

Software Engineering Group
Department of Computer Science
Nanjing University
http://seg.nju.edu.cn

Technical Report No. NJU-SEG-2020-IJ-006

2020-IJ-006

GUI-Guided Test Script Repair for Mobile Apps
Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, Xuandong Li

Technical Report 2020-IJ-006

Most of the papers available from this document appear in print, and the corresponding copyright is held by the

publisher. While the papers can be used for personal use, redistribution or reprinting for commercial purposes is

prohibited.

1

GUI-Guided Test Script Repair for Mobile Apps
Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, Xuandong Li

Abstract—Graphical User Interface (GUI) testing is widely used to test mobile apps. As mobile apps are frequently updated and need
repeated testing, to reduce the test cost, their test cases are often coded as scripts to enable automated execution using test
harnesses/tools. When those mobile apps evolve, many of the test scripts, however, may become broken due to changes made to the
app GUIs. While it is desirable that the broken scripts get repaired, doing it manually can be preventively expensive if the number of
tests need repairing is large.
We propose in this paper a novel approach named METER to repairing broken GUI test scripts automatically when mobile apps evolve.
METER leverages computer vision techniques to infer GUI changes between two versions of a mobile app and uses the inferred
changes to guide the repair of GUI test scripts. Since METER only relies on screenshots to repair GUI tests, it is applicable to apps
targeting open or closed source mobile platforms. In experiments conducted on 22 Android apps and 6 iOS apps, repairs produced by
METER helped preserve 63.7% and 38.8% of all the test actions broken by the GUI changes, respectively.

F

1 INTRODUCTION

Mobile apps—programs that run on mobile devices—are be-
coming increasingly prevalent and transforming the world
[1], and the competition in mobile industry is also getting
continuously more fierce than before. Since most users pre-
fer, if everything else being similar, apps with more frequent
updates [2], mobile developers tend to release updates more
frequently in order to keep existing users and attract new
users. For example, major companies like Facebook and
Netflix release their mobile apps once every two weeks. Un-
fortunately, more frequent updates and shorter developing
time for each update make it harder to guarantee the quality
of apps. In fact, many users encountered problems after
updating apps [2]. Quality control has become a pressing
issue for mobile app development.

Meanwhile, the event-driven nature and gesture-based
interactions of mobile apps [3] make the testing of such
apps highly dependent on their Graphical User Interfaces
(GUIs), and GUI testing has become one of the most widely
used methodologies for testing mobile apps [4]. By feeding
test inputs (e.g., touching a button) to the GUI of an app,
GUI testing examines the behaviors of the app and checks
whether they are correct [5], [6]. Since pure manual GUI
testing is costly and time-consuming, most GUI tests used
in industry are programmed or recorded as scripts to enable
automated execution by test harnesses/tools [7] such as
Appium [8] and Robotium [9]. For such scripts to compre-
hensively cover the business logic of apps, human testers

• Minxue Pan is with the State Key Laboratory for Novel Software Technol-
ogy and the Software Institute of Nanjing University, China.
E-mail: mxp@nju.edu.cn.

• Tongtong Xu, Zhong Li, Tian Zhang and Xuandong Li are with the State
Key Laboratory for Novel Software Technology and the Department of
Computer Science and Technology of Nanjing University, China.
E-mail: {dz1633014,mg1733033}@smail.nju.edu.cn,
{ztluck,lxd}@nju.edu.cn.

• Yu Pei is with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong.
E-mail: csypei@comp.polyu.edu.hk.

Received: revised:

have to invest valuable time to transcribe their domain
knowledge, which makes the scripts valuable artifacts of
mobile app development [7]. However, test scripts prepared
for an app may become broken after the app is updated and
its GUI changed. It is desirable that these broken test scripts
get fixed and the testers’ knowledge gets preserved, but the
benefits of fixing the test scripts can be quickly dwarfed by
the entailed high costs if the fixing is to be done manually
and the number of test scripts that need fixing is large
[10], [11]. Considering that a typical mobile app company
often consists of just a small number of developers [12], the
demand for automated test script repair for mobile apps is
enormous.

Although research on test script repair for desktop and
web applications has attracted growing interest in the past
few years and produced promising results [7], [10], [13]–
[18], characteristics of mobile app testing present new chal-
lenges. Particularly, most existing test script repair tech-
niques that do not require human assistance need extensive
static information from application source code or structure
to effectively repair test scripts. For example, given a web
application, detailed information about the composition of
its GUI can be reliably obtained by analyzing the DOM of
the web page, and such information can be used to facili-
tate both the extraction of GUI changes between different
versions of the application and the maintenance of broken
tests due to those changes [16]–[18]. To statically acquire
similar information about the GUI of a mobile app, however,
is not always feasible. On the one hand, the source code
of mobile apps is often not accessible to testers, as testing
of mobile apps is increasingly more often outsourced or
offered as cloud-based services [19], rather than conducted
by testers from the apps’ development teams. On the other
hand, information directly extracted from an app’s package
is seldom sufficient for comprehending the composition of
the GUI: Although it is straightforward to obtain the IDs
and string literals of an app’s GUI elements, e.g., by parsing
the XML-based files on the Android platform or the iOS
platform, many GUI elements do not have IDs; Besides,
mobile apps often have more GUI elements in image than

For Research Only

2

a cb

(a) Initial screen of the base ver-
sion.

a b c

(b) Menu “More options” in the
base version.

(c) Initial screen of the updated
version.

(d) Menu “More options” in
the updated version.

Figure 1: GUIs of OI File Manager in the base and updated versions.

in text, compared with most desktop or web applications, to
make their GUIs appear more attractive. Little information
about the images used on the GUIs, however, can be derived
from those files for apps targeting the iOS platform or for
obfuscated Android apps.

In response to the challenges, we develop an approach
called METER (MOBILE TEST REPAIR) to automatically re-
pairing broken test scripts when mobile apps are updated.
A key observation METER exploits is that, when fixing a
broken test script, instead of scrutinizing the code, a devel-
oper usually looks at the app’s GUI, tries to identify the
parts that differ from what the test script expects, and then
uses common sense to deduce likely fixes based on the GUI
changes. Inspired by this observation, METER determines
if a GUI has changed by analyzing its screenshots via
computer vision (CV) techniques, and retains or repairs a
test action based on the analysis result. Since METER only
relies on screenshots to repair test scripts, it is applicable
to apps targeting open or closed source mobile platforms
including Android and iOS.

METER uses the behavior a test script triggers on the base
version app as the reference, or oracle, to decide whether the
script’s execution on the updated version app is as expected.
What METER implements is essentially a form of reference
testing [20]. Compared with manually preparing the oracles,
e.g., in the form of assertions, this approach is reasonably
effective and much less expensive. Therefore, it has been
adopted in many previous studies [21], [22] and tools [23],
[24].

We implemented our approach in a tool also called
METER. To evaluate METER’s effectiveness and efficiency,
we carried out experiments on 22 open-source Android
apps used in existing literature and 6 iOS apps that are
available counterparts of the chosen Android apps. In the
experiments, repairs produced by METER helped preserve
63.7% and 38.8% of all the test actions broken by the GUI
changes, respectively.

The basic idea and some preliminary results of METER
were briefly reported in [25]. This work significantly extends
the previous one in the following important aspects. First,
we explain in detail the design of various components of
the technique and how they fit together to achieve good
repairing results. Second, we have devoted considerable

effort to re-engineer the prototype of METER and make the
tool more robust and more efficient. Third, we conduct a
more comprehensive experimental evaluation to assess the
effectiveness and efficiency of METER on more subject apps
from various mobile platforms, in different settings, and in
comparison to other GUI test repair tools.

The contributions this paper makes are as the following:
• Technique: To the best of our knowledge, METER is the

first approach to repairing GUI test scripts for mobile
apps that leverages computer vision techniques. Treat-
ing mobile apps as black-box systems enables METER to
be applied to apps on not only open source platforms
but also closed source ones where static analysis or
reverse engineering tools are not available.

• Tool: We implement a supporting tool with the same
name for METER.

• Experiments: We conduct an extensive experimental
evaluation on METER. Repairing results on 28 real-
world apps from both the Android and iOS platforms
show that METER is both effective and efficient in
repairing GUI test scripts for mobile apps.

The METER tool as well as the complete collection of
experimental materials, including our results and the scripts
to rerun the experiments, are available for download at:

https://github.com/metter2018/metter2018.
The rest of this paper is organized as follows. Section 2

uses an example to show how METER repairs test scripts
from a user’s perspective. Section 3 describes in detail the
METER’s repair mechanism based on computer vision tech-
niques and the GUI matching relation. Section 4 discusses
the experiments we conducted to evaluate METER and the
results. Section 5 reviews existing works related to METER.
Section 6 concludes the paper.

2 METER IN ACTION

In this section, we use a file management app for the
Android platform, named OI File Manager, to illustrate from
a user’s perspective how METER repairs GUI test scripts for
mobile apps. Figure 1 displays the screenshots of the app
in version 2.0.5 (base version) and version 2.2.2 (updated
version), respectively.

For Research Only

3

Listing 1 shows excerpts from two test scripts TS1
and TS2 for the base version of the app. Both scripts are
written in Python for the Appium testing tool. TS1 tests
the functionality of folder creation in the file system, and
it starts with first clicking on the “More options” button
(labeled with letter “c” in Figure 1a) and then clicking on
the “Create folder” menu-item (Figure 1b). Particularly, the
first test action locates the button by using the accessibil-
ity id of the button as the argument to invoke function
find_element_by_accessibility_id provided by the testing
engine, while the second test action obtains a handle of the
menu item by first searching for the corresponding menu
using its id and then locating the menu item at index 5 (0-
based) within the menu. TS2 tests the functionality of file/-
folder search, and it first locates the “Search” button (labeled
by letter “b” in Figure 1a) using the button’s accessibility id
and then clicks on the button.

The GUI of OI File Manager is changed in the updated
version: Buttons “Bookmarks” (labeled by letter “a” in Fig-
ure 1a) and “Search” were turned into items under menu
“More options”, and the order of items in menu “More
options” is changed too, as depicted in Figure 1d. The
changes break both previous test scripts: the second test
action in TS1 will not be able to locate the menu item
“Create folder” using the old index 5, and the first test
action in TS2 cannot find an element with accessibility id
“Search”, unless menu “More options” is expanded already.
It is especially worth noting that the first two actions of TS1
can still execute on the updated version app, but they will
cause menu-item “Bookmarks”, instead of “Create folder”,
to be activated. The test execution will not hang or crash in
such a case, but it will silently exercise different behaviors
than intended and produce misleading testing results.

Taking both versions of the app and the test scripts
in Listing 1 as the input, METER is able to automatically
produce the repaired test scripts as shown in Listing 2.
In TS1’, the way to locate and activate menu-item “Create
folder” is modified for the updated version app, since the
new menu has 8 items and “Create folder” appears on the
bottom with index 7. In TS2’, a new test action is inserted
to the test script to expand menu “More options” first, and
the original test action is changed to access the menu item

TS1: To create a new folder.
1 driver.find_element_by_accessibility_id(’More options’).click()
2 driver.find_elements_by_id(’android:id/title’)[5].click()
...

TS2: To perform a file/folder search.
1 driver.find_element_by_accessibility_id(’Search’).click()
...

Listing 1: Test scripts for the base version.

TS1’: To create a new folder.
1 driver.find_element_by_accessibility_id(’More options’).click()
2 driver.find_elements_by_id(’android:id/title’)[7].click()

...
TS2’: To perform a file/folder search.

1 driver.find_element_by_accessibility_id(’More options’).click()
2 driver.find_elements_by_id(’android:id/title’)[6].click()

...

Listing 2: Repaired test scripts for the updated version.

at index 6.

3 THE METER APPROACH

Figure 2 illustrates an overview of the METER approach.
Given a base version mobile app (App), a group of test
scripts for it (TS), and an updated version of the same app
(App’), METER first records the intended behaviors of each
input test script by running it on the base version app; Then,
for each test action under repair METER checks if the action
preserves its intended behavior when executed on the up-
dated version app via GUI screen matching. If yes, the test
action does not need repairing; Otherwise, the test action
is broken and METER constructs a sequence of test actions
to replace it: The execution of the constructed replacement
test actions on the updated version app should produce
the same screen transition as triggered by the broken test
action on the base version app. Without loss of generality,
we assume all the input test scripts run successfully on the
base version app.

Next, we first introduce the mechanism METER uses to
determine the matching relation between GUI elements and
screens (Section 3.1), then explain how METER repairs test
scripts based on such matching relation (Section 3.2), and
in the end briefly describe the implementation details of a
supporting tool for METER (Section 3.3).

3.1 GUI Matching

METER decides whether two test script executions conform
to each other based on a matching relationship between
their source and destination screens—a screen of an app
refers to the part of the app’s GUI that is visible to users
at a particular point in time. The decision process is guided
by a group of rules concerning the characteristics of mobile
GUIs. The results of our experimental evaluations of METER,
as discussed in Section 4, suggest these rules are reasonably
effective on real-world mobile apps.

This section first explains the extraction of GUI elements
from snapshots of app screens, or screenshots for short,
and then defines the matching relation between both GUI
elements and screens.

3.1.1 GUI Element Extraction
As the first step towards deciding if two screens match
with each other, METER extracts GUI elements from their
snapshots. This is done in two steps. First, METER identifies
boundaries of GUI elements through contour detection;
Then, METER classifies GUI elements as textual or graphical
through optical character recognition.

3.1.1.1 Boundary Detection: Given that GUIs of
apps could be arbitrarily complex, determining the bound-
aries of different GUI elements in a screenshot can be an
extremely challenging task. In this work, METER employs
a computer vision (CV) technique named contour detection
to detect likely boundaries of GUI elements such as buttons
and text fields. It filters out contours that less likely define
GUI element boundaries based on a set of predefined rules.

