine — since static analysis
is our application domain, the desired system should run on
developers’ working machines, providing support for their daily
development tasks. This section first discusses how a developer
can use Chianina and then its design.

A. Programming Model

Similarly to the monotone framework [66], [67], implement-
ing a client analysis on Chianina requires two major tasks. First,
the developer needs to follow a frontend interface to provide the
graph representation for dataflow facts. Second, the developer
implements two functions combine and transfer, which
are used to merge dataflow facts at the control join points and
compute dataflow facts at each statement, respectively.

As discussed earlier in §III-B, the frontend is a compiler
pass that generates, by default, the CFG for each function, and
each vertex of the CFG references another graph representing
the dataflow fact at the vertex. The developer needs to create a
subclass of class DataflowFactGraph to provide her own
graph implementation. In the case of pointer/alias analysis,
this subclass is PEG. The Chianina frontend also allows the
developer to customize the CFG captured — by default, when
vertices and edges of the CFG of each function are traversed by

5

For Research Only

the compiler pass, they get captured as is. The developer can
define her own onCFGVertex and onCFGEdge functions
to tell the frontend what to do when each CFG edge/vertex is
traversed. For our pointer analysis, we reimplemented these
two functions to capture a sparse def-use graph.

Algorithm 1: Chianina two-level parallel computation.
1 V ← {all vertices in the cloned GCFG}
2 G ← {all initialized dataflow facts}
3 [P0:〈F0,G0〉, . . ., Pi:〈Fi,Gi〉, . . .] ← PARTITION(V,G)
4 repeat
5 scheduled ← SCHEDULE()
6 /*Level 1: BSP computation at partition level*/
7 for Partition Pi ∈ scheduled do in parallel
8 〈Fi,Gi〉 ←LOAD(Pi)
9 PROCESSPARTITION (Fi,Gi)

10 COMPRESSFCS(Gi)
11 for Each partition Pi do in parallel
12 if Qi 6= ∅ then
13 Fi ← Qi

14 if Pi ∈ scheduled then /*for loaded partitions*/
15 Write Gi,Fi back to disk
16 Delete Pi from memory

17 until ∀i, Fi = ∅
18 Procedure PROCESSPARTITION(Fi,Gi)
19 changeset ← ∅
20 /*Level 2: Async. dataflow computation at stmt level*/
21 for each CFG vertex k ∈ Fi do in parallel
22 Remove k from Fi

23 IN k ← COMBINE(k)
24 Tempk ← TRANSFER(IN k)
25 if ¬ ISISOMORPHIC(Tempk,OUT k) then
26 OUT k ← Tempk

27 changeset ← changeset ∪ {k}
28 Fi ← Fi∪ SUCCESSOR(k) \Mirror

29 /* Process CFG vertices with changed dataflow facts*/
30 foreach CFG vertex k ∈ changeset do
31 foreach s ∈ SUCCESSOR(k) do
32 if s is a mirror vertex then
33 Qj ← {〈s,OUT k〉} ∪ Qj , where s ∈ Pj

B. Two-level Parallel Computation

Algorithm 1 provides Chianina’s iterative computation
algorithm. Chianina exploits parallelism at two levels: (1) bulk
synchronous parallel computation (BSP) at the partition level
(Line 7) and (2) asynchronous computation at the CFG vertex
level (Line 21). The loop between Line 5 and Line 17 describes
a typical BSP style computation — partitions scheduled to
process are loaded and processed completely in parallel during
each superstep (i.e., loop iteration). Each partition Pi has three
data structures: (1) Fi — the active CFG vertices that form
the frontier for the partition, (2) Gi — the set of dataflow fact
graphs, and (3) Qi — the message queue. In the beginning,
Fi contains all vertices in the partition (Line 3).

The partition-level BSP computation is done by the loop
from Line 7–10. Chianina loads the active vertices in Fi and
the dataflow fact graphs Gi of each scheduled partition Pi into

memory (Line 8), processes the partition (Line 9), and finds
and exploits frequent common subgraphs (Line 10).

Function PROCESSPARTITION describes the logic of pro-
cessing of each partition that exploits parallelism at the
(second) CFG-vertex level. Chianina iterates, in parallel, over
the active CFG vertices in Fi, applying the two user-defined
functions COMBINE and TRANSFER on each vertex. The alias
computation logic is done in TRANSFER. If the resulting PEG
Tempk is not isomorphic to the previously computed OUT k

(Line 25), we record k into changeset and add k’s CFG
successors into the frontier set Fi. It is clear that this parallel
loop performs asynchronous computation — whenever a new
active vertex is detected, it is added into Fi and immediately
processed by a thread without any synchronization. Locks
(omitted here) are used to guarantee data race freedom — no
vertex will be processed simultaneously by multiple threads.

Asynchronous computation performs faster updates than
synchronous computation at the cost of increased scheduling
complexity. At the vertex level, since all CFG vertices of a
partition are already in memory, asynchronous parallelism is a
better fit as long as we can guarantee the data race freedom
and atomicity of the transfer function execution for each vertex.
However, at the partition level, our scheduler determines which
partitions to load and run based on a set of already complex
criteria, and hence, using BSP-style parallelism significantly
simplifies our scheduler design.

Finally, the loop at Line 30 iterates over all CFG vertices
whose dataflow facts have changed to find mirror vertices such
as statement 4 in Figure 1a. In particular, we find the partition
Pj that contains each mirror vertex s and puts its dataflow fact
graph OUT k into its message queue Qj (Line 33). Later, when
all scheduled partitions are done with their processing (Line 11),
the synchronization phase starts (Line 11 – Line 16), updating
each partition Pi’s active vertex set Fi with the messages in
Qi (received from the processing of other partitions). At the
end of each superstep, the updated Gi and Fi are written back
to disk and removed from memory (Line 14) if partition Pi is
currently in memory.