Specifically, METER employs the Canny algorithm [26]
to detect an initial set of contours. A detected contour,
however, does not always delimit a relevant GUI element.

For Research Only

4

Has next
action?

Y

Y

N

App’

App

TS

Run next
action on App’

Intention
preserved?

Find candidate
element

Construct
repair Successful?

Run TS on App Intentions

Y
N

Move on to next script

TS’Has next
script?

Y

N

N

METER

Figure 2: Overview of the METER approach.

TABLE 1: GUI element extraction rules. C denotes the set of detected contours, c the contour under consideration (c ∈ C), H
the height of the screen, and W the width of the screen. Given c′ ∈ C, c′.h, c′.w, and c′.area denotes the height, the width,
and the area of c′, respectively. vDifference(c1,c2) calculates the vertical difference between the center of two contours,
while hDistance(c1,c2) returns the horizontal distance between two contours.

PURPOSE ID PREDICATE RULE1

contour identification

R1 isTooSmall(c) c.h < 10 ∨ c.w < 10
R2 isTooLarge(c) c.h > 0.75H ∨ c.w > 0.75W ∨ c.h× c.w > 0.75H ×W
R3 isTooSlim(c) c.w/c.h < 0.1
R4 isTooFat(c) c.h/c.w < 0.1
R5 isCovered(c, C) ∃c′ ∈ C : (c ∩ c′).area/c′.area > 0.8 ∧ c′.area > c.area

word grouping R6 areAdjacent(c1, c2) vDifference(c1, c2) < 15 ∧ hDistance(c1, c2) < 50)
R7 isLikelyTextual(c, C) ∃c′ ∈ C : (c′.isTextual() ∧ areAdjacent(c, c′))

1 The values used in the rules are decided empirically based on the common size of texts, icons, and widgets in mobile apps,
and have been tested empirically.

For example, given a piece of text in a screenshot, we
are interested in detecting the boundaries of the words,
while the Canny algorithm will report one contour for each
character, rather than each word, since each character has its
own boundary. To solve that problem, we dilate the detected
edges by tripling their thickness, so that boundaries of char-
acters in a word would intersect while those of words would
not. Afterwards, we use an off-the-shelf implementation of
contour detection algorithm1 [27] on the dilated edges to get
the contours.

METER filters out contours that unlikely delimit bound-
aries of relevant GUI elements based on a set of rules
shown in Table 1. Rules R1, R2, R3, R4 are used to identify
contours that are too small, too big, too slim, or too fat for
GUI elements of interest, respectively. Contours satisfying
any of these four rules are considered unrealistic for GUI
element boundaries and excluded from further processes.
Given that GUI testing is only concerned with triggerable
GUI elements, i.e., GUI elements with which test scripts
can interact, and that triggerable GUI elements almost never
overlap, METER applies rule R5 to identify contours whose
most area is covered by another larger contour, and it keeps
only the largest contour among the ones that mostly overlap.

3.1.1.2 Classification of Textual and Graphical Ele-
ments: After getting contours representing boundaries of
GUI elements, METER next classifies the GUI elements into
two broad categories, namely textual and graphical GUI
elements, with the help of an optical character recognition
(OCR) engine. In particular, METER employs the OCR en-
gine provided as part of the Microsoft Cloud-based Com-
puter Vision API [28] (MSCVA) to extract texts from screen-

1. https://opencv.org

shots, and it determines which GUI elements are textual and
which ones are graphical by checking whether the position
and size of their recognized contours match with those of
the extracted texts.

While MSCVA works quite well overall, and especially
so on images mostly consisting of texts, some fine tuning
to its application is still needed in certain situations. For
example, MSCVA handles poorly images where texts are in
a lighter color than the background, which unfortunately,
is often the case with screenshots of mobile apps: Many
apps can run in the night mode where dark backgrounds
are used to make the display easier on the eyes. In view of
that, before sending an image to MSCVA for OCR, METER
first calculates the average RGB values of all pixels. If the
sum of the average RGB values is less than a threshold value
(empirically set to 150 by default), the image is considered
to be mostly dark and the complement of the image, pro-
duced by changing each pixel of the image from (r, g, b)
to (255 − r, 255 − g, 255 − b), will be used as the input to
MSCVA. Otherwise, the original image will be used. For
example, the screenshots in Figure 1 have white texts on a
black background, hence METER will use the complement
of those images for OCR.

With the above processing, METER obtains most of the
words in the screenshots. To match elements from different
screenshots, the complete text on each element, or element
text, rather than a group of individual words, is needed.
METER reconstructs element texts by concatenating words
from adjacent textual GUI elements, i.e., elements with their
vertical locations being close to each other or the horizontal
distance between them being small, and it relies on rule R6
from Table 1 to identify such adjacent GUI elements. While

For Research Only

5

useful, rule R6 alone turns out to be not enough. The reason
is that, due to technical limitations, MSCVA may fail to
recognize some words when it should, effectively cutting
the element texts containing those words into pieces. To
work around this problem, METER uses rule R7 to search
for contours whose contents, if textual, might be used to
form larger pieces of element texts. If no text was recog-
nized for such a contour, METER assigns the dummy word
“placeholder” to it. Dummy words can help with element
text construction, but they do not carry any specific meaning
with them and are not taken into account when calculating
the similarity between two element texts (Section 3.1.2).

3.1.2 GUI Element Matching

After being extracted and classified into either textual or
graphical, GUI elements are then compared to decide if they
match with each other. This section illustrates how METER
matches different types of GUI elements using different
strategies.

3.1.2.1 Textual Element Matching: METER deter-
mines whether two textual elements match based on the
similarity between their corresponding texts.

Given two textual GUI elements e1 and e2, let t1 and t2
be the two sets of their non-placeholder words, respectively.
The similarity simt1,t2 between t1 and t2 is calculated
as simt1,t2 = |t1 ∩ t2|/max(|t1|, |t2|), and e1 and e2 are
considered to match if simt1,t2 is greater than or equal to a
threshold value Vtm. Vtm is empirically set to 0.4 by default
for the following two reasons. On the one hand, many
textual elements contain just a few words, therefore even
one different word between two elements can already result
in a small similarity value. Setting the threshold value too
high will prevent these elements from being matched. On
the other hand, developers tend to make texts of different
elements distinct from each other to reduce users’ confusion,
which leads to small similarity between texts of different
elements. Setting the threshold value too low will risk
matching unrelated texts.

3.1.2.2 Graphical Element Matching: Besides tex-
tual elements, a great deal of GUI elements like icons and
images are graphical in nature. While it is very challenging
to match graphical elements in the most general sense,
METER implements a technique that turns out to be fairly
effective in the context of GUI test repair for mobile apps.
The key observation that motivates the technique is that,
graphical materials used in mobile apps are typically or-
ganized separately as resource files, and they are mostly
relocated, resized, or rotated, but seldom changed in other
ways, during the evolution of apps. Accordingly, METER
employs a computer vision technique called SIFT [29] to
extract feature descriptor of the images on screenshots and
measures the similarity of two images based on the num-
bers of feature descriptors they have in common. Since
SIFT feature descriptors are invariant to uniform scaling
and orientation [29], METER achieves a rather high success
rate in identifying graphical elements that truly match. In
particular, METER considers two images to match if the
percentage of matched feature descriptors is greater than a
predetermined threshold value Vgm. In view that most icons
in mobile apps are simple drawings with only a couple of

feature descriptors, METER conservatively sets the threshold
percentage Vgm to 40% by default.

Given two GUI elements e1 and e2 of the same type, i.e,
they are both textual or both graphical, we use e1 ∼ e2 to
denote that e1 and e2 match.

3.1.3 Matching of GUI Element Collection
We extend the definition of matching relation from GUI
elements to collections of GUI elements in this section.

Given a collection E of GUI elements, we use Et and Eg

to denote the collections of textual and graphical elements
within E, respectively. Let E1 and E2 be two collections
of GUI elements, the percentage MT of matched textual
elements and the percentage MG of matched graphical
elements between E1 and E2 can be computed as the
following:

MT
E1,E2

=
|{e ∈ Et

1 : ∃e′ ∈ Et
2 → e ∼ e′}|

|Et
1|+ |Et

2|
,

MG
E1,E2

=
|{e ∈ Eg

1 : ∃e′ ∈ Eg
2 → e ∼ e′}|

|Eg
1 |+ |E

g
2 |

.

Intuitively, E1 and E2 are said to match, denoted as
E1 ∼ E2, if and only if 1) enough of their textual elements
match (MT

E1,E2
> Vcm1), 2) enough of their graphical ele-

ments match (MG
E1,E2

> Vcm1), or 3) a balanced amount
of their textual and graphical elements match (MT

E1,E2
>

Vcm2 ∧ MG
E1,E2

> Vcm2), where the two threshold values
Vcm1 and Vcm2 are empirically set to 0.7 and 0.4 by default,
respectively. For collections with only a small number of tex-
tual or graphical elements, one or two unmatched elements
would result in MT or MG being smaller than Vcm1 in the
first two conditions. The third condition compensates for
that and allows such collections to be matched by accepting
smaller, but balanced, MT and MG values.

3.1.4 Screen Matching
METER decides whether two screens match based on the
matching relation between the GUI elements on them. Since
screens of mobile apps are often split into regions with
different priorities in receiving user inputs, METER takes a
region-based approach to screen matching.

METER differentiates three kinds of regions on screens in
this step: blocking regions, background regions, and content
regions. Blocking regions correspond to cover-up windows
like pop-up dialogs and slide-over menus. When invoked, a
cover-up window often partially covers an existing screen.
Although the screenshots before and after such an invo-
cation may only differ in a small area, the enabled GUI
elements on the two screens can be largely different from
a user’s perspective. Therefore, it is essential that METER
is able to correctly identify blocking regions on screen-
shots. At present, METER recognizes three types of cover-
up windows, namely dialogs, left slide-over menus, and
right slide-over menus, and it employs a simple strategy to
detect the blocking regions they produce. The basic idea is
to match detected contours and their grayscale distributions
against a group of predefined patterns related with different
types of cover-up windows. For example, to detect a pop-
up dialog, the strategy looks for a contour that is located
near the center of the screen and has a grayscale distribution

For Research Only

6

Algorithm 1 Region-based Screen Matching

Input: S1 = 〈Sk
1 ,S

t
1,S

b
1,S

c
1〉, S2 = 〈Sk

2 ,S
t
2,S

b
2,S

c
2〉,

Output: true if S1 ∼ S2; Otherwise, false.

1: if (Sk
1 6= ∅ ∨ Sk

2 6= ∅) return Sk
1 ∼ Sk

2 ; end if
2: if ((St

1 6= ∅ ∨ St
2 6= ∅) ∧ St

1 6∼ St
2) return false; end if

3: if ((Sb
1 6= ∅ ∨ Sb

2 6= ∅) ∧ Sb
1 6∼ Sb

2) return false; end if
4: return Sc

1 ∼ Sc
2;

significantly different from the rest of the screen. METER
detects at most one blocking region on each screenshot.

Background regions correspond to parts of screens that
are often the same across screens. For example, the top
area and the bottom area of a screen are often reserved for
navigation bars or tab bars consisting of a list of horizontal
elements. Given that it is common for such areas to stay
unchanged across screens, METER does not regard those
areas to be equally important in screen matching. To identify
background regions on the top or bottom of a screen, METER
first looks for contours that are within the top/bottom
20% of the screen and as wide as the screen, and then
considers the minimum bounding box of those contours as
delineating background regions. METER detects at most one
background region on the top and one on the bottom of each
screenshot. Areas not covered by blocking or background
regions constitute the content region of a screen.

Given a screen S, METER always tries to identify four
different component regions on S: a blocking region Sk,
a top background region St, a bottom background region
Sb, and a content region Sc. Each identified region is
represented by the collection of textual and graphical GUI
elements from that region, while regions not present in the
screen are denoted using ∅. Two regions are said to match if
and only if their collections of GUI elements match.

METER determines whether two screens S1 and S2

match, denoted as S1 ∼ S2, by comparing their component
regions using Algorithm 1: In case one of the screens has
a blocking region, the two screens match if and only if the
other screen also has a blocking region and the two blocking
regions match (Line 1); If none of the two screens has a
blocking region, but a background region from one screen
has no match on the other, the two screens do not match
(Lines 2 and 3); If neither screen has a blocking region and
both their background regions match, the two screens match
if and only if their content regions match (Line 4).

3.2 Test Script Repair
In this work, we use a pair 〈loc, evt〉 to denote a test action
α, where loc is an element locator to be used to pinpoint a
particular GUI element on a given context screen, and evt is
an event to be triggered on that element when α is executed.
Following [30], we define a test script as a sequence K =
α1, α2, . . . , αn , where each αi (1 ≤ i ≤ n) is a test action.

Executing a test action α = 〈loc, evt〉 on a screen S
involves first applying the locator loc to identify on S a
target GUI element to interact with and then triggering
the event evt on the element. If the execution terminates
successfully, it should transit the app to a (possibly different)
destination screen. We denote the screen transition caused
by the successful execution of α as a pair 〈src, dest〉, where

src and dest are the source and destination screens of the
transition, respectively. If the successfully terminated execu-
tion is also correct, or as expected, the transition character-
izes the intended behavior of the test action, and we refer to
the transition as the intention of the test action. A transition
τ = 〈src1, dest1〉 matches an intention ι = 〈src2, dest2〉,
denoted as τ ι, if and only if src1 ∼ src2∧dest1 ∼ dest2,
i.e., their source screens and destination screens match re-
spectively.

The rest of this section first presents the algorithm ME-
TER implements to repair test scripts written for a base
version app so that their intention is preserved as much
as possible on the updated version app (Section 3.2.1), then
explains the model METER builds from the base version app
to guide the repair of test scripts (Section 3.2.2).

3.2.1 Repair Test Script Construction
Algorithm 2 shows how METER repairs the test scripts step
by step. The algorithm takes a base version app P , its
updated version P ′, and a list K of test scripts for P as
the input. The whole repairing process involves two nested
loops at a high level: The outer loop iterates through each
test script K ∈ K and constructs a new test script Q for
P ′ as the repairing result (Lines 2 through 37); The inner
loop iterates through each test action αi (1 ≤ i ≤ n) from
a particular test script K = α1, α2, . . . , αn ∈ K and tries to
derive a sequence qi of test actions such that 1) test script
[q1, q2, . . . , qi] executes successfully on P ′, and 2) the transi-
tion caused by qi on P ′ matches the intention of test action
αi on P (Lines 3 through 36). Here [q1, q2, . . . , qi] denotes
the test script produced by concatenating the sequences q1
through qi. Note that, during the repairing process, METER
always reuses a test action if its intention is preserved on
P ′ and only builds a new sequence of test actions when
necessary. In case METER fails to build such a sequence qj
for a test action αj (1 ≤ j ≤ n) from K , it immediately
returns Q = [q1, q2, . . . , qj−1] as the repairing result for K .

More concretely, given a test action α from test script
K to repair (Line 4) and α’s intention ι (Line 5), the inner
iteration always starts from a screen curS of P ′ that matches
ι.src (Line 6). Let ε be the GUI element α interacted with on
ι.src (Line 7). METER first attempts α as-is on curS. If α is
still executable and its intention is preserved, i.e., a GUI
element at α.loc can be found on curS and event α.evt
triggered on the element will transit P ′ to a destination
screen that matches ι.dest (Line 8), α is directly reused in
the repair test script (Line 9).

In case α does not preserve the original intention ι on
P ′, METER builds a sequence of test actions as the repair-
ing result of α. During this process, METER assumes the
functionalities of the app, and therefore their corresponding
GUI elements, were not removed during the update, so it
always tries to find a GUI element e in P ′ as the counterpart
of ε and build a sequence of test actions around e that,
when executed from curS, will satisfy the following two
conditions: i) It will trigger event α.evt on e; ii) It will transit
P ′ to a screen matching ι.dest, in hope that the execution of
following test actions will be unaffected.

To identify the counterpart e of element ε, METER it-
erates through a sorted set E of candidate GUI elements
in P ′. If there exists an element ε′ in curS that matches

For Research Only

7

Algorithm 2 Test script repairing.

Input: P : base version app; P ′: updated version app;
K: list of original test scripts, with each test action associated

with its intention on P ;
Output:M: Map from each test action α in K to a triple

〈τ, src, dest〉, where τ is the sequence of test actions
derived from α for P ′ and it transits P ′ from screen src
to screen dest.

1: init(M)
2: for K ∈ K do
3: while K.hasNext() do
4: α← K.next();
5: ι← α.intention();
6: curS ←M(α.pre).dest . α.pre is the test action before α.
7: ε← ELE(ι.src, α.loc)
8: if ELE(curS, α.loc) ∼ ε ∧ DEST(curS, α) ∼ ι.dest then
9: M(α)← 〈[α], curS, DEST(curS, α)〉

10: continue
11: end if
12:
13: E ← ∅
14: if ∃ ε′ ∈ curS : ε′ ∼ ε then E.append([ε′]) end if
15: E.append(CANDSORTED(curS, ι.src, ε))
16: E.append(CANDSORTED(P ′,P, ε))
17: isFound← false
18: for e : E do
19: preK ← SCRIPTTOEQUAL(P ′, curS, e.containingS())
20: midS ← DEST(e.containingS(), 〈e.locator(), α.evt〉)
21: 〈postK, destS〉 ← SCRIPTTOMATCHING(P ′,midS, ι.dest)
22: if preK == null ∨midS == null ∨ postK == null then
23: BACKTRACK(K,α,M)
24: continue
25: end if
26: if preK.isEmpty() ∨ postK.isEmpty() then
27: M(α)←
28: 〈preK + 〈e.locator(), α.evt〉+ postK, curS, destS〉
29: isFound← true
30: break
31: end if
32: end for
33: if not isFound then
34: break
35: end if
36: end while
37: end for
38: returnM

39: ELE(scr, locator) . Return GUI element selected by locator on scr.
40: DEST(scr, α) . Return destination screen of executing α on scr.
41: CANDSORTED(S, S′, ele) . Return GUI elements from S that are

. not matched with any element from S′.
. Sorted in decreasing order of similarity to ele.

42: SCRIPTTOEQUAL(P, src, dest) . Return confirmed sequence of test
. actions in P that transits P from src to dest. Return empty

. sequence if src = dest, or null if no such sequence is found.
43: SCRIPTTOMATCHING(P, src, dest) . Return 〈l, dest′〉, where l is a

. confirmed sequence of test actions, dest′ is a screen in P
. (dest′ ∼ dest), and l transits P from src to dest′.
. l is empty if src ∼ dest, or null if none is found.

44: BACKTRACK(K,α,M) . Backtrack by killing the current testing
. process and executing the partial repair constructed for K so
. far, i.e., the repairs stored inM for K’s test actions until α.

ε, ε′ is considered as a candidate with the highest priority
(Line 14). GUI elements from P ′ that are not matched with
any elements in P yet are also considered as candidates, but
with lower priority (Line 15 and 16). Given a screen S′ in
P ′, let S be its matching screen in P , the set δS′ of elements
on S′ that do not match any element on S is calculated as
δS′ = {e|e ∈ E′ ∧ @e′ ∈ E : e ∼ e′}, where E′ and E are
the collections of GUI elements on S′ and S, respectively. In
case screen S′ does not match any screen inP , δS′ is equal to
E′. Note that, since the modification to a GUI element can be

arbitrary, METER does not require candidate GUI elements
to be similar to ε in this step. Also note that METER examines
all local candidates (i.e., candidates on curS) before looking
at global ones (i.e., candidates on other screens of P ′) so as
to favor local matches for ε.

For each e ∈ E , METER attempts to 1) construct a
sequence preK of test actions to navigate P ′ from curS
to the containing screen of e (Line 19), 2) trigger α.evt
on e and transit P ′ to another screen midS (Line 20),
and 3) construct another sequence postK of test actions to
navigate from midS to a screen destS that matches ι.dest
(Line 21). Here, the construction of both preK and postK
involves exploring the screen transition relation observed
during previous test executions on P ′ to find the shortest
test action sequences to achieve the desired navigation,
executing those test action sequences on P ′, and returning
the test action sequences or null depending on whether they
do achieve the desired screen transitions. The construction
using element e fails immediately if any of the three steps is
unsuccessful (Line 22). In that case, to undo the possible
changes caused by the attempted test action sequences,
METER backtracks to curS by killing the current testing
process and executing the partial repair constructed for K
so far, i.e., the repair action sequences stored in M for K’s
test actions until α (Line 23). Otherwise, the concatenation of
preK, 〈e.locator, α.evt〉, and postK constitutes a sequence
of actions that satisfies the abovementioned conditions i)
and ii). To reduce the amount of manual effort possibly
required for testers to confirm or maintain the resultant test
scripts, METER strives to keep the differences between the
test scripts before and after repairing small. Therefore, if the
constructed sequence is simple enough, in the sense that
either preK or postK is empty (Line 26), METER accepts it
as the repair for α (Line 28); Otherwise, the repair of α fails,
and METER returns the constructed test action sequences as
the repairing result for K before it starts to repair the next
test script (Line 34).

Consider app OI File Manager and its test script TS2
shown in Section 2 for example. The execution of TS2’s first
test action, denoted as α0 here, will fail on the updated
version app, since button “Search” has been turned into
a menu item in that version and there is no GUI element
with the desired accessibility ID on the screen when α0 is
executing. To construct a replacement for α0, METER will
look for a counterpart of button “Search”, first locally within
the current screen and then globally in other screens of the
app. Since menu item “Search” is the only GUI element
around which a simple enough sequence of test actions
could be constructed to achieve the same screen transition
as α0’s, the menu item will be picked as the counterpart
of button “Search” and the test action sequence constructed
will be the repair for α0.

3.2.2 Intentions as A Means to Model App Behaviors
Given two screens S1 and S2 of P ′, to effectively con-
struct a sequence of test actions to transit P ′ from S1

to S2, as required by functions SCRIPTTOEQUAL and
SCRIPTTOMATCHING invoked in Algorithm 2, METER goes
through the following three-step process: i) To identify the
matching screens Sa and Sb from P for S1 and S2; ii) To
construct a list Γ of test action sequences that may transit

For Research Only

8

P from Sa to Sb; iii) To dynamically validate each γ ∈ Γ
to find a sequence that actually realizes the screen transition
from S1 to S2 on P ′.

Here the construction of test action sequences in step ii)
is based on the observation that, given two test actions α1

and α2 forP and their intention ι1 and ι2, if ι1.dest ∼ ι2.src,
executing the sequence α1, α2 may transit P from ι1.src
to ι2.dest. In particular, based on the intention of all orig-
inal test actions, METER is able to construct a graph GP
with screens being the vertices and intentions being the
edges that models possible behaviors of P . Next, given two
screens Sa and Sb from P as the target source and desti-
nation screens, a (breadth-first) search can be performed to
find sequences of intentions connecting Sa and Sb on the
graph, and METER will be able to obtain a collection Γ of
test action sequences that may transit P from Sa to Sb by
mapping those intentions to their test actions. The dynamic
validation in step iii) is necessary, since there is no guarantee
that the test action sequences in Γ will indeed realize the
desired transitions on P ′.

3.3 METER Implementation

We have implemented the approach described above into
a tool, also named METER, to automate the repair of GUI
test scripts for mobile apps. The current implementation of
METER exploits the Appium test automation framework [8]
to drive the mobile apps under consideration, and relies on
the Appium Python Client library [31] to run test scripts
written in Python. It, however, is worth noting that, METER
is not restricted to any specific framework or test scripting
language and can be easily extended to support other test
automation techniques.

For contour detection and optical character recognition,
METER uses the OpenCV library (Version 3.1) [32] and the
Microsoft Azure OCR API [33], respectively. The architec-
ture of METER has been designed to enable easy switch
between libraries, so that future developments in computer
vision and optical character recognition techniques could be
adopted by METER for better performance with ease.

4 EVALUATION

To evaluate, and put in perspective, the effectiveness and
efficiency of METER, we conducted experiments that apply
METER to repair GUI test scripts for real-world apps. Based
on the experimental results, we address the following re-
search questions:
RQ1: How effective is METER in repairing test scripts?

In RQ1, we evaluate from a user’s perspective the
repairing results produced by METER in terms of high
level metrics like the number of test actions repaired
and the number of test actions preserved.

RQ2: How efficient is METER in repairing test scripts? In
RQ2, we investigate the time cost of the overall test
script repairing process with METER as well as its
individual steps.

RQ3: How robust is METER in repairing test scripts? In
RQ3, we examine to what extent different threshold
values adopted in GUI matching (Section 3.1.2) im-
pacts METER’s effectiveness.

RQ4: How effective is METER in comparison with other
test script repair tools for mobile apps? In RQ4, we
compare METER with the CHATEM [34] model-based
approach.

RQ5: Is METER applicable to test script repair on other
mobile platforms? In RQ5, we gather preliminary evi-
dence to confirm our conjecture that METER performs
also well on the iOS platform.

Comparison with CHATEM. Various approaches have
been proposed to repairing GUI test scripts in the past,
among which model-based approaches like ATOM [35] and
CHATEM [34] have produced promising results. While both
ATOM and CHATEM require precise models of the app
under consideration as the input, there is an important
difference between the types of models they use to drive
the repairing process and how the models are prepared:
ATOM requires as the input an event sequence model (ESM)
that abstracts sequences of events on the GUI of the base
version app and a delta ESM that abstracts the changes
made to the based version app, and the application of
ATOM involved manually constructing the models [35]. In
comparison, CHATEM semi-automatically constructs ESMs
for the two versions of a subject app based on the output
of model extraction tools like Gator [36], and it extracts the
differences between the two ESMs in an automatic fashion
to guide the repairing process. Given that less human effort
is required in preparing the input models for CHATEM
and the performance delivered by the two approaches in
repairing test scripts are alike [34], we compare METER
with CHATEM in our experiments. Section 5 reviews more
related works in GUI test script repair.

4.1 Subjects
To answer RQ1 through RQ4, we collected in total 22
Android apps as subjects from previous studies on mobile
apps. The comparison between METER and CHATEM to
address RQ4, however, was based on just 9 of those apps
since Gator was not able to extract any models from the
other apps within the given time. 6 available counterparts
of those apps on the iOS platform were used to address RQ5.

4.1.1 Subjects on the Android platform
4.1.1.1 The apps: In view that previous studies on

mobile apps systematically collected their subject apps to
reflect the diversity of mobile apps and to reduce the in-
fluence of our bias in subject selection, we first gathered
a pool of 119 unique apps for the Android platform from
six papers on mobile apps published in the past 2 years at
major software engineering conferences like ICSE, FSE, and
OOPSLA: [37] (68), [38] (15), [39] (8), [40] (14), [41] (25), [42]
(10). All the apps were then manually checked one by one.
Among the 119 apps on the initial list, 61 were excluded
from the experiments because we cannot find two different
versions of them on the Internet; 5 were excluded because
their names (e.g., “browser”, “editor”, and “contact”) are
not specific enough to be exactly matched with any app;
16 were excluded because they have obvious functional de-
fects; 11 games were excluded because the randomness and
time-sensitiveness involved in their behaviors make them
unsuitable to be tested using scripts; and 1 was excluded

For Research Only

9

because its GUI occupies just a portion of the whole device
screen, while METER is not designed to operate based on
only parts of the screenshots. In the experiments, we collect
coverage information either on the bytecode level using the
Soot static program analysis framework, or on the source
code level using a home-brewed tool. 3 apps that cannot
be correctly handled by either of these techniques were
therefore also excluded. In this way, 22 apps were collected
as the subjects for the Android platform.