C. Partitioning and Scheduling

Partitioning. Chianina uses the vertex-centric edge-cut strat-
egy [69] for effective partitioning, which assigns CFG vertices
to partitions and cuts certain edges across partitions. Specifi-
cally, vertices of the global control flow graph are firstly divided
into disjoint sets. A partition is then created by assigning all
the edges whose source or destination vertex belongs to this
set. There often exist edges of the form x → y that cross
two partitions P1 and P2 (e.g., x ∈ P1 and y ∈ P2). Chianina
creates mirror vertices x′ and y′, and places the edges x→ y′

and x′ → y into P1 and P2, respectively.
For each partition, its space is consumed by its CFG edges

as well as dataflow fact graphs associated with its vertices
(including mirror vertices). Dataflow fact graphs are maintained
in a separate storage space from CFG edges. As a result of
this partitioning scheme, for any vertex (except for mirrors)
within a partition, Chianina can apply the transfer function

6

For Research Only

on it by accessing and updating its incoming and outgoing
dataflow facts. For each vertex whose successor is a mirror
vertex, when its associated dataflow fact is updated, the mirror
vertex is marked as active. A message containing the vertex
ID and its updated dataflow fact graph is sent to its containing
partition, as shown in Line 33 in Algorithm 1.

Note that how to split GCFG nodes into disjoint sets deter-
mines the effectiveness of partitioning, which has further impact
on the overall performance. Traditional graph partitioning
schemes [71] aim to minimize the number of cuts across
partitions, with the goal to save communication costs. However,
those schemes do not consider the unique characteristics
of our (flow-sensitive analysis) workload. For example, the
computation performed by a flow-sensitive analysis follows the
structure of the CFG. It is well-known in the program analysis
community that the convergence speed of an iterative analysis
is significantly affected by the order in which CFG vertices are
visited [72]. Intuitively, desirable performance can be achieved
if all predecessors of a CFG vertex have been processed before
the vertex itself, because the transfer function can just use the
latest updates from its predecessors.

Based on the insight, we propose a balanced, topology-
based partitioning mechanism. Given the number of partitions
(specified by the user as a parameter) and the total number of
vertices in the GCFG, we first calculate the average number of
vertices for each partition. Next, the partitioner traverses the
GCFG in a topological order (a.k.a. reverse post-order of DFS
traversal), starting from each entry vertex of the GCFG. The
traversal continues until the number of vertices visited matches
(roughly) the average number. Once a partition is generated, we
repeat the same process by using another unvisited vertex as
the root. Eventually, all partitions are produced with balanced
sets of vertices that also follow the traversal order.

This algorithm works well for CFGs without cycles. To deal
with cycles (induced by loops), we compute strongly connected
components (SCCs for brevity) over the GCFG. The nodes
within a SCC are connected to each other. As a result, the
control flow graph with cycles turns out to be an acyclic graph
with SCCs. The above algorithm can then be conducted over
the acyclic graph to produce balanced partitions.
Scheduling. Similarly to the partitioning scheme, the sched-
uler also needs to take into account topology when deciding
which partitions to load and process. Due to dependencies
induced by inter-partition edges (say x→ y), one major goal
of the scheduler is to schedule the processing of the partition
containing x before that of the partition containing y, so that
communication costs can be reduced and the algorithm can
converge quickly. To this end, we devise a priority queue based
scheduling mechanism. We assign each partition a priority,
which is a function of (1) the number of its active vertices (i.e.,
the size of Fi) and (2) whether or not the partition is currently
in memory. The more active vertices a partition has, the more
updates can be generated during computation. Furthermore, if
a partition is already in memory, processing it again in the
next superstep can save the large cost of a memory-disk round
trip, leading to increased efficiency.

Our scheduler selects a number N of partitions with the
highest priority. The value of N is determined by (1) the
amount of memory each partition is estimated to consume, (2)
the total amount of available memory, and (3) the number of
CPU cores. Our goal is to fully utilize the memory and CPU
resources without creating extra stress.

D. FCS-based De-duplication

Although Chianina divides the input into smaller partitions
to avoid running out of memory, partitions are still space-
consuming especially because each CFG vertex carries a
dataflow fact graph. Dataflow fact graphs exhibit both temporal
and spatial locality — graphs belonging to connected CFG
vertices are processed contiguously and have large overlap.

To exploit such overlaps, we propose a frequent-itemset-
based approach to find frequent common subgraphs and perform
de-duplication by maintaining only one instance for each FCS
and replacing other instances with references. De-duplication
(Line 10 in Algorithm 1) is conducted before writing dataflow
facts back to disk. In particular, our algorithm models each
dataflow fact graph (e.g., PEG) as an itemset where each item
is an edge. The graph miner discovers frequent itemsets, each
of which occurs at least N times (i.e., N is a threshold) among
dataflow fact graphs in the same partition.

Once these FCSes are mined, we check each dataflow fact
graph and see if it contains any FCSes. If it does, we replace
each instance of each FCS with a reference, as illustrated in
Figure 2c. Given multiple FCSes, there may exist multiple
ways to conduct the placement. Given that the benefits of de-
duplication are determined primarily by an FCSes’ frequency
and size. The higher these numbers are, the more benefit can be
reaped. As such, Chianina assigns each FCS mined a priority
score, computed as the product of its frequency and size. A
greedy algorithm is then used to apply candidate FCSes in the
descending order of their priority.