4.1.1.2 The base and updated versions: For each
app, the latest version is always used in the experiments as
the updated version, and we determine which other version,
hopefully with different behaviors than the latest one, is to
be used as the base version via testing.

Since none of the 22 Android apps was equipped with
GUI tests, we first downloaded the latest version of each app
(as of December 2018) and manually constructed test scripts
for it by following the practice in [42]. Particularly, we
recruited nine postgraduate students in Computer Science,
each with at least two-year experience in mobile applica-
tion development and testing; Each student was randomly
assigned with 2 to 3 apps, and he/she needs to write test
scripts to achieve around 50% statement coverage for each
app. The involvement of the nine postgraduate students in
this task is reasonable: Since all these students are experi-
enced in writing GUI tests for mobile apps, they are likely
to perform similarly to industry personnel in approaching
such tasks [43]. The authors exerted no influence on the
test construction process except for setting the target level
of statement coverage, which is comparable with or higher
than the levels reported in related works [38]–[42].

Next, for each app, we executed the test scripts on its ear-
lier versions in reverse chronological order until a version
that produces different test results (i.e., passing or failing)
than the latest version was found—that version was then
used as the base version of the subject app. We successfully
determined in this way the base and updated versions for 17
apps. As for the other 5 apps, the test scripts produced the
same results on all the available versions. We therefore used
the latest-but-four versions as the base versions for them.
Here we chose not to use adjacent versions as the base and
updated versions so that the differences between the two
versions are likely greater and the repairing task is likely
more challenging.

4.1.1.3 Test scripts to repair: The same group of
students then manually revised the test scripts originally
written for the updated version apps so that they achieve
comparable percentage of statement coverage on the base
version apps. The revised test scripts are the ones to be
repaired in our experiments.

Table 2 lists the basic information of the 22 apps. For
each app, the table gives the app ID (ID), the name (APP),
the number of test scripts we prepared for its base version
(#K), the number of test actions in all those test scripts
(#A), and the percentage of statements covered by the test
scripts on the base version (SC). For both the base (BASE)
and updated (UPDATED) versions of each app, the table also
lists the version number (V) and the size in number of lines
of code (LOC).

In total, 384 test scripts with 4368 test actions were
prepared for the 22 base version apps, covering 53.9% of the

TABLE 2: Android Apps used as subjects in the experiments.

ID APP BASE UPDATED #K #A SC

V LOC V LOC

S1 A Time Track 0.21 3880 0.23 3938 21 97 58.1%
S2 A2DP Volume 2.12.4 8529 2.12.9 8641 8 83 50.1%
S3 AnkiDroid 2.6 66146 2.8.3 66643 29 811 53.3%
S4 AnyMemo 10.8 27899 10.10.1 10497 31 239 53.4%
S5 Auto answer & callback 1.9 4135 2.3 4314 17 163 36.4%
S6 Budget Watch 0.18 4514 0.2 4591 14 106 65.1%
S7 c:geo 20171010 76078 20171217 79481 32 659 58.2%
S8 Dumbphone Assistant 0.4 1076 0.5 1120 6 17 67.2%
S9 K-9 Mail 5.207 87791 5.4 90187 39 672 56.8%
S10 KeePassDroid 2 14927 2.2 17185 29 195 47.4%
S11 Lighting Web Browser 4.4.2 19520 4.5.1 21110 23 345 49.2%
S12 Notepad 1 1198 1.12 1370 10 64 71.5%
S13 OI File Manager 2.0.5 8976 2.2.2 9304 29 212 47.4%
S14 Open Camera 1.40.0 29508 1.42.2 32934 17 159 50.8%
S15 Pedometer 5.16 13631 5.18 13955 5 95 50.6%
S16 Remote Keyboard 1.6 1666 1.7 1672 9 42 28.8%
S17 SMS Scheduler 1.37 5965 1.48 6564 19 82 49.1%
S18 Soundboard 0.9.1 581 0.9.2 665 4 13 67.8%
S19 SuperGenPass 2.2.3 1878 3.0.0 1936 5 31 59.2%
S20 SysLog 2.0.0 2718 2.1.1 2493 5 35 67.6%
S21 Tasks Astrid To Do List 4.9.14 24784 5.0.2 24307 22 202 48.3%
S22 Who Has My Stuff? 1.0.24 1764 1.0.30 1887 10 46 64.8%

Overall 407164 404794 384 4368 53.9%

TABLE 3: GUI changes between the base and updated version apps and
the numbers of test scripts failed due to those changes.

ID #GUI ELEMENT #BROKEN TEST SCRIPT

AFF DEL ADD MOD NBHV BHV AFF DEL ADD MOD NBHV BHV

s1 0 0 0 0 0 0 0 0 0 0 0 0
s2 5 0 1 4 4 0 2 0 0 2 2 0
s3 4 1 0 3 1 2 5 1 0 4 2 2
s4 5 0 1 4 4 0 6 0 0 6 6 0
s5 2 0 1 1 1 0 10 0 0 10 10 0
s6 3 0 1 2 2 0 3 0 0 3 3 0
s7 0 0 0 0 0 0 0 0 0 0 0 0
s8 3 0 1 2 2 0 4 0 0 4 4 0
s9 6 1 0 5 4 1 11 0 0 11 9 2
s10 0 0 0 0 0 0 0 0 0 0 0 0
s11 9 0 1 8 7 1 9 0 0 9 8 1
s12 5 0 2 3 2 1 6 0 0 6 5 1
s13 4 1 0 3 3 0 17 4 0 13 13 0
s14 6 0 0 6 6 0 13 0 0 13 13 0
s15 1 0 0 1 1 0 1 0 0 1 1 0
s16 4 0 1 3 3 0 5 0 0 5 5 0
s17 1 0 0 1 0 1 1 0 0 1 0 1
s18 2 1 0 1 1 0 2 1 0 1 1 0
s19 4 0 0 4 0 4 3 0 0 3 0 3
s20 2 1 0 1 1 0 3 1 0 2 2 0
s21 4 0 0 4 4 0 1 0 0 1 1 0
s22 3 2 0 1 1 0 2 1 0 1 1 0

Total 73 7 9 57 47 10 104 8 0 96 86 10

statements. Test scripts for apps S5 and S16 did not reach the
expected coverage level. App S5 enables a phone to answer
calls automatically, while app S16 enables users to connect
a desktop computer’s keyboard to an Android device and
use that keyboard to control the device. Both apps require
external events, typically triggered by human, to exercise
their core functionalities. As the test scripts we prepared
in the experiments simulate no external events, we leave a
major part of the two apps untested.

4.1.1.4 The GUI changes: We manually examined
the GUIs of the base and updated version apps to identify
the changes and compared the execution of the subject test

For Research Only

10

TABLE 4: Measures of ESMs for the Android apps.

ID BASE UPDATED

#M #G #C #R #D #T(h) # #M #G #C #R #D #T(h)

S2 73 21 159 29 23 107 6.9 74 21 187 30 23 134 7.1
S5 65 31 64 21 13 30 5.3 66 31 86 22 13 51 5.5
S8 14 8 76 2 4 70 2.0 14 8 112 2 4 106 2.3
S12 27 10 42 11 6 25 2.2 29 12 44 11 6 27 2.4
S16 30 21 31 9 0 22 2.0 31 22 31 9 0 22 2.1
S17 81 13 252 30 38 184 9.5 81 13 272 30 38 204 9.7
S18 14 9 7 2 3 2 1.3 25 8 18 2 15 1 3.3
S20 24 14 12 0 10 2 2.9 22 12 11 0 10 1 2.8
S22 51 36 20 10 5 5 4.0 51 37 15 10 4 1 3.9

Total 379 163 663 114 102 447 36.1 393 164 776 116 113 547 38.9

scripts on both version apps to discover the actual influence
the GUI changes have on those tests. Table 3 shows the
numbers of GUI elements affected (AFF), i.e., deleted (DEL),
added (ADD), or modified (MOD), when the apps evolved,
and the breakdown of the modified GUI elements into
two categories based on whether the modifications affected
only a GUI element’s non-behavioral aspects (NBHV)—e.g.,
the position, text, and/or image—or they affected also a
GUI element’s behavior (BHV)—e.g., the screen transition
it triggers and/or the user action to trigger the transition.
The table also lists the number of test scripts that become
broken due to each category of GUI changes.

Here, we deem a GUI element as being deleted or added
if its corresponding functionality is removed from or added
to an app, and we regard a GUI element as being modified
if its appearance and/or behavior is different but its main
functionality largely remains the same. Consider OI File
Manager’s two screens shown in Figure 1a and 1b for
example. During their evolution to the screens shown in
Figure 1c and 1d, no GUI element was deleted or added
but the non-behavioral aspects of three GUI elements were
modified: Buttons “Bookmark” and “Search” were turned
into two menu items, and the index of menu item “Create
folder” was increased by 2.

Overall, 73 GUI elements were deleted, added, or mod-
ified during the updates, breaking 104 test scripts. More
importantly, 86, or 82.7%, of the broken test scripts failed
due to changes that do not affect the behaviors of existing
GUI elements. For those test scripts, METER should be able
to preserve the intentions of their component test actions on
the updated version apps in an automatic way.

4.1.2 Subjects and their ESMs for running CHATEM.

Given a subject app, we followed the practice in [34] to
produce the ESM for the app. Specifically, we 1) ran the
Gator tool on the app for at most 180 minutes to produce
an initial model for the app, 2) observed the execution of
the available test scripts on the app, 3) revised or removed
GUI elements and transitions in the initial model as appro-
priate, and 4) added GUI elements and transitions that were
exercised by the tests but missing from the model. The same
process was applied to prepare the ESMs for both the base
and updated version apps. In the end, Gator helped produce
initial models for 13 apps. CHATEM failed to correctly parse

the model files produced by Gator on 4 of those apps and
managed to run to completion on the remaining 9 apps.

Table 4 lists, for the base (BASE) and updated (UPDATED)
versions of each remaining app (ID), the numbers of GUI
elements contained in the result ESMs (#), the numbers
of GUI elements in the result ESMs that were manually
created (#M), the numbers of GUI elements in the result
ESMs that were automatically generated by Gator (#G), the
breakdown of #G into three parts, namely the numbers
of Gator generated GUI elements that were correct (#C),
needed revising (R), and should be deleted (#D), and the
amounts of time in hours required to construct the result
ESMs (T). Note that a GUI element needed revising if and
only if at least one transition on that element was missing,
needed revising, or should be removed, and we always have
= #M + #C + #R.

In the end, 18 ESMs containing in total 772 GUI elements
were created in 75.0 hours, averaging to 4.2 hours per ESM
and 0.1 hours per GUI element. Among all the GUI elements
contained in the result ESMs, 327 were added manually,
while 230 and 215 were retained and revised from the Gator
extracted models, respectively; 994 Gator extracted GUI
elements were either duplicates or incorrect and therefore
removed. Such results suggest that, even with the help from
automated model extraction tools like Gator, significant
amount of manual effort is still needed in applying model-
based test script repair.

4.1.3 Subjects on the iOS platform.
We collected counterparts of the 22 Android apps on the
iOS platform as the subjects for addressing RQ5. Among
the 22 Android apps, 16 were excluded since they have
no implementation on iOS and another one was excluded
because its iOS implementation has only one version. This
left us with 6 iOS apps in total.

We adapted the test scripts written for the corresponding
Android apps to get the initial sets of test scripts for the
iOS apps, and followed the same process as described in
Section 4.1.1 to identify the base and updated versions of
each app. The initial sets of test scripts were then revised to
suit the base version apps. Due to the closed-source nature
of iOS apps, no coverage information, however, is available
for the test scripts.

Table 8 lists, for each of the 6 iOS apps, the name of
the app (APP), the base (VB) and updated (VU) versions, the
number of test scripts we prepared for its base version (#K),
and the number of test actions in those test scripts (#A).

The numbers of subject iOS apps, test scripts, and test
actions used in these experiments are smaller than those
in the experiments targeting the Android platform, mainly
because that, the subject Android apps were mostly open
source apps and their iOS versions, when in rare cases do
exist, tend to support only a subset of the functionalities
provided by their Android counterparts. Such limited set
of subject apps poses a major threat to the external validity
of our findings in the experiments. We discuss the threat in
Section 4.5.

4.2 Measures
A test script repairing tool takes a base version app P , its
updated version P ′, and a set K of test scripts written for P

For Research Only

11

as the input, and produces a set Q of test scripts for P ′ as
the repairing results of K.

Given such a tool and an input test script K =
α1, α2, . . . , αn (K ∈ K) to repair, let qi be the sequence
of test actions produced by the tool for αi as its repair
(1 ≤ i ≤ n) and Q = q1, q2, . . . qn be the repairing result
for K (Q ∈ Q), we can use the metrics defined as follows to
measure the effectiveness of the tool in repairing K :

NAE: The Number of test Actions Executable counts test
actions in Q that can execute successfully on P ′;

NAT: The Number of test Actions reTained counts test
actions from K that are copied into Q and execute
successfully on P ′; The NAT can be calculated as
|{i : 1 ≤ i ≤ n ∧ qi = [αi]}|.

SC: the percentage of statements in P ′ covered by the
repairing result Q;

NAP: The Number of test Actions Preserved counts test
actions from K that are retained with their semantics
preserved; The NAP can be calculated as |{i : 1 ≤ i ≤
n ∧ qi = [αi] ∧ τqi ιαi

}|, where τqi denotes the
screen transition triggered by qi and ιαi

denotes the
intention of αi.