In Chianina, we leverage an off-the-shelf frequent itemset
mining tool Eclat [70] to uncover FCSes. Although leveraging
these FCSes significantly reduces the size of dataflow facts,
it inevitably introduces overhead. With the growth in both
the number and size of dataflow facts, the mining cost is
non-trivial — it can take several minutes to run each mining
task for large partitions in our experiments. To reduce the
overhead, we can focus only on very frequent and/or very
large FCSes by raising the mining thresholds. Moreover, we
randomly sample the dataflow fact graphs in each partition,
selecting no more than 10K graphs as our mining dataset.
These two approaches collectively bring the overhead down to
an acceptable percentage (i.e., less than 5%).

E. Strong Update and Edge Deletion

As stated earlier, the dataflow transfer function transfer
needs to be provided by the developer. For pointer/alias analysis,
the transfer function not only applies the logic of GEN
and KILL, but also discovers transitive edges on each PEG to
compute an alias solution. The logic of GEN is straightforward
— Rule 1–4 in §III-A clearly describes how new edges should

7

For Research Only

be added. The algorithm of computing the alias solution from a
PEG is based on CFL-reachability [7], [73] (shown in Equation
5 and 6) and well-known to the community [65]. Hence, we
do not include this algorithm in the paper. The logic of KILL
(i.e., edge deletion) involves strong update, which is crucial for
achieving high precision of flow-sensitive analysis [74]–[76].
Since this logic is much trickier than that for edge addition,
here we focus on the discussion of edge deletion.
Condition for Strong Update. Strong update can be enabled
on pointer expression x such that x is guaranteed to refer
to a single memory location (i.e., singleton) throughout the
execution. We follow [74] to identify our singleton set. The
detailed algorithm is known and omitted from the paper to save
space. Informally, a local or global variable is singleton except
for the following cases: (1) dynamically allocated variables,
where one abstract variable may correspond to multiple memory
locations during execution; (2) local variables of recursive
procedures (either directly or transitively recursive), where
each variable may have multiple instances on the stack; and
(3) array variables where usually only one element is updated.
Finding Edges to Delete. When such an expression (e.g.,
∗p = v) is defined, strong update may be performed because
the value contained in the location l pointed-to by p changes.
This removes the value-aliasing (Equation 5) between ∗p and
any pointer variables that previously receive their values from
the location. On the PEG, two kinds of edges need be deleted:
(1) all (direct and transitive) edges going into any pointer
expressions referring to l, and (2) all (direct and transitive)
edges coming out of any pointer expressions referring to l.

For (1), there are four sub-cases: (1.1) direct assignment
edges going to expression ∗p, added due to a previous statement
such as ∗p = x — such a relationship no longer holds; (1.2)
direct assignment edges going to expression ∗q such that p
and q must alias. p and q must alias if they both have only
one and the same memory location o in their points-to set and
o is a singleton memory location. We compute the must-alias
information during our alias solution computation (i.e., part of
the transfer function); (1.3) transitive (V- or M-) edges going
to expression ∗p — these edges represent aliasing relationships
between the old value inside ∗p and another pointer expression
and thus need to be deleted; and (1.4) transitive (V- or M-)
edges going to expression ∗q such that p and q must alias;
these edges need to be deleted for similar reasons.

Note that we not only need to remove edges going into ∗p,
but also need to remove edges coming out of ∗p. For example,
for a direct edge coming out of ∗p due to a previous statement
v = ∗p, since ∗p now contains a different value, v is not longer
related to ∗p. Similarly, four sub-cases exist in (2). We need to
remove (2.1) direct assignment edges coming out of expression
∗p, (2.2) direct assignment edges coming out of expression ∗q
such that p and q must alias, (2.3) transitive (V- or M-) edges
coming out of expression ∗p, and (2.4) transitive (V- or M-)
edges coming out of ∗q such that p and q must alias.

V. EVALUATION

Our evaluation focuses on the following three questions:

• Q1: How does Chianina perform? How does it compare
to other analysis implementations? (§V-A)

• Q2: How effective are our de-duplication, partitioning,
and scheduling? (§V-B)

• Q3: Is the extra precision gained from context- and flow-
sensitivity useful in practice? (§V-C)

TABLE I: Static characteristics of subject programs
Subject Version #LoC #Inlines #V-CFG #E-CFG Description

Linux 5.2 17.5M 48.2M 440.2M 661.6M OS
Firefox 67.0 7.9M 22.1M 282.8M 503.6M web browser
PostgreSQL 12.2 1.0M 5.4M 39.3M 80.4M database
OpenSSL 1.1.1 519K 3.3M 38.9M 91.0M protocol
Httpd 2.4.39 196K 293K 2.6M 3.8M web server

We selected five large software systems including the
Linux kernel, Firefox, PostgreSQL, OpenSSL, and Apache
Httpd server as our analysis subjects. We implemented two
context- and flow-sensitive analyses on top of Chianina: a
pointer/alias analysis discussed in the paper as an example
as well as a null value flow analysis with context-sensitive
heap tracking. The null-value analysis is conducted together
with the pointer/alias analysis — because pointer information
is needed to track flows into/out of the heap, this analysis
implements its dataflow fact graph by augmenting the PEG
representation from the pointer/alias analysis with additional
types of vertices representing null or non-null values. These two
pieces of information (pointer and value) are computed together
by the transfer function on the fly, while past implementations
of value-flow analysis often require pointer information a priori.

The Chianina-based implementations for the two analyses
have 553 and 708 lines of C++ code, most of which are on
the implementation of CFL-reachability and strong update. In
contrast, a context-, flow-insensitive pointer analysis [74] (that
supports strong update) has 2499 lines of C++ code, while the
staged context-insensitive, flow-sensitive analysis for C [15]
has 10,649 lines.

As discussed earlier, context sensitivity is achieved by aggres-
sive function cloning. Table I reports the static characteristics
of each subject including its version information, the number
of lines of code excluding whitespace and comments (#LoC),
the number of functions inlined (#Inlines), the numbers of CFG
vertices (#V-CFG) and edges (#E-CFG) in the global control
flow graph after cloning, and the type description.

All the experiments were conducted on a commodity desktop
with an Intel Xeon W-2123 4-Core CPU, 16GB memory, and 1T
SSD, running Ubuntu 16.04. This resource profile is consistent
with that of developers’ working machines in the real world.

A. Chianina Performance

Table II reports, for the two client analyses, a variety of per-
formance statistics including numbers of partitions generated,
numbers of iterations (supersteps) needed for convergence,
numbers of PEGs generated, total numbers of vertices and
edges in all PEGs, and total computation times. The three
PEG-related columns report the information of PEGs finally
produced by Chianina.

The numbers of partitions for large programs such as Linux
and Firefox are greater than 100. Clearly, it would not have

8

For Research Only

TABLE II: Chianina performance: columns shown are numbers of partitions (#Part.), numbers of iterations needed to converge
(#Ite.), total numbers of PEGs (#PEGs), total numbers of vertices (#V-PEGs) and edges (#E-PEGs) in PEGs contained in the
GCFG, and analysis times used (Time), respectively.

Context- and flow-sensitive alias analysis NULL value flow analysis with alias tracking

Subject #Part. #Ite. #PEGs #V-PEGs #E-PEGs Time #Part. #Ite. #PEGs #V-PEGs #E-PEGs Time

Linux 287 337 440.2M 5.9B 125.9B 20.7hrs 289 354 440.2M 6.1B 126.1B 22.1hrs
Firefox 149 181 282.8M 3.4B 83.4B 11.1hrs 149 189 282.8M 3.8B 83.8B 12.3hrs
PostgreSQL 34 43 39.3M 481.8M 13.7B 1.3hrs 42 45 39.3M 513.2M 13.7B 1.5hrs
OpenSSL 10 17 38.9M 354.0M 4.5B 40.9mins 11 19 38.9M 368.1M 4.5B 43.6mins
Httpd 1 1 2.6M 37.6M 585.1M 4.7mins 1 1 2.6M 41.2M 588.7M 5.0mins

been possible to scale the analysis to such large programs
without our disk support. Overall, it took the two analyses 20.7
and 22.1 hours to process the entire Linux kernel in a context-
and flow-sensitive fashion. These analyses converged much
faster for smaller programs such as Httpd (in a few minutes),
which can be successfully analyzed as a single partition.
Performance Breakdown. To better understand the perfor-
mance, we further broke down each analysis execution into
four phases – preprocessing (i.e., partitioning), disk I/O (i.e.,
reading/writing partitions), (in-memory) BSP computation, and
FCS de-duplication – and measured the time spent on each
phase. On average, these four phases (in the above order) take
3.76%, 6.52%, 86.78%, and 2.94% of the total running time.
The in-memory BSP computation dominates the execution.
This is expected because each iteration updates hundreds of
millions of PEGs, each of which can have thousands of edges.
This observation suggests that more CPU resources (e.g., cores,
GPUs, or cluster) should be enlisted to bring the cost down.
Existing Analyses. The goal of this comparison is to un-
derstand if our context- and flow-sensitive alias analysis
is more scalable and efficient than state-of-the-art analysis
implementations. However, the difficulty here is that we could
not find any available implementation of the same analysis for C.
Kahlon reports his context- and flow-sensitive pointer analysis
in [11], but its implementation is not available. Hardekopf
et al. [15], [16] and Lhotak and Chung [74] have both
implemented variations of flow-sensitive but context-insensitive
pointer analysis for C. Although their implementations are
available online, they were developed a long time ago for
deprecated versions of LLVM, which are incompatible with
the subject programs and our operating system. Doop [35]
is a Datalog-based context-sensitive analysis framework, but
it only supports Java and does not have a C frontend. The
only available tool we can directly run is SVF [49], which also
performs flow-sensitive but context-insensitive pointer analysis.

Since no existing implementation for both context- and flow-
sensitive pointer analysis was readily available for compari-
son, we implemented by ourselves the staged flow-sensitive
pointer/alias analysis, by faithfully following the algorithm
described in [15]. The original analysis in [15] does not consider
context sensitivity, and hence, we added context sensitivity to
our implementation by letting the analysis take as input the
cloned GCFG, which is automatically context sensitive. We
compared Chianina with this version in a fully context-sensitive,
flow-sensitive manner. This reference implementation failed
to analyze most programs except for Httpd in our benchmark

set — it ran out of memory quickly in a few seconds. This
is not surprising since holding the GCFG for large programs
requires a huge amount of memory. For Httpd, the reference
implementation (which is single-threaded) takes more than 20
minutes and is much slower than Chianina.
TABLE III: Performance comparison for context-insensitive,
flow-sensitive pointer analysis; OOM indicates out-of-memory;
- indicates runtime error.