NAR: The Number of test Actions Repaired counts test
actions from K whose replacements were success-
fully generated during repairing and can execute
successfully on P ′. The NAR can be calculated as
|{i : 1 ≤ i ≤ n ∧ qi <> [] ∧ qi <> [αi]}|.

Here, metric NAE calculates the effective size of a re-
paired test script; Metrics NAT and SC reflect two common
goals of test script repair, namely to reuse test actions from
the input test script and to avoid decrease in code coverage;
Metric NAP ensures the intended semantics of the input test
actions is taken into account while evaluating the repairing
result, which is important since a test action reused from
K may have depreciated value if it exercises different func-
tionalities than before and thus loses the human knowledge
encoded in it; Metric NAR measures the effort required to
achieve the actual repairing results.

We use all these five metrics to empirically evaluate the
effectiveness of METER in this work. Note that, when it
comes to test script repairing with METER in particular, the
NAT will always equate to the NAP, since METER only retains
a test action when its intention is preserved, and the NAR
will only equate to zero if no repair is really needed for the
input test script. In comparison, if K is repaired with a null
test repair tool, i.e., a test repair tool that simply returns the
input test scripts as the repairing results, the NAT is often
greater than the NAP, since some retained test actions may
not preserve their original semantics, while the NAR will
always be zero.

To evaluate the efficiency of METER in repairing K ,
besides the commonly used metric T that measures the
overall repairing time, we also use the following metrics:

TO: The time for recording the intention of each test
action in K on P ;

TC: The time for checking whether each test action in K
preserves its intention on P ′;

TR: The time for constructing repairs for test actions in
K that do not preserve the intention on P ′.

As explained in Section 3.2.1, given a test action α that
interacts with a GUI element ε on screen S of P , let S′ be the
match of S in P ′, if METER determines α does not preserve
its intention on P ′, it searches for a counterpart ε′ of εwithin
P ′ and constructs a sequence of test actions around ε′ as the
repair for α. Since the search here is first conducted locally
within S′ and then globally in other screens of P ′, we break
TR into the following two parts:

TL: The time for repair construction through local search
for ε′;

TG: The time for repair construction through global
search for ε′.

We extend the definitions of all these metrics in a natural
way so that they can be used to measure the repairing of
the set K of test scripts, and we measure all the times as
wall-clock time in minutes, unless otherwise specified.

4.3 Experimental Protocol
All the experiments were run on a Macbook Air laptop
running Mac OS X10 with one Quad-core 1.7GHz CPU
and 8 GB memory. Subject Android apps are executed on
a Samsung Galaxy S6 phone and iOS apps on an iPhone XX.

4.3.1 Test script repair with METER on Android and iOS
In each experiment with METER on an Android or iOS app,
the tool takes the base version P and the updated version
P ′ of the app as well as a set K of test scripts written for P
as the input, and produces a set Q of test scripts for P ′ as
the repairing results of K. More concretely, METER first runs
K on P and records the intention of each test action from
K, and then it produces the repaired set Q of test scripts in
a fully automatic fashion. All metrics defined in Section 4.2
are measured and recorded in the process.

We also ask two of the nine postgraduate students,
including the author of K, to manually check the execution
of Q on P ′ and conservatively mark a test action α as
being correctly repaired if and only if both students reach a
consensus that the replacement test action sequence q for α
indeed realizes α’s intended semantics.

To put the repairing results produced by METER into
perspective, we also repeated the experiments on a null
test script repair tool (Section 4.2). Since the null test script
repair tool does not change the input test scripts at all, the
associated metric values effectively characterize the results
of running K on P ′.

4.3.2 Robustness of METER

In its current implementation, METER’s behavior depends
on several parameters adopted in GUI matching (Sec-
tion 3.1.2): Two textual elements are considered to match
if their similarity is greater than Vtm = 0.4; Two graphical
elements are considered to match if the percentage of their
feature descriptors that match is greater than Vgm = 40%;
Two collections of GUI elements match if 1) more than
Vcm1 = 70% of their textual or graphical elements match
or 2) the percentage of their matching textual and graphical
elements are both greater than Vcm2 = 40%. To under-
stand whether and how these parameters’ values influence
METER’s effectiveness, we modify one parameter’s value
at a time and rerun the experiments on all the subject

For Research Only

12

Android apps. In Section 4.4.3, we report how changing
each parameter affects the repairing results in terms of major
effectiveness measures defined in Section 4.2.

4.3.3 Comparison with CHATEM
CHATEM’s repairing results naturally depend on the com-
pleteness of the input ESMs, which in turn depends on
how much manual effort is put into the construction of
the ESMs. To better understand how CHATEM compares
with METER when ESMs of various completeness levels are
used, we conduct two experiments with CHATEM on each
Android app and compare both results with that produced
by METER: One experiment uses the final ESMs constructed
in Section 4.1.2 as the input, and the other uses the same
ESMs but without the manually added GUI elements, i.e.,
the ESMs constructed by just revising and deleting elements
from the models extracted by Gator.

In each experiment with CHATEM on an Android app,
we first feed the ESMs for the base and updated versions of
the app and the test scripts for the app to CHATEM, and
then gather the repaired test scripts. Next, we run those
repaired test scripts on the updated version app and check
whether the intention of each test action is preserved as in
experiments with METER. Corresponding metrics are also
measured and recorded during the process.

4.4 Experimental Results
This section reports on the results from experiments.

4.4.1 RQ1: Effectiveness
Table 5 lists, for each Android app, the numbers of test
actions executable (NAE), preserved (NAP), and repaired
(NAR) in the result test scripts produced by METER, the
statement coverage achieved by those test scripts (SC), and
the number of test scripts that are completely repaired by
METER (#KR). Each entry in column NAR is in form x(y/z),
where x is the number of test actions repaired, while y
and z are the numbers of test actions that were successfully
repaired via local and global search for candidate elements
(Section 3.2.1), respectively. The table also lists the values
of the same metrics for a NULL test script repair tool (Sec-
tion 4.2), which reflect the results of running the original test
scripts on the updated version app.

It is worth mentioning that, since the intended semantics
of each test action on the base version app is always clearly
defined, both graduate students reached a consensus on
whether a test action was correctly repaired or not in all
cases. For the null repair tool, instead of the number of test
scripts completely repaired, which is equal to the number of
test scripts not affected by the GUI changes, the number of
test scripts broken by the GUI changes (#KB) is reported. A
test script is broken if at least one of its test action is broken
(Section 3). Recall that, with METER, the NAT always has
the same value as the NAP since METER only retains a test
action when its intention is preserved, and that, with the
null repair tool, the NAT is always equal to the NAE while
the NAR is always equal to zero. These metric values are
therefore omitted from the table.

Before being repaired by METER, 1063 (=4368-3305) test
actions were no longer executable on the updated version

app, affecting 104 of the 384 test scripts for the apps and
causing the statement coverage to drop from 54.6% to 46.4%.
Among the 3305 test actions that were still executable, only
3211, or 73.5% (=3211/4368) of the total amount, preserved
their intention on the updated version apps.

Thanks to METER, 4159 test actions from the repaired
test scripts were executable, covering 52.8% of the state-
ments of the updated version apps. Compared with the
null repair tool, METER preserved 737 (= 3948 - 3211) more
transitions from the original test scripts, which amounts to
63.7% (=737/1157) of all the test actions broken by the GUI
changes. METER achieved such high intention preservation
rate by completely repairing 82 of the 104 broken test scripts
and successfully repairing in total 203 broken test actions,
averaging to 9.2 repairs per app or 2.0 repairs per broken
script. Among all the repaired test actions, 186 and 17 were
successfully repaired via local and global search for the
candidate GUI elements, respectively, which suggests that
both types of searches are essential for the success of METER.
It is also worth noting that, the value of the repairing process
is not limited to repairing the broken test actions, the process
also helps validate that the retained test actions do preserve
their original intention.

Figure 3a shows the distribution of improvement on
test action intention preservation achieved by METER across
apps, where a bar at x-axis [a, b) with height c indicates
that the ratio of the NAP after repairing to that before
repairing is greater than or equal to a and smaller than b
for c apps. On average, the number of test actions preserved
after repairing is 1.40 (median) and 3.28 (mean) times of that
before repairing. From the figure, we can see that repaired
test scripts preserve more test actions than the original ones
for all but two apps S5 and S12. In both cases, METER
mistakenly decided to repair a test action that needed no
repairing, causing the following test actions to be lost.

Figure 3b shows how the improvement on test action in-
tention preservation relates to the impact of the GUI changes
on tests, where the x-axis denotes the test action intention
preservation rate of the original test scripts on the updated
version app (NAPNULL/#A), and the y-axis represents the
ratio of the NAP after repairing to that before repairing
(NAPMETER/NAPNULL). The figure clearly shows that the mag-
nitude of improvement in test action intention preservation
brings about by METER is reversely related to the percentage
of test actions preserved by the test scripts before repairing:
If only a few actions of the test scripts are preserved before
repairing, METER can really make a difference in preserving
more test actions; If a large number of test actions are
already preserved before repairing, applying METER may
not help much in increasing that number.

Where METER was ineffective. In the end, 26 test scripts
in total (22 reported by METER and 4 discovered through
manual check) out of the 104 affected test scripts were only
partially repaired.

We examined those test scripts and identified four rea-
sons for the ineffectiveness of METER. First, major changes
to the GUIs contributed to the incomplete repair of 11 test
scripts. With such major changes, both identifying screens
that would match the destination screen of an affected tran-
sition and constructing test action sequences to accomplish
the transition become much more challenging. Although

For Research Only

13

TABLE 5: Experimental results of METER on the 22 Android apps.

ID #K #A SC METER NULL T TO TC TR TL TG

NAE NAP NAR SC #KR NAE NAP SC #KB

S1 21 97 58.1% 97 97 0(0/0) 56.8% 0 97 97 57.0% 0 50.8 9.2 41.6 0.0 0.0 0.0
S2 8 83 50.1% 83 78 5(5/0) 49.2% 2 63 58 48.6% 2 37.3 11.0 23.7 2.7 2.7 0.0
S3 29 811 53.3% 753 747 6(5/0) 50.2% 2 738 738 49.4% 5 502.3 125.3 370.0 7.0 7.0 0.0
S4 31 239 53.4% 239 230 9(9/0) 57.0% 6 211 211 54.0% 6 102.1 22.2 73.9 5.9 5.9 0.0
S5 17 163 36.4% 150 141 9(9/0) 36.0% 9 163 152 35.7% 10 133.2 34.6 89.4 9.2 9.2 0.0
S6 14 106 65.1% 101 99 2(2/0) 61.6% 1 92 90 60.4% 3 125.6 18.2 50.6 56.8 44.2 12.6
S7 32 659 58.2% 659 659 0(0/0) 56.4% 0 659 659 56.4% 0 348.9 32.1 316.8 0.0 0.0 0.0
S8 6 17 67.2% 17 8 9(9/0) 68.0% 4 1 1 35.2% 4 35.4 2.5 29.2 3.7 3.7 0.0
S9 39 672 56.8% 656 633 23(23/0) 54.9% 9 493 476 55.0% 11 413.9 75.9 320.9 17.1 17.1 0.0
S10 29 195 47.4% 195 195 0(0/0) 52.2% 0 195 195 53.1% 0 69.1 20.9 48.2 0.0 0.0 0.0
S11 23 345 49.2% 345 322 23(22/1) 46.6% 9 143 131 38.0% 9 222.3 46.0 100.7 75.6 11.3 64.3
S12 10 64 71.5% 63 56 7(6/1) 73.9% 5 61 58 73.9% 6 24.4 7.3 11.9 5.3 2.2 3.1
S13 29 212 47.4% 191 163 23(17/5) 42.4% 13 110 91 28.2% 17 213.3 35.9 64.7 112.7 12.0 100.7
S14 17 159 50.8% 138 80 58(53/0) 50.1% 11 31 15 47.0% 13 132.1 32.9 69.2 30.1 30.1 0.0
S15 5 95 50.6% 95 93 2(2/0) 50.7% 1 95 93 50.0% 1 44.7 10.8 32.1 1.8 1.8 0.0
S16 9 42 28.8% 42 36 6(6/0) 28.6% 5 4 3 6.2% 5 17.1 4.6 11.1 1.3 1.3 0.0
S17 19 82 49.1% 22 22 0(0/0) 34.0% 0 24 22 34.0% 1 32.4 9.6 20.8 2.0 2.0 0.0
S18 4 13 67.8% 9 9 0(0/0) 62.6% 0 10 9 60.2% 2 11.8 2.3 5.3 4.2 0.4 3.8
S19 5 31 59.2% 27 20 7(3/4) 54.1% 2 14 12 53.2% 3 157.3 4.9 16.8 135.6 2.0 133.6
S20 5 35 67.6% 31 21 7(6/1) 60.1% 1 7 7 49.4% 3 88.4 10.8 17.2 60.4 4.7 55.7
S21 22 202 48.3% 202 196 6(6/0) 47.8% 1 74 73 40.6% 1 74.2 17.7 54.5 2.0 2.0 0.0
S22 10 46 64.8% 44 43 1(1/0) 68.4% 1 20 20 34.8% 2 34.1 5.7 22.6 5.7 0.3 5.4

Overall 384 4368 54.6% 4159 3948 203(186/17) 52.8% 82 3305 3211 46.4% 104 2843.7 532.2 1773.9 537.5 158.3 379.2

[0, 1) [1,2) [2,3) [3,4) [4,)
NAPMETER / NAPNULL

0

2

4

6

8

10

12

14

#A
pp

(a) Distribution

0.0 0.2 0.4 0.6 0.8 1.0
NAPNULL/#A

0

2

4

6

8

10

12

N
AP

M
ET

ER
/N

AP
N

U
LL

(b) Relation with updates to apps.

Figure 3: Transition preservation by repaired test scripts.

a more thorough search may be able to find the elements
needed to build the repair test scripts in such cases, that is
not currently supported by METER as it restricts its search
and considers replacement test action sequences in a few
limited forms for performance reasons. Second, functionality
deletion leads to incomplete repair of 8 scripts. Compared
with the first reason, functionality deletion renders the
preservation of test actions more challenging in some cases
and impossible in others. Third, manual check by the post-
graduate students discovered that screenshots as weak oracle
led to 6 test actions from 4 scripts being incorrectly repaired:
1 for app S3, 1 for app S13, 2 for app S14, and 2 for app S20.
METER compares destination screens against the recorded
intentions to decide whether a repair is correct, and it may
get confused and choose the wrong repair when multiple
test actions lead to similar screenshots. Fourth, technical
limitations of the CV libraries used prevented 3 scripts from
being completely repaired. For example, MSVC failed to
recognize a list of numbers on a screen of app S19, where
the size of the numbers is much smaller than that of other
characters on the same screen. To alleviate this problem,

we plan to experiment with and then integrate other more
sophisticated CV and OCR libraries.

In total, METER repaired 203 test actions and helped preserve
737 more test actions from the input test scripts, which amount
to 63.7% of all the test actions broken by the GUI changes.

4.4.2 RQ2: Efficiency
Table 5 also lists for each app the total repairing time (T),
the time required for recording the intention of the test
actions (TO), for checking whether each test action preserves
its intention (TC), and for constructing the repairs (TR), and
the breakdown of TR into the time for repair construction
through local (TL) and global (TG) search.

The total time cost for test script repair on all the apps
amounted to 2843.7 minutes, with the maximum repairing
time being 502.3 minutes and the minimum being 11.8
minutes. App S3 took the longest time to repair, mainly
because it is the largest app among the subjects and its 29
test scripts contained 811 test actions. On app S3, METER
spent 7.0 minutes on constructing repairs for the tests, while
the remaining 495.3 minutes were spent on recording and
checking the intention of the test actions before and after re-
pairing. Compared with that, repairing the tests for app S19
was a more challenging task, as it required 133.6 minutes, or
85% of its total repairing time, for repair construction using
elements returned from global search.

Figure 4 shows the repairing time for each subject app,
where the x-axis represents different apps sorted in decreas-
ing order of their total repairing time, the top half of the
figure shows the distribution of the time over various steps
in repairing, and the bottom half of the figure shows the
average time cost for repairing one test action of that app.
Three apps S8, S19, and S20 required on average more than
two minutes to repair a test action for different reasons: For

For Research Only

14

0 5 10 15 20
0

200

400

600
Ti

m
e

IntentionRecord
PreservationCheck
LocalSearch
GlobalSearch

0

2

4A
ve

ra
ge

 T
im

e

Figure 4: Time cost of individual steps of repairing in minutes.

app S8, a list of local candidate elements were found when
repairing a test action and the correct element happened
to be ranked towards the end of the list; Apps S19 and S20
required relatively long time because repair construction via
the more expensive global search was needed. For all the
other apps, the time cost for repairing a test action is less
than one minute.

While the time cost of test script repair with METER does
not suggest the tool to be applied in an interactive manner,
we believe the overall efficiency of METER is acceptable
for two reasons. First, the application of METER is fully
automatic and requires no human intervention. Second, the
total time cost here also includes the time spent on validating
that 3948 test actions actually do not need repairing and can
be reused directly.

We see a few opportunities to make METER more effi-
cient. For example, the original intention of the test actions
on the base version app could be gathered offline before
a repair session, results from CV-based analyses could be
re-used for screenshots if their associated screens are not
changed, and test scripts could be repaired on multiple
machines in parallel. We leave the implementation of these
optimizations for future work.

On average, it took METER 14.0 (=2843.7/203) minutes to
repair a test action and 0.7 (=2843.7/3948) minutes to preserve
a test action.

4.4.3 RQ3: Robustness of METER

Table 6 lists, for each parameter value, the overall effec-
tiveness of METER on all subject apps in terms of metrics
defined in Section 4.2. The default value for each parameter
is marked with an asterisk (*).

With greater values for Vtm, METER was slightly less
effective in terms of almost every metric listed. This is
understandable: When two textual GUI elements need to
have more words in common for them to be considered as
matching, it becomes more likely for test actions to be clas-
sified as not intention-preserving and less likely for METER
to successfully construct the proper test action sequences
as replacements. With smaller values for Vtm, METER’s
effectiveness, however, did not change much, suggesting
most matching textual GUI elements do share a significant
amount of common words. Similar trend was also observed
with Vcm1.

TABLE 6: How parameters in GUI matching affect METER’s
effectiveness.

PARAMETER VALUE NAE NAP NAR SC #KR

Vtm

0.3 4159 3948 203 52.7% 82
0.4* 4159 3948 203 52.7% 82
0.5 3989 3784 197 52.1% 77
0.6 3989 3784 197 52.1% 77

Vgm

20% 4159 3948 203 52.7% 82
30% 4159 3948 203 52.7% 82
40%* 4159 3948 203 52.7% 82
50% 4159 3948 203 52.7% 82
60% 4158 3947 203 52.7% 82

Vcm1

0.5 4159 3948 203 52.7% 82
0.6 4159 3948 203 52.7% 82
0.7* 4159 3948 203 52.7% 82
0.8 4131 3920 203 52.7% 82
0.9 3881 3677 196 51.9% 76

Vcm2

0.2 4159 3948 203 52.7% 82
0.3 4159 3948 203 52.7% 82
0.4* 4159 3948 203 52.7% 82
0.5 4159 3948 203 52.7% 82
0.6 4158 3947 203 52.7% 82

Different values for Vgm had very limited influence on
the repairing results, which suggests that most graphical
GUI elements in mobile apps either share many feature
descriptors and match or share very few feature descriptors
and do not match. The effectiveness of METER was also
rather stable with respect to Vcm2, and a possible reason
is that few collections of GUI elements were considered
matching because they had a balanced amount of tex-
tual and graphical elements that match—in consequence,
the corresponding case may be less important in deciding
matching GUI element collections.

Overall, such results align well with our observation that
different GUI elements in mobile apps tent to be distinct
from each other and share few words or feature descriptors.

METER’s effectiveness remained quite stable when there were
small changes to the parameter values used in GUI matching.

4.4.4 RQ4: Comparison with CHATEM
Table 7 shows, for each of the 9 subject Android apps,
the effectiveness metrics and the total repairing time
in seconds (T) achieved by CHATEM using ESMs with
(ESM+ADDITION) and without (ESM-ADDITION) manually
added GUI elements, respectively. For easy reference, the
table also lists the repairing results produced by METER on
the same apps.

When the input ESMs do not contain manually added
GUI elements, CHATEM’s effectiveness was considerably
worse than METER’s on every app and in terms of every
listed metric. Overall, CHATEM was only able to repair 2
test actions and preserve 59 test actions, resulting in repaired
tests that contain only 61 executable test actions and cover
merely 24.4% of the statements.

When manually added GUI elements are included in
the input ESMs, CHATEM’s effectiveness improved signif-
icantly: It became considerably better on every app and in
terms of every metric than in the previous case and compa-
rable with METER’s. Overall, CHATEM was able to repair

For Research Only

15

TABLE 7: Comparison between METER and CHATEM.

ID #K #A SC #KA METER CHATEM ESM-ADDITION CHATEM ESM+ADDITION

NAE NAP NAR SC #KR T(m) NAE NAP NAR SC #KR T(s) NAE NAP NAR SC #KR T(s)

S2 8 83 50.1% 2 83 78 5 49.2% 2 37.3 4 4 0 19.9% 0 1.2 73 73 0 37.9% 0 0.9
S5 17 163 36.4% 10 150 141 9 36.0% 9 133.2 3 3 0 15.2% 0 0.4 161 152 9 33.2% 8 1.1
S8 6 17 67.2% 4 17 8 9 68.0% 4 35.4 0 0 0 30.2% 0 0.3 17 8 9 68.0% 0 0.2
S12 10 64 71.5% 6 63 56 7 73.9% 5 24.4 40 38 2 49.9% 3 0.7 41 39 2 51.8% 3 0.9
S16 9 42 28.8% 5 42 36 6 28.6% 5 17.1 1 1 0 5.3% 0 0.4 36 30 6 28.6% 5 0.3
S17 19 82 49.1% 2 22 22 0 34.0% 0 5.3 1 1 0 5.3% 0 1.1 82 78 4 45.6% 2 0.8
S18 4 13 67.8% 2 9 9 0 62.6% 0 11.8 3 3 0 32.9% 0 0.3 7 7 0 37.1% 0 0.3
S20 5 35 67.6% 3 31 21 7 60.1% 1 88.4 2 2 0 23.7% 0 0.3 30 24 6 61.0% 2 0.4
S22 10 46 64.8% 2 44 43 1 68.4% 1 34.1 7 7 0 37.3% 0 0.4 42 42 0 65.8% 1 0.4

Overall 88 545 55.9% 36 461 414 44 53.4% 27 387.1 61 59 2 24.4% 3 5.1 489 453 36 47.7% 21 5.3

TABLE 8: Experimental results of METER on iOS apps.

ID APP VB VU #K #A METER NULL T TO TC TR TL TG

NAE NAP NAR #KR NAE NAP #KB

S23 Camera Ultimate 1 1.2 5 61 61 61 0(0/0) 0 61 61 0 48.9 7.2 41.7 0.0 0.0 0.0
S24 KeePassTouch 1.4.1 1.5 15 228 228 226 2(2/0) 2 212 210 2 254.1 27.5 224.3 2.3 2.3 0.0
S25 Pass2word 1.3.1 1.6.0 9 104 104 103 1(1/0) 1 104 102 1 115.6 13.0 101.5 1.0 1.0 0.0
S26 Pedometer 1.1.1 1.1.9 12 145 73 61 12(12/0) 6 55 35 11 123.8 19.8 78.7 25.3 25.3 0.0
S27 SMS Scheduler 2 7 2 17 19 14 5(5/0) 1 0 0 2 16.8 3.0 9.6 4.2 4.2 0.0
S28 Sound Board 2.1 2.5 1 20 20 20 0(0/0) 0 20 20 0 24.9 3.3 21.6 0.0 0.0 0.0

Overall 44 575 505 485 20(20/0) 10 452 428 16 584.1 73.8 477.4 32.9 32.9 0.0

36 test actions and preserve 453 test actions, producing
repaired tests that contain 489 executable test actions and
cover 47.7% of the statements. Particularly, the number of
test actions preserved by CHATEM is slightly larger than
that of METER’s and a closer look at the repairing results on
each app reveals that, CHATEM only preserved more test
actions than METER on 2 of the 9 apps, namely apps S5 and
S17, but it preserved much more test actions than METER on
app S17 (78 vs. 22), which helped CHATEM achieve a better
overall NAP value.

Despite the differences in the completeness of the input
ESMs, test script repair with CHATEM almost always com-
pleted within 2 seconds, since CHATEM does not need to
actually execute the tests. In comparison, it took METER
much longer to repair the same sets of tests. However, if
we take into account also the dozens of hours spent on
constructing the input ESMs for CHATEM (Section 4.1.2),
the total amounts of time required by the two tools for
repairing the test scripts are of similar order of magnitude.

We make three observations about such results. First,
METER is able to produce repairing results comparable
with that of CHATEM, even when high quality input ESMs
are provided. Second, models extracted by Gator need to
be complemented with missing GUI elements so that the
resultant ESMs can drive CHATEM to effectively repair test
scripts. Third, given that METER runs in a fully automatic
way, while a significant amount of manual effort is needed
to prepare the high quality input ESMs for CHATEM,
METER strikes a better balance between effectiveness and
efficiency overall.

METER runs automatically and can achieve repairing results
that are comparable with what CHATEM produces when pro-
vided with high quality input ESMs that require considerable
manual effort to prepare.

4.4.5 RQ5: Applicability of METER on iOS apps
Table 8 lists, for each of the six iOS apps, the metrics of the
repairing results produced by METER and the null repair
tool.

Before being repaired by METER, 123 (=575-452) test
actions were not executable on the updated version apps,
breaking 16 of the 44 test scripts. Among the 452 executable
test actions, 428 preserved their intention on the updated
version apps. Meanwhile, test scripts of two apps S23 and
S28 were not affected by the GUI changes at all.

METER repaired 20 test actions, all via local search for
the candidate GUI elements, and 10 test scripts completely,
raising the number of executable test actions to 505. More
importantly, 57 (=485-428) more test actions are preserved
after the repairing, which amounts to 38.8% (=57/147) of
all the test actions broken by the GUI changes. The manual
check of the repairing results confirmed that all the repairs
were correct, i.e., they all have the intended semantics.

The experiments took in total 584.1 minutes to finish. On
average, it took METER 29.2 (=584.1/20) minutes to repair a
test action, and 1.2 (=584.1/485) minutes to preserve a test
action.
In total, METER repaired 20 test actions and helped preserve
57 more test actions from the input test scripts, which amount
to 38.8% of all the test actions broken by the GUI changes.
On average, METER spent 29.2 and 1.2 minutes to repair and
preserve one test action, respectively.

For Research Only

16

4.5 Threats to Validity

In this section, we discuss possible threats to the validity of
our study and show how we mitigate them.

4.5.1 Construct validity
Threats to construct validity are mainly concerned with
whether the measurements used in the experiment reflect
real-world situations.