Linux Firefox PostgreSQL OpenSSL Httpd

Reference[15] OOM OOM 14.7mins OOM 34.7s
SVF[49] - OOM 56.1s OOM 8.3s
Chianina 1.9hrs 4.2hrs 3.9mins 25.7mins 11.5s

Next, we disabled context sensitivity in Chianina, enabling
direct comparisons between Chianina, SVF, and the reference
implementation of [15]. In this setting, all the three tools ran
context-insensitive, flow-sensitive pointer analysis. To disable
context sensitivity in Chianina, instead of cloning functions, we
connected formal and actual parameters in trivial ways so that
the generated CFG is context-insensitive. Table III reports the
analysis times the three tools took to analyze the five programs.
Without context sensitivity, the reference implementation still
failed to analyze Linux, FireFox and OpenSSL due to out-
of-memory errors. SVF ran out of memory for Firefox and
OpenSSL, and crashed on Linux. For Httpd and PostgreSQL,
all the tools successfully analyzed them. Chianina outperformed
[15] thanks to parallel processing. For PostgreSQL, however,
SVF achieved better performance than Chianina. This is easy
to understand — many optimizations Chianina performs for
scalability purposes (e.g., preprocessing, scheduling, disk I/O,
and FCS de-duplication) take time to run; if scalability is not
a concern, these optimizations would only add overhead.

B. De-duplication, Partitioning and Scheduling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

#Items #Iterations Time

Fig. 3: Percentages in numbers of PEG edges, numbers of
iterations (i.e., supersteps) needed, and total time spent for
Chianina + FCS, using Chianina - FCS as the baseline (100%).

To understand the performance impact of FCS de-duplication,
we compared two versions of Chianina, one with de-duplication

9

For Research Only

enabled (Chianina + FCS) and another without (Chianina -
FCS). We ran these two versions under the same configuration
and inputs, and collected the relevant execution statistics. Figure
3 depicts the numbers of PEG edges, numbers of iterations
needed for convergence, and total time spent for Chianina +
FCS, as a fraction of those of Chianina - FCS (i.e., the baseline).
Note that since Httpd is a small program with only one single
partition, we excluded it from the set for the FCS evaluation.
As shown, de-duplication significantly improved all of these
aspects. For example, the overall time is reduced by more than
30% on average when FCS de-duplication is enabled.

To understand the efficacy of our partitioning and scheduling
algorithms, we collected the statistics in a similar manner by
running two versions of Chianina, one with our partitioning
and scheduling algorithm (Chianina + PS) and a second that
uses default algorithms (Chianina - PS) — in particular, in the
second version, we partitioned the GCFG using the min-cut
algorithm [69] and scheduled random partitions (with active
vertices) for processing in each superstep. We use Chianina -
PS as the baseline and report the statistics for Chianina +
PS as a fraction in relation to the baseline in Figure 4. The
statistics considered include numbers of iterations needed
for convergence, and time spent. As shown, our partitioning
and scheduling algorithms are effective — they significantly
improve the efficiency in all these aspects. For example, total
running time is reduced by more than 40% by employing our
intelligent CFG-structure-aware partitioning and scheduling.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

#Iterations Time

Fig. 4: Percentages in numbers of iterations and total time for
Chianina + PS using Chianina - PS as baseline (100%); Httpd
is not considered here as it has one single partition.

C. Usefulness of Gained Precision

To understand the accuracy of our context- and flow-sensitive
alias analysis, we first examined each pointer dereference
expression in load and store statements of the program, and
measured the sizes of their alias sets — the smaller the
better. For comparison, we considered three alias analyses
– our context- and flow-sensitive analysis (CF), a context-
insensitive, flow-sensitive analysis (F), and a context-sensitive,
flow-insensitive analysis (C). Table IV reports the average
sizes of alias sets for each analysis. Clearly, our flow- and
context-sensitive analysis has the highest precision. The context-
sensitive and flow-insensitive analysis (C) has the largest num-
ber (i.e., lowest precision). This observation demonstrates that
flow-sensitivity is more important than context-sensitivity for
large C programs because analysis precision loses significantly
if strong update is disabled.

TABLE IV: Sizes of alias sets of pointer expressions involved
in load and store statements under three different pointer/alias
analyses – our context-sensitive and flow-sensitive (CF),
context-insensitive and flow-sensitive (F), context-sensitive and
flow-insensitive (C).

Load Store

Subject CF F C CF F C

Linux 0.24 0.54 7.20 0.31 0.95 5.54
Firefox 0.29 0.70 5.08 0.14 1.51 3.80
PostgreSQL 0.44 1.54 14.0 1.11 1.57 18.1
OpenSSL 0.84 4.06 13.22 0.08 0.25 0.73
Httpd 0.38 1.46 11.73 1.97 1.97 10.82

Although the size of alias set is a good precision metric, it
does not show the usefulness of the increased precision. To
answer the question ”why is the extra precision needed”, we
implemented four static checkers: (1) a dataflow-based null
pointer dereference checker, (2) a use-after-free checker, (3) a
double-free checker, and (4) a belief analysis based null pointer
dereference checker. The first three checkers were commonly
used in the program analysis community [17], [36] and the last
checker was used in the classical bug study done by Engler et
al. [77], [78]. Note that the original versions of these checkers
do not use any pointer information; they only use heuristics.
To understand the effectiveness of our flow-sensitive alias
analysis, we augmented these checkers with alias information
provided by three analyses — our context- and flow-sensitive
analysis (CF), context-sensitive, flow-insensitive analysis (C),
and context-insensitive and flow-sensitive analysis (F). We next
compared the numbers of warnings generated by these four
checkers when augmented with each of these three pieces of
alias information. Note that all the three analyses are sound,
and hence using them would not make the checkers miss real
bugs (i.e., increasing the number of false negatives). As such,
the fewer warnings generates, the better (because more false
positives are pruned).