In this work, we measure the effectiveness of test script
repair in terms of to what extent the repairing process pre-
serves the semantics of the test actions, and we consider the
semantics of a test action to be preserved if the transition it
produces is achieved in the repaired test scripts. Given that
realizing a test action’s transition does not always mean the
semantics of the test action is preserved, the oracle METER
employs here is weak and may lead to incorrect repairing
results. To mitigate the threats introduced, we asked two
postgraduate students to manually examine whether the
test actions really have their intended semantics after repair-
ing. The repair for 4 test actions turned out to be incorrect.
In the future, we will add the support for stronger oracles,
e.g., in the form of assertions, into METER.

4.5.2 Internal validity
Threats to internal validity are mainly concerned with the
uncontrolled factors that may have also contributed to the
experimental results.

In our experiments, the main threat to internal validity
is the possible faults in the implementation of our approach
and the integration of external libraries. To address the
threat, we review our code and experimental scripts to
ensure their correctness before conducting the experiments.

Another threat to internal validity has to do with the
amount of manual effort invested in preparing the input
ESMs for CHATEM. To mitigate that, we conducted two
experiments with CHATEM on each Android app, using
input ESMs of different completeness levels, and compared
both results with that produced by METER.

4.5.3 External validity
Threats to external validity are mainly concerned with
whether the findings in our experiment are generalizable
to other situations.

One major threat to external validity concerns the subject
apps used in the experiments. To collect a diversified set
of Android apps, we resort to six papers on mobile ap-
plications from top software engineering conferences and
selected in total 22 apps as the subjects. Most apps selected
in this way, however, turned out to be open source in nature,
which poses a major threat to the external validity of our
findings, as these apps may not be good representatives of
the other Android apps. The relatively small number of iOS
apps used in the experiments poses a similar threat. While
we do not see any restrictions that would prevent METER
from being as successful on many other apps, we plan to
conduct more extensive experiments to further evaluate the
effectiveness and efficiency of METER in the future.

Another threat to external validity lies in the test scripts
that METER repaired in the experiments. To make sure the
preparation of test scripts is not biased in favor of METER,

we asked postgraduate students with experience in mobile
development to craft the test scripts. The scripts written
by other test engineers or generated by automatic tools,
however, may have different characteristics that influence
the behavior of METER. For future work, we plan to invite
our industry partners to use METER to repair test scripts
they write for their production apps. Results from such
real-world applications will help us understand better the
strengths and weaknesses of METER.

4.6 Limitations

We summarize in this section the main limitations of METER
that we identified. First, METER expects that the executions
of the test scripts to repair are deterministic and time-
insensitive, and it also assumes that each app under con-
sideration would occupy the whole screen while running.
Apps and test scripts not satisfying such properties are not
suitable inputs for METER, and therefore 12 apps from the
subject pool were excluded from the experiments (see Sec-
tion 4.1.1). Second, METER undoes possible changes caused
by the attempted but undesirable test actions during repair
construction by terminating the current testing process and
executing the constructed partial test scripts from the begin-
ning (Line 23 in Algorithm 2). While such design was able to
eliminate the effects caused by those undesirable test actions
most of the time in the experiments (partly because many
screens and test actions are not directly affected by those
effects, and partly because, since the matching relation in
METER does not demand 100% equivalence, many of those
GUI differences were too small to affect repair results), it
may not be enough to completely restore the app states in
some cases. Take app OI File Manager in Section 2 as an
example. If an attempted test action deletes a file, unless the
test contains an action to add the file back, the app GUI most
likely would show some difference after the backtrack. If the
difference is big or it directly influences the execution of the
following test actions, the remaining repair process would
be affected and the repair results might be incorrect. We see
two possible ways to address this limitation. On the one
hand, we may increase METER’s awareness of app states
so that the repair process handles the differences better.
On the other hand, we may also stipulate that every test
always starts with resetting the relevant parts of the testing
environment, so that all tests would be truly independent on
each other and on test actions attempted in repair construc-
tion. Third, GUI matching in METER is based on a group
of heuristics and the current values of the parameters were
determined based on our personal experiences with mobile
apps. Major factors influencing such experiences include,
e.g., the screen size and resolution of popular mobile devices
and the common font size used in most apps. Therefore,
incorrect repairs become virtually inevitable. As we have
seen in Section 4.4.1, test scripts for two apps preserved
fewer test actions after being repaired by METER. While the
numbers of these cases and the affected test actions were
both small in our experiments, such outliers do increase
the costs for using METER and the quality of repair results
may vary greatly on specific devices or apps. To address
this limitation, on the one hand, we may utilize more static
and dynamic information about the environment and apps

For Research Only

17

so as to prune out as many incorrect matching relations as
possible; On the other hand, we may also provide ways
for users to guide test repair with ease. For example, an
additional process could be installed to allow users to,
manually or interactively, tailor the parameter values for
the environments and apps; A tool may also be developed
to visually display how GUI elements are matched between
versions and how repairs are constructed based on the
matching relations, so that it becomes more convenient for
users to spot problems in the repair process.

5 RELATED WORK

In this section, we review works closely related to METER,
which fall into three categories: general purpose test repair,
GUI test repair, and computer vision in software engineer-
ing.

Note that there is a clear distinction between test repair
and another popular research area automated program re-
pair: The former aims to modify tests so that they run suc-
cessfully on programs, while the latter focuses on changing
programs to make existing tests pass [44]–[49].

5.1 General Purpose Test Repair
Changes made to a software system during its evolution
may render some existing tests for the system broken. That
is, those tests will fail on the evolved system not because
the system is buggy, but because the tests do not reflect
the changes. To reduce the burden of updating those bro-
ken tests for programmers, various techniques have been
developed in the past years. Deursen et al. [50] propose
techniques to fix compilation errors in tests caused by
refactorings to the program code. Daniel et al. [51] propose
the REASSERT technique to automatically repair broken unit
tests. REASSERT monitors the execution of a unit test on
a presumably correct program and uses the information
gathered during the execution to update the literal values,
assertion methods, or assertions in the test. To overcome
some of REASSERT’s limitations, Daniel et al. [52] propose
symbolic test repair. Symbolic test repair creates symbolic
values for literals used in the tests and executes the tests in a
symbolic way. The path conditions and assertions gathered
during the execution are then solved by the Z3 constraint
solver [53] and the solutions are used to replace the literals.
Yang et al. [54] propose the SPECTR technique that repairs
tests based on changes to program specifications rather than
implementations.

5.2 GUI Test Repair
Compared with general purpose test repair, the problem
of GUI test repair has attracted more attention from re-
searchers, partly because it is common for developers to
create GUI test scripts using record-and-replay testing tools,
while those test scripts are more fragile.

Memon and Soffa [13] first propose the idea of GUI test
script repair and develop a model-based approach called
GUI Ripper targeting desktop applications. GUI Ripper
assumes that the application model and user modifications
are completely known, and repairs scripts base on four
user-defined transformations. A few years later, Memon [10]

extends GUI Ripper by adding a mechanism to obtain the
application model through reverse engineering. In view that
the model built by GUI Ripper is just an approximation
of the actual application and may cause incorrect repairs,
Huang et al. [55] propose to use a genetic algorithm to
generate new, feasible test cases as repairs to GUI test suites.

Besides model-based approaches, white box approaches
have also been studied for GUI test script repair. Daniel et
al. [15] propose to record GUI code refactorings as they are
conducted in an IDE and use them to repair test scripts.
Grechanik et al. [14] propose a tool to extract information
about GUI changes by analyzing the source code and test
scripts and generate repair candidates for GUI test scripts to
be selected by testers. Fu et al. [56] develop a type-inference
technique for GUI test scripts based on static analysis, which
can assist testers to locate type errors in GUI test scripts.

Dynamic and static analyses have also been combined in
test script repair for desktop applications. To repair changed
GUI workflows, Zhang et al. [21] combine the information
extracted from dynamic execution of the applications and
static analysis of matching methods to generate recommen-
dations for replacement actions. Gao et al. [7] recognize
the limitations of existing approaches and the importance
of human knowledge, and propose a semi-automated ap-
proach called SITAR that takes human input to improve
the extracted models and repairs test scripts for desktop
applications.

Research on GUI testing for web applications has gained
better results, because web applications tend to have less
complex GUIs than desktop applications, and because the
DOM trees of a web application’s web pages can be easily
retrieved and utilized to facilitate testing related activities.
Raina and Agarwal [16] propose to reduce the cost of
regression testing for web applications by executing only
the tests that cover the modified parts of the applications.
In their approach, the modified part of an application are
automatically identified by comparing the DOM trees gener-
ated for the corresponding web pages. Choudhary et al. [17]
propose the WATER technique to repair GUI test scripts for
a web application so that the scripts can run successfully
on the successive version of the same application. WATER
gathers the DOM trees of the web pages after the execution
of each test action on both versions of the application, and
it suggests repairs based on the differences between the
properties of the DOM nodes. Harmen and Alshahwan [57]
develop a technique to repair user session data, instead of
test scripts, of web applications. The technique involves a
white-box analysis of the structure of the web application.
Stocco et al. [18] propose the VISTA technique to repair
test scripts for web applications. VISTA captures the visual
information associated with each test action and augments
the DOMs of a web application with visual information
about the GUI elements. Such visual information is then
utilized to help decide whether a test action executes as
expected and which other GUI element a repair test action
should interact with.

Compared with such works, METER mimics the man-
ual test script repairing process of human testers [58] and
requires no information about the source code or structure
of the application under consideration at all, which makes
the approach particularly valuable for mobile app test script

For Research Only

18

repair, since most mobile apps are closed-source and testers
have to treat the apps as black-box systems in testing. To
effectively construct new test action sequences as ingredi-
ents for the repaired test scripts, METER builds a behavioral
model for the app based on the successful execution of test
scripts on the base version app and the similarity relation
between the app’s screens.

Studies targeting the mobile domain are just emerging
and quite limited. In two recent studies [34], [35], model-
based approaches for Android GUI test repair are proposed.
The approaches require a precise model of the app under
consideration to guide the test script repair, assuming that
the model is either readily available or obtainable at a
relatively low cost. The assumption, however, may not hold
on large apps like AnyMemo and K-9 Mail used in our
experiments. In contrast, METER treats each mobile app as a
black-box system and utilizes computer vision techniques to
detect undesirable test action executions and construct new
actions as repairs by analyzing the snapshots of app screens.

5.3 Computer Vision in Software Engineering
Yeh et al. [59] propose the Sikuli technique targeting desktop
applications that allows users to take the screenshot of a
GUI element and query a help system using the screenshot
instead of the element’s name. When used to help craft-
ing GUI test scripts, the technique can significantly reduce
the sensitivity of test scripts to GUI changes like element
reposition or rotation [60]. Alégroth et al. [61] develop the
JAutomate tool that combines image recognition with test
script record and replay to reduce the automation cost of
visual GUI testing [62]. Chang et al. [63] apply computer
vision techniques to enable conventional software testing to
observe the states and events in physical world. Nguyen
et al. [64] develop the REMAUI approach where computer
vision and optical character recognition techniques are ap-
plied to reverse engineer mobile application user interfaces.
Chen et al. [65] develop the UI X-RAY system that integrates
computer vision methods to detect and correct inconsisten-
cies between UI design and implementation.

Different from all these works, METER employs com-
puter vision techniques to identify elements on app GUIs
and to establish the matching relation between those el-
ements based on their similarities. The elements and the
matching between them are essential for the effective detec-
tion of test failures and construction of repair test actions.

6 CONCLUSION

In this paper, we propose METER—a novel approach to au-
tomatically repairing GUI test scripts for mobile apps based
on computer vision techniques. Experimental evaluation of
METER on 28 real-world mobile apps from both the Android
and iOS platforms show that METER is both effective and
efficient.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their valu-
able comments and suggestions for improving this article.
This work is supported by the National Natural Science
Foundation (Nos. 61690204, 61972193, and 61632015) and

the Fundamental Research Funds for the Central Univer-
sities (Nos. 14380022 and 14380020) of China. This work
is also supported in part by the Hong Kong RGC Gen-
eral Research Fund (GRF) PolyU 152703/16E and PolyU
152002/18E and The Hong Kong Polytechnic University
internal fund 1-ZVJ1 and G-YBXU.

REFERENCES

[1] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “Mobiguitar: Automated model-based testing of mobile
apps,” IEEE Software, vol. 32, no. 5, pp. 53–59, 2015.

[2] M. Nayebi, B. Adams, and G. Ruhe, “Release practices for mobile
apps – what do users and developers think?” in 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), vol. 1, March 2016, pp. 552–562.

[3] K. Moran, M. Linares-Vásquez, and D. Poshyvanyk, “Automated
gui testing of android apps: From research to practice,” in Pro-
ceedings of the 39th International Conference on Software Engineering
Companion, ser. ICSE-C ’17. Piscataway, NJ, USA: IEEE Press,
2017, pp. 505–506.

[4] C. Hu and I. Neamtiu, “Automating gui testing for android
applications,” in Proceedings of the 6th International Workshop on
Automation of Software Test, ser. AST ’11. New York, NY, USA:
ACM, 2011, pp. 77–83.

[5] G. Bae, G. Rothermel, and D.-H. Bae, “Comparing model-based
and dynamic event-extraction based gui testing techniques: An
empirical study,” Journal of Systems and Software, vol. 97, pp. 15 –
46, 2014.

[6] A. M. Memon, “An event-flow model of gui-based applications for
testing: Research articles,” Softw. Test. Verif. Reliab., vol. 17, no. 3,
pp. 137–157, Sep. 2007.

[7] Z. Gao, Z. Chen, Y. Zou, and A. M. Memon, “SITAR: GUI test
script repair,” IEEE Trans. Software Eng., vol. 42, no. 2, pp. 170–186,
2016.

[8] “Appium: Mobile App Automation Made Awesome,” http://
appium.io/, 2018, [Online; accessed 20-March-2018].

[9] “Android UI Testing,” http://www.robotium.org, 2018, [Online;
accessed 20-March-2018].

[10] A. M. Memon, “Automatically repairing event sequence-based
GUI test suites for regression testing,” ACM Trans. Softw. Eng.
Methodol., vol. 18, no. 2, pp. 4:1–4:36, 2008.

[11] M. Grechanik, Q. Xie, and C. Fu, “Experimental assessment
of manual versus tool-based maintenance of gui-directed test
scripts,” in 25th IEEE International Conference on Software Main-
tenance (ICSM 2009), September 20-26, 2009, Edmonton, Alberta,
Canada. IEEE Computer Society, 2009, pp. 9–18.

[12] A. Cravens, “A demographic and business model analysis of
today’s app developer, 2012,” accessed in Aug, 2017.

[13] A. M. Memon and M. L. Soffa, “Regression testing of guis,” in
Proceedings of the 11th ACM SIGSOFT Symposium on Foundations
of Software Engineering 2003 held jointly with 9th European Software
Engineering Conference, ESEC/FSE 2003, Helsinki, Finland, September
1-5, 2003, J. Paakki and P. Inverardi, Eds. ACM, 2003, pp. 118–127.

[14] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving gui-
directed test scripts,” in 31st International Conference on Software
Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Pro-
ceedings. IEEE, 2009, pp. 408–418.

[15] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, and D. Marinov,
“Automated gui refactoring and test script repair,” in International
Workshop on End-To-End Test Script Engineering, 2011, pp. 38–41.

[16] S. Raina and A. P. Agarwal, “An automated tool for regression
testing in web applications,” SIGSOFT Softw. Eng. Notes, vol. 38,
no. 4, pp. 1–4, Jul. 2013.

[17] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso, “Water:web
application test repair,” in International Workshop on End-To-End
Test Script Engineering, 2011, pp. 24–29.

[18] A. Stocco, R. Yandrapally, and A. Mesbah, “Visual web test repair,”
in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2018. New York, NY, USA:
ACM, 2018, pp. 503–514.

[19] L. Yu, W. Tsai, X. Chen, L. Liu, Y. Zhao, L. Tang, and W. Zhao,
“Testing as a service over cloud,” in The Fifth IEEE International
Symposium on Service-Oriented System Engineering, SOSE 2010, June
4-5, 2010, Nanjing, China, 2010, pp. 181–188.

For Research Only

19

[20] Q. Xie and A. M. Memon, “Designing and comparing automated
test oracles for gui-based software applications,” ACM Trans.
Softw. Eng. Methodol., vol. 16, no. 1, Feb. 2007.

[21] S. Zhang, H. Lü, and M. D. Ernst, “Automatically repairing
broken workflows for evolving GUI applications,” in International
Symposium on Software Testing and Analysis, ISSTA ’13, Lugano,
Switzerland, July 15-20, 2013, M. Pezzè and M. Harman, Eds.
ACM, 2013, pp. 45–55.

[22] M. Hammoudi, G. Rothermel, and A. Stocco, “WATERFALL: An
incremental approach for repairing record-replay tests of web
applications,” in Proceedings of the 2016 24th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 751–762.

[23] “TestWorks CAPBAK,” http://www.testworks.com/Products/
Regression.msw/capbakmsw.html, 2018, [Online; accessed 20-
March-2018].

[24] X. Li, M. d’Amorim, and A. Orso, “Intent-preserving test repair,”
in 12th IEEE Conference on Software Testing, Validation and Verifica-
tion, ICST 2019, Xi’an, China, April 22-27, 2019, 2019, pp. 217–227.

[25] M. Pan, T. Xu, Y. Pei, Z. Li, T. Zhang, and X. Li, “Gui-guided
repair of mobile test scripts,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), May 2019, pp. 326–327.

[26] J. F. Canny, “A computational approach to edge detection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698, 1986.

[27] G. R. Bradski and A. Kaehler, Learning OpenCV - computer vision
with the OpenCV library: software that sees. O’Reilly, 2008.

[28] R. Smith, “An overview of the tesseract ocr engine,” in Document
Analysis and Recognition, 2007. ICDAR 2007. Ninth International
Conference on, vol. 2. IEEE, 2007, pp. 629–633.

[29] D. G. Lowe, “Object recognition from local scale-invariant fea-
tures,” in ICCV, 1999, pp. 1150–1157.

[30] M. Leotta, D. Clerissi, C. Spadaro, and C. Spadaro, “Comparing
the maintainability of selenium webdriver test suites employing
different locators: a case study,” in International Workshop on Joining
Academia and Industry Contributions To Testing Automation, 2013, pp.
53–58.

[31] “Python language bindings for Appium,” https://github.com/
appium/python-client, 2018, [Online; accessed 20-March-2018].

[32] “OpenCV library,” https://opencv.org/, 2018, [Online; accessed
20-March-2018].

[33] “Microsoft Cognitive Services,” https://azure.microsoft.com/
en-us/services/cognitive-services/computer-vision/, 2018, [On-
line; accessed 20-March-2018].

[34] N. Chang, L. Wang, Y. Pei, S. K. Mondal, and X. Li, “Change-
based test script maintenance for android apps,” in 2018 IEEE
International Conference on Software Quality, Reliability and Security
(QRS), July 2018, pp. 215–225.

[35] X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and X. Li,
“ATOM: automatic maintenance of GUI test scripts for evolving
mobile applications,” in 2017 IEEE International Conference on
Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan,
March 13-17, 2017. IEEE Computer Society, 2017, pp. 161–171.

[36] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev, “Static
window transition graphs for android (t),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Nov 2015, pp. 658–668.

[37] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet? (E),” in 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2015, Lincoln, NE, USA, November 9-13, 2015, M. B. Cohen,
L. Grunske, and M. Whalen, Eds. IEEE Computer Society, 2015,
pp. 429–440.

[38] R. J. Behrouz, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-
aware test-suite minimization for android apps,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016, 2016, pp. 425–
436.

[39] H. Zhang, H. Wu, and A. Rountev, “Automated test generation
for detection of leaks in android applications,” in Proceedings
of the 11th International Workshop on Automation of Software Test,
AST@ICSE 2016, Austin, Texas, USA, May 14-15, 2016, 2016, pp.
64–70.

[40] D. D. Perez and W. Le, “Generating predicate callback summaries
for the android framework,” in 4th IEEE/ACM International Confer-
ence on Mobile Software Engineering and Systems, MOBILESoft@ICSE
2017, Buenos Aires, Argentina, May 22-23, 2017, 2017, pp. 68–78.

[41] W. Song, X. Qian, and J. Huang, “Ehbdroid: beyond GUI testing
for android applications,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE
2017, Urbana, IL, USA, October 30 - November 03, 2017, 2017, pp.
27–37.

[42] A. Sadeghi, R. Jabbarvand, and S. Malek, “Patdroid: permission-
aware GUI testing of android,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
Paderborn, Germany, September 4-8, 2017, 2017, pp. 220–232.

[43] P. Runeson, “Using students as experiment subjects - an analysis
on graduate and freshmen student data,” Proceedings of the 7th
International Conference on Empirical Assessment in Software Engi-
neering, pp. 95–102, 01 2003.

[44] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automati-
cally finding patches using genetic programming,” in Proceedings
of the IEEE 31st International Conference on Software Engineering,
2009, pp. 364–374.

[45] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller, “Au-
tomated Fixing of Programs with Contracts,” IEEE Transactions on
Software Engineering, vol. 40, no. 5, pp. 427–449, 2014.

[46] L. Chen, Y. Pei, and C. A. Furia, “Contract-based Program Repair
Without the Contracts,” in Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 637–647.

[47] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing
crashes in android apps,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 187–198.

[48] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair
without the contracts: An extended study,” IEEE Transactions on
Software Engineering, pp. 1–1, 2020.

[49] M. Monperrus, “Automatic software repair: a bibliography,” Uni-
versity of Lille, Tech. Rep. hal-01206501, 2015.

[50] A. Deursen, L. M. Moonen, A. Bergh, and G. Kok, “Refactoring
test code,” NLD, Tech. Rep., 2001.

[51] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “Reassert: Sug-
gesting repairs for broken unit tests,” in 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, Nov 2009, pp.
433–444.

[52] B. Daniel, T. Gvero, and D. Marinov, “On test repair using
symbolic execution,” in Proceedings of the Nineteenth International
Symposium on Software Testing and Analysis, ISSTA 2010, Trento,
Italy, July 12-16, 2010, 2010, pp. 207–218.

[53] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,”
in Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, 2008, pp.
337–340.

[54] G. Yang, S. Khurshid, and M. Kim, “Specification-based test repair
using a lightweight formal method,” in FM 2012: Formal Meth-
ods, D. Giannakopoulou and D. Méry, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 455–470.

[55] S. Huang, M. B. Cohen, and A. M. Memon, “Repairing GUI test
suites using a genetic algorithm,” in Third International Conference
on Software Testing, Verification and Validation, ICST 2010, Paris,
France, April 7-9, 2010. IEEE Computer Society, 2010, pp. 245–
254.

[56] C. Fu, M. Grechanik, and Q. Xie, “Inferring types of references
to GUI objects in test scripts,” in Second International Conference
on Software Testing Verification and Validation, ICST 2009, Denver,
Colorado, USA, April 1-4, 2009. IEEE Computer Society, 2009, pp.
1–10.

[57] M. Harman and N. Alshahwan, “Automated session data repair
for web application regression testing,” in First International Con-
ference on Software Testing, Verification, and Validation, ICST 2008,
Lillehammer, Norway, April 9-11, 2008. IEEE Computer Society,
2008, pp. 298–307.

[58] M. Mirzaaghaei, “Automatic test suite evolution,” in SIGSOFT-
/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE-19) and ESEC’11: 13th European Software
Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9,
2011, T. Gyimóthy and A. Zeller, Eds. ACM, 2011, pp. 396–399.

[59] T. Yeh, T. Chang, and R. C. Miller, “Sikuli: using GUI screenshots
for search and automation,” in Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology, Victoria, BC,

For Research Only

20

Canada, October 4-7, 2009, A. D. Wilson and F. Guimbretière, Eds.
ACM, 2009, pp. 183–192.

[60] T. Chang, T. Yeh, and R. C. Miller, “GUI testing using computer
vision,” in Proceedings of the 28th International Conference on Human
Factors in Computing Systems, CHI 2010, Atlanta, Georgia, USA, April
10-15, 2010, 2010, pp. 1535–1544.

[61] E. Alégroth, M. Nass, and H. H. Olsson, “Jautomate: A tool for
system- and acceptance-test automation,” in Sixth IEEE Interna-
tional Conference on Software Testing, Verification and Validation, ICST
2013, Luxembourg, Luxembourg, March 18-22, 2013. IEEE Computer
Society, 2013, pp. 439–446.

[62] E. Börjesson and R. Feldt, “Automated system testing using visual
GUI testing tools: A comparative study in industry,” in Fifth
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012, 2012,
pp. 350–359.

[63] R. Ramler and T. Ziebermayr, “What you see is what you test
- augmenting software testing with computer vision,” in 2017
IEEE International Conference on Software Testing, Verification and
Validation Workshops, ICST Workshops 2017, Tokyo, Japan, March 13-
17, 2017. IEEE Computer Society, 2017, pp. 398–400.

[64] T. A. Nguyen and C. Csallner, “Reverse engineering mobile appli-
cation user interfaces with REMAUI (T),” in 30th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE 2015,
Lincoln, NE, USA, November 9-13, 2015, M. B. Cohen, L. Grunske,
and M. Whalen, Eds. IEEE Computer Society, 2015, pp. 248–259.

[65] C. R. Chen, M. Pistoia, C. Shi, P. Girolami, J. W. Ligman, and
Y. Wang, “UI x-ray: Interactive mobile UI testing based on com-
puter vision,” in Proceedings of the 22nd International Conference on
Intelligent User Interfaces, IUI 2017, Limassol, Cyprus, March 13-16,
2017, G. A. Papadopoulos, T. Kuflik, F. Chen, C. Duarte, and W. Fu,
Eds. ACM, 2017, pp. 245–255.

[66] M. B. Cohen, L. Grunske, and M. Whalen, Eds., 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2015, Lincoln, NE, USA, November 9-13, 2015. IEEE Computer
Society, 2015.

Minxue Pan is an associate professor with the
State Key Laboratory for Novel Software Tech-
nology and the Software Institute of Nanjing
University. He received his B.S. and Ph.D. de-
grees in computer science and technology from
Nanjing University. His research interests in-
clude software modelling and verification, soft-
ware analysis and testing, cyber-physical sys-
tems, mobile computing, and intelligent software
engineering.

Tongtong Xu holds a B.S. in Physics from Nan-
jing University. He is currently a Ph.D. student in
Department of Computer Science and Technol-
ogy, Nanjing University. His main research inter-
ests lie in automatic program repair and software
testing.

Yu Pei is an assistant professor with the Depart-
ment of Computing, The Hong Kong Polytechnic
University, Hong Kong. His main research inter-
ests include automated program repair, software
fault localization, and automated software test-
ing.

Zhong Li holds a B.S. in Computer Science
and Technology from Nanjing University of Posts
and Telecommunications. He is currently a Ph.D.
student in Department of Computer Science
and Technology, Nanjing University. His main
research interests lie in software testing.

Tian Zhang is an associate professor with the
Nanjing University. He received his Ph.D. de-
gree in Nanjing University. His research interests
include model driven aspects of software engi-
neering, with the aim of facilitating the rapid and
reliable development and maintenance of both
large and small software systems.

Xuandong Li received the B.S., M.S. and Ph.D.
degrees from Nanjing University, China, in 1985,
1991 and 1994, respectively. He is a full pro-
fessor in Department of Computer Science and
Technology, Nanjing University. His research in-
terests include formal support for design and
analysis of reactive, distributed, real-time, hy-
brid, and cyber-physical systems, and software
testing and verification.

For Research Only