TABLE V: Checkers implemented including the dataflow
analysis-based null pointer dereference (DF-Null), use-after-
free (DF-UAF), double free (DF-DF) and the belief analysis-
based null pointer dereference (BA-Null), their numbers of bugs
reported by the baseline checkers augmented with our context-
and flow-insensitive analysis (base+CF), context-sensitive and
flow-insensitive (base+C), context-insensitive and flow-sensitive
(base+F) on Linux kernel 5.2.

Checker DF-Null DF-UAF DF-DF BA-Null total

base+CF 196 648 193 620 1657
base+C 217 1146 212 724 2299
base+F 211 805 200 663 1879

Table V reports these numbers — a large number of false
warnings are pruned by enabling context and flow sensitivity.
Similarly to the observation made earlier, flow sensitivity seems
more important than context sensitivity as well in pruning
false warnings. We sampled 100 pruned warnings for manual
validation and confirmed that they are indeed false warnings.

VI. CONCLUSION

This paper presents Chianina, a novel evolving graph system
for scalable context- and flow-sensitive analysis for C code.

10

For Research Only

REFERENCES

[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps,” in
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’14, pp. 259–269.

[2] M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive interprocedu-
ral points-to analysis in the presence of function pointers,” in Proceedings
of the ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation, ser. PLDI ’94. ACM, 1994, pp. 242–256.

[3] O. Lhoták and L. Hendren, “Context-sensitive points-to analysis: Is
it worth it?” in Proceedings of the 15th International Conference on
Compiler Construction, ser. CC’06, 2006, pp. 47–64.

[4] C. Lattner, A. Lenharth, and V. Adve, “Making context-sensitive points-to
analysis with heap cloning practical for the real world,” ser. PLDI ’07.
ACM, 2007, pp. 278–289.

[5] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams,” in Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation, ser. PLDI ’04. ACM, 2004, pp. 131–144.

[6] H. Tang, X. Wang, L. Zhang, B. Xie, L. Zhang, and H. Mei, “Summary-
based context-sensitive data-dependence analysis in presence of callbacks,”
in Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL’15, pp. 83–95.

[7] M. Sridharan and R. Bodı́k, “Refinement-based context-sensitive points-to
analysis for java,” in Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’06.
ACM, 2006, pp. 387–400.

[8] G. Xu, A. Rountev, and M. Sridharan, “Scaling cfl-reachability-based
points-to analysis using context-sensitive must-not-alias analysis,” in
Proceedings of the 23rd European Conference on ECOOP 2009 — Object-
Oriented Programming, ser. Genoa. Springer-Verlag, 2009, pp. 98–122.

[9] D. Yan, G. Xu, and A. Rountev, “Demand-driven context-sensitive alias
analysis for java,” in Proceedings of the 2011 International Symposium
on Software Testing and Analysis, ser. ISSTA ’11, pp. 155–165.

[10] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin,
and C. Unkel, “Context-sensitive program analysis as database queries,”
ser. PODS ’05. ACM, 2005, pp. 1–12.

[11] V. Kahlon, “Bootstrapping: A technique for scalable flow and context-
sensitive pointer alias analysis,” in Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, ser. PLDI ’08. ACM, 2008, pp. 249–259.

[12] R. P. Wilson and M. S. Lam, “Efficient context-sensitive pointer analysis
for c programs,” in Proceedings of the ACM SIGPLAN 1995 Conference
on Programming Language Design and Implementation, ser. PLDI ’95.
ACM, 1995, pp. 1–12.

[13] Y. Su, D. Ye, and J. Xue, “Parallel pointer analysis with cfl-reachability,”
in 2014 43rd International Conference on Parallel Processing, Sept 2014,
pp. 451–460.

[14] M. Sridharan, D. Gopan, L. Shan, and R. Bodı́k, “Demand-driven points-
to analysis for java,” in Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA ’05. ACM, 2005, pp. 59–76.

[15] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions of
lines of code,” in Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, ser. CGO ’11. IEEE
Computer Society, 2011, pp. 289–298.

[16] ——, “Semi-sparse flow-sensitive pointer analysis,” in Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’09. ACM, 2009, pp. 226–238.

[17] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Proceedings of the 22Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ser. POPL ’95. ACM, 1995, pp. 49–61.

[18] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay, “Speeding up slicing,” in
Proceedings of the 2Nd ACM SIGSOFT Symposium on Foundations of
Software Engineering, ser. SIGSOFT ’94. ACM, 1994, pp. 11–20.

[19] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and P. Hawkins,
“An overview of the saturn project,” in Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, ser. PASTE ’07. ACM, 2007, pp. 43–48.

[20] I. Dillig, T. Dillig, and A. Aiken, “Sound, complete and scalable path-
sensitive analysis,” in Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’08.
ACM, 2008, pp. 270–280.

[21] Z. Zuo, J. Thorpe, Y. Wang, Q. Pan, S. Lu, K. Wang, H. Xu, L. Wang,
and X. Li, “Grapple: A graph system for static finite-state property
checking of large-scale systems code,” in Proceedings of the Fourteenth
European Conference on Computer Systems, ser. EuroSys ’19, 2019.

[22] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang, “Pinpoint:
Fast and precise sparse value flow analysis for million lines of code,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018, pp. 693–706.

[23] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your contexts well:
Understanding object-sensitivity,” in Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ser. POPL ’11. ACM, 2011, pp. 17–30.

[24] M. Might, Y. Smaragdakis, and D. Van Horn, “Resolving and exploiting
the k-cfa paradox: Illuminating functional vs. object-oriented program
analysis,” in Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’10.
ACM, 2010, pp. 305–315.

[25] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective analysis:
Context-sensitivity, across the board,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’14. ACM, 2014, pp. 485–495.

[26] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “Scalability-first pointer
analysis with self-tuning context-sensitivity,” ser. ESEC/FSE 2018. ACM,
2018, pp. 129–140.

[27] ——, “Precision-guided context sensitivity for pointer analysis,” Proc.
ACM Program. Lang., vol. 2, no. OOPSLA, pp. 141:1–141:29, Oct. 2018.

[28] X. Zhang, R. Mangal, R. Grigore, M. Naik, and H. Yang, “On abstraction
refinement for program analyses in datalog,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’14. ACM, 2014, pp. 239–248.

[29] J. Lu and J. Xue, “Precision-preserving yet fast object-sensitive pointer
analysis with partial context sensitivity,” Proc. ACM Program. Lang.,
vol. 3, no. OOPSLA, pp. 148:1–148:29, Oct. 2019.

[30] S. Jeong, M. Jeon, S. Cha, and H. Oh, “Data-driven context-sensitivity
for points-to analysis,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
Oct. 2017.

[31] M. Jeon, S. Jeong, and H. Oh, “Precise and scalable points-to analysis
via data-driven context tunneling,” Proc. ACM Program. Lang., vol. 2,
no. OOPSLA, Oct. 2018.

[32] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to analysis for java,” ACM Trans. Softw. Eng.
Methodol., vol. 14, no. 1, pp. 1–41, Jan. 2005.

[33] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for points-
to analysis,” in Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’13.
ACM, 2013, pp. 423–434.

[34] Y. Smaragdakis, G. Balatsouras, and G. Kastrinis, “Set-based pre-
processing for points-to analysis,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’13. ACM, 2013,
pp. 253–270.

[35] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification of
sophisticated points-to analyses,” in Proceedings of the 24th ACM SIG-
PLAN Conference on Object Oriented Programming Systems Languages
and Applications, ser. OOPSLA ’09. ACM, 2009, pp. 243–262.

[36] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani, “Graspan: A
single-machine disk-based graph system for interprocedural static analy-
ses of large-scale systems code,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’17, 2017.

[37] K. Vora, R. Gupta, and G. Xu, “Kickstarter: Fast and accurate computa-
tions on streaming graphs via trimmed approximations,” ser. ASPLOS
’17. ACM, 2017, pp. 237–251.

[38] ——, “Synergistic analysis of evolving graphs,” ACM Trans. Archit.
Code Optim., vol. 13, no. 4, pp. 32:1–32:27, Oct. 2016.

[39] A. P. Iyer, L. E. Li, T. Das, and I. Stoica, “Time-evolving graph processing
at scale,” in Proceedings of the Fourth International Workshop on Graph
Data Management Experiences and Systems, ser. GRADES ’16. ACM,
2016, pp. 5:1–5:6.

11

For Research Only

[40] P. Kumar and H. H. Huang, “Graphone: A data store for real-time
analytics on evolving graphs,” in 17th USENIX Conference on File and
Storage Technologies (FAST 19). Boston, MA: USENIX Association,
Feb., pp. 249–263.

[41] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi,
“Naiad: A timely dataflow system,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, ser. SOSP ’13. ACM,
2013, pp. 439–455.

[42] B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal, “Pagerank on an
evolving graph,” in Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’12.
ACM, 2012, pp. 24–32.

[43] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,
W. Chen, and E. Chen, “Chronos: A graph engine for temporal graph
analysis,” ser. EuroSys ’14. ACM, 2014, pp. 1:1–1:14.

[44] Y. Miao, W. Han, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,
E. Chen, and W. Chen, “Immortalgraph: A system for storage and analysis
of temporal graphs,” Trans. Storage, vol. 11, no. 3, pp. 14:1–14:34, Jul.
2015.

[45] J. H. Reif and H. R. Lewis, “Symbolic evaluation and the global value
graph,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, ser. POPL ’77. ACM, 1977,
pp. 104–118.

[46] D. R. Chase, M. Wegman, and F. K. Zadeck, “Analysis of pointers
and structures,” in Proceedings of the ACM SIGPLAN 1990 Conference
on Programming Language Design and Implementation, ser. PLDI ’90.
ACM, 1990, pp. 296–310.

[47] M. Hind and A. Pioli, “Assessing the effects of flow-sensitivity on pointer
alias analyses,” in Proceedings of the 5th International Symposium on
Static Analysis, ser. SAS ’98, 1998, pp. 57–81.

[48] J.-D. Choi, R. Cytron, and J. Ferrante, “Automatic construction of sparse
data flow evaluation graphs,” ser. POPL ’91. ACM, 1991, pp. 55–66.

[49] Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis in
llvm,” in Proceedings of the 25th international conference on compiler
construction. ACM, 2016, pp. 265–266.

[50] Y. Sui, D. Ye, and J. Xue, “Detecting memory leaks statically with full-
sparse value-flow analysis,” IEEE Transactions on Software Engineering,
vol. 40, no. 2, pp. 107–122, 2014.

[51] R. Hasti and S. Horwitz, “Using static single assignment form to improve
flow-insensitive pointer analysis,” in Proceedings of the ACM SIGPLAN
1998 Conference on Programming Language Design and Implementation,
ser. PLDI ’98. ACM, 1998, pp. 97–105.

[52] T. B. Tok, S. Z. Guyer, and C. Lin, “Efficient flow-sensitive interproce-
dural data-flow analysis in the presence of pointers,” in Proceedings of
the 15th International Conference on Compiler Construction, ser. CC’06,
2006, pp. 17–31.

[53] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi, “Design and implementation
of sparse global analyses for c-like languages,” in Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 12. ACM, 2012, p. 229238.

[54] J. Rodriguez and O. Lhoták, “Actor-based parallel dataflow analysis,”
in Proceedings of the 20th International Conference on Compiler
Construction: Part of the Joint European Conferences on Theory and
Practice of Software, ser. CC’11/ETAPS’11, 2011, pp. 179–197.

[55] D. Garbervetsky, E. Zoppi, and B. Livshits, “Toward full elasticity in
distributed static analysis: The case of callgraph analysis,” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017. ACM, 2017, pp. 442–453.

[56] A. Albarghouthi, R. Kumar, A. V. Nori, and S. K. Rajamani, “Paral-
lelizing top-down interprocedural analyses,” in Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’12. ACM, 2012, pp. 217–228.

[57] V. Nagaraj and R. Govindarajan, “Parallel flow-sensitive pointer analysis
by graph-rewriting,” in Proceedings of the 22nd International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT 13.
IEEE Press, 2013, p. 1928.

[58] J. Zhao, M. G. Burke, and V. Sarkar, “Parallel sparse flow-sensitive
points-to analysis,” in Proceedings of the 27th International Conference
on Compiler Construction, ser. CC 2018. ACM, 2018, p. 5970.

[59] M. Sharir and A. Pnueli, Two approaches to interprocedural data flow
analysis. New York, NY: New York Univ. Comput. Sci. Dept., 1978.
[Online]. Available: https://cds.cern.ch/record/120118

[60] B. R. Murphy and M. S. Lam, “Program analysis with partial transfer
functions,” in Proceedings of the 2000 ACM SIGPLAN Workshop on

Partial Evaluation and Semantics-based Program Manipulation, ser.
PEPM ’00. ACM, 1999, pp. 94–103.

[61] M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural dataflow
analysis with applications to constant propagation,” Theor. Comput. Sci.,
vol. 167, no. 1-2, pp. 131–170, Oct. 1996.

[62] G. Xu and A. Rountev, “Merging equivalent contexts for scalable heap-
cloning-based context-sensitive points-to analysis,” in Proceedings of the
2008 International Symposium on Software Testing and Analysis, ser.
ISSTA ’08, 2008, pp. 225–236.

[63] J. Späth, L. N. Q. Do, K. Ali, and E. Bodden, “Boomerang: Demand-
Driven Flow- and Context-Sensitive Pointer Analysis for Java,” in 30th
European Conference on Object-Oriented Programming (ECOOP 2016),
vol. 56, 2016, pp. 22:1–22:26.

[64] H. Oh, W. Lee, K. Heo, H. Yang, and K. Yi, “Selective context-
sensitivity guided by impact pre-analysis,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 14, 2014, p. 475484.

[65] X. Zheng and R. Rugina, “Demand-driven alias analysis for c,” in
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’08. ACM, 2008,
pp. 197–208.

[66] G. A. Kildall, “A unified approach to global program optimization,” in
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, ser. POPL ’73. ACM, 1973,
pp. 194–206.

[67] J. B. Kam and J. D. Ullman, “Monotone data flow analysis frameworks,”
Acta Inf., vol. 7, no. 3, pp. 305–317, Sep. 1977.

[68] ——, “Global data flow analysis and iterative algorithms,” J. ACM,
vol. 23, no. 1, pp. 158–171, Jan. 1976.

[69] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’10. ACM, 2010, pp. 135–146.

[70] C. Borgelt, “Find frequent item sets with the eclat algorithm,”
http://www.borgelt.net/doc/eclat/eclat.html, 2017.

[71] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, Recent Ad-
vances in Graph Partitioning. Cham: Springer International Publishing,
2016, pp. 117–158.

[72] K. D. Cooper, T. J. Harvey, and K. Kennedy, “Iterative data-flow analysis,
revisited,” Tech. Rep., 2004.

[73] J. Kodumal and A. Aiken, “The set constraint/cfl reachability connection
in practice,” in Proceedings of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation, ser. PLDI ’04.
ACM, 2004, pp. 207–218.

[74] O. Lhoták and K.-C. A. Chung, “Points-to analysis with efficient strong
updates,” ser. POPL ’11. ACM, 2011, pp. 3–16.

[75] A. De and D. D’Souza, “Scalable flow-sensitive pointer analysis for java
with strong updates,” in Proceedings of the 26th European Conference
on Object-Oriented Programming, ser. ECOOP’12. Springer-Verlag,
2012, pp. 665–687.

[76] Y. Sui and J. Xue, “On-demand strong update analysis via value-flow
refinement,” ser. FSE 2016. ACM, 2016, pp. 460–473.

[77] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking system
rules using system-specific, programmer-written compiler extensions,” in
Proceedings of the 4th Conference on Symposium on Operating System
Design & Implementation - Volume 4, ser. OSDI’00, 2000.

[78] F. Brown, A. Nötzli, and D. Engler, “How to build static checking
systems using orders of magnitude less code,” ser. ASPLOS ’16. ACM,
2016, pp. 143–157.

12

For Research Only

